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Abstract
Modelling mix-and-match relationships among fashion items has become increasingly
demanding yet challenging for modern E-commerce recommender systems. When perform-
ing clothes matching, most existing approaches leverage the latent visual features extracted
from fashion item images for compatibility modelling, which lacks explainability of gen-
erated matching results and can hardly convince users of the recommendations. Though
recent methods start to incorporate pre-defined attribute information (e.g., colour, style,
length, etc.) for learning item representations and improving the model interpretability, their
utilisation of attribute information is still mainly reserved for enhancing the learned item
representations and generating explanations via post-processing. As a result, this creates a
severe bottleneck when we are trying to advance the recommendation accuracy and gener-
ating fine-grained explanations since the explicit attributes have only loose connections to
the actual recommendation process. This work aims to tackle the explainability challenge in
fashion recommendation tasks by proposing a novel Attribute-aware Fashion Recommender
(AFRec). Specifically, AFRec recommender assesses the outfit compatibility by explic-
itly leveraging the extracted attribute-level representations from each item’s visual feature.
The attributes serve as the bridge between two fashion items, where we quantify the affin-
ity of a pair of items through the learned compatibility between their attributes. Extensive
experiments have demonstrated that, by making full use of the explicit attributes in the rec-
ommendation process, AFRec is able to achieve state-of-the-art recommendation accuracy
and generate intuitive explanations at the same time.
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1 Introduction

The advancement of modernisation attracts a rapidly growing attention to fashion. A wide
range of fashion-focused social websites have emerged in recent decades, such as Polyvore
1 and ShopLook2. With an overwhelming amount of product choices, customers nowadays
are craving for personal advice on outfit matching and recommendation of the most suitable
item for their wardrobes, which brings in a great opportunity of designing automated tools
for measuring fashion compatibility.

Recent research in the fashion area evolves from fundamental clothing recognition [15,
28], style understanding [2] to aesthetic and compatibility analysis [5, 11, 21, 22]. Learning
compatibility relationships is a challenging and sophisticated task, as whether two clothes
(e.g., top and bottom clothes) are a good match is usually determined by a complex mix-
ture of various factors. A large body of work on this task models compatibility notions
by computing latent representations for a given pair of items, then modelling the similar-
ity between items via those representations [5, 11, 22]. In this regard, latent factor models,
especially deep models [5, 20] have commonly demonstrated promising recommendation
accuracy. However, a main drawback of these latent factor methods is that the recommen-
dation process is non-transparent to users, making it hard for users to justify the reasons
behind successfully matched clothes. In the real-world scenario, users usually not only want
to know whether two outfits are compatible or not but also would like to understand the
major factors that lead to the failure or success of matching.

Though visual explanations (usually made with attention) are offered in some recent
methods to reveal a model’s inner mechanism and perform model validation [9], how-
ever, they are less helpful for convincing users of the generated clothes matching results
and making detailed explanations beyond only the appearance of items. In fact, as illus-
trated in Figure 1, the property of a fashion item can be further decomposed into multiple
fine-grained attributes (e.g., shape, colour, pattern, material, etc.), which are highly rel-
evant when users are shopping for clothes. To enhance the model interpretability, some
work attempts to incorporate information of pre-defined attributes of clothes when mod-
elling clothes compatibility. However, despite the availability of attribute information, the
attributes are only involved in the recommendation process in the form of latent fea-
tures of items, thus giving up the rich compatibility signals between explicit attributes and
making the generated explanation coarse-grained. For example, [4] generates explanations
by post-processing the associated attributes after a recommendation is made, making the
attribute-wise explanations loosely connected to the actual recommendation results. Mean-
while, [26] requires pretraining an individual decision tree before meaningful attribute
combinations can be used for clothes matching and interpretation, and the quality of both
recommendation and explanation is highly dependent on the selected decision tree model.

To alleviate the aforementioned limitations of previous work, we introduce our Attribute-
aware Fashion Recommender (AFRec), which makes full use of explicit attribute informa-
tion to mimic a human’s decision-making process where the compatibility of two clothes
are usually determined by comparing various attributes of both items. Specifically, taking
the images of a pair of clothes as the input, AFRec utilises a pretrained convolutional neural
network (CNN) to extract visual features from both clothes. Then, we design an innovative

1https://www.polyvore.com
2https://www.shoplook.io
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Figure 1 An example of clothing attribute

semantic attribute extractor that automatically maps each item to a group of attribute rep-
resentations. Unlike existing attribute-based methods that directly fuse extracted attributes
into a unified representation for each item [4, 26], we disentangle the straightforward item-
item affinity into the explicit attribute-attribute compatibility. To achieve this, we propose
a novel attribute-wise reciprocal attention module, where the affinity between two items
is conditioned on the inherent compatibility of each attribute pair as well as each item’s
performance across all attributes. This enables AFRec to precisely bridge two comple-
mentary clothes with fine-grained attributes. Moreover, the pairwise attribute compatibility
scores allow AFRec to provide intuitive attribute-level explanations on the recommendation
results.

Our main contributions are summarised as follows:

– We approach an emerging and important research problem - explainable comple-
mentary clothes recommendation from a different view, i.e., using attribute-level
compatibility to bridge two complementary clothes.

– We propose Attribute-aware Fashion Recommender (AFRec), a novel model that
explores the fine-grained attribute-level collocation via a CNN-based semantic attribute
extractor, which is followed by an innovative attribute-wise attentive compatibility
modelling paradigm for clothes matching.

– We extensively evaluate AFRec on two benchmark datasets, where the results suggest
that it is able to outperform state-of-the-art baselines and generate intuitive explanations
at the same time.

2 Related work

Existing work on recommending complementary clothing items mainly utilises the visual
signals extracted from the product image data to model the visual correlations between
items and user preferences. McAuley et al. [16] propose to use Low-rank Mahalanobis
Transformation to learn a latent style space for minimising the distance between matched
clothing item embeddings and maximising that of mismatched ones. Veit et al. [25] employ
the Siamese CNNs to learn a metric for compatibility measurement in an end-to-end man-
ner. Some researchers argue that the complex compatibility relationships cannot be captured
by directly learning a single latent space. He et. al [7] propose to learn a mixture of mul-
tiple metrics with weight confidences to model the relationships between heterogeneous

1887World Wide Web (2021) 24:1885–1901



items. Veit et al. [24] propose Conditional Similarity Network, which learns disentangled
item features whose dimensions can be used for separate similarity measurements. Li et al.
[11] use an encoder to fuse features from multimodal inputs and adopt pooling techniques
to get a single representation of an outfit for compatibility measurement. Vasileva et al.
[23] claim that respecting type information has important consequences. Thus, they build
type-wise trainable mask embeddings and use them to attend on different latent aspects
when measuring different kinds of top-bottom pairs. Similarly, Yang et al. [27] introduce
a translation-based type-aware model, which learns type-specific embeddings to connect
compatible item embedding pairs. Different from the previous category-aware work [23,
27], instead of learning either mask or categorical relation embeddings, we build category-
specific weight matrices in AFRec, which help the model to focus on different latent aspects
for attribute representation pairs in different categorical groups.

However, there are some voices arguing that these previous methods suffer from limited
interpretability. Han et al. [4] propose a Bayesian Personalised Ranking (BPR) framework
named PAICM that adopts NMF to learn the latent attribute-level prototype embeddings for
both compatible and incompatible outfits. Thus, the model could provide recommendation
explanation by comparing the item-level embedding with the closest prototype embedding.
However, since the interpretability of this method highly relies on the quality of the learned
prototype embeddings, the model is sensitive to the number of defined prototypes. Xun et
al. [26] propose to draw harmonious matching rules through a deep decision tree for the
explainability of the recommendation model. Another explainable fashion recommendation
model [13] learns to generate review comments by an attentive RNN-based decoder using
the fused item-level embeddings. Nevertheless, these approaches either require abundant
well-annotated attribute labels of each item for matching rule mining or user-generated
reviews for training the explanation generation component. This impedes the practicality of
those methods on most fashion datasets, where only a short textual description is available
for each clothing item. Different from those methods, our model innovatively captures the
fine-grained pairwise interactions at the attribute level, which provides an explicit and clear
explanation by automatically concentrating on the most important attribute factors in a given
compatible/incompatible outfit pair.

3 Problem formulation

In this paper, we focus on the widely studied problem of matching top and bottom clothes [1,
12, 14, 26], while our approach can be easily generalised to other types of clothes matching
problems. Let us use T = {t1, t2, ..., tNt }, B = {b1, b2, ..., bNb }, A = {a1, a2, ..., aK } and
C = {c1, c2, ..., c|C|} to denote the set of top images, bottom images, attributes and item
categories in the dataset.D, where Nt , Nb, K and L are the total numbers of tops, bottoms,
attributes and item categories, respectively. Bold lowercase letters and bold uppercase letters
are used to indicate embedding vectors and matrices, respectively.

In this work, we target at modelling outfit compatibility as well as exploring the explain-
ability of the generated recommendations. Formally, given an arbitrary top-bottom pair
(ti , bj ), our model is able to utilise the attribute informationA associated with each item to
distinguish whether ti and bj is a qualified match or not. In the case of the ranking task, our
model is expected to generate the highest ranking score for a ground truth item pair than a
non-matching item pair.
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4 Proposed approach

As discussed in Section 1, most existing work models fashion compatibility by measur-
ing the similarity between fashion items’ latent representations, where the meaning of the
features is incomprehensible to users. As a result, they could hardly provide convincing
explanations for their predictions. To address this limitation, we propose an attribute-aware
fashion recommender, namely AFRec, which supports comprehensive clothes matching
and reasoning at the attribute level. The workflow of AFRec is shown in Figure 2. In this
section, we first introduce the global and attribute-specific representation extraction pro-
cedure. Then, we describe our designed attribute reciprocal attention mechanism, which
fully explores the complementary correlations between the top and bottom attributes for
compatibility modelling. Finally, we give the learning objective for training our model.

4.1 Item visual feature extraction

As illustrated in the left part of Figure 2, we first utilise a pretrained CNN to extract
high-level visual features from the raw input images. Considering both performance and
computational complexity, we adopt ResNet-18 [6] pretrained on ImageNet dataset [19]
as the backbone module. Accordingly, for image ti /bj that are of the size 224 × 224 with
3 colour channels, the feature maps output from the pretrained CNN can be represented
as Fti ∈ R

D×7×7 and Fbj
∈ R

D×7×7, where D is the output dimension size (D = 512
in a typical ResNet-18), and 7 × 7 denotes the output feature map size, i.e., height ×
width.

Generating global item embeddings To compress the visual feature maps into a compact
item embedding, we use two sets Fti and Fbj

to collect all 7 × 7 = 49 D-dimensional

feature vectors, i.e., Vti =
{
vti
1 , vti

2 , ..., vti
49

}
and Vbj

=
{
v
bj

1 , v
bj

2 , ..., v
bj

49

}
where v ∈ R

D

corresponds to one feature in the feature map. Then, the global embedding vectors of items

Figure 2 An overview of our proposed AFRec model

1889World Wide Web (2021) 24:1885–1901



ti and bj can be obtained by feeding Vti and Vbj
into a global average pooling layer:

vti = 1

49

49∑
n=1

vti
n , vbj

= 1

49

49∑
n=1

v
bj
n , (1)

where vglobal
ti

, vglobal
bj

∈ R
D denote the global feature embedding for ti and bj , respectively.

Fine-tuning pretrained CNN As the pretrained ResNet-18 is not originally designed for
attribute-aware fashion recommendation, we fine-tune this CNN module with an item
categorisation task. The rationale is that, fashion items of different categories tend to demon-
strate different distributions over attributes. For instance, “sleeve length” is an important
attribute for shirts and sweaters, while people tend to pay more attention to the “waistline”
of a dress. This requires the model to focus on different attributes when handling differ-
ent types of clothes. Therefore, to generate category-sensitive and more discriminative item
embeddings to better guide the subsequent attribute extraction procedure, we design an
additional item classification task with cross-entropy loss, which is used to fine-tune the
pretrained CNN module:

ŷitem = softmax
(
Wcatvglobal

item + bcat
)

,

Lcategory = −
∑

∀item∈T ∪B
y�
item log(̂yitem),

(2)

whereWcat ∈ R
|C|×D and bcat ∈ R

|C| are the weight and bias of the classifier, ŷitem ∈ R
|C|

is the predicted probability distribution over all item categories, and yitem is an one-hot
encoding of each item’s ground truth category label.

4.2 Semantic attribute representation extraction

On e-commerce websites, on top of visual information (i.e., images), a fashion garment
usually has a textual description at the same time. This allows us to effectively summarise
meaningful item attributes such as shape, pattern and style. With a pre-defined item attribute
setA, we propose a CNN-based semantic attribute extractor (SAE) for meaningful attribute-
specific region localisation and representation generation in a weakly-supervised manner.
Previous attribute-aware solutions [4, 26] learns universal representation for every single
attribute, and use the combinatorial feature of different attributes for item representation
learning. However, using fixed attribute representations lacks adequate flexibility as each
itemmay exhibit different characteristics towards each attribute. Hence, in AFRec, we allow
each item to have its unique representation regarding an attribute ak , which is learned in an
attribute-specific feature space.

As illustrated in Figure 3, the extracted feature map F ∈ R
D×7×7 is shared over all

attribute-specific blocks (each block is marked by blue lines in Figure 3). There are K

blocks defined in SAE corresponding to K fashion attributes. For the k-th attribute ak ∈ A,
we adopt an independent convolutional layer whose kernel size is of D ×1×1 to transform
the visual feature map F to F′

k ∈ R
D×7×7. Note that the convolutional layer in each attribute

block has a unique set of parameters. Then, with a global average pooling operation as in
(1), we can obtain attribute ak’s embedding vector ak ∈ R

D . Similarly, the same attribute
extraction scheme is applied in all other blocks. Accordingly, for both items ti and bj , we
stack all K attribute representations obtained from SAE into two K × D matrices, i.e.,
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Figure 3 An overview of Semantic Attribute Extractor (SAE)

Ati =
[
ati
1 , ati

2 , ..., ati
K

]
andAbj

=
[
a
bj

1 , a
bj

2 , ..., a
bj

K

]
. Intuitively, Ati andAbj

can be viewed

as two attribute-aware feature matrices representing ti and bj .
Apparently, we can directly optimise each ak within Ati and Abj

using downstream
clothes matching tasks. However, to ensure sufficient expressiveness of the learned attribute
representation ak , we further introduce a prediction task in the SAE layer. To be specific,
for each attribute, e.g., ak =“colour”, we can obtain the ground truth label (i.e., value) from
the corresponding item, e.g., “colour”→“white”. Suppose for the k-th attribute, there are
Nk possible values, then we can use one-hot encoding zitem

k to label the observed value on
item ∈ T ∪ B. In a similar vein to Section 4.1, we perform attribute value prediction with
cross-entropy loss:

ẑitem
k = softmax(Wattr

k aitem
k + battr

k ),

Lattribute = −
∑

∀item∈T ∪B

K∑
k=1

zitem�
k log(̂zitem

k ),
(3)

where Wattr
k ∈ R

K×D and battr
k ∈ R

Nk
are the weight and bias of the classifier for the k-th

attribute, ẑitem
k ∈ R

Nk
denotes the item’s estimated probability distribution over all possible

values of attribute ak . By optimising Lattribute, we can effectively enforce the attribute
embedding learned in each block to be a high-quality reflection on the k-th attribute of the
target item.

4.3 Attribute-wise reciprocal attention

As a common practice, people tend to consider the different combinations of top and bottom
attributes when choosing clothes to wear. For example, when a person wants to find a pair
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of pants to match his/her T-shirt, he/she may think about whether the colour and the pattern
of the pants are compatible with the T-shirt. Inspired by the recent advances of attention
mechanism in computer vision [3, 8, 29], we propose an attribute-wise reciprocal attention
mechanism for clothes matching. In particular, for top ti’s attribute representation a

ti
k ∈ Ati ,

an attention score s
ti
k representing its importance to the bottom bj can be computed via the

following:

s
ti
k = w�tanh

(
W1a

ti
k + W2v

global
bj

)
, (4)

where w ∈ R
D carries the projection weight, while W1 ∈ R

D×D and W2 ∈ R
D×D are two

weight matrices. Then, a normalised reciprocal attention weight α
ti
k for ti’s attribute a

ti
k is

calculated as follows:

α
ti
k =

exp
(
s
ti
k

)

∑K
k=1exp

(
s
ti
k

) . (5)

Now, we can get ti’s reciprocal attribute attention weight vector vattn
ti

=
[
α

ti
1 , α

ti
2 , ..., αti

K

]
∈

R
K , where the value of k-th dimension in vattn

ti
represents ti’s performance on the k-th

attribute regarding the bottom bj . Similarly, we can also obtain bj ’s attribute attention vector
vattn
bj

:

s
bj

k = v�
attntanh

(
W1a

bj

k + W2v
global
ti

)
,

α
bj

k =
exp

(
s
bj

k

)

∑K
k=1exp

(
s
bj

k

) ,

vattn
bj

=
[
α

bj

1 , α
bj

2 , ..., α
bj

K

]
∈ R

K .

(6)

So far, vattn
ti

and vattn
bj

can be viewed as attribute-aware representations of ti and bj ,
which are respectively conditioned on each other.

4.4 Explicit attribute-aware compatibility modelling

With the obtained attribute representations Ati and Abj
, we then perform the compatibility

prediction in a pairwise manner, which is illustrated in the right part of Figure 2. To be
specific, for each top-bottom pair (ti , bj ), we first project their attribute representations into
a category-specific space via linear transformation, then we obtain a compatibility matrix
Mcompat

ij ∈ R
K×K by calculating an affinity score between every pair of attribute-wise

representations
(
ati
k , a

bj

k′
)
. To allow for efficient computation, the matrix-level computation

is written as:
Mcompat

ij = (AtiW
cicj )Wcompat (Abj

Wcicj )� ∈ R
K×K, (7)

where Wcicj ∈ R
D×D is a category-specific weight matrix, here, cicj denotes the pair of

(ti , bj )’s categorical labels, Wcompat ∈ R
D×D is a transformation matrix that aligns the

feature spaces for both attribute-wise feature matrices for compatibility measurement. Each
element m

compat

kk′ ∈ Mcompat
ij results from the dot product between the intrinsic attribute

representations ati
k and a

bj

k′ . Hence, m
compat

kk′ can be viewed as the inherent compatibility
score for attribute pair (ak, ak′ , which is learned with the contexts given by the (ti , bj ) pair.
A higher score means that two attributes are closely correlated for clothes matching, e.g.,
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attributes “bottom length” and “waistline” are usually bounded when matching the sizing
of clothes.

Moreover, recall that we have also obtained the attention vectors vti
attn, v

bj

attn ∈ R
K for

both items. Intuitively, the k-th element in vti
attn/v

bj

attn indicates the performance of item ti /bj

on a specific attribute ak . By performing an outer product between those two vectors, we
can enumerate over all the pairwise combinatorial effect between ti and bj ’s attribute-wise
performance:

Maff inity
ij = vattn

ti
⊗ vattn

bj
∈ R

K×K, (8)

where ⊗ is an outer product operator, and Maff inity
ij ∈ R

K×K is an explicit affinity matrix

where a large element m
aff inity

kk′ ∈ Maff inity
ij indicates that ti and bj are respectively per-

forming well on attributes ak and a′
k , yielding a higher affinity score between their explicit

attributes.
Then, a weighted compatibility score matrix Mweighted compat

ij for ti and bj can be
obtained via an element-wise multiplication:

Mweighted compat
ij = Maff inity

ij 	 Mcompat
ij ∈ R

K×K, (9)

where 	 is an element-wise multiplication operator. Through element-wise multiplication,
it is clear that a large score mkk′ ∈ Mweighted compat

ij can be obtained only if m
compact

kk′ and

m
aff inity

kk′ are both high. Hence, for ti and bj , a large mkk′ means: (1) their attributes ak

and a′
k complement each other; and (2) ti and bj have ideal performance on ak and a′

k ,
respectively. In this way, AFRec is able to give an explicit explanation on which pairs of
attributes are most critical and have the most positive or negative impacts on the outfit.
Furthermore, by incorporating fine-grained attribute-level affinity, we have higher chances
of improving the recommendation accuracy, because the complementary information from
different attribute views offers richer signals for identifying compatible clothes.

Eventually, the final compatibility score between ti and bj ŷ
compat
ij is a scalar derived by

summing up all elements in Mweighted compat
ij :

ŷ
compat
ij =

K∑
k=1

K∑
k′=1

mkk′ , mkk′ ∈ Mweighted compat
ij . (10)

4.5 Learning objective

In a sense, only the positive top-bottom outfit pairs created by fashion experts are available
in the dataset, while the negative pairs are unknown. Thus, we employ a soft-ranking loss
function, namely Bayesian Personalised Ranking (BPR) [18] to explore the implicit rela-
tions between tops and bottoms. Specifically, for each observed top-bottom pair (ti , bj ), we
can generate two corrupted pairs (ti , bj ′) and (ti′ , bj ) by replacing either the top or bottom
with an unobserved one. Then, based on the assumption that the observed pairs should be
ranked higher than unobserved ones, we have:

Lbpr = −
∑

(i,j,j ′)∈D
ln

(
σ(ŷ

compat
ij − ŷ

compat

ij ′ )
)
, (11)

where D denotes all the training instances and σ is a sigmoid function. Note that we have
omitted the corrupted instance for tops (i.e., (i′, i, j)) to be succinct.
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Ultimately, the final objective function of AFRec is formulated as follows:

L = Lbpr + Lcategory + Lattribute. (12)

5 Experiments

To verify the effectiveness of our proposed model, we conduct extensive experiments on two
real-world benchmark datasets, i.e., FashionVC and PolyvoreMaryland. We first describe
the details of experimental settings and then give comprehensive analysis according to the
experimental results.

5.1 Experimental settings

Datasets.We conduct experiments on two public fashion benchmark datasets, namely Fash-
ionVC and PolyvoreMaryland. FashionVC3 is released by Song et al. [20], which consists
of 20,726 outfits including 14,871 top item images and 13,663 bottom item images, created
by fashion domain experts. Each clothing item in the dataset corresponds to an image, a
text title and a category label. PolyvoreMaryland4 is created by Han et al. [5], which has
which has 21,889 outfits in total. We use images for visual information extraction, and char-
acterise the attributes based on each item’s title and category label. All the attributes and
examples of their corresponding values are summarised in Table 1. We randomly split the
data by 80%:10%:10% for training, validation and test, respectively.

5.2 Baselinemethods

We compare our model AFRec with several state-of-the-art models for complementary
clothing recommendation.

– SiameseNet [25]: The approach models compatibility by minimising the Euclidean
distance between clothes pairs and making the incompatible ones far apart within a
unified compatibility latent space through a contrastive objective function.

– Monomer [7]: The approach models fashion compatibility with a mixture of distances
computed from multiple latent spaces.

– BPR-DAE [20]: The approach models the overall matching knowledge through an
inner product of the top and bottom visual representations.

– TripletNet [1]: This is the state-of-the-art approach that captures the complementary
relations among different fashion items with a triplet objective function.

– TA-CSN [23]: This is a category-aware method that considers item categorical aware-
ness by generating category-specific masks added upon item visual embeddings, which
helps the model to concentrate on different latent aspects when modelling items from
different categories.

– PAICM [4]: It is the state-of-the-art attribute-aware approach that employs non-
negative matrix factorisation to explore the pairwise compatibility at the attribute
level.

3https://drive.google.com/file/d/1lO7M-jSWb25yucaW2Jj-9j c9NqquSVF/view
4https://drive.google.com/drive/folders/0B4Eo9mft9jwoVDNEWlhEbUNUSE0
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Table 1 A summarisation of all attributes and their corresponding values. We also report the attribute
classification accuracy of AFRec on these attributes

Attribute Attribute Values Classification Accuracy (%)

FashionVC Polyvore

Category T-shirt, sweatshirts, cardigans sweaters, ... 98.2 87.3

Texture cotton, fur, leather, velvet, metallic, ... 99.4 80.3

Style patchwork, woven, slit, cuffed, sheer, raw, ... 99.4 84.6

Pattern chino, houndstooth, striped, grid, crochet, ... 99.4 84.0

Neckline scoop neck, v-neck, high-neck, tie-neck, ... 99.5 96.2

Sleeve Type sleeveless, long sleeve, short sleeve, ... 98.8 92.3

Shape oversized, stretch, skinny, loose, ... 97.7 73.1

Waistline high waist, mid waist, low waist, ... 99.8 92.0

Bottom Leg harem, straight-leg, cropped 99.9 95.2

Bottom Length maxi, mini, midi 99.6 96.1

5.3 Evaluation protocols

For each positive top-bottom pair (ti , bj ) in the test set, we generate negative test instances
by replacing the bottom item bj with 100 uniformly sampled negative bottom items that
are not matched by the top item ti . Then, we choose two commonly-used evaluation met-
rics, namely HR@K and Area Under the ROC Curve (AUC) to compare our model’s
performance against other baseline methods. HR@K indicates the percentage of correctly
identified clothes pairs ranked in all top-K lists, which is formulated as the following:

HR@K = #hit@K

|Dtest | , (13)

where Dtest denotes the collection of all test cases. Meanwhile, AUC is defined as follows:

AUC =
∑

predpositive > prednegative

Npositive × Nnegative

, (14)

where
∑

predpositive > prednegative represents the number of test cases that pre-
dicted score of positive pairs are larger than negative pairs, while Npositive and Nnegative

respectively denote the total number of positive and negative pairs.

5.4 Implementation details

AFRec is implemented using PyTorch [17] with Nvidia GTX 2080 Ti. For consistency, we
apply the same dimension size D for all embeddings and hidden states. Specifically, we set
D to 512. All the trainable parameters in our model are optimised using Adam optimiser
[10] with the batch size of 64, the learning rate of 1e-4 and the weight decay of 1e-5. To
help AFRec converge faster, we first pretrain the SAE module in AfRec using our attribute
and category prediction objectives. The attribute classification accuracy of the pretrained
SAE module is illustrated in Table 1. As can be seen, the model is highly confident in com-
prehensively extracting attribute information from visual features, and this allows AFRec
to generate meaningful attribute-specific representations for the final recommendation task.
After SAE is fully pretrained, we train the whole model in an end-to-end manner.
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5.5 Analysis on recommendation effectiveness

We summarise the evaluation results of all models on the complementary clothing rec-
ommendation task with Table 2. From the results in the table, we can observe that our
AFRec outperforms other state-of-the-art methods on most evaluation metrics, reflecting
the effectiveness of our model. This is mainly because our model significantly benefits
from the semantic attributes when modelling the compatibility at a fine-grained level. This
helps AFRec better capture the complicated interactions among attributes. As a category-
unaware model, SiameseNet merely learns fashion compatibility within a unified latent
space, and it underperforms due to the lack of the ability to leverage the subtle yet informa-
tive attribute signals. By incorporating category-awareness in different learning schemes,
we can observe similar performance from Monomer, BPR-DAE, Triplet Net and TA-CSN.
This indicate that categorical information is helpful for advancing the performance in the
task of complementary clothing recommendation. Among these methods, TA-CSN that uses
type-specific mask embeddings yields better recommendation accuracy. This implies that
instead of simply concatenating category embeddings to the global visual embeddings, per-
forming mask operations can let the model focus on certain dimensions of item embeddings
for downstream tasks. The attribute-aware method PAICM achieves similar performance to
the category-aware methods, which demonstrates the effectiveness of incorporating attribute
information for compatibility modelling. However, PAICM models compatibility with a
single merged attribute-level embedding for each item. This modelling scheme may fail to
capture sufficient disentangled attribute information since all attribute-specific information
is fused. In contrast, our model not only accounts for the categorical information via cate-
gorical projection spaces, but also mines fine-grained compatibility relations by modelling
meaningful semantic attribute interactions.

5.6 Ablation study

To verify the contribution of each proposed component in our model, we implement multiple
variants of AFRec to perform an ablation study. The evaluation results on both datasets are

Table 2 Performance comparison between our proposed AFRec and other baseline methods

FashionVC PolyvoreMaryland

Methods
AUC

HR@K
AUC

HR@K

K=5 K=10 K=20 K=40 K=5 K=10 K=20 K=40

SiameseNet 0.604 0.097 0.181 0.312 0.528 0.591 0.083 0.155 0.290 0.518

Monomer 0.702 0.169 0.286 0.458 0.691 0.705 0.176 0.289 0.457 0.690

BPR-DAE 0.709 0.167 0.273 0.467 0.704 0.695 0.173 0.282 0.439 0.675

Triplet Net 0.706 0.163 0.280 0.457 0.696 0.701 0.181 0.287 0.449 0.683

TA-CSN 0.716 0.167 0.284 0.467 0.708 0.702 0.173 0.284 0.451 0.684

PAICM 0.703 0.168 0.271 0.463 0.697 0.703 0.170 0.266 0.456 0.687

AFRec 0.741 0.164 0.305 0.500 0.789 0.753 0.180 0.397 0.516 0.828
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demonstrated in Table 3. We introduce and analyse the effect of each variant of AFRec as
follows:

– AFRecw/o attr loss . This variant removes the attribute prediction loss, and all the
embeddings of extracted attributes are treated as latent vectors containing different
latent global visual information. The obvious performance drop on both datasets indi-
cates that the attribute prediction task can effectively augment the expressiveness of the
learned representations.

– AFRecw/o cate loss . When removing the category classification loss, we can observe
mild performance drop on both datasets. Intuitively, we use category classification loss
to help the SAE module to concentrate on different parts of fashion items in different
categories when learning their global visual features, making our reciprocal attention
module highly effective.

– AFRecw/o attention and AFRecself attention. We study the contribution of recip-
rocal attention module by either directly removing the whole attention mod-
ule (i.e., AFRecw/o attention) or replacing it with a self-attention module (i.e.,
AFRecself attention) that does not support attribute-wise comparison between different
items. We can see similar performance drop on most evaluation metrics for these two
variants. Hence, the results justify that our reciprocal attention effectively avoids the
biases caused by the low compatibility scores of unimportant attribute features.

– AFRecw/o cate projection. AFRec receives the worst evaluation results among all vari-
ants when its category-specific projection matrices are removed. This is mainly because
the item compatibility measurement varies in different categories. The category-
specific projection can let AFRec focus on different latent features of the attributes in
different categories.

– AFRecattr avg . This variant calculates the compatibility score using only a single
embedding vector composed by averaging all attribute embeddings for each item.
We can find a slight performance drop on both datasets. This is because the aver-
aged attribute embeddings contain a mixture of multiple attribute characteristics, which
may hinder AFRec from making precise compatibility measurement since all attribute
factors are entangled.

Table 3 Performance comparison between different variants of AFRec

Variants FashionVC PolyvoreMaryland

AUC HR@K AUC HR@K

K=10 K=20 K=40 K=10 K=20 K=40

AFRecw/o attr loss (3) 0.703 0.234 0.468 0.664 0.732 0.312 0.484 0.734

AFRecw/o cate loss (12) 0.717 0.281 0.461 0.688 0.750 0.344 0.508 0.773

AFRecw/o attention 0.703 0.172 0.461 0.703 0.749 0.344 0.515 0.758

AFRecself attention 0.718 0.227 0.445 0.703 0.740 0.367 0.492 0.758

AFRecw/o cate projection (7) 0.714 0.141 0.461 0.672 0.636 0.203 0.344 0.602

AFRecattr avg 0.731 0.258 0.453 0.688 0.724 0.305 0.477 0.727

Full Version 0.741 0.305 0.500 0.789 0.753 0.397 0.516 0.828
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5.7 Analysis on recommendation explainability

5.7.1 Visualisation results

As attribute-wise compatibility learning plays a crucial role in facilitating the explainability
of our model, we select four positive and negative pairs from FashionVC and Polyvore-
Maryland dataset, respectively. We use four groups of examples, where each top item is
paired with a successfully recommended bottom item and a negative item. We also visu-
alise the computed weighted compatibility matrix Mweighted compat in Figure 4. Note that
each entry inMweighted compat is rescaled to [0, 1] range for better readability. For instance,
in Figure 4(a), for the positive clothes pair, the values within the compatibility matrix are
commonly higher than the negative clothes pair, indicating an overall strong complemen-
tary relationship between the grey sweater and the light blue jeans. To name a few, the key
matching patterns for two items include the high compatibility between the textures of both
items; also, the shape and sleeve type of the sweater are a good fit for the waistline design
of the jeans recommended.

The second observation we can draw from this explainability study is that, for the same
top item, its positive match (i.e., a bottom item) commonly performs better in almost all
pairwise compatibility between attributes. Also, a positive item tends to exhibit advantages
on some key attribute types over the negative item. For example, the compatibility between
sleeve type (top) and waistline (bottom) Figure 4(b) varies significantly in positive and neg-
ative pairs. Similar results can be observed from the compatibility between pattern (top)
and style (bottom) in Figure 4(c), and the compatibility between style (top) and waistline
(bottom) in Figure 4(d). To summarise, the attribute-level explanation offers a highly intu-
itive means for users to understand the reasons why a pair of clothes are complementary or
not. The explainability makes it easier to provide people with insights into which attribute
factors are the main contributors in clothing matching.

5.7.2 User study

We further conduct a user study based on 10 randomly selected volunteers (5 are male and 5
are female) to quantitatively evaluate the utility of our generated explanations to real users.
Specifically, we first use our model and the explainable baseline method PAICM [4] to
generate the prediction and interpretation results for uniformly sampled 100 clothing out-
fits consisting of 50 positive and 50 negative pairs. In the user study, each participant are
provided with all 100 visualisation results, and are asked to up-vote or down-vote the expla-
nations generated by AFRec and PAICM. We collected responses from all participants, and
report the up-vote ratio with Table 4. On the positive test instances, both methods can gener-
ate decent explanations on which attributes are critical when matching outfits, while AFRec
still demonstrates more advantageous in the up-vote ratio. On negative instances, the expla-
nations generated by AFRec are much more preferred. From the participants’ responses,
they mostly agree on the incompatible category, style, and texture attributes identified by
AFRec. The key reason for better explainability of our model is that modelling interac-
tions in an attribute-wise manner encourages the model to capture more details between two
items. In comparison, PAICM merges the attribute information into a single embedding,
which neglects the subtle information contained within the images, leading to unsatisfactory
explanations.

1898 World Wide Web (2021) 24:1885–1901



Figure 4 Visualisation of four pairs of positive and negative outfit test instances

Table 4 Up-vote rate of the generated explanations

Model Positive Negative

Up-vote Ratio (%) AFRec 66.0 48.0

PAICM 64.0 38.0
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6 Conclusion

To deal with the lack of explainability of existing complementary clothing recommenda-
tion approaches, we propose a novel solution named AFRec in this paper. AFRec obtains
attribute-specific representations from fashion items by a CNN-based attribute embed-
ding extractor to support fine-grained fashion compatibility modelling and enhances its
explainability towards the prediction results. Our experiments on two large-scale benchmark
datasets show the effectiveness and interpretability of AFRec, demonstrating the strong
practicality in real-life scenarios.
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29. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features for discriminative
localization. In: CVPR, pp. 2921–2929. IEEE Computer Society (2016)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

1901World Wide Web (2021) 24:1885–1901


	Attribute-aware explainable complementary clothing recommendation
	Abstract
	Introduction
	Related work
	Problem formulation
	Proposed approach
	Item visual feature extraction
	Generating global item embeddings
	Fine-tuning pretrained CNN


	Semantic attribute representation extraction
	Attribute-wise reciprocal attention
	Explicit attribute-aware compatibility modelling
	Learning objective

	Experiments
	Experimental settings
	Baseline methods
	Evaluation protocols
	Implementation details
	Analysis on recommendation effectiveness
	Ablation study
	Analysis on recommendation explainability
	Visualisation results
	User study


	Conclusion
	References


