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Abstract
Recommender systems, which are used to predict user requirements precisely, play a vital
role in the modern internet industry. As an effective tool with rich semantics, knowledge
graphs have recently attracted growing research attention in enhancing recommendation
results. By mining multihop relations (i.e., paths) between user-item interactions within
a knowledge graph, implicit user preferences and other side information can be clearly
revealed. Nevertheless, existing knowledge graph-based recommendation methods have
two fundamental limitations. First, the indiscriminate utilization of user-item path sets
conveys unclear information and negatively influences explainability. Moreover, obtain-
ing reliable recommendation results with these methods requires large amounts of prior
knowledge, which indicates that they show poor performance in terms of accuracy and
handling cold-start issues. To address these issues, we propose a novel model called the
Path-enhanced Recurrent Network (PeRN). Specifically, PeRN integrates a recurrent neu-
ral network encoder with a metapath-based entropy encoder to increase explainability and
accuracy and reduce cold-start costs. The recurrent network encoder has a strong ability to
represent sequential path semantics in a knowledge graph, while the entropy encoder, as
an efficient statistical analysis tool, leverages metapath information to differentiate paths
in a single user-item interaction. A path extraction algorithm with a bidirectional scheme
is also proposed to make PeRN more feasible. The experimental results on two real-world
datasets demonstrate our significant improvements with reasonable explanations, promising
accuracy and a minimal amount of prior knowledge compared with several state-of-the-art
baselines.
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1 Introduction

Recommendation systems (RSs), which aim to determine user preferences and provide
items that the user might be interested in, have undergone rapid growth during the past
decade in various fields, such as search engines, video portals, and e-commerce [4, 7,
22]. As a significant recommendation approach, traditional embedding-based methods have
achieved impressive results by embedding user-item data into a low-dimensional continu-
ous vector space and harnessing abundant side information. Despite their developments for
several popular benchmarks, the recommendation results are calculated between latent vec-
tors and do not take their relations into account, which leads to the poor explainability of
embedding-based methods.

To address this issue, knowledge graph (KG), which is a well-structured auxiliary data
format that evolved from semantic webs, has naturally been applied in recommendation
systems to boost their reasoning ability and explainability [19, 27]. Information in a KG is
organized as triples (head, relation, tail), and the head and tail entities are combined with
relations. In KG-enhanced recommendation methods, all the users and items are regarded
as entities together with other background information. By exploiting multihop relations
from a target user entity within a KG, a user preference and its semantics can be explicitly
revealed. Such a correlation is recorded as a path. Clearly, each target user entity has copious
paths that lead to different items that the user may like, offering precise textual information
for biclassification and top-K recommendation tasks. As a result, these path-based methods
[10, 21] quickly received considerably more research interest than traditional translation-
based methods such as TransE [2], TransH [25] and the collaborative knowledge graph
embedding method (CKE) [32].

In terms of evaluating a recommender system augmented by a KG, we consider it cru-
cial that convincing recommendation results be accurate and explainable. However, none
of the existing path-based methods can satisfy the above two conditions at the same time.
First, they neglect the difference between paths in the same user-item interaction. Taking
a simple case in the music recommendation field as an example, the act “(user , likes,
song)∧(song, sung by, singer)∧(singer , sing, song)” obviously contributes more to
results than the act “(user , likes, song)∧(song, sung by, singer)∧(singer , is broth −
er of , singer)∧(singer , sing, song)” – the latter is uncommon and less credible in
explaining why this song should be recommended to this user . Indiscriminately processing
the paths reduces information utilization and negatively affects explainability. Second, exist-
ing path-based methods are not as impressive in terms of accuracy and can be even worse
than some traditional embedding-based models. Such defects, more seriously, increase
cold-start costs in some top-k recommendation tasks. In a knowledge-aware path recurrent
network (KPRN) [24], the prior knowledge that is used to complete the KG accounts for
50% of the original dataset, making it difficult to apply the model in industry (Figure 1).

To bridge these gaps, a new recommendation model, named the Path-enhanced Recurrent
Network (PeRN), is proposed that extracts not only the path information in a KG but also a
metapath set in order to differentiate the path contribution to one user-item pair. Inspired by
previous work [33], we innovatively use a metapath, a general concept in a heterogeneous
information network (HIN), to generalize the structure of complicated paths. The metapath
is a path schema consisting of a series of entity-type data and relation data. By using a
metapath, all the paths in a dataset can be abstracted as several kinds of user habits, which
will be used to calculate credibility values in the entropy encoder in our model. Thus, the
confidence ratio between different paths in the same user-item pair can be obtained. For
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Figure 1 A toy example to illustrate why incorporating “relations” into recommendations can enhance
explainability. In this music knowledge graph, there are different relations between entities. Finding all the
relations related to “If Tom likes Scream” can bring more insights and make the result more reasonable

the path set, we adopt a bidirectional long short-term memory (bi-LSTM) network and a
two-layer fully connected perceptron to compute sequential entity and relation vectors to
determine a score. Afterwards, a weighted pooling layer is constructed to combine these
path scores and credibility values from the entropy encoder to obtain a predicted result.
To learn the parameters effectively, we propose using a logarithmic loss function along
with a ridge penalty, i.e., L2 regularization, to train our model. Furthermore, we design a
bidirectional search method, which is also metapath-aided, to enhance the efficiency of path
extraction and make PeRN easier to use.

To validate the ability of PeRN in recommendation accuracy and solve the cold-start
issue, we conduct extensive experiments on two real-world datasets. Additionally, we give
a user-item interaction example that is randomly chosen from the dataset to illustrate the
increased explainability of our model. The main technical contributions of this paper include
the following:

– An end-to-end model, PeRN, with an entropy encoder is proposed to enhance the
explainability of the recommendations. The metapath, which helps to extract and
encode user habits, is innovatively applied in general path-based methods. Our
metapath-based path method avoids the limitation that the paths cannot be differen-
tiated in one user-item interaction. Compared with traditional path-based models, the
proposed PeRN achieves more expressive explainability and successfully reduces the
cold-start costs.

– A novel path extraction method is proposed that is augmented with a bidirectional
strategy. Similar to the Sentinel algorithm, the proposed bidirectional strategy can
efficiently extract path data from a KG, which makes it possible to apply PeRN in
real-world scenarios. Based on this, we also perform extensive experiments on two
real-world datasets from biclassification and top-K perspectives. Our proposed PeRN
outperforms several representative baselines in terms of accuracy. These demonstra-
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tions also highlight the importance of integrating KGs into recommendations and verify
the practicality of our proposed methods.

The rest of this paper is arranged as follows: Section 2 gives a brief review of two kinds
of related works. Then, Section 3 describes the framework and notation of the PeRN model,
and Section 4 explains PeRN in detail. The experimental results that verify this model are
shown in Section 5. Finally, Section 6 contains conclusions and some ideas for future work.

2 Related works

This section provides a general summary of several state-of-the-art methods of integrating
KGs into recommendations, which can be largely divided into translation-based and path-
based methods.

2.1 Translation-basedmethods

Prior research has proposed various techniques [1, 2, 5, 13, 15, 25] for embedding a KG into
a low-dimensional vector space in a way that makes the KG computable. These methods
can be roughly divided into two categories [23]: 1) translational distance models, including
translation-based and other distance models, and 2) semantic matching models, includ-
ing tensor-factorization-based and neural-network-based models. Translation-based models
such as TransE [2] and its variants [12, 13, 25], which use the idea of translation to transform
entities and relations into vectors to embed KGs, have been widely used in KG recom-
mendation because of their simplicity and effectiveness. CKE [32] first employed Bayesian
TransR [13] to generate the user latent vector and KG-aided item latent vector to collab-
oratively learn the predicted result. DKN [27], leveraging four different translation-based
models [2, 12, 13, 25] to embed a KG and enrich the side information, also applied an
attention-based deep convolutional neural network to the news recommendation field. More
recently, the translation-based user preference model (TUP) [3] employed TransH [25] to
predict user preferences from a KG to improve recommender systems.

Such translation-based methods significantly increase the accuracy of the results. How-
ever, they fail to explore the correlations (i.e., multi-hop relations) among user-item pairs.
In other words, these methods fail to explain why the user has interest in these items. Thus,
we argue that these methods lack explainability and reasoning ability in recommendations.

2.2 Path-basedmethods

Regarding path-based methods, Yu et al. [31] integrated a heterogeneous information net-
work into matrix factorization for personalized entity recommendation. This was a new
idea that not only first introduced user-item-path conception to recommender systems but
also inspired other researchers to apply paths in KGs for convincing recommendations.
As a consequence, various path-based approaches [11, 24, 33] have been developed to
memorize sequential implicit information in KGs. Knowledge-based sequential recom-
mendation (KSR) [11] incorporates a gated recurrent unit (GRU) and key-value memory
network (KV-MN) to capture sequential user preferences from a knowledge base, while
recurrent knowledge graph embedding (RKGE) [19] leverages recurrent network batches to
embed path semantics to increase interpretability. In KPRN [24], a long short-term mem-
ory (LSTM) network is utilized to encode paths and explore the connectivity between users
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and items. Additionally, explainable interaction-driven user modeling (EIUM) [10] extends
this idea to a multimodal knowledge base and designs a self-attention matrix to mine deep
information from a path. With the development of graph neural networks (GNN), there are
also some path-based methods adopting GNN as their path encoder. Path conditioned Graph
Convolutional Network (PGCN) [30] uses graph convolutional network (GCN) to encode
path information between entities, while Price-aware User Preference-modeling (PUP) [34]
adopt GCN as a part of their self-defined encoder-decoder to record pairwise interactions
for better recommendation.

Although these methods improve the explainability and reasoning ability of recom-
mender systems, there is still a severe defect: the underutilization of mining semantics
in paths. This flaw also causes poor performance in dealing with cold-start issues: the
prior knowledge needed for completing a KG is extremely costly. Moreover, path extrac-
tion is also a time-consuming and labor-intensive step in path-based methods, as the time
complexity of the algorithm grows exponentially with the length of the path.

3 Model design

3.1 Framework of PeRN

With a given knowledge graph and a target user-item interaction, the path set and its meta-
path set can be extracted by a bidirectional path extraction algorithm. After an embedding
step, these paths and metapaths are processed to obtain a certain score and a weight by a
recurrent network encoder and an entropy encoder, respectively. Combining these scores
by using a weighted pooling layer, the output of PeRN, a recommendation prediction, is
obtained. The overall framework of PeRN is illustrated in Figure 2.

PeRN contains four key components: a bidirectional path extraction algorithm to extract
paths effectively from a KG between two target entities (i.e., a user and item), a recurrent
network encoder that is based on a Bi-LSTM neural network and a fully connected layer to
encode the path information as a certain value, an entropy encoder that adopts information
gain and metapaths to assign a weighting score to each path in one user-item interaction,
and a weighted pooling layer that combines the above values and weighting score to obtain
a predicted result.

Figure 2 Framework of PeRN
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3.2 Problem definition

Before describing our model, we formally define the notation used throughout this paper
in Table 1. Similar to other recommender systems, we let U = {u1, u2, ..., u|U |} and I =
{i1, i2, ..., i|I|} denote the user set and item set, respectively. A = {(u, i)|u ∈ U , i ∈ I} =
{a1, a2, ..., a|A|} represents all the interactions between users and items in our dataset.

Definition 1 Knowledge Graph. As the entity set E and relation set R have been defined,
a knowledge graph (KG) can be defined as KG = {(h, r, t)|h, t ∈ E, r ∈ R}, where (h, r, t)

is a triple combining a head entity h and tail entity t through a relation r . Here, every user
and item in U and I can be searched as an entity in KG, which makes the extraction of paths
between user-item interactions possible. By abstracting entities in E to entity types (shown
as the function typeof() in the table above), the schema of KG can be revealed along with
relations, and this is expressed as a two-dimensional matrix G.

Definition 2 Path and Metapath. Given an interaction ak = (um, in), a
sequence of triples that connect user um and item in can be found in KG
as {(um, r1, e1), (e1, r2, e2), ..., (el−1, rl, in)}, which we record as a path:

p = um
r1→ e1

r2→ e2...
rl→ in. Therefore, all the qualified paths of an interaction ak and

interaction set A are denoted as Pk = {p1, p2, ..., p|Pk |} and P = {P1, P2, ...P|A|}, respec-
tively. As each path forms a metapath by abstracting its entities to entity types, we denote
mp as the metapath of path p and MPk = {mp1,mp2, ...,mp|MPk |} as the metapath set of

Table 1 Notation

Description Notation

User set U = {u1, u2, ...u|U |}
Item set I = {i1, i2, ...i|I|}
User-item interaction set A = {a1, a2, ...a|A|}
Entity set E = {e1, e2, ...e|E|}
Relation set R = {r1, r2, ...r|R|}
Knowledge graph KG = {(h, r, t)|h, t ∈ E, r ∈ R}
Schema graph G = R

g×g , g = |typeof(E)|
Interaction ak in KG ak = (um, in), um ∈ E, in ∈ R
A path p between ak p = um

r1→ e1
r2→ e2, ...

rl→ in

Metapath mp between ak mp = typeof(um)
r1→, ...typeof(in)

Paths between ak Pk = {p1, p2, ..., p|Pk |}
Metapaths between ak MPk = {mp1,mp2, ...mp|MPk |}
Path set P = {P1, P2, ...P|A|}
Metapath set M = {mp1,mp2, ...,mp|M|}
Hidden state vectors

−→
h l+1,

←−
h l+1, h

Weight matrix Wf ,Wi,WC,Wo,W1,W2

Sigmoid function σ

Loss function L
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path set Pk (and of interaction ak). The metapath of all interactions, denoted as a set M,
can be obtained by a certain traversal of the schema graph G.

In addition, there are three points to be emphasized: 1) U ,I � E and U ∩ I = ∅. 2)
MPk and Pk are both generated from ak , so |MPk| � |Pk|, and equality holds when all path
types in |Pk| are different. 3) M = MP1 ∪ MP2 ∪ ... ∪ MP|A|.

Definition 3 PeRN Task. With the given user-item interaction ak and its path set Pk , the
goal of PeRN is formulated as follows:

ŷk = fΔ(Pk), (1)

where ŷk is the predicted score of interaction ak and f denotes the function of PeRN with
parameters Δ.

4 Path-enhanced recurrent network

In this section, we thoroughly describe and elaborate our proposed PeRN for incorporating
KGs into recommendations. First, we design a bidirectional path extraction algorithm to
boost the efficiency of discovering path sets between user and item entities in a KG. Then,
we adopt a Bi-LSTM network as a model to embed the path set and remember it as a set of
predicted scores. Furthermore, the entropy encoder is created to differentiate the contribu-
tions of the paths in a path set by analyzing the information gain of their metapath. Finally, a
weighted pooling layer and optimization steps are used to combine the scores and learning.

4.1 Bidirectional path extraction

A KG generally contains millions of entities and relations, which indicates that it is
labor-intensive and time-consuming to find all paths between two entities. In addition, the
difficulty of searching a path increases exponentially with its length, which makes path
extraction even more difficult.

To address this issue, a metapath-aided bidirectional path extraction algorithm is pro-
posed to retrieve all qualified paths, as described in Algorithm 1. As previous work [18]
discussed, we regard paths that are longer than six hops as noise. Thus, this bidirectional
scheme can change the complexity of the search step from a maximum of six hops to a max-
imum of three hops. In the preliminary steps, we first abstract the KG to its schema graph
by changing the entities in the triples to entity types. By removing all duplicates among
these processed triples, the schema graph can be displayed via a matrix in which every
dimension has a list of all entity types. The elements in the matrix can store the types of rela-
tions between the entity types. Accordingly, the whole metapath set M can be retrieved by
traversing this directed graph. Given a knowledge graph KG, user-item interaction set A and
metapath set M, Algorithm 1 can help us find a whole path set P . After the initialization of
P , for each interaction ak , we adopt the depth-first-search (DFS) idea to retrieve candidate
paths and the metapath-aided idea to choose target paths bidirectionally. In fact, candidate
sets S1 and S2 can be used in parallel for different metapaths so that we significantly enhance
the efficiency of path extraction by designing a multithreaded program.
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4.2 Recurrent network encoder

With the increasing development of deep learning models, recurrent neural networks
(RNNs) have become increasingly widely used in processing sequence data such as path
information [19, 24]. In the PeRN model, as relations in paths are not always in one direc-
tion – for example (Michael Jackson, Cooperate with, Janet Jackson) and (Janet Jackson,
Cooperate with, Michael Jackson) – we choose a bi-LSTM-based model, as illustrated in
Figure 3, to better sequence information and output the predicted score of the path. In other
words, we input a path p and output its predicted score s from this network.

A path here can be recorded as a sequence of entities and relations such
as p = [um, r1, e1, r2, e2..., rl, in] as well as a number of relations less
than or equal to six. To embed this multihop data into a series of vec-
tors, we first transform this l-hop path to l + 1 consecutive vectors such as
(um, typeof(um), r1), (e1, typeof(e1), r2), ...(el−1, typeof(el−1), rl), (in, typeof(in), null).
Then, the entity index, a number from 0 to millions, is mapped to a d − 2-dimensional
vector with a similar number. After concatenating the entity vector with the entity type
index and relation index, we can obtain a d-dimensional vector representing a hop on the
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Figure 3 The architecture of the recurrent network encoder in PeRN

path. The q-th vector in the path can be defined via the following equation:

αq = Map(eq−1) ⊕ e′
q−1 ⊕ rq, (2)

where ⊕ is the concatenation operation and e′ is the type of entity e. After this step, path
p is represented as a vector set {α1, α2, ..., αl+1}, which can be taken as the input of this
model. With a strong ability to remember sequential semantics [14], LSTM [8] is chosen
to be the main body of the recurrent network encoder, and the q-th vector αq of the input
vector set is computed as follows:

fq = σ(Wf (̇hq−1 ⊕ αq) + bf )

iq = σ(Wi (̇hq−1 ⊕ αq) + bi)

˜Cq = tanh(WC(̇hq−1 ⊕ αq) + bC)

Cq = Cq−1 
 fq + ˜Cq 
 iq

oq = σ(Wo(̇hq−1 ⊕ αq) + bo)

hq = oq 
 tanh(Cq)

(3)

where fq , iq and oq ∈ R
d ′

denote the forget, input and output gates; ˜Cq and Cq ∈ R
d ′

denote
the candidate value vector and memory state vector; Wf , Wi , WC and Wo ∈ R

d ′×(d ′+d) are
weight matrices initialized with random values; bf , bi , bC and bo are the bias vectors of each
gate or cell; σ and tanh denote sigmoid and hyperbolic tangent activation functions; and

 and ⊕ represent the Hadamard product and concatenation, respectively. Consequently,
the hidden state vector hq ∈ R

d ′
of the q-th step is obtained by the last hidden state hq−1

given αq . After l + 1 iterations, the last hidden state vector hl+1 can be considered to hold
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the sequential path information. To explain more precisely, we simplify this process as the
following equation:

hl+1 = LSTM([α1, α2, ..., αl+1]). (4)

As shown in Figure 2, our PeRN model takes bi-LSTM into consideration; it adopts a
forward LSTM and a backward LSTM and then concatenates the bidirectional results to
remember path information more reliably. This step can be formulated as the equations
below: −→

h l+1 = LSTM([α1, α2, ..., αl+1])
←−
h l+1 = LSTM([αl+1, ..., α2, α1])

h = −→
h l+1 ⊕ ←−

h l+1.

(5)

After embedding path p into a representative vector h, the final step of the recurrent
network encoder is to convert it to a predicted score by establishing a simple neural network
with two fully connected layers. Therefore, the score s of the path can be calculated by the
following equation:

s = WT
2 ReLU

(

WT
1 h

)

. (6)

Here, WT
1 and WT

2 represent the coefficient weights of layer 1 and layer 2, respectively,
and we adopt a rectified linear unit (ReLU) as the activation function in each neuron with
omitted bias. In fact, the score s is a 1 × 1 matrix, and we directly treat it as a scalar for
simplicity.

4.3 Entropy encoder

Given an interaction ak = (um, in) and its extracted path set Pk = {p1, p2, ..., p|Pk |},
the scores of each path can be stored in a set Sk = {s1, s2, ..., s|Pk |}. By abstracting the
entity instances to entity types in a path, the metapath set of ak can be denoted as MPk =
{mp1,mp2, ...,mp|MPk |}, where |MPk| � |Pk| (cf. Section 3). Clearly, it does not make
sense to predict ak by taking the weighted averages of the path scores (cf. Section 1). To
address this issue and increase the explainability, we design an information entropy-based
method.

Inspired by recent applications and advances in the computer vision field [17, 20], we
design an entropy-based weighting encoder to differentiate path contributions by comput-
ing the information gain for specific interactions. In practice, all the interactions are either
positive feedback or negative feedback, which indicates that each path p in a path set Pk

shares the same target, 1 or 0. Here, we collectively define a path or metapath with target 1
as a confidence path (CP) and otherwise as a non-confidence path (NP). By traversing and
counting all paths p in the whole path set P , it is possible to obtain the frequency of “p
is a CP” considering that it is a binary classification problem. Therefore, the information
entropy of the event “p is a CP” (denoted as event D, which takes the values 0 and 1) is
defined as follows:

Ent(D) = −
∑

j∈0,1

P(D = j) log2 P(D = j). (7)

Although there are millions of paths in P , the number of metapaths is limited, and we
denote it as an integer m. Therefore, we can endow path m with Boolean features to deter-
mine the type of its metapath and further judge its contribution to event D. Similar to (5),
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for feature Eg(g ∈ [1,m]), we can find its conditional entropy for event D as follows:

Ent(D|Eg) =
∑

i∈0,1

P(Eg=i)Ent(D|Eg=i), (8)

where Ent(D|Eg = i) is the conditional entropy; it is obtained by fixing Eg=i and is written
as the equation below:

Ent(D|Eg = i) = −
∑

j∈0,1

P(D = j |Eg = i) log2 P(D = j |Eg = i). (9)

In this way, the information gain of event D for a given feature Eg can be obtained:

Gain(D, Eg) = Ent(D) − Ent(D|Eg). (10)

For a given interaction ak and its metapath set MPk , each mpi(i ∈ [1, |MPk|]) can deter-
mine its unique corresponding information gain by matching Eg=mpi . Here, we normalize
the information gain of each metapath to obtain its weight:

wi = Gain(D,Eg = mpi)

Σ
|MPk |
j=1 Gain(D,Eg = mpj )

, (11)

where wi is the weight of the i-th path pi in the path set of ak; we can further differentiate
the score si in Sk . All the weights of the same interaction ak are put in a weight set Wk for
a later step.

4.4 Objective of optimization

After obtaining a score set Sk = {s1, s2, ..., s|Pk |} and its corresponding weight set Wk =
{w1, w2, ..., w|Pk |}, we adopt a weighted pooling layer that combines them to obtain the
final predictive score, which is formulated as:

ŷk = σ

⎛

⎝

|Pk |
∑

i=1

wisi

⎞

⎠ , (12)

where σ is a sigmoid activation function that maps the final score to a range of 0 to 1.
The weighted pooling layer, which can be regarded as an attention mechanism, combines
the path scores with their own weights, indicating the importance of the paths in the target
user-item interactions.

Since all the interactions in A can be considered positive feedback or negative feedback
(cf. Section 4.3), we regard our recommendation task as a binary classification task with 0
representing negative and 1 positive, similar to previous work [24]. We adopt cross-entropy
loss to optimize our result. With the given interaction a, our loss function is defined as
follows:

L = −
∑

a∈A
(y log ŷ + (1 − y) log(1 − ŷ)), (13)

where A = {a1, a2, ..., a|A|} is the whole user-item interaction set in the dataset and y

and ŷ represent the observed user-item feedback and the predictive score of a, respectively.
We also conduct L2 regularization (i.e., the ridge penalty) on the parameters of our PeRN,
which is omitted here for simplicity.
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5 Experiments

We perform various experiments on 2 real-world recommendation datasets, which are based
on music recommendation and movie recommendation scenarios, to evaluate our PeRN with
several state-of-the-art baselines. To more realistically construct a KG for recommendation
and mine user preferences by path, we adopt two benchmark datasets, and the statistics are
shown in Table 2.

– KKBox 1, which is a music domain recommendation dataset from the WSDM Cup
Challenge 2018 and is provided by the KKBox Music Streaming Service.

– IM-1M, composed of Internet Movie Database (IMDb)2 and MovieLens-1M 3 datasets,
is a common movie recommendation dataset that has recently been widely used in
KG-enhanced recommendation tasks [19, 24].

To evaluate our PeRN more comprehensively and demonstrate its rationality, we use
evaluation metrics from the perspectives of the binary classification recommendation task
performance, the top-K recommendation task performance and the ability to handle cold-
start issues, which are shown below:

– Precision (P), recall (R), F1-score, and area under the curve (AUC): These five metrics
are adopted to represent the overall accuracy of the biclassification task. Precision and
recall are commonly used to address the imbalance of positive and negative samples.
The F1-score is the harmonic mean of precision and recall. The AUC, the threshold of
which we set in the range of 0.1 to 0.9, is calculated as in the following equation:

AUC =
∑

i∈positive(P + N + 1 − ranki) − P(1+P)
2

P × N
, (14)

where P and N are the numbers of positive and negative interactions, respectively, and
ranki denotes the rank of i’s predicted score.

– Normalized discounted cumulative gain (NDCG@K): As the most common metric in
the top-k recommendation task, the NDCG@K evaluates the model performance in
terms of position influence, which is calculated as follows:

NDCG@K = 1

α
DCG@K = 1

α

K
∑

i=1

2reli − 1

log2(i + 1)
, (15)

where reli indicates the relevance of the recommendation at position i, K is the size
of the target list, and α is a standardization constant that is the maximum value of the
DCG@K. Considering that the sizes of these two datasets are different, we set K in
KKBox and IM-1M as {3, 5, 10, 15} and {2, 6, 10, 12}, respectively.

– Percentage of interactions used to complete the KG (PcKG): In measuring the cold-
start cost, we set the PcKG in the range {10%, 20%, 30%, 40%, 50%}. Here, a lower
PcKG with a higher score of the other metrics indicates a better ability to handle cold-
start issues.
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Table 2 Statistics of KKBox and IM-1M

Dataset KKBox IM-1M

User-Item Interaction # of Users 34,403 6,040

# of Items 2,296,320 3,274

# of Interactions 3,696,465 370,023

Data Density 0.0047% 1.87%

Knowledge Graph # of Entities 2,562,937 15,439

# of Entity Types 5 5

# of Relation Types 8 9

# of Triples 16,237,068 442,409

Path # of Paths 41,400,408 345,344

Avg. Path Length 5.11 4.74

# of Metapath Types 21 46

Avg. Metapath Length 5 5.37

5.1 Experimental setup

The fundamental part of obtaining the KG-enhanced recommendation dataset is construct-
ing the domain of the KG. First, the basic part of the KG can be selectively generated from
the background information in the original dataset. Then, to integrate the user set into the
KG, which makes finding paths between the users and items possible, a group of interactions
should be added to the KG as compensation. KKBox not only provides a large amount of
user-item interaction data with positive feedback 1 and negative feedback 0 but also several
pieces of side information, such as the artist, lyricist, composer, and genre, which indicates
that this music domain KG can be straightforwardly constructed. In IM-1M, the IMDb con-
tains comprehensive auxiliary information such as the core contributors, duration, genre and
budget of the movie, while MovieLens-1M provides more than 1,000,000 user-item inter-
actions with rating scores {1, 2, 3, 4, 5}. Thus, a movie domain KG can be constructed by
mapping the movie titles in IMDb and MovieLens-1M.

To better fit our proposed model, all the interactions in which the rating scores are 3 are
omitted here to enable biclassification, and the other 4 scores are normalized for the top-K
task. In the processed KKBox and IM-1M data, approximately 50% of the original interac-
tions are treated as valid interactions (the exact numbers are shown in Table 2). The other
part, which is used for completing the KG, can be used to measure the severity of the cold-
start issue by the Percentage of interactions used to complete the KG (PcKG). In terms
of path data, we first provide our definition of the KG: the schema graphs of the music
domain KG and movie domain KG that we designed are shown in Figure 4. In KKBox, U:
user, I: item (song), L: language, Ar: artist, G: genre. In IM-1M, U: user, I: item (movie),
Ac: actor, D: director, G: genre. In KKBox, we select the user, item (song), language, artist
and genre as the target entity types. The relation “CooperatesWith” is extracted from the

1https://www.kaggle.com/c/kkbox-music-recommendation-challenge
2https://www.kaggle.com/suchitgupta60/imdb-data
3https://grouplens.org/datasets/movielens/
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Figure 4 Schema graphs of KKBox (left) and IM-1M (right)

condition “multiple artists in one song”. In IM-1M, we choose the user, item (movie), direc-
tor, actor and genre as the target entity types. Additionally, there are “actor 1 name” and
“actor 2 name” attributes of a movie, and we regard the relation between them as “Co-
starsWith”. Metapaths can be extracted by certain traversals in the schema graph, and paths
are extracted by Algorithm 1.

Furthermore, we omit pretrained parameters in our proposed model to enable pair com-
parison with several baselines. To reasonably embed the paths into a vector space, we map
the large fluctuating entity index to a 62-dimensional vector and concatenate it with the
entity type index and relation type index. Therefore, the size of each input vector of the
LSTM is 64, and each has a length of up to 7 (i.e., a 6-hop path). If the length of a path is
less than 7, then it is completed with a zero vector. The batch size is 256 here. We adopt
stochastic gradient descent (SGD) in the optimization step with a learning rate in the range
{0.001, 0.01, 0.1, 0.5}, while the L2 regularization coefficients are tuned in the range {10−5,
10−4, 10−3, 10−2}. In our experiments, we compared our PeRN with the widely used rec-
ommendation methods below, which are based on matrix factorization (MF), factorization
machines (FMs), KG translation, metapaths in a heterogeneous information network (HIN)
and paths in a KG. The brief descriptions of these methods are as follows:

– MF [16]: This is a standard matrix factorization method with Bayesian personalized
ranking (BPR) loss that regards interactions as elements in the user-item matrix to
predict unknown interactions.

– AFM [28]: This method is a factorization model combined with an attention mech-
anism that excavates potential relations and interactions among user preferences and
item features.

– RippleNet [26]: The key of this method is preference propagation, which regards the
historical interests of users as a seed set and propagates user preferences in the KG that
contain extra information.

– MEIRec [6]: This is a metapath-guided method that contains rich user-item informa-
tion and interactions based on a HIN and utilizes structural information fully for intent
recommendation.

– KPRN [24]: KPRN is a representative method for integrating paths into KG rec-
ommendations through recurrent neural networks. Although KPRN achieves great
performance in both binary classification and top-K recommendation tasks, it has the
severe cold-start issue that its PcKG can reach 50%.

5.2 Performance evaluation

Table 3 and Figure 5 report our experimental results on binary classification recommen-
dation and the ability to solve the cold-start issue in the top-K recommendation task,
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Table 3 Summary of the performance on the binary classification recommendation task for all baselines and
our proposed PeRN on the KKBox and IM-1M datasets

Metrics P R F1 AUC

Dataset KKBox

MF 0.509 0.528 0.518 0.511

AFM 0.517 0.533 0.525 0.536

RippleNet 0.699 0.732 0.715 0.762

MEIRec 0.753 0.774 0.763 0.819

KPRN 0.805 0.822 0.813 0.834

PeRN 0.842 0.861 0.851 0.866

Dataset IM-1M

MF 0.612 0.608 0.610 0.586

AFM 0.647 0.632 0.639 0.601

RippleNet 0.742 0.713 0.727 0.694

MEIRec 0.792 0.804 0.798 0.734

KPRN 0.843 0.826 0.834 0.812

PeRN 0.835 0.871 0.853 0.851

respectively. In Table 3, the bold numbers indicate the best result of each column. In
Figure 5, ‘*’ indicates that the PcKG of KPRN is consistently 50%.

For the biclassification task, regarding the binary classification recommendation issue,
the main challenge is to achieve good performance on two user-item interaction matri-
ces. In KKBox, the data density is only 0.0047%, so it is extremely sparse and renders
various traditional recommendation methods unusable. MF and AFM are recommendation
methods based on matrix operations and have obtained surprising results when process-
ing highly sparse KKBox data. RippleNet achieves significant improvements over MF and
AFM by integrating the KG into user-item interactions, but its predictive results are not as
appreciable as those of the path-based MEIRec and KPRN considering the high sparseness
when embedding a KG. Our proposed PeRN substantially outperforms the state-of-the-art
methods and shows the best performance in several binary classification recommendation
evaluation metrics. In IM-1M, as the data density is 1.87% here, PeRN and several base-
lines achieve slightly better results in terms of the P, R, and F1 values. In addition, the
original rating scores in IM-1M are displayed in the normalized range {1, 2, 4, 5} rather
than 1 for positive and 0 for negative, so the actual classification effects are not as excel-
lent as expected, which is shown by a lower AUC score than for KKBox. Nonetheless, our
proposed PeRN still has more promising results than the other baselines.

For the top-K task and cold-start costs, as Figure 5 illustrates, our proposed PeRN also
has a better performance in alleviating the cold-start issue in the top-K recommendation
task than the state-of-the-art path-based method KPRN. Here, KPRN utilizes 50% of the
given target user-item interactions in both the IM-1M and KKBox datasets in the process of
constructing the KG, which causes a severe cold-start issue. To demonstrate the ability of
PeRN to handle cold-start issues in the top-K task, we adopt the PcKG, which is shown as a
percentage, to evaluate our model against the baseline. Specifically, we use PcKG = {10%,
20%, 30%, 40%, 50%} of the interactions of each user in the original dataset, which aims
to ensure that all the users can be found as entities in the KG to complete the music domain
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Figure 5 Performance of PeRN in the top-K task and cold-start costs, measured by NDCG@{3, 5, 10, 15} in
KKBox and NDCG@{2, 6, 10, 12} in IM-1M
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and movie domain KG. Every new completion has to re-extract all the paths to confirm the
accuracy of the experiment. As measured by the NDCG@K – where K = {3, 5, 10, 15} in
KKBox and K = {2, 6, 10, 12} in IM-1M considering that the size of the paths is different in
each dataset – our PeRN is able to achieve a much more promising performance. In KKBox,
with only a 20%-30% PcKG, it can reach a higher accuracy in the top-K recommendation
task than KPRN with a 50% PcKG, while this number normally decreases to 10%-20% in
IM-1M. In other words, we use only 30% of the prior knowledge on average and attain
a better prediction result in the top-K recommendation task. Nevertheless, we must admit
that these results should increase with a more thorough KG that remains to be designed and
established. We hold a strong belief that reducing and refining prior knowledge is the key
to decreasing cold-start costs.

5.3 Explainability analysis

In this section, we use a visualization example and a quantitative analysis to demonstrate
PeRN’s effectiveness in enhancing the explainability.

Firstly, we randomly select a user-item interaction from the IM-1M dataset and visualize
its three paths, as shown in Figure 6, to illustrate the model’s enhanced reasoning abil-
ity in a real scenario. The IDs of the user and target item are 3408 and 318, respectively.
The red numbers denote the weighting score of each path. Some observations and analyses
about “why user 3408 likes the movie The Shawshank Redemption” are presented below.
As Figure 6 shows, three different paths between (U id: 3408, I id: 318) are clearly found,
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Figure 6 Visualization of the paths between selected user-item interactions
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which can answer the question “why user 3408 likes item 318” at a shallow level. To mine
more in-depth information from the paths and further differentiate the contribution of each
path, we transform these three paths to metapaths by abstracting each entity to an entity
type:

–

–

–

Clearly, these metapaths account for different user habits in the movie recommendation
field. mp1 indicates that the user tends to show interest in movies with the same genre.
mp2 tells us that the user may like movies with the same actors. More interestingly, we can
also conclude that user 3408 may be a fan of Morgan Freeman by simple analysis of mp2.
In addition, mp3 reveals that the user might have some interest in movies co-starring two
famous actors. Such correlations between entity types assist us in acquiring more precise
user preferences. After an overall statistical analysis by the entropy encoder and the learn-
ing process of our model, the weighting scores of the three paths are as shown in Figure 5.
Specifically, the score of mp1 is slightly higher than that of mp2, while the score of mp3 is
much lower than the other two. These results unambiguously explain that the events “the
user likes a movie with the same actor” and “the user likes a movie of the same genre”
are more common in movie recommendation. Additionally, the low weight of w3 demon-
strates that the behavior “User Likes Item StarredBy Actor Co-starsWith Actor StarsIn
Item” is fairly unusual compared with the other two, which is consistent with our behavioral
intuitions in real life.

At last, we give an overall quantitative analysis about these weighting scores, as shown
in Figure 7. We extract paths with the greatest weighting score in each user-item interaction.
Here the number of the extracted paths is same as the number of user-item interactions.
Every path here can be regarded as the most convincing explanation to the recommendation
result. Evidently, in KKBox, the number of 3-hop paths are the greatest, which corresponds

Figure 7 The ratios of the length of path with the greatest weight in user-item interactions. 1-hop and 2-hop
paths here do not exist due to our schema graphs in Section 5.1

1786 World Wide Web (2021) 24:1769–1789



to a 3-hop path always contributes more to the result. This is a reasonable explanation as
the closer relation is always more convincing. In IM-1M, the results are similar to those
in KKBox. But number of 6-hop paths has a greater ratio, which indicates, compared to
songs, people are more likely to like movies under 6-hop relations. All the above evidence
demonstrates that our PeRN has a stronger explainability.

6 Conclusions

In this paper, a path-enhanced recurrent network (PeRN) is proposed, which shows good
performance in dealing with cold-start issues and enhances the explanations of KG recom-
mendation. We exploit information from the metapath to compensate for the shortcomings
of general path-based methods and introduce a bidirectional path extraction algorithm, since
path extraction is time-consuming. Extensive experiments show the well-developed expla-
nations and effectiveness of our method. In the future, we hope to continue our work in the
following research directions: (1) We hope to improve the current network model to boost
its memory ability. In processing serialized data, such as the paths and metapaths in our
PeRN, the memory ability of the model is just as crucial as its learning ability, which is
always the most critical part in judging the quality of a model. Current researchers have paid
too much attention to RNN-based models such as LSTM and GRU. We believe that mem-
ory networks, such as key-value memory networks, can also achieve excellent results, and
we hope to leverage them to better remember the path information of KGs. (2) We hope to
extract more information from the path. Although we analyze the relationships among dif-
ferent paths by using an entropy-based encoder in PeRN, we think there are more interesting
correlations among different paths, such as triangular relationships, multiple relationships
and relational reasoning in paths. We will mine this perspective further to improve the uti-
lization of path information and to better excavate user preferences in KG recommendation.
(3) In the past two years, research and applications based on graph neural networks (GNNs),
such as RecoGCN [29] and GSN [9], have become a new focus. We plan to propose a new
GNN-based method for explainable recommendation with KGs.
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