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Abstract
Collaborative filtering (CF) is one of the dominant techniques used in modern recom-
mender systems. Traditional CF-based methods suffer from issues of data sparsity and cold
start. Therefore, side information has been widely utilized by researchers to address these
problems. Most side information is typically heterogeneous and in the form of the graph
structure. In this work, we propose a deep end-to-end recommendation framework named
GSIRec to make full use of the graph side information. Specifically, GSIRec derives a
multi-task learning approach that introduces a side information task to assist the recommen-
dation task. The key idea is that we design a delicate knowledge assistance module to be the
bridge between tasks, which captures useful knowledge to complement each task. Also, we
utilize a graph attention method to exploit the topological structure of side information to
enhance recommendation. To show the wide application and flexibility of our framework,
we integrate side information from two aspects: social networks (for users) and knowledge
graphs (for items). We apply GSIRec in two recommendation scenarios: social-aware rec-
ommendation and knowledge-aware recommendation. To evaluate the effectiveness of our
framework, we conduct extensive experiments with four real-world public datasets. The
results reveal that GSIRec consistently outperforms the state-of-the-art methods on the rat-
ing prediction task and top-K recommendation task. Moreover, GSIRec can alleviate data
sparsity and cold start issues to some extent.
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1 Introduction

In the era of information explosion, recommender systems have been playing an indispens-
able role in meeting user preferences by recommending relevant items [22, 46, 51, 69, 74].
Collaborative filtering (CF) [21] is one of the most widely used techniques, which usually
projects users and items in a low-dimensional vector space for predicting users’ prefer-
ences for items. Since traditional CF-based methods rely heavily on user-item interaction
data to learn ID-based embeddings, they are often impeded by data sparsity and cold start
problems. To mitigate these drawbacks, side information is widely used by a large body
of research. Users and items are always associated with various side information. In this
work, we mainly consider two typical kinds of side information with graph structure: social
networks (for users) and knowledge graphs (for items). We focus on two recommendation
scenarios: social-aware recommendation and knowledge-aware recommendation.

Social-aware recommendation Social networks contain social relationships (e.g. friend-
ship or trust) between users. According to the social influence theory [1, 3, 31], users’
preferences are influenced by their neighbors in the social network. For example, in
Figure 1(left), shopping may become User A’s interest, since most of her friends are shop-
ping fans. Social-aware recommendation aims at harnessing social networks to improve the
performance of recommendation. Previous research has been attempted to use matrix fac-
torization [68, 73, 78], regularization [39], and trust propagation [40] to learn the preference
of users. As deep learning has grown in prominence, researchers merged social networks
into recommendation by using different deep learning technologies including multi-layer
perceptron [14], autoencoder [43], graph neural networks [15, 67].

Knowledge-aware recommendation Knowledge graphs provide rich facts and relations
about items. Exploiting the semantic information from knowledge graphs is particularly

Figure 1 Social network (left) and knowledge graph (right)
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helpful to understand users and items. For instance, in Figure 1(right), User A is fond of
music, and one of her favorite songs is linked with its namesake Song A in the knowledge
graph. The singer Person A of Song A is also the lyricist of Song B. In this case, it would
make sense that User A would like to listen to Song B. We also find Person A is the director
and actor of Movie A and Movie B, and hence User A may love these two movies due to
her preference for movies. Knowledge-aware recommendation integrates knowledge graphs
into recommender systems and has attracted considerable interest. Some researchers derive
different meta-paths [72] or meta-graphs [77] to mine semantic information from knowl-
edge graphs. Another line of work [62, 76] uses knowledge graph embedding methods to
integrate knowledge graphs into recommendation. Recently, researchers use propagation-
based methods [55, 65] to consider semantic information and connectivity information in
the whole knowledge graph.

Our approach Nevertheless, we argue that most methods lack techniques to take full advan-
tage of the graph side information. Most methods utilize the same user (item) representation
in both recommendation and side information domains, which is likely to restrict user
(item) representation learning in their respective domain and may further cause a negative
knowledge transfer from the side information. To address the aforementioned shortcom-
ing, for each user, we employ two kinds of embedding vectors to encode representations
of users in the recommendation task and social network embedding task in social-aware
recommendation. Similar to the user, item representations are also mapped into two low-
dimensional vector spaces in the recommendation task and knowledge graph embedding
task in knowledge-aware recommendation.

In this paper, we propose our multi-task learning framework GSIRec that combines the
recommendation task with a side information task to enhance the recommendation perfor-
mance. Specifically, GSIRec introduces the social network embedding task and knowledge
graph embedding task for social-aware recommendation and knowledge-aware recommen-
dation, respectively. The users are connected in the social network and the items they love
may appear as corresponding entities in the knowledge graph, hence side information tasks
have great relevance to the recommendation task. To transfer the knowledge between the
recommendation task and side information tasks, we design a special knowledge assistance
module as the bridge between these tasks. Such a module captures useful knowledge from
latent representations in related tasks and integrates the knowledge to assist each task in
improving its performance. There are two advantages of utilizing multi-task learning: (i)
leveraging the training signals of related tasks can enhance performance for each task; and
(ii) learning related tasks at a time reduces the risk of overfitting compared with single-task
learning [45]. To further exploit the topological structure of the side information, we use
graph attention network in the recommendation task. We design an attention mechanism to
consider node information of the user (item) neighbors in graphs. The recommendation task
and side information tasks are optimized alternatively, which enables the whole framework
to be more flexible.

Contribution and organization In summary, our contributions in this paper are as follows:

– We proposed a deep end-to-end framework GSIRec for graph side information recom-
mendation.

– We provide a knowledge assistance module that can fully transfer knowledge and
capture the interplay between related tasks to assist each task in enhancing its
performance.
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– Extensive experiments demonstrate that GSIRec consistently outperforms the state-
of-the-art recommendation solutions in different recommendation scenarios. Also,
GSIRec shows advantages in mitigating the data sparsity and cold start issues.

The remainder of this paper is organized as follows. Our framework GSIRec is described
in Section 2. In Section 3, we conduct experiments on four real-world datasets and present
the experimental results. In Section 4, we review work related to our method GSIRec,
followed by conclusions and future work in Section 5.

2 Methodology

In this section, we firstly introduce key mathematical notations and formulate the problems,
then describe our GSIRec framework and define each component in more depth.

2.1 Notations and problem formulation

Table 1 depicts key notations in this paper. In a recommendation scenario, we suppose there
areN usersU = {u1, u2, . . . , uN } andM items V = {v1, v2, . . . , vM }. We defineR ∈ R

N×M

as the user-item interaction matrix whose element rio indicates the rating score or implicit
feedback (0 or 1) from ui to vo. In addition, we consider social networks and knowledge
graphs as two kinds of side information. We define the matrix S ∈ R

N×N as the social net-
work among users U , where its element sij = 1 if ui trusts uj and zero otherwise. As for
the knowledge graph, it consists of real-world entities E = {e1, e2, . . . , eW } and relationsR
= {r1, r2, . . . , rC} among these entities. Since an item v ∈ V is likely to appear as an entity
e ∈ E in the knowledge graph G, entity set E consists of items V (V ⊆ E) and non-items
E \V . Formally, we define the knowledge graph asG = {(

eo, rh, ep

) |eo, ep ∈ E, rh ∈ R
}

whose the i-th element
(
eo, rh, ep

)
i
is a triple indicating that there is a relation rh between

entity eo and entity ep. For user ui , ur
i ∈ R

d and us
i ∈ R

d denote user embeddings cor-
responding to the recommendation domain and social domain respectively, where d is the
embedding size. For item vo (corresponding to entity eo), we utilize er

o ∈ R
d and ek

o ∈ R
d to

denote its embeddings corresponding to the recommendation domain and knowledge graph
domain respectively. In addition, we use rh ∈ R

d to denote embedding for relation rh.
The goal of GSIRec is to use the user-item interaction matrix R and the side information

to predict user’s personalized interests in items. Specifically, for social-aware recommen-
dation, given the user-item interaction information R and social network S, GSIRec aims
to learn a prediction function r̂uv = F(u, v|Θ,R, S), where r̂uv is the predicted rating
or preference probability from user u to item v, and Θ is the framework parameters of
function F . Similarly, for knowledge-aware recommendation, given the user-item interac-
tion information R and knowledge graphs G, GSIRec aims to learn a prediction function
r̂uv = F(u, v|Θ,R,G).

Figure 2 shows the overview of the architecture of GSIRec in two recommendation sce-
narios: social-aware recommendation (left) and knowledge-aware recommendation (right).
The whole framework consists of two tasks: recommendation task and side information
task (social network embedding or knowledge graph embedding). Two tasks are bridged
by the knowledge assistance modules. In what follows, we introduce the knowledge assis-
tance module, then apply GSIRec in social-aware recommendation and knowledge-aware
recommendation, finally discuss the learning algorithm for GSIRec.
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Table 1 Key notations

Symbols Definitions and descriptions

U Set of users

V Set of items

R User-item interaction matrix

S User-user social link matrix

G Knowledge graph

E Set of entities in knowledge graph

R Set of relations in knowledge graph

ur
i Embedding of user ui in recommendation domain

us
i Embedding of user ui in social domain

er
o Embedding of item vo in recommendation domain

ek
o Embedding of item vo in knowledge graph domain

rh Embedding of relation rh

ˆrio Predicted rating from ui to vo

ˆsij Predicted trust relation probability between ui and uj

ˆscoi Predicted score of triple
(
eo, rh, ep

)
i

2.2 Knowledge assistancemodule

To obtain communication and interaction between recommendation task and social network
embedding task (or recommendation task and knowledge graph embedding task), we design
a delicate knowledge assistance module, as shown in Figure 2 (the pink blocks). The design
of the knowledge assistance module is motivated by feature sharing in multi-task learning
[24, 70]. Specifically, the knowledge assistance module takes two user embeddings ur

i and
us

i of the user ui as inputs (or takes the two entity embeddings er
o and ek

o of an item vo as
inputs), enables them to capture useful knowledge from each other, and update themselves.
Note that we set the knowledge assistance modules in the low-level layers in both recom-
mendation task and side information task, because sharing of high-level feature layers may
result in negative transfer problems in multi-task learning according to recent research [36,

Figure 2 A schematic view of GSIRec for social-aware recommendation (left) and knowledge-aware recom-
mendation (right). KAM and MLP indicate the knowledge assistance module and multi-layer perceptron
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64, 70]. We devise two kinds of knowledge assistance modules: attention-based (left) and
gate-based (right), which are shown in Figure 3. Without loss of generality, we denote x1,
x2 as two inputs and y1, y2 as two outputs of a knowledge assistance module:

y1 = K(x1, x2) 〈x1〉 , (1)

y2 = K(x1, x2) 〈x2〉 , (2)

where K is the knowledge assistance module and we use a suffix 〈x1〉 or 〈x2〉 to obtain one
of its outputs. We will elaborate on these two kinds of knowledge assistance modules in the
following.

2.2.1 Attention-based knowledge assistance module

Inspired by [54], we first utilize a key matrix Mk ∈ R
d×d and a value matrix Mv ∈ R

d×d

to map input vectors x1, x2, and then match them as follows:

xm1
1 = Mkx1 � Mvx1, xm2

1 = Mkx1 � Mvx2, (3)

xm1
2 = Mkx2 � Mvx1, xm2

2 = Mkx2 � Mvx2, (4)

where � is the element-wise product of vectors.
Then we use an attention mechanism to obain the final output representations y1 and y2:

y1 = α1x
m1
1 + β1x

m2
1 , (5)

y2 = α2x
m1
2 + β2x

m2
2 , (6)

where α. and β. are the attention weights which characterize the importance of correspond-
ing to the vectors. Specifically, α. and β. are defined as:

α1 = exp
(
dot

(
w1,x

m1
1

))

exp
(
dot

(
w1,x

m1
1

))+exp
(
dot

(
w1,x

m2
1

)) = 1 − β1, (7)

α2 = exp(dot (w2,x
m1
2 ))

exp
(
dot

(
w2,x

m1
2

))+exp
(
dot

(
w2,x

m2
2

)) = 1 − β2, (8)

where w. ∈ R
d is the parameter of the attention mechanisms and dot denotes the inner

product of two vectors.

Figure 3 Attention-based knowledge assistance module (left) and gate-based knowledge assistance module
(right)
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2.2.2 Gate-based knowledge assistance module

First, we utilize two trainable weight matrices M1 ∈ R
d×d , M2 ∈ R

d×d to map input
vectors x1, x2 into new spaces:

x′
2 = M1x2, x′

1 = M2x1. (9)

Then we perform concatenation operations to get two fusion vectors F1 and F2 as
follows:

F1 = [
x1, x′

2

]
, F2 = [

x′
1, x2

]
. (10)

Next F1 and F2 pass through two non-linear transformations and get two gated structures:
input gate Ii and transform gate Ti :

I1 = σ (w1iF1 + b1i ) , T1 = σ (w1tF1 + b1t ) , (11)

I2 = σ (w2iF2 + b2i ) , T2 = σ (w2tF2 + b2t ) , (12)

where w.. ∈ R
2d×d , b.. ∈ R

d are the weight and bias parameters, and σ denotes the sigmoid
function σ (x) = 1/

(
1 + e−x

)
. With these gates structures, we will get the final outputs y1

and y2:

y1 = I1 � x′
2 + T1 � x1, (13)

y2 = I2 � x′
1 + T2 � x2. (14)

2.2.3 Comparing two knowledge assistance modules

We compare our two knowledge assistance modules from four aspects, including expressive
power, output space, the number of parameters, and computational complexity.

Expressive power For the attention-based knowledge assistance module, we explicitly uti-
lize the attention mechanisms to calculate the transfer weights. Specifically, we utilize
learnable matrices Mk and Mv to make enough interaction and communication between
input vectors, and then utilize the attention mechanisms to calculate the transfer weights α·,
β· between feature vectors. As for the gate-based knowledge assistance module, we intro-
duce gated structures I·, T· to control the error flow from related tasks and reduce the risk of
negative transfer in multi-task learning to a certain extent. Both knowledge assistance mod-
ules utilize learnable weight matrices for more fine-grained knowledge transfer between
tasks. In the experiments section, we will further evaluate the effectiveness of these two
knowledge assistance modules.

Output space Both gate-based knowledge assistance module and attention-based knowl-
edge assistance module take two embeddings as inputs (i.e., one of them belongs to the
recommendation task, and the other belongs to the side information task), enables these two
embeddings to capture useful knowledge from each other and update themselves. After the
update, both gate-based knowledge assistance module and attention-based knowledge assis-
tance module output the updated embeddings. The updated embeddings will send back the
corresponding task. Through knowledge assistance modules, representations from related
tasks can complement each other, assisting related tasks in improving generalization.

Space complexity For an attention-based knowledge assistance module, we introduce two
learnable matrices Mk ∈ R

d×d , Mv ∈ R
d×d , and attention weights w1 ∈ R

d , w2 ∈ R
d .

Therefore, the number of parameters of an attention-based knowledge assistance module
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is θa = {Mk,Mv, w1, w2}. For a gate-based knowledge assistance module, we introduce
two learnable matrices M1 ∈ R

d×d and M2 ∈ R
d×d , and gated structure weights w1i ∈

R
2d×d , w1t ∈ R

2d×d , w2i ∈ R
2d×d , w2t ∈ R

2d×d , b1i ∈ R
d , b1t ∈ R

d , b2i ∈ R
d , b2t ∈

R
d . Therefore, the number of parameters of a gate-based knowledge assistance module is

θg = {M1, M2, w1i , w1t , w2i , w2t , b1i , b1t , b2i , b2t }. Compare the number of parameters
of two knowledge assistance modules, gate-based knowledge assistance module introduces
more parameters.

Time complexity For an attention-based knowledge assistance module, it takes two embed-
dings x1 ∈ R

d , x2 ∈ R
d as inputs, the time consumption in mapping and matching process

is O(8×d2+4×d). The time consumption in the attention mechanism is O(4×d). There-
fore, the time complexity of a attention-based knowledge assistance module is O(8 × d2 +
8 × d) ⇒ O(d2). For a gate-based knowledge assistance module, it takes two embeddings
x1 ∈ R

d , x2 ∈ R
d as inputs, the time consumption in mapping process is O(2 × d2). The

time consumption in gated structures is O(8 × d2 + 4 × d). Therefore, the space complex-
ity of a gate-based knowledge assistance module is O(10× d2 + 4× d) ⇒ O(d2). We can
find that the two knowledge assistance modules have similar time complexity.

2.2.4 Advantage

Recently, many recommenders leverage multi-task learning and design different transfer
units to enhance recommendation performance, such as the cross-connection unit [24] and
the cross-compress unit [64]. These transfer units and our method GSIRec follow the param-
eter sharing paradigm for multi-task Learning [45]. However, our methodology is different
from theirs. Compared with the above transfer units, GSIRec uses attention mechanisms
and gated structures to design completely different but more effective transfer units for
knowledge transfer between related tasks.

The advantages of the knowledge assistance module are two-fold: (i) attention mech-
anism and gated structures in the knowledge assistance module can capture and integrate
useful information to update representations in a more fine-grained way; and (ii) enough
interaction and communication between embedding vectors enable related tasks to comple-
ment each other and enhance their performance instead of improving one task at the expense
of poor performance on other tasks. We will further compare our knowledge assistance
modules with different transfer units in the experiments.

2.3 Social-aware recommendation

In social-aware recommendation, we introduce a social network embedding task to assist
the recommendation task.

2.3.1 Recommendation task

Given user ui and item vo, such task predicts rating or preference probability r̂io from user
ui to item vo. We will learn two user embeddings from different perspectives. We first utilize
L knowledge assistance modules to obtain social enhanced user embedding ur(s)

i as follows:

ur(s)
i = KL

(
ur

i , u
s
i

) 〈
ur

i

〉
. (15)

In addition, we consider neighbors of user ui to further exploit the topological structure
of the social network. A common way to aggregate neighbor information is the mean pool-
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ing operation. However, such an operation ignores different weights of neighbors. In our
paper, we utilize the attention mechanism to study the importance of different neighbors in
the graph for better neighbor aggregation. Specifically, we aggregate the user ui’s neighbor
information by linear combination as follows:

unei
i =

∑

uj ∈nei(ui )

att (ui, uj )ur
j , (16)

where nei(ui) is the ui’s neighbor set. att is function to study the importance of different
neighbors for the given user, which is defined as follows:

att (ui, uj ) =
exp

(
dot

(
ur

i ,u
r
j

))

∑
uk∈nei(ui )

exp
(
dot

(
ur

i ,u
r
k

)) . (17)

In social network, the size of nei(·) is different for different users. Following the
approaches in [19, 65], we sample a fixed-size set neis(u) for each user’s neighbors to keep
training the whole framework more efficient, where |neis(u)| = ns . Such sampling strategy
can facilitate computation on large graphs. In this way, we compute the neighbor enhanced
embedding ur(n)

i for user ui by replacing nei(·) with neis(·):
ur(n)

i = A
(
w

(
ur

i + uneis

i

))
, (18)

where w ∈ R
d×d is the weight andA is the activation function.

Through a single neighbor aggregation operation, neighbor enhanced embedding ur(n)
i is

dependent on itself as well as the direct social neighbors. We can further extend neighbor
aggregation operation to multi-hop neighbors. More formally, to obtain J -order neighbor
information (J is a pre-defined value), neighbor enhanced embedding ur(n)

i(J ) is defined as:

ur(n)
i(J ) = A

(
w(J−1)

(
ur

i(J−1) + uneis

i(J−1)

))
. (19)

Then two user embeddings ur(s)
i and ur(n)

i(J ) are fused by an attention mechanism as
follows:

ur(f )
i = αur(s)

i + βur(n)
i(J ), (20)

where α and β are defined as:

α = exp
(
dot

(
ur(s)

i ,ero
))

exp
(
dot

(
ur(s)

i ,ero
))

+exp
(
dot

(
ur(n)

i(J )
,ero

)) = 1 − β. (21)

Finally, we utilize a multi-layer perceptron (MLP) to output the final prediction r̂io as
follows:

r̂io = M
(
M

(
· · ·M

([
ur(f )

i , er
o

])))
= MH

([
ur(f )

i , er
o

])
, (22)

whereM(x) =A (wx + b) is the non-linear transformation for vector x (with weight matrix
w and bias vector b), and H is the number of layers in the MLP. If the user-item interaction
matrix R is constructed as an implicit feedback matrix, r̂io will be further operated by the
sigmoid function to obtain the preference probability from user ui to item vo.

2.3.2 Social network embedding task

Such a task is used for link prediction which predicts the trust relationships between
users. We encode the social relations into low-dimensional representations by using an
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embedding-based method. For a relationship between user ui and user uj , we obtain their

recommendation enhanced social embedding us(r)
i and us(r)

j through knowledge assistance
modules:

us(r)
i = KL

(
ur

i ,u
s
i

) 〈
us

i

〉
, (23)

us(r)
j = KL

(
ur

j ,u
s
j

) 〈
us

j

〉
. (24)

Finally, leveraging two MLPs, the probability of the trust relationship ŝij between user
ui and user uj is calculeted as follows:

ŝij = S
([
MH

(
us(r)

i

)
,M′

H

(
us(r)

j

)]))
, (25)

where S is the similarity function between two real feature vectors. In this paper, we use
the cosine function S(a, b) = dot (a,b)

‖a‖‖b‖ as our similarity function. One can design other

similarity metrics here such as normalized inner product S(a, b) = σ(a
b).

2.4 Knowledge-aware recommendation

In knowledge-aware recommendation, we design a knowledge graph embedding task to
assist the recommendation task.

2.4.1 Recommendation task

Similar to the recommendation task in social-aware recommendation, such task predicts
rating or preference probability r̂io from user ui to item vo. We first learn two item embed-
dings: knowledge enhanced embedding er(k)

o and neighbor enhanced embedding er(n)
o(J ) as

follows:

er(k)
o = KL

(
er
o, e

k
o

) 〈
er
o

〉
, (26)

er(n)
o(J ) = A

⎛

⎝w(J−1)

⎛

⎝er
o(J−1) +

∑

ep∈neis (vo)

att (vo, ep)er
p(J−1)

⎞

⎠

⎞

⎠ , (27)

where neis(vo) is the vo’s sampled fixed-size neighbor set in the knowledge graph, where
|neis(vo)| = nk . att is the function to study the importance of different neighbors for the
given item vo, which is defined as follows:

att (vo, vp) =
exp

(
dot

(
er
o, e

r
p

))

∑
eq∈nei(vo)

exp
(
dot

(
er
o, er

q

)) . (28)

Then we utilize an attention mechanism to weigh two item embeddings er(k)
o and er(n)

o(J )

as follows:

er(f )
o = αer(s)

o + βer(n)
o(J ), (29)

where α and β are defined as:

α = exp
(
dot

(
ur

i ,e
r(s)
o

))

exp
(
dot

(
ur

i ,e
r(s)
o

))
+exp

(
dot

(
ur

i ,e
r(n)
o(J )

)) = 1 − β. (30)
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Finally, we utilize a MLP to predict final ratings r̂io from user ui to item vo as follows:

r̂io = MH

([
ur

i , er(f )
o

])
. (31)

Note that if we focus on users’ implicit feedback to items, r̂io will be further operated by
the sigmoid function to obtain the preference probability from user ui to item vo.

2.4.2 Knowledge graph embedding task

Knowledge graph embedding methods can be categorized into two groups: translational
distance models and semantic matching models [57]. We utilize a deep semantic matching
method for the triple classification task which predicts whether a triple is correct or not.
Note that, one can employ or redesign other knowledge graph embedding methods, such
as SLM [49] and SME [4]. For a triple

(
eo, rw, ep

)
i
, we first utilize knowledge assistance

modules to obtain recommendation enhanced entity embedding ek(r)
o and ek(r)

p :

ek(r)
o = KL

(
er
o, e

k
o

) 〈
ek
o

〉
, (32)

ek(r)
p = KL

(
er
p, ek

p

) 〈
ek
p

〉
. (33)

Then we integrate relation rw in our method and use MLPs to predicte probability ˆscoi :

ˆscoi = σ
(
M′′

H

(
MH

(
ek(r)
o

)
� rw � M′

H

(
ek(r)
p

) ))
. (34)

We consider ˆscoi as the score of the triple
(
eo, rw, ep

)
i
which indicates the plausibility

of the fact in the knowledge graph.

2.5 Optimization

To estimate model parameters, we have two following objective functions for GSIRec
according to kinds of side information:

LS
OSS = LREC + γsLSNE + λ ‖Θ‖22 , (35)

LK
OSS = LREC + γkLKGE + λ ‖Θ‖22 . (36)

LS
OSS and LK

OSS are for social-aware recommendation and knowledge-aware recom-
mendation, respectively. LREC measures the loss in the recommendation task. Depending
on the ways of constructing of the user-item interaction matrix R (rating score or implicit
feedback), we use different loss functions for LREC , as follows:

L1
REC =

∑

(i,j)∈Or

(
rij − r̂ij

)2
, (37)

L2
REC = −

∑

(ui ,vj ,v
j̃
)∈Dr

(
rij log(r̂ij ) +

(
1 − r

ij̃

)
log

(
1 − r̂

ij̃

))
. (38)

The first one is for the rating prediction task, where Or denotes the observed values in
R. The second is for recommendation with implicit feedback. We denotes Ii is the item set
which user i has interacted with, and Dr can be defined as:

Dr =
{(

ui, vj , vj̃

)
| ui ∈ U ∧ vj ∈ Ii ∧ v

j̃
∈ V \Ii

}
. (39)
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LSNE and LKGE measure the loss in the social network embedding task and knowledge
graph embedding task, respectively:

LSNE = −
∑

(
ua,ub,ub̃

)∈Ds

(
sab log

(
ŝab

) + (
1 − s

ab̃

)
log

(
1 − ŝ

ab̃

))
, (40)

LKGE = −
⎛

⎝
∑

(h,r,t)i∈G
ˆscoi −

∑

(h,r,t)j �∈G
ˆscoj

⎞

⎠ . (41)

ForLSNE , it uses binary cross-entropy function to calculate the loss, whereDs is defined
as:

Ds = {
(ua, ub, ub̃

) | ua ∈ U ∧ ub ∈ nei(ua) ∧ u
b̃

∈ U\nei(ua)
}
. (42)

As for LKGE , we let observed triples in knowledge graph G tend to have higher scores
and decreasing the scores for all unobserved triples.

The last term in loss function is the L2 regularization term to control the model com-
plexity and avoid over-fitting. γs , γk and λ are the balancing parameters in the objective
function.1 We utilize an alternating strategy to optimize our framework, which enables
the whole framework to be more flexible. The overall logic of GSIRec is summarized in
Algorithm 1.

3 Experiment

In this section, we conduct extensive experiments to evaluate our GSIRec framework
through addressing the following research questions:

– (Q1) Compared with the state-of-the-art baselines, how does our framework GSIRec
perform?

– (Q2) Can GSIRec effectively alleviate data sparsity and cold start issues?
– (Q3) Do the settings of key hyper-parameters and designs affect the performance of

GSIRec?
– (Q4) Can the recommendation task be helpful for the side information task in GSIRec?

1Following the related work [64], γ· can be seen as the ratio of two learning rates for the recommendation
task and side information task.
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In what follows, we first introduce the experimental settings, then answer the above four
questions.

3.1 Experiment setup

In this subsection, we introduce the datasets, baselines, the choice of hyper-parameters, and
evaluation protocols.

3.1.1 Datasets

Four datasets Ciao,2 Epinions,3 DBbook,4 MovieLens5 are used in our experiments. Ciao
and Epinions are for social-aware recommendation, and DBbook and MovieLens are used
for knowledge-aware recommendation.

– Ciao dataset was obtained from a real-world social media website. The dataset contains
both users’ explicit ratings (ranging from 1 to 5) on items and users’ social relations.

– Epinions dataset was obtained from a popular review website. The dataset contains
rating data (ranging from 1 to 5) and user-user trust relationships.

– DBbook is a public dataset in book recommendations, which contains users’ explicit
ratings (ranging from 1 to 5) on books. The knowledge graph for DBbook is released
by [5].

– MovieLens dataset is a widely used movie dataset and it contains users’ explicit
feedbacks (ranging from 1 to 5). The knowledge graph MovieLens is released by [64].

In the experiment, we evaluate our method GSIRec in both rating prediction task and top-
K recommendation task. Similar to the related work [61, 64], for top-K recommendation,
we transform the explicit rating as implicit feedback indicating that the user has rated the
item, and generate a negative sample set for each user, which is of equal size with the rated
ones. The statistics of the four datasets are summarized in Table 2.

3.1.2 Baselines

We apply GSIRec in social-aware recommendation and knowledge-aware recommendation.
Therefore, we compare GSIRec with the following four classes of baselines: (i) pure col-
laborative filtering method GCMC [2]; (ii) feature enhanced methods including NFM [20]
and DeepFM [16]; (iii) social enhanced methods which take users’ social influences into
consideration including DeepSoR [14], GraphRec [15] and DiffNet [67]; (iv) knowledge
graph enhanced methods which take knowledge graph into consideration including KGCN
[65], MKR [64] and KGAT [55]. The characteristics of the comparison methods are listed
as follows:

– GCMC is a graph-based recommendation framework, which adopts a graph auto-
encoder in the user-item bipartite graph to learn user and item embeddings for rating
prediction. In our experiment, we treat GCMC as a plain collaborative filtering method
that only leverages user-item interactions for recommendation.

2Ciao: http://www.cse.msu.edu/∼tangjili/index.html
3Epinions: http://www.cse.msu.edu/∼tangjili/index.html
4DBbook: http://2014.eswc-conferences.org/important-dates/call-RecSys.html
5MovieLens: https://grouplens.org/datasets/movielens/1m/
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Table 2 Basic statistics of four datasets. The “graph links” in Ciao and Epinions means social links of users
in social networks, and the “graph links” in DBbook and MovieLens means item links in knowledge graphs

Dataset # Users # Items # Interactions # Graph links

Ciao 7,317 104,975 281,898 85,205

Epinions 18,097 261,679 756,678 287,081

DBbook 5,576 2,680 65,961 133,529

MovieLens 6,040 2,347 566,461 20,195

– NFM is a factorization model that improves FM [44] by using a neural network to cap-
ture high-order feature interaction. Here we utilize all the side information as additional
input features. Specifically, we concatenate the user embedding, item embedding, and
the average embeddings of user neighbors in the social network (or average embeddings
of item neighbors in the knowledge graph) as the inputs.

– DeepFM is a general feature enhanced factorization model, which combines factoriza-
tion machines and deep neural networks for recommendation. We provide the same
inputs as NFM for DeepFM.6

– DeepSoR combines a neural network to learn latent preferences of users from social
networks with PMF [42].

– GraphRec is a state-of-the-art social recommender, which considers the user-item graph
and user-user graph for social recommendation.

– DiffNet is a state-of-the-art method for social recommendation, which utilizes graph
convolutional networks and designs layer-wise influence diffusion structure for users
to learn user embeddings.

– KGCN is a state-of-the-art model for knowledge-aware recommendation, which uses
graph attention convolutional methods to capture semantic information in the knowl-
edge graph.

– MKR is a state-of-the-art multi-task learning framework, which employs knowledge
graph embedding tasks to enhance collaborative filtering tasks.

– KGAT is a state-of-the-art propagation-based model, which utilizes graph attention
networks for knowledge-aware recommendation. Compared with KGCN, KGAT com-
bines the user-item interaction graph and knowledge graph as a unified graph for feature
learning.

– GSIRec(s)-a is our model with attention-based knowledge assistance modules for
social-aware recommendation.

– GSIRec(s)-g is our model with gate-based knowledge assistance modules for social-
aware recommendation.

– GSIRec(k)-a is our model with attention-based knowledge assistance modules for
knowledge-aware recommendation.

– GSIRec(k)-g is our model with gate-based knowledge assistance modules for
knowledge-aware recommendation.

6We have tried other factorization models FM [44] and Wide&Deep [13], and find that NFM and DeepFM
are slightly better than them. Therefore, we present the better one here.
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3.1.3 Parameter settings

We implemented GSIRec framework with Pytorch which is a Python library for deep learn-
ing. For each dataset, we randomly split it into training, validation, and test sets following
6 : 2 : 2. We repeated each experiment 5 times and reported the average performance. The
model parameters are first initialized according to the Gaussian distribution. We utilized
ReLU as the activation function and Adam [28] for optimization with an initial learning
rate of 0.001. For the numbers of layer J in neighbor aggregation operation, we find that
when J=1 is good enough and similar results can be found in many other studies [2, 65].
The hyper-parameters were tuned on the validation set. The coefficient of L2 regulariza-
tion λ was tuned in [ 10−7, 10−6, 10−5, 10−4, 10−3 ]. For all neural components, we
implement two hidden layers by default. In addition, we sampled one negative instance per
positive instance in the social network embedding task or knowledge graph embedding task.
Table 3 shows our hyper-parameters settings. The parameters of the baselines are carefully
tuned to achieve the best performance for fair comparisons. We will study the impact of
hyper-parameters in the following subsection.

3.1.4 Evaluation protocols

We evaluate our method GSIRec in the rating prediction task and top-K recommendation.
For the rating prediction task, we adopt Root Mean Square Error (RMSE) and Mean Abso-
lute Error (MAE) to evaluate the performance of the methods. Smaller values of these two
metrics indicate the better recommendation. For the top-K recommendation, we choose Pre-
cision@K and Recall@K to evaluate. We perform item ranking on all items to guarantee
that the evaluation process is unbiased [30]. In our experiment, we set K = 5.

3.2 Performance comparison (Q1)

Tables 4 and 5 show the performance of all compared methods in social-aware recommen-
dation. Tables 6 and 7 show the performance of all compared methods in knowledge-aware
recommendation respectively. ** denotes the best values among all methods, and * denotes
the best values among all baselines. According to the results, we have the following main
observations:

– Feature enhanced methods NFM and DeepFM outperform pure collaborative filtering
method GCMC in most cases, which indicates that side information is complementary
to user-item interaction data in recommendations.

– Since DeepSoR, GraphRec, and DiffNet utilize social information to improve recom-
mendation, they outperform pure collaborative filtering model GCMC. In addition,
GraphRec and DiffNet generally achieve better performance than other baselines

Table 3 Hyper-parameter settings for four datasets

Dataset Hyper-parameter

Ciao L = 2, d = 16, br = 1024, bs = 1024, ns = 7, λ = 10−5, γ = 0.2

Epinions L = 3, d = 16, br = 1024, bs = 1024, ns = 7 λ = 10−5, γ = 0.1

DBook L = 1, d = 8, br = 512, bs = 2048, nk = 5, λ = 10−4, , γ = 0.5

MovieLens L = 1, d = 8, br = 2048, bs = 2048, nk = 5, λ = 10−6, γ = 0.1
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Table 4 The results of MAE and RMSE in social-aware recommendation

Method Ciao Epinions

MAE RMSE MAE RMSE

GCMC 0.8113 1.0350 0.8649 1.1046

NFM 0.8083 1.0582 0.8531 1.0968

DeepFM 0.8107 1.0461 0.8499 1.0985

DeepSoR 0.7787 1.0395 0.8537 1.1001

GraphRec 0.7683* 1.0185* 0.8426 1.0854*

DiffNet 0.7706 1.0206 0.8375* 1.0896

GSIRec(s)-a 0.7627 1.0018 0.8233** 1.0808

GSIRec(s)-g 0.7601** 1.0004** 0.8250 1.0789**

in social-aware recommendation in most cases. These results imply that the graph
convolutional methods are powerful for graph side information recommendation.

– For knowledge-aware recommendation, KGCN and KGAT stronger than other base-
lines, indicating the power of graph convolutional networks in graph data. In addition,
MKR performs much better than GCMC, which suggests the cross-compress units
capture useful knowledge in knowledge graph embedding tasks.

– GSIRec leverages multi-task learning and graph attention method to learn user and item
representations for recommendation. In general, GSIRec with gate-based knowledge
assistance modules stronger than GSIRec with attention-based knowledge assistance
modules. Without special mention, we show the results of GSIRec with gate-based
knowledge assistance modules in the following experiment. In both rating prediction
task and top-K recommendation, our method GSIRec achieves the best results on
all metrics compared with other methods. Specifically, for the rating prediction task,
GSIRec improves over the state-of-the-art baselines w.r.t. RMSE by 1.81%, 0.60%,
0.97% and 1.05% in Ciao, Epinions, DBbook, and MovieLens respectively. For the
top-K recommendation, GSIRec improves over the strongest baselines w.r.t. Preci-
sion by 3.17%, 4.06%, 0.99% and 4.12% in Ciao, Epinions, DBbook, and MovieLens
respectively.

Table 5 The results of Precision and Recall in social-aware recommendation

Method Ciao (@5, %) Epinions (@5, %)

Precision Recall Precision Recall

GCMC 1.7576 1.3090 0.8427 0.7885

NFM 1.8108 1.3223 0.8857 0.7705

DeepFM 1.8118 1.3424 0.8578 0.7875

DeepSoR 1.8015 1.3097 0.9111* 0.8128

GraphRec 1.8795 1.3371 0.8895 0.7897

DiffNet 1.8911* 1.3847* 0.9017 0.8201*

GSIRec(s)-a 1.9323 1.4331 0.9359 0.8487

GSIRec(s)-g 1.9531** 1.4790** 0.9483** 0.8537**
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Table 6 The results of MAE and RMSE in knowledge-aware recommendation

Method DBbook MovieLens

MAE RMSE MAE RMSE

GCMC 0.7907 0.9963 0.7369 0.9260

NFM 0.7892 0.9916 0.7273 0.9215

DeepFM 0.7867 0.9874 0.7204 0.9159

KGCN 0.7465* 0.9543 0.7193 0.9114*

MKR 0.7546 0.9572 0.7277 0.9196

KGAT 0.7528 0.9384* 0.7162* 0.9189

GSIRec(k)-a 0.7362** 0.9294** 0.7117 0.9035

GSIRec(k)-g 0.7371 0.9375 0.7093** 0.9019**

3.3 Cold start and data sparsity issues (Q2)

As mentioned in the introduction section, data sparsity and cold start are two challenges
faced by most recommenders. In this subsection, we investigated the ability of our model in
handling these two issues.

3.3.1 Results in data sparse scenarios

We first evaluate the capabilities of addressing data sparsity by respective competitors. The
experiments were conducted by utilizing different ratios (from 80% to 20%) of the training
set on four datasets and keeping fixed the validation and test set during the experiment.
Figures 4 and 5 show the results of all methods with respect to different proportions of
the training set in social-aware recommendation and knowledge-aware recommendation,
respectively. For all datasets, we observe that as the increase of sparsity level, the overall
performance decreases among all models. Our method GSIRec outperforms other baselines
in most cases. It is worth mentioning that our method consistently outperforms all baselines
when the ratio is 20%, which verifies that GSIRec can maintain a good performance when
data are extremely sparse.

Table 7 The results of Precision and Recall in knowledge-aware recommendation

Method DBbook (@5, %) MovieLens (@5, %)

Precision Recall Precision Recall

GCMC 1.7592 3.5956 15.723 4.7338

NFM 2.0102 3.7497* 19.473* 6.0550*

DeepFM 1.9367 3.7129 19.400 5.9934

KGCN 1.9702 3.7364 17.766 5.6171

MKR 1.8927 3.5614 17.979 5.6484

KGAT 2.0314* 3.7072 18.968 5.8224

GSIRec(k)-a 2.0441 3.8011 20.242** 6.2592**

GSIRec(k)-g 2.0565** 3.9968** 19.936 6.0888
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Figure 4 The results for social-aware recommendation on Ciao and Epinions with different ratios (from 80%
to 20%) of training set

3.3.2 Results in cold start scenarios

According to the side information of the datasets, we consider addressing the cold-start
user problem on Ciao and Epinions datasets, and addressing the cold-start item problem
on DBbook and MovieLens datasets. We treat those who have rated x or fewer ratings as
cold start users and those that have been rated less than x as cold start items. Followed
by other related works [25, 35], we set x=5. Figure 6 illustrates the RMSE results of our
method GSIRec and several strong baselines in cold-start scenarios on four datasets. We
can see that our method GSIRec is beneficial to the relatively inactive users and items in
recommendation scenarios.

3.4 Model analysis (Q3)

In order to gain more insight into our method, we study an in-depth model analysis in this
subsection. We first investigate the effect of the knowledge assistance module, then analyze
the sensitivity of key hyper-parameters, and finally explore whether the combination of the
user side information task and item side information task can enhance the performance.

3.4.1 Effect of knowledge assistance module

In order to further explore the utility of the knowledge assistance module, we replace our
knowledge assistance module with other four feature enhanced modules: cross-stitch unit
[41], cross-connection unit [24], cross-compress unit [64], and feature evolution unit [66].
These feature enhanced units are utilized to be the connection between the recommenda-
tion task and the side information task for multi-task feature learning, and they are related
to our knowledge assistance modules. We will further discuss them in the related work
section. The comparison results are shown in Figures 7 and 8. According to the results, our

Figure 5 The results for knowledge-aware recommendation on DBbook and MovieLens with different ratios
(from 80% to 20%) of training set
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Figure 6 The results of RMSE on four datasets in cold start scenarios

proposed feature enhanced module achieves the best results indicates that our knowledge
assistance modules can capture useful knowledge from the side information task to assist
the recommendation.

3.4.2 Effect of hyper-parameters

We explore the effect of two hyper-parameters: embedding size d and neighbor sample
size ns(or nk) in side information tasks. The results are shown in Figures 9 and 10. We
have the following observations: (i) In general, we find that the performance is improved
as the embedding size d increases because large embedding sizes mean more expressive.
However, when d further increases, our methods degrade the performance, because a too
large dimension increases the complexity of our method and may overfit the datasets. (ii)
In addition, we find that our method achieves the best performance when ns = 7 in social-
aware recommendation and nk = 5 knowledge-aware recommendation. The reason is that
a too small neighbor sample size does not have enough capacity to aggregate neighbor
information, while a too large neighbor sample size may introduce noises.

3.4.3 Results on the unified framework

GSIRec is designed for side information recommendation. In the above experiments,
we have validated the effectiveness of GSIRec in social-aware recommendation and
knowledge-aware recommendation. In this subsection, we would like to apply our method to
the scenario where both users and items are associated with the side information. We further
explore whether the combination of the user side module and item side module can enhance
the performance. For this purpose, we plug the user side module and item side module into
the unified framework GSIRec. The objective function for the unified framework GSIRec

Figure 7 The results of RMSE on GSIRec with different feature enhanced modules. KAM(a): attention-
based knowledge assistance module; KAM(g): gate-based knowledge assistance module; C-Stitch: cross-
stitch unit; C-Connection: cross-connection unit; C-Compress: cross-compress unit; FEU: feature evolution
unit
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Figure 8 The results of Precision on GSIRec with different feature enhanced modules. KAM(a): attention-
based knowledge assistance module; KAM(g): gate-based knowledge assistance module; C-Stitch: cross-
stitch unit; C-Connection: cross-connection unit; C-Compress: cross-compress unit; FEU: feature evolution
unit

can be defined as follows:

LU
OSS = LREC + γsLSNE + γkLKGE + λ ‖Θ‖22 , (43)

where γs and γk are the balancing parameters for user side information task and item side
information task, respectively. Because we didn’t find the suitable datasets containing both
social networks and knowledge graphs information that can be used for both the rating
prediction task and top-K recommendation, we construct top-n semantic friends (implicit
social information) for each user in the knowledge-aware datasets (DBbook and Movie-
Lens datasets) according to the approach in [75]. The research reveals that semantic friends
(implicit social information) can identify with whom a user has similar preferences [37, 75].
In this way, both users and items in these two datasets are associated with side information.
In our experiment, we set n = 5, γs = 10−5, γk = 10−5. One can utilize other methods to
generate implicit user friends, such as the methods mentioned in [37] and [27]. To evalu-
ate the performance of the unified framework GSIRec, we compare it with its two variants:
GSIRec(s) (only using user side information) and GSIRec(k) (only using item side infor-
mation). Figure 11 shows the performance of different methods. From the results, we find
that GSIRec which leverages both user and item side information performs better than two
variants GSIRec(s) and GSIRec(k), indicating that leveraging both user side and item side
information can enhance the recommendation performance.

3.5 Results on side information tasks (Q4)

The goal of multi-task learning is to utilize useful information contained in related tasks to
help enhance the performance of all the tasks [6]. Therefore, we would like to investigate
whether the recommendation task benefits the side information tasks in GSIRec. Specifi-
cally, we conducted the following experiments of link prediction tasks to show performance

Figure 9 The results of RMSE on GSIRec with different embedding side d
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Figure 10 The results of RMSE on GSIRec with different neighbor sample size ns or nk

differences between the two settings: (i) only side information task is trained and (ii) side
information task and recommendation task are trained together. We split the graph data into
training and test sets following 6:4 and use F1-score as the evaluation metric. Figure 12
presents the performance comparison on four datasets. From the results, we find that mak-
ing use of the recommendation task improves the F1-score of link prediction in the social
network embedding task and knowledge graph embedding task, respectively. The results
indicate knowledge assistance module can indeed capture useful information from related
tasks to assist each task in enhancing its performance.

4 Related work

4.1 Social-aware recommendation

With the prevalence of online social media, many E-commerce sites have become pop-
ular social platforms in which users can not only select items they love but also follow
other users. According to the social influence theory [1, 3, 31], users’ preferences are influ-
enced by their social neighbors. Therefore, researchers propose using social networks as
another information stream to mitigate the lack of user-item interaction data and improve
recommendation, also known as social recommendation.

The most common approach in social recommendation is to design loss terms for social
influence and integrate both social loss and recommendation loss into a unified loss func-
tion for jointly optimizing [32, 39, 52]. For instance, SoReg assumes that social neighbors
share similar feature representations and design regularization terms in the matrix factor-
ization framework [39]. CSR models the characteristics of social relations and designs a
characterized regularization term to improve SoReg [32]. SoDimRec exploits the hetero-
geneity of social relations and weak dependency connections to regularization terms [52]. In
addition to the above-mentioned regularization-based social recommenders, a more explicit

Figure 11 The results of RMSE and Precision on different GSIRec variants
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Figure 12 The results of F1-score on the side information task. “None” means only side information task
is trained, while “KAM-a” and “KAM-g” means side information task and recommendation task are trained
together using attention-based knowledge assistance module and gate-based knowledge assistance module,
respectively

and straightforward way is to explicitly models social relations in the predictive model [7,
17, 38]. For example, TrustSVD extended SVD++ [29] by treating the preferences of social
neighbors as auxiliary implicit feedbacks [17].

With the development of deep learning, more and more social recommenders utilize neu-
ral components to enhance performance. For instance, SAMN considers both aspect-level
and friend-level differences and utilizes memory network and attention mechanisms for
social recommendation [10]. EATNN utilizes attention mechanisms to assigns a personal-
ized transfer scheme for each user [12]. In recent years, Graph Neural Networks (GNNs)
have achieved state-of-the-art performance of graph representation learning. Since the social
network can be represented as a user-user social graph, researchers develop social recom-
menders based on GNNs to combine the user representation with the user’s social neighbors
[9, 15, 34, 67]. For example, HOSR [34] and DiffNet [67] stack more graph convolu-
tional layers and propagate user embeddings along the social network to capture high-order
neighbor information.

In this work, GSIRec utilizes the graph attention method to learn social neighbor
enhanced representations in social-aware recommendation. In addition, GSIRec derives a
multi-task learning approach that introduces a social network embedding task to assist the
recommendation task. The social network embedding task can be seen as the constraint term
explicitly to provide regularization for recommender systems.

4.2 Knowledge-aware recommendation

Knowledge-aware recommendation has been shown effective in alleviating data sparsity
issues for recommender systems by using the knowledge graph as the side information. The
utilization of the knowledge graph can be roughly categorized into three groups [18, 56]: (i)
the embedding-based method; (ii) the path-based method; and (iii) the propagation-based
method.

The embedding-based method utilizes knowledge graph embedding algorithms to pre-
process the knowledge graph and incorporates pre-trained entity embeddings in the recom-
mendation task [5, 62, 64, 76]. For instance, CKE [76] adopts TransR [33] to learn entity
embeddings with the involvement of the knowledge graph. KTUP [5] adopts TransH [60]
to design a translation-based recommender model that jointly learns the task of recom-
mendation and knowledge graph completion. DKN [62] treats entity embeddings (learned
from TransD [26]) and word embeddings as different channels and designs a CNN frame-
work to incorporate knowledge-level and semantic-level representations of news for news
recommendation.
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The path-based method leverages multiple patterns of connections among entities in
knowledge graphs for recommendation [8, 23, 48, 50, 58, 71]. For example, PER [72]
and FMG [77] treat knowledge graphs as heterogeneous information networks and design
different meta-paths or meta-graphs to extract semantic information for recommendation.

The propagation-based method, which is based on the idea of embedding propagation,
considers both semantic information and connectivity information in knowledge graphs [47,
53, 55, 56, 59, 61, 63, 65]. For instance, RippleNet [61] introduces the concept of prefer-
ence propagation which propagates users’ potential preferences along links in knowledge
graphs to enrich user representations. KGCN [65] adopts graph convolutional networks to
aggregate item neighbor information in the knowledge graph to enhance item representa-
tions. KGCN-LS [63] further enhances the performance of KGCN [65] by adding a label
smoothness mechanism. KGAT [55] combines the user-item interaction graph and knowl-
edge graph as a unified graph and utilizes graph attention networks for feature learning.
KGPolicy [59] adopts graph convolutional networks to prepare high-quality representa-
tions of nodes in knowledge graphs and uses reinforcement learning to explore high-quality
negative items for positive user-item interactions. CKAN [56] explicitly encodes the col-
laborative signals by embedding propagation and combine the collaborative signals with
knowledge associations in an end-to-end manner.

Our method GSIRec is a hybrid method that combines the embedding-based method and
propagation-based method. GSIRec designs the knowledge assistance module to capture
useful knowledge from the knowledge graph embedding task. In addition, GSIRec utilizes
a graph attention method to exploit semantic information from knowledge graphs.

4.3 Multi-task learning for recommendation

Multi-task learning (MTL) is an approach that improves learning for one task by using the
knowledge contained in the training signals of other related tasks [6]. Recently, many rec-
ommenders leverage MTL to improve recommendation performance [5, 12, 24, 64, 66].
KTUP [5] jointly trains the tasks of recommendation and knowledge graph completion and
both tasks show excellent performance. JNSKR [11] designs an efficient negative sampling
optimization for knowledge-aware recommendation which integrates the recommendation
task and the knowledge graph embedding task in a multi-task learning framework. MKR
[64] designs a cross&compress unit to be the connection between the collaborative filtering
task and knowledge graph embedding task, and two tasks share their latent features in the
cross&compress unit for knowledge-aware recommendation. CoNet [24] replaces the train-
able transfer scalars in cross-stitch units [41] with trainable transfer matrices, and designs
the cross-connection unit to transfer the knowledge between the source task and target task.
EATNN [12] integrates both the subtasks of item domain and social domain into a uni-
fied multi-task learning framework for social-aware recommendation. TrustEV [66] designs
feature evolution units to enable the user social embeddings and user recommendation
embeddings to exchange their features for social recommendation.

In this work, we proposed a multi-task learning framework GSIRec that can be applied in
social-aware recommendation and knowledge-aware recommendation. We proposed com-
pletely different knowledge assistance modules from the above-mentioned transfer units.
The knowledge assistance modules use attention mechanisms and gated structures to capture
useful knowledge from related tasks for enhancing the performance of each task.
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5 Conclusions and future work

In this work, we advance the graph side information recommendation. We presented a
novel framework called GSIRec, which can leverage multi-task learning and graph neu-
ral networks to enhance the recommendation task. Extensive experimental results on four
real-world datasets demonstrate GSIRec not only outperforms the state-of-the-art recom-
mendation solutions but also has advantages in handling data sparsity and cold start issues.
For future work, we plan to (i) investigate GSIRec’s theoretical performance thoroughly;
and (ii) do the running time analysis of GSIRec.
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