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Abstract
Graph neural networks (GNNs) have emerged as effective approaches for graph analysis,
especially in the scenario of semi-supervised learning. Despite its success, GNN often suf-
fers from over-smoothing and over-fitting problems, which affects its performance on node
classification tasks. We analyze that an alternative method, the label propagation algorithm
(LPA), avoids the aforementioned problems thus it is a promising choice for graph semi-
supervised learning. Nevertheless, the intrinsic limitations of LPA on feature exploitation
and relation modeling make propagating labels become less effective. To overcome these
limitations, we introduce a novel framework for graph semi-supervised learning termed
as Cyclic Label Propagation (CycProp for abbreviation), which integrates GNNs into the
process of label propagation in a cyclic and mutually reinforcing manner to exploit the
advantages of both GNNs and LPA. In particular, our proposed CycProp updates the node
embeddings learned by GNN module with the augmented information by label propagation,
while fine-tunes the weighted graph of label propagation with the help of node embedding
in turn. After the model converges, reliably predicted labels and informative node embed-
dings are obtained with the LPA and GNN modules respectively. Extensive experiments on
various real-world datasets are conducted, and the experimental results empirically demon-
strate that the proposed CycProp model can achieve relatively significant gains over the
state-of-the-art methods.
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1 Introduction

Graph-structured data is pervasive in various applications, ranging from citation networks,
social networks to E-commerce networks. Mining knowledge in graphs such as predicting
node properties is desirable and meaningful to both academic and industrial communities.
For example, given an academic citation network, we may be interested in predicting the
research area of an author. Making such predictions has become the focus of graph analysis
which broadly includes graph classification [13], link prediction [21] and community detec-
tion [16], etc. Among various graph analysis problems, semi-supervised node classification
for graphs is an essential and widespread task, and it has attracted great interests [12, 35,
46].

Graph representation learning is an effective technique for tackling this task. Early
shallow approaches [7, 29] typically follow a two-step framework, which aims to learn a
continuous, compact, and low-dimensional embedding (vector) for each node in the graph.
These embeddings are further fed into a classifier to infer the labels of nodes. Since the
node representations are not optimized for the specific classifier, this two-step process will
inevitably lead to sub-optimal performance. More recently, several semi-supervised graph
neural networks (GNNs) [12, 35, 41] were proposed. They utilize deep learning techniques
[15] such as convolution or attention mechanism to encode both the local graph structure
and node attributes to generate embeddings, which are then followed by a prediction layer
(e.g., softmax or logistic sigmoid function) for the classification purpose. Due to the power-
ful feature extraction ability of deep learning and the integrated end-to-end framework, they
have achieved state-of-the-art performance in the node classification task.

While these GNNs approaches have become the de facto solution for graph semi-
supervised learning, they still suffer from two shortcomings, the over-smoothing and
over-fitting problems, due to the inherent training and test procedure for semi-supervised
learning [30]. First, GNN essentially employs a message passing neural network with neigh-
borhood representation aggregation to train a model and map the feature space into the
label space [6, 47]. When the network architecture goes deep, due to the excessive aggre-
gation, all nodes’ representations tend to converge to a stationary point, resulting in the
indistinguishable representations of nodes in different classes [4]. Such an issue is denoted
as over-smoothing problem which seriously affects the performance of GNNs [18]. Second,
GNN aims to minimize a loss function over the labeled nodes, which are typically very
limited in semi-supervised learning. Therefore, GNNs easily overfit the training samples,
leading to a degenerated generalization performance.

In semi-supervised learning, one alternative and promising learning paradigm is the label
propagation algorithm (LPA) [48, 49]. Different from representation learning or GNNs, LPA
builds up a graph over the labeled and unlabeled data, where edges in the graph connect
semantically similar nodes with its weights reflecting how strong the similarities are. Then,
LPA infers the labels of unlabeled nodes by propagating known labels through neighbors of
each node. The edge weights in LPA are often set heuristically based on the observed node
attributes (e.g., using Gaussian kernel function).

LPA has nice properties that can avoid both the over-smoothing and over-fitting problems
faced by GNNs. Concretely, GNNs learn the feature mapping with multiple layers of aggre-
gation, which would cause over-smoothing (node embeddings become indistinguishable)
with the networks go deep. In contrast, LPA directly spreads the labels on a graph without
involving the feature learning process. As a result, LPA would not lead to indistinguishable
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node representations. Furthermore, LPA classifies nodes by propagating the labels instead
of training a classifier to fit the limited training data. Therefore, the learned model would
not over-fit the patterns in training set.

However, propagating labels effectively is not trivial, since the classic LPA still has the
following intrinsic limitations.

– Limitation 1: Limited capacity to exploit features. Classic LPA derives edge weights
from original high dimensional node attribute space where a large portion of sparse,
redundant or noisy information is contained. These approaches cannot exploit the
expressiveness of features effectively. Furthermore, computing the similarity of the raw
attribute directly may lead to noisy weight values and the loss of key information.

– Limitation 2: Hardly capture the strength of relation corresponding to the labels. The
edge weight is computed as a separate step from the label propagation in LPA. As a
result, the label information is ignored when capturing the strength of the relation. As
the edge weights are only calculated once based on the similarity of raw attributes, they
cannot be updated reversely by the label propagation process. The fixed edge weights
limit the classification performance for semi-supervised classification.

To overcome the aforementioned limitations, in this paper, we propose a novel frame-
work for graph semi-supervised learning named Cyclic Label Propagation (CycProp for
abbreviation). Our theme is to integrate GNNs into the process of label propagation in a
cyclic and mutually reinforcing manner to exploit the advantages of both GNNs and LPA
algorithms. More specifically, to overcome Limitation 1, we derive a novel label-adaptive
graph neural network module to learn low-dimensional embeddings of nodes in a graph. To
enhance the representation power of the embedding, we exploit the highly reliable labels
obtained from label propagation in the negative sampling process, so that the label infor-
mation can be nicely injected into the node embedding component. For Limitation 2, we
develop an embedding-adaptive label propagation module, which utilizes the node embed-
dings to refine the edge weights for label propagation. With the label information injected
in the node embeddings, the weights essentially capture the strength of the relations cor-
responding to the labels. A self-paced learning manner is devised to adaptively control the
cyclic learning process, where the embedding learning and edge refining are optimized alter-
natively to mutually benefit each other in our framework. Once the model has converged,
the unknown node labels can be obtained on-the-fly without training an extra classifier or
performing a sophisticated inference procedure. A concept map of our framework is given
in Figure 1.

To summarize, the main contributions are as follows:

– We propose CycProp, a unified graph semi-supervised learning framework that exploits
the advantages of both GNN and LPA. Our novel presented framework updating
node representation and weighted graph in a cyclic and mutually reinforcing way, our
proposed framework can obtain label estimations and node embeddings simultaneously.

– We design a novel label-adaptive graph neural network module for graph representation
learning, which leverages not only structure context but also self-adaptive augmented
label context to learn the node embeddings.

– We conduct extensive experiments on various datasets to demonstrate the effectiveness
of CycProp and its superiority compared to a range of state-of-the-art methods.
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Figure 1 A concept map of our proposed framework. The node representations and the predicted labels
update each other in a cyclic manner, which benefits each of the components to have a better performance

2 Related work

2.1 Graph representation learning

Graph embedding, an important branch of graph representation learning aims to embed
nodes into latent vector spaces, where the inherent properties of the graph are preserved.
Motivated by the success of Word2vec [25, 26], Skip-gram model is employed and adapted
from word embeddings to node embeddings based on the graph topology. For instance,
DeepWalk [29] and node2vec [7] use different sampling strategies to generate random walk
sequences, which are then fed into Skip-gram model to learn low-dimensional embedding
vectors. LINE [33] optimizes both the first-order and second-order proximity preserving
objectives. While the above methods only utilize the graph structure information, some
recent approaches attempts to consider preserving both the structure and attribute proximi-
ties in a unified space. For example, SNE [20] leverages a deep neural network architecture
to capture the complex interrelations between graph structure and node attributes infor-
mation. GraphSAGE [8] generates embeddings by sampling and aggregating attributes
from nodes’ local neighborhoods in an inductive setting. EP [5] tries to learn vector
representations by utilizing a propagation design.

Another category of graph embedding algorithms follows a semi-supervised manner, in
which available information includes not only node attributes but also node labels. Among
them, TriDNR [27] models tri-party information sources including node structure, node
attributes and node labels to jointly learn node representations. Planetoid [46] simultane-
ously optimizes the prediction of known labels and its corresponding graph contexts to
learn node’s representations. SEANO [19] learns low-dimensional node representation that
considers the topological proximity, attribute affinity and label similarity. MDAL [42] intro-
duces a multi-task dual attention LSTM model to capture multiple information for graph
semi-supervised learning.

Recently, graph neural networks (GNNs) have raised extensive attention and attained
state-of-the-art performance in several graph analysis applications, especially in semi-
supervised node classification task. By applying deep learning techniques [15] to non-
Euclidean domains, GNNs can learn node representation from high-dimensional feature
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space and predicted labels simultaneously in an end-to-end way [43]. GCN [12], a represen-
tative model of GNNs, performs spectral convolutions on graph to encode both local graph
structure and attributes of nodes into hidden representations. GAT [35] applies attention
mechanism to attend over node’s neighborhood contents for generating node embeddings.
SGC [41] simplifies GCN by removing the non-linearity and also achieves competitive per-
formance. GIN [45] borrows the power of graph isomorphism test to GNNs’s design, and
DGI [36] leverages a contrastive manner to train GNNs in an unsupervise way. Beyond
the graph domain, GNNs are also applied to solving various machine learning problems,
including time-series prediction [44], object detection [31] and few-shot learning [22,
23]. Unfortunately, GNNs for node classification usually suffer from two main obstacles,
over-fitting and over-smoothing, which seriously hurt the performance of models [30].

In this paper, we leverage GNNs as an important component in our learning frame-
work, but successfully avoid the obstacles of GNNs with the help of label propagation.
Compared to the aforementioned methods, CycProp would not suffer from over-fitting and
over-smoothing when making prediction for classification.

2.2 Label propagation algorithm

Label propagation algorithm (LPA) has been proposed as an efficient method to learn miss-
ing labels for graph data in a semi-supervised setting. GFHF [49] learns the predicted labels
by optimizing the harmonic functions based on a Gaussian random field model. LLGC
[48] considers local and global prior consistency through combining a smoothness con-
straint and a fitting constraint. LNP [38] studies the graph construction by approximating
the whole graph with linear neighborhood structures, where labels are propagated to the
remaining unlabeled nodes using the constructed graph. DLP [37] deals with multi-label
propagation problem via considering the label correlation information. Moreover, inspired
by LPA’s formulation, other common approaches try to train a supervised learner to classify
data features while regularizing it using graph information. For example, manifold regular-
ization [1] trains a support vector machine with a graph Laplacian regularizer. LSHM [11]
addresses the node classification task in heterogeneous social networks via the learned node
representations.

Several recent works also exploit LPA to neural networks. For instance, NGM [3] utilizes
the power of neural networks and constrains neighborhood nodes to learn similar represen-
tations for classification. LP-DSSL [10] utilizes label propagation to generate pseudo-labels
for the unlabeled data, which expands the training sample set for neural network training.
GCN-LPA [39] builds a GCN with learnable edge weights and views LPA as regular-
ization to assist the GCN in learning proper edge weights. Our proposed CycProp also
combines label propagation and neural network, but has several essential differences with
the above methods: (1) All of the aforementioned methods predict the unknown label by
neural networks, whereas CycProp makes classification prediction by label propagation,
which effectively avoids over-smoothing and over-fitting problems; (2) In the above meth-
ods, the main component of objective functions is the cross-entropy loss function and LPA
serves as a regularization term or pseudo-label generator. In contrast, we set the label prop-
agation loss as the main objective and also design a structure-label-aware graph embedding
loss function.

Compared to the traditional LPA methods, CycProp introduces GNNs to revise the
edge weights iteratively. By such an adaptive weighting propagation, it has a significant
advantage on classification performance.
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3 Cyclic label propagation for graph semi-supervised learning

In this section, we first define the notations and present our problem formulation. Then,
we introduce the two major components in our unified framework: (1) label-adaptive graph
neural network module, and (2) embedding-adaptive label propagation module. After that,
a joint training framework that integrates the two components is presented.

3.1 Notations and problem formulation

Given an attributed graph G = (V, E,X), where V = {v1, · · · , vl, vl+1, · · · , vn} and E
denote the set of nodes and edges, respectively; X ∈ R

n×m is a matrix that represents all
node attributes, and xi ∈ R

m denotes the attributes affiliated with node vi . Let label set
{1, 2, · · · ,K} represent different classes of labels and Y ∈ R

l×K be a label matrix, in which
yi ∈ R

K denotes the label distribution of node vi , i.e., if vi belongs to class j , then yij = 1,
otherwise yij = 0. The first l nodes vi (1 ≤ i ≤ l) are labeled, and the remaining nodes
vu (l+1 ≤ u ≤ n) are unlabeled. With the above notations, we formally define our problem
as follows.

Definition 1 Given an attributed graph G, with partially labeled nodes {v1, . . . , vl} and the
desired node embedding dimension d, our goal is to learn the label assignments F ∈ R

n×K

and node embeddings E ∈ R
n×d simultaneously. Each node has a probability distribution

over the set of labels.

3.2 Label-adaptive graph neural networkmodule

To learn meaningful node embeddings, it’s desirable to incorporate various available graph
information. Different from [32] that models the attribute information as augmented nodes
or [9] that uses node attributes to calculate a similarity matrix, we designed a label-adaptive
graph neural network module to capture node’s deep semantics.

Specifically, we generate node embeddings as follows,

ei = gθ (xi ), (1)

where gθ (·) can be any kind of GNNs [12, 35, 41, 43], and θ is the parameter set. These
methods typically work by propagating representations throughout the graph. Here, we
choose GraphSAGE [8] as our graph neural network module in the experiments, due to its
effectiveness and efficiency. Then, we optimize it in a label-adaptive manner by predicting
its associated graph context. Formally, let (i, c) represent the node-context pair, i.e., node
vc is the graph context of node vi , and our goal is to minimize the following log softmax
probability,

− log σ(eT
c ei ) −

sneg∑

s=1

Evj ∼Pn(v)[log σ(−eT
j ei )], (2)

where Pn(v) ∝ d
3/4
v as suggested in [26], and dv is the degree of node v. Then, the

goal is indeed transformed to classify the node-context pairs (i, c) into positive context
(γ = +1) or negative context (γ = −1) sampled from a noisy distribution. Therefore, the
graph embedding loss with negative sampling can be rewritten as,

LGE = −
n∑

i=1

E(i,c,γ ) log σ(γ eT
c ei ), (3)
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where σ(·) is the sigmoid function, i.e., σ(x) = 1/(1 + e−x).

We now present how to generate (i, c, γ ) graph context pairs with a structure-label-aware
sampling process. We develop two graph context sampling mechanisms, which is depicted
in Algorithm 1.

Structure aware graph context sampling The first type is based on the graph structure,
which encodes the structure information and regards the neighborhood nodes as positive
node-context pairs.

Label aware graph context sampling The second type is based on the label set, which
injects label information into the context and treats the nodes having the same labels as
positive node-context pairs. Moreover, an indicator variable of ϕ is introduced to control
the label related graph context. We first initialize the 0/1 indicator vector ϕ ∈ R

n with the
known label set, i.e., ϕi = 1 means node vi is a label context candidate. Then we augment
it through the label propagation module where the learned highly reliable labeled nodes
will be gradually incorporated into ϕ to expand the label context candidates. The generated
context pairs will be dynamically refreshed during the training process, due to the updating
of parameter ϕ and node labels. The details about how to model the indicator vector ϕ will
be described in the following subsection.

3.3 Embedding-adaptive label propagationmodule

In order to overcome the limitations of existing label propagation approaches [37, 38, 48],
we propose to infer the edge weights in an informative embedding space via a mutually
reinforcing manner. In detail, for each node vi , its corresponding embedding vector ei ∈ R

d

is obtained from the label-adaptive graph neural network module where d is the embedding
dimension (d � |m|). Basically, edge weights can be calculated based on the following
function similarly to [38, 48, 49],

sij = exp

(
−‖ei − ej‖2

2δ2

)
, (4)
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where δ is the length scale parameter. With this measure, the estimated edge weights reflect
the degree of similarities between each connected node pair, which will be dynamically
adjusted in the training procedure as the updating of node embeddings.

The key to semi-supervised learning on graphs is to be in line with the prior consis-
tency, such that the label is smooth over the graph. Following this principle, we devise the
regularized objective function for embedding-adaptive label propagation as follows,

LLP =
n∑

i=1

∑

j∈N (i)

sij‖fi − fj‖2
2 + μ

l∑

i=1

‖fi − yi‖2
2

+
n∑

i=1

ϕiH(fi ) + λ

n∑

i=1

−ϕi (5)

s.t. fik ≥ 0;
K∑

k=1

fik = 1; ϕi ∈ {0, 1}, i = {1, · · · , n},

where sij is the edge weight between node vi and vj calculated according to (4). yi indicates
the ground truth label and N (i) represents the neighborhood of node vi . μ is a trade-off
hyper parameter between the smoothness and fitness terms, fi is the learned label distri-
bution of node vi . Through this manner, the label propagation procedure benefits from the
graph neural network module.

In addition, we introduce a self-paced regularizer [14] to prioritize label learning task as
well as selecting some highly reliable node labels in each training iteration. The regularizer
is composed of a Shannon entropy function H(·) and an indicator variable ϕ. H(fi ) prevents
the uniform label distribution, and is formally defined as follows,

H(fi ) = −
K∑

k=1

fik × log(fik), (6)

where fik denotes the probability of node vi belonging to class k. The smaller the Shannon
entropy is, the larger the amount of information it contains. Specifically, a small Shannon
entropy implies that fi has a significantly higher probability value in one specific class. For
instance, in an extreme case, if the probability of node vi in class k is 1, the Shannon entropy
of fi will be 0. The self-paced parameter ϕ serves as an indicator vector in graph neural
network module, which determines the potential label context based on its current label
information. The binary value of ϕi indicates whether node vi’s learned label is reliable or
not and λ acts as a threshold to distinguish the informative labels from the uninformative
labels. If the Shannon entropy of fi is smaller than the threshold, we set ϕi as 1 to indicate
that node vi can be utilized as a label context. As the training process goes on, λ is gradually
increased such that more learned highly reliable labels can be included in graph embedding
procedure to adaptively update node embeddings. In this way, the graph embedding pro-
cedure benefits from the label propagation module. Thus, the overall framework naturally
forms a closed-loop via a mutually reinforcing manner.

3.4 CycProp: a joint learning framework

As is demonstrated before, each of the two modules can learn beneficial information from
the other. Hence, we design a cyclic learning framework where the two modules are trained
in an iterative and alternate way. Figure 2 provides an overview of our proposed CycProp
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Figure 2 The overall framework of the CycProp model. The nodes 1-3 have known labels while the labels of
nodes 4-6 need to be predicted. In the weighted graph, the thicker edges denote larger weights. In the context
pair samples pool, the context pairs in black denote the positive samples (γ = 1), and which in red denote
the negative samples (γ = −1). The arrows in blue indicate the data flow of cyclic learning

model. The two main components of our proposed framework, label-adaptive graph neu-
ral network module and embedding-adaptive label propagation module, output the node
embeddings and label assignments (classification results) respectively. Firstly, in the label-
adaptive graph neural network, the attribute matrix X and graph structure information are
fed into the graph neural network gθ (·), which generates the node embeddings E. Then,
in the embedding-adaptive label propagation module, the weighted graph is computed by
a similarity function with the node embeddings E. After that, the predicted label assign-
ments F and the indicator variable ϕ are obtained by label propagation with the weighted
graph and known labels Y. Next, the predicted label and indicator are exploited to gener-
ate the label context, which is used to train the graph neural network in turn together with
the structural context. In this way, the node embeddings E is updated to generate a more
reasonable weight graph, which further optimizes the prediction F of label propagation. As
the blue arrows are shown, by joint learning E and F in such a cyclic and mutually benefi-
cial manner, finally, the model can output informative node embeddings as well as accurate
label predictions. It is worth noticing that the final classification results are acquired by the
label propagation module, which efficiently prevents the over-smoothing and over-fitting
problems caused by GNNs.

The objective function of the proposed model is formulated as the weighted combination
of LLP and LGE defined in Equations (3) and (5),

L = LLP + αLGE . (7)

Considering the related parameters of both terms in L, the set of learnable parameters in
CycProp model is denoted as {F,ϕ, θ}. To minimize L, we propose to employ stochastic
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gradient descent [2] and proximal algorithm [28] to optimize our model via an alterna-
tive updating manner. We first give the partial derivative details of some key parameters as
follows.

Updating F We utilize proximal gradient descent [17, 28] to solve this constrained opti-
mization problem. In proximal algorithms, the interface to meet the constraint terms is via
the proximal operator. Satisfying the non-negative and sum-to-1 constraints in our objec-
tive function, i.e., D = {f|f ≥ 0, fT1 = 1}, is known as computing the projection onto the
probability simplex. Here, we employ an efficient algorithm proposed in [40] to calculate
the proximal operator. The procedure of finding f ∈ D given z is shown in Algorithm 2.

Then we have the following equation as our proximal operator,

f = proxD(z) = (z + η1)+, (8)

where (x)+ = max{x, 0} and η is computed according to the procedure shown in Algo-
rithm 2. Note that the proximal operator always keeps our updated label distribution satisfied
with the constraint D. The partial derivative of fi can be formulated as,

∂L
fi

=
∑

j∈N (i)

2sij (fi − fj ) + 2μ(fi − yi ) · I(i) − ϕi(log(fi ) + 1), (9)

where I(i) is an indicator function to indicate whether i is a labeled node or not and 1 ∈ R
K

represents the all one vector. Based on the proximal gradient method, parameter fi can be
updated as following,

fi = proxD(fi − lr · ∂L
fi

), (10)

where lr denotes the learning rate in gradient descent.

Updating ϕ We first relax ϕ to take any real value in the interval [0, 1]. Then the partial
derivative of ϕi can be derived as,

∂L
∂ϕi

= H(fi ) − λ. (11)
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Since the optimal value of ϕ is constrained to either 1 or 0 for all samples, the closed-form
solution to update ϕi is,

ϕi =
{

1, H(fi ) ≤ λ

0, Otherwise
. (12)

Note that, calculating the partial derivative of parameter set θ in graph neural network
module is quite easy, thus we omit the detailed mathematical derivations here due to space
limitation. After we have obtained the derivatives of all the parameters, the whole optimiza-
tion procedure can be efficiently performed via back-propagation. To sum up, the procedure
of the joint training framework for CycProp model is depicted in Algorithm 3. First, the
parameters F,ϕ, θ are initialed. Then, in each iteration step, the graph neural network mod-
ule and the label propagation module are updated for T1 steps and T2 steps respectively. In
the end of an iteration step, the indicator ϕ is updated and the self-paced hyper parameter λ

is increased. When the algorithm converges, the predicted classification results F and node
embeddings E are returned simultaneously.

3.5 Complexity analysis

We analyze the time complexity of the proposed CycProp by considering the two main
components respectively. For the graph neural network module, the time complexity can
be compressed to O(|E |) = O(nD) with the sparse computation package where |E | is the
number of edges and D is the average degree in a graph. For the label propagation module,
the LPA has a linear complexity O(n), which is less than the graph neural network module
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when the graphs are dense (D is large). Therefore, compared to other GNN-based methods,
there is no significant increase in computation on CycProp.

4 Experiments

In this section, we report the results of our experiments to verify the effectiveness of our
proposed CycProp model. We first describe the datasets and experimental setups in detail,
and then we present the results with insights.

4.1 Datasets

We adopt three citation networks and two social networks for empirical studies. Statistics
of the five datasets are summarized in Table 1 with more descriptions as follows,

– Citation Networks. Cora, Citeseer and Pubmed1 [24] are three available public
datasets, which are composed of scientific publications. In these networks, nodes rep-
resent published papers and edges denote citation relationships. Node labels indicate
the categories to which each paper belongs and the text contents are treated as node
attributes. We remove papers which have no connection in the network and extract the
maximum connected component.

– Social Networks. Blogcatalog and Flickr2 [34] are two typical social networks where
nodes represent users and links denote the following relationships. In social networks,
users usually generate personalized contents such as posting blogs or sharing photos
with tag descriptions, thus these text contents are regarded as node attributes. We set
the groups that users joined as labels, and users with no follower or predefined category
have been removed.

4.2 Competitors

We compare the proposed CycProp model against several state-of-the-art baselines that can
be categorized into the following groups:

– Classical LPA. These methods perform label propagation based on the edge weights
calculated from the original attribute vectors. We consider three popular methods GFHF
[49], LLGC [48] and DLP [37] as our compared algorithms.

– Unsupervised Node Representation Learning. Methods of this group first employ
graph embedding techniques to learn the optimal node representations and then classify
each node independently in the latent representation space. These approaches can be
further classified into the following two classes:

1) Structure-only. In this group, we choose three baselines DeepWalk [29], LINE
[33] and node2vec [7], which utilize graph topological information only, and the node
attributes are not taken into consideration.

2) Attribute + Structure. This category of algorithms aims to encode both node
attributes proximity and graph structure proximity into the latent representation space.

1http://linqs.cs.umd.edu/projects/projects/lbc
2http://socialcomputing.asu.edu/pages/datasets
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Table 1 Statistics of the datasets. The information of the five benchmark datasets is given, including the
number of nodes #|V|, the number of edges #|E |, the number of attributes #|Attrs|, the number of labels
#|L|, and the average degree of graphs D

Datasets #|V| #|E | #|Attrs| #|L| Avg. Degree D

Cora 2,485 5,069 1,433 7 2.04

Citeseer 2,110 3,719 3,703 6 1.76

Pubmed 19,717 44,338 500 3 2.25

Blogcatalog 5,196 171,743 8,189 6 33.05

Flickr 7,575 239,738 12,047 9 31.65

We consider three recently proposed methods SNE [20], EP [5] and GraphSAGE [8] as
our baselines.

– Semi-supervised Node Representation Learning. Methods in this group further
leverage additional label information to model the underlying representations. These
approaches can be further classified into the following three classes:

1) Semi-supervised Node Embedding. This kind of methods train embeddings for
each nodes with the supervision of label data. Planetoid [46] is one of the typical
methods and is selected as the compared method.

2) GNN. By employing deep learning techniques [15], GNNs learn node represen-
tation as well as classifier in a joint and end-to-end way. We select two representative
GNN models GCN [12] and GAT [35] as our baselines.

3) Neural Network with Label Propagation. This group of methods combine
neural network with label propagation to enhance the classification performance. We
choose three recently proposed methods NGM [3], GCN-LPA [39] and LP-DSSL [10]
as our competitors.

For baseline algorithms, we use the source code released by the authors and the dimen-
sion of node embedding is set as 64 for all methods in all datasets. Specially, LP-DSSL [10]
is originally designed with convolutional neural network for image classification. To adapt it
to the network datasets, we replace the convolutional neural network with a two-layer GCN
[12], and use the topology graph in dataset for label propagation instead of KNN graph. We
randomly sample 30% labeled nodes as training set, and another 100 labeled nodes are sam-
pled as a validation set to tune the hyper parameters. The remaining unlabeled nodes are
used to test the performance of different algorithms. For our proposed CycProp model, the
graph neural network’s structure used in our experiments is a 2-hops neighborhood aggre-
gation with dimension of 128 and 64, respectively. The sampled neighborhood size and
negative context size are set as 10 for all datasets. We use rectified linear units as the activa-
tion function to introduce the non-linearity. To measure the classification result, we utilize
both Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1) as evaluation metrics. For unsupervised
node representation methods, the learned node representations are regarded as features to
train a one-vs-rest logistic regression classifier implemented by scikit-learn3. Evaluations
are conducted by repeating 10 times with resampled labels, then the average score and its
standard derivation are recorded as the final result.

3https://scikit-learn.org/stable/

715World Wide Web (2022) 25:703–721

https://scikit-learn.org/stable/


4.3 Results and analysis

The experimental results of different algorithms over different datasets are presented in
Table 2. To summarize, we have the following observations.

Generally, we can find that our proposed CycProp beats all baselines in all datasets for all
settings. As expected, structure-only node representation learning methods like DeepWalk,
LINE and node2vec perform worse than those approaches using node attributes (i.e, SNE,
EP and GraphSAGE). The reason is that they only attempt to capture the graph’s topology
information, which provides very limited information compared to node attributes for node
classification task. It’s worth noting that these three classical LPAs such as LLGC, GFHF
and DLP achieve better performance than structure-only node representation learning base-
lines. It further indicates the effectiveness of propagating labels on the graph, which gives
us a solid foundation for the proposed CycProp model.

In addition, the semi-supervised methods consistently outperform unsupervised base-
lines with different gains by incorporating partially known node labels into the model. One
major reason for the performance lift is because these semi-supervised methods are trained
through an end-to-end manner, thus the learned node representations are specifically opti-
mized for the classifier and show powerful discriminability. Finally, our proposed CycProp
model is an efficient and direct way to learn the unknown node labels on graph, which
aims to propagate labels rather than classifying each node independently. In classical two-
step LPAs, edge weights are predetermined and cannot change during the learning process,
thus its performance is bounded by the first step. To overcome these limitations, the pro-
posed CycProp integrates GNN and label propagation in a unified framework via a mutually
reinforcing manner that results in a great performance boost.

It is remarkable that compared with other methods that combine neural network and
label propagation, CycProp shows better performance and generalization. Such a perfor-
mance gap is caused by two reasons. First, while other methods that make predictions by
neural networks, CycProp classifies each node by label propagation, which would not suffer
from over-smoothing and over-fitting problems caused by GNN classifiers. Second, differ-
ent from other methods that view label propagation as an auxiliary tool for GNNs (such
as the regularization term in GCN-LPA or the pseudo-label generator in LP-DSSL), we
treat these two algorithms as equal and mutually reinforcing components and integrate them
into a joint learning framework. In this way, the advantages of both components are fully
leveraged.

Besides, we can observe that CycProp has larger performance gains on the two social
network datasets (BlogCatalog and Flickr). Specifically, compared to the baseline with the
highest performance, the average Mi-F1 gain on social networks is 1.95%, while which on
citation networks is 0.47%. The possible reason is that the social networks have a higher
average degree (see Table 1). On these denser networks, the edge weights play a more
important role in label propagation. Different from other methods, our proposed CycProp
can adaptively optimize the edge weights, which bring significant performance gains on the
dense networks.

4.4 Ablation study

In this subsection, we investigate how each of the two individual components contributes
to the performance of CycProp. Figure 3 shows the classification results of CycProp and
its two variants. Among them, CycProp-P denotes the case where only the label propaga-
tion module is used and CycProp-G indicates the case where only the graph neural network
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Figure 3 The performance of CycProp and its variants. CycProp-P and CycProp-G indicate the variants only
using label propagation module and graph neural network module respectively

module is used. The best results are achieved by the full CycProp, which validates the
effectiveness of combining these two modules in a mutually reinforcing manner. More-
over, we can observe that CycProp-P always outperforms CycProp-G, which indicates the
propagation module seems to play a more important role in the joint framework. A possi-
ble reason is that the label propagation can efficiently prevent the shortages of GNNs, e.g.,
over-fitting and over-smoothing, especially when the training labels are scarce. This result
also verifies the advantage of propagating labels on graph rather than classifying each node
independently.

4.5 Parameter sensitivity

In this subsection, we study the impact of several parameters by varying them in different
scales. Due to the limited space, we only show sensitivities of the trade-off parameter α

of (7) and the node embedding dimension d in Figure 4. As we can see, α = 0.1 is mostly the
best across different data sets. When α is too small or too large, the performance becomes
worse. For node embedding dimension d, we observe that, by increasing d, the performance
first increases and then keeps stable. Besides, λ is initialized with 0.1 and μ = 10, δ = 0.1
usually get the best results and we don’t observe too much difference when varying them.

Figure 4 The sensitivity of the trade-off parameter α and the node embedding dimension d
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5 Conclusions

In this paper, we investigate the semi-supervised learning task on graphs and introduce
a unified framework CycProp, which integrates label propagation and GNN in a cyclic
and dynamically reinforcing manner. Specifically, in each iteration, we employ the graph
neural network module to learn the informative node embeddings that can refine the edge
weights for facilitating the label propagation; then the learned highly reliable labels obtained
from the label propagation module are incorporated into the model to fine-tune the node
embedding procedure, thus forming a closed cyclic training loop. Extensive experiments on
five real-world datasets demonstrate the effectiveness of CycProp and its superiority to a
range of state-of-the-art methods. The most significant advantage of the proposed CycProp
framework is that it avoids the shortages of both GNNs and LPA and leverages the goodness
of both of them. However, CycProp relies on an alternate updating to learn both of the
components, which is practical but might result in a suboptimal solution. We will overcome
this disadvantage in our future study. The future works are mainly two-fold. First, we plan
to extend the idea of combining GNNs and LPA into heterogeneous graphs where nodes and
links are of different types. Second, we will investigate the deeper integration of GNNs and
LPA based on the advanced techniques in each type of method, which focuses on solving
the aforementioned suboptimal problem.
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35. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks.
In: ICLR (2018)
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