
https://doi.org/10.1007/s11280-021-00904-4

The art of characterization in large networks: Finding
the critical attributes

Renjie Sun1 ·Chen Chen1 ·Xiaoyang Wang1 ·Yanping Wu1 ·Mengqi Zhang1 ·
Xijuan Liu1

Received: 18 March 2021 / Revised: 19 May 2021 / Accepted: 1 June 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Recently, with the development of online social networks, users in social networks are usu-
ally associated with attributes such as user preferences, which is of great importance for
analyzing the properties of social networks. To identify critical attributes, we propose and
investigate a new problem named attribute k-core maximization. Given an attribute graph
G and a budget b, we aim to identify a set of b attributes, such that the corresponding
attribute k-core is maximized. Due to the NP-hardness of the problem, we resort to the
greedy strategy in this paper. In order to handle large graphs, a layer-based structure and
novel searching paradigms are developed to accelerate the computation. Finally, experi-
ments over 6 real-world networks are conducted to evaluate the performance of proposed
model and techniques.

Keywords Attribute graph · Attribute k-core · Maximization · NP-hard

This article belongs to the Topical Collection: Special Issue on Large Scale Graph Data Analytics
Guest Editors: Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang

� Chen Chen
chenc@zjgsu.edu.cn

Renjie Sun
renjiesun.zjgsu@gmail.com

Xiaoyang Wang
xiaoyangw@zjgsu.edu.cn

Yanping Wu
yanpingw.zjgsu@gmail.com

Mengqi Zhang
mengqiz.zjgsu@gmail.com

Xijuan Liu
liuxijuan@zjgsu.edu.cn

1 Zhejiang Gongshang University, Hangzhou, China

Published online: 11 June 2021

World Wide Web (2022) 25:655–677

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00904-4&domain=pdf
http://orcid.org/0000-0003-3908-6545
mailto: chenc@zjgsu.edu.cn
mailto: renjiesun.zjgsu@gmail.com
mailto: xiaoyangw@zjgsu.edu.cn
mailto: yanpingw.zjgsu@gmail.com
mailto: mengqiz.zjgsu@gmail.com
mailto: liuxijuan@zjgsu.edu.cn

1 Introduction

In real-life applications, graphs are widely adopted to model the relationships among dif-
ferent entities [15, 16]. Mining cohesive subgraphs is one of the most fundamental graph
problems in graph analysis [13, 18]. In the literature, different cohesive subgraph models
are developed, such as k-core [1], k-truss [22], clique [14], etc. In this paper, we utilize the
k-core model to measure the engagement of users in a network. Generally, the k-core of a
graph is the maximal subgraph where each vertex inside has at least k neighbors. In real
scenarios such as social networks, users in the networks are associated with attributes (e.g.,
personal preferences) [4, 9]. In attribute graphs, a user is more likely to build contacts with
neighbors who share common interests with him. For example, in social networks, friends
with common hobby of sport will have greater potential to join a sport community together.

Motivated by this, in this paper, we develop a new model named attribute k-core to better
characterize a community. Given an attribute graph and a subset of attribute λ, a maximal
subgraph is the attribute k-core depending on λ if each vertex has at least k neighbors and
each neighbor shares at least one common attribute in λ with the vertex. As shown in the
case study (Figure 8) in the experiment, different selected attributes will lead to different
communities. To compute the attribute k-core, we can iteratively remove the vertices that
violate the constraints. To find the critical attributes and characterize the main properties of
the network, we propose and investigate the attribute k-core maximization problem. Specif-
ically, given an attribute graph and a budget b, we aim to identify a set of b attributes that
can lead to the largest attribute k-core.

Example 1 Figure 1 shows a small network with 26 users and their corresponding
attributes. Suppose k = 3 and b = 1. {u5, u6, ..., u9, u14, ..., u17} is the corresponding
attribute 3-core induced by attribute a1. {u14, ..., u17, u18, ..., u21} is the corresponding
attribute 3-core induced by attribute a2. {u18, u19, u20, u21} is the corresponding attribute
3-core induced by attribute a3. Hence, attribute a1 is the optimal result for budget 1.

In the literature, a lot of research are conducted over attribute graphs for cohesive
subgraph analysis, e.g., [4, 7, 9, 11]. However, most of them focus on identifying the cor-

Figure 1 Motivating example (The table presents the attributes that each vertex associates with)

656 World Wide Web (2022) 25:655–677

responding community for a given attribute query (e.g., [9, 11]), or finding the attribute
association in the graph (e.g., [7]). In addition, they usually emphasize that each vertex
should contain the query attributes instead of enforcing the share of common attributes
between neighbors. The attribute k-core maximization problem can find many applications.
For video game design, the company can use the identified attributes as product features,
especially for the games that involve multi-gamers cooperations. Similarly, for party hosting
or conference organization, the found attributes can serve as the party or conference theme,
which have greater potential to attract more attendances and build a more harmonious
communication atmosphere.

Challenges and Contributions To the best of our knowledge, this is the first work to inves-
tigate the attribute k-core maximization problem. Although we can compute the attribute
k-core in linear time, the attribute k-core maximization problem is NP-hard. Due the large
search space, in this paper, we employ the greedy strategy by iteratively selecting the best
attribute. However, the number of attributes in real-life networks is usually large. In the
greedy framework, a major cost is to compute the marginal gain of adding a new attribute.
To scale for large networks, we propose a layer-based method and the corresponding prun-
ing strategies to reduce the exploration space. Furthermore, novel searching paradigms are
developed to compute the marginal gain. Finally, we conduct experiments on 6 real networks
to verify the advantages of our developed techniques.

Roadmap The rest of the paper is organized as follows. In Section 2, we formally define the
problem and prove its properties. The baseline method and optimized solution are presented
in Sections 3 and 4, respectively. We report the experiment results in Section 5. Lastly, we
review the related work in Section 6 and conclude the paper in Section 7.

2 Preliminaries

In this section, we first introduce some related concepts and formally define problem inves-
tigated. Then, we prove the hardness of the problem and show its properties. Mathematical
notations that are frequently used throughout this paper are summarized in Table 1.

2.1 Problem definition

We consider an undirected network G = (V ,E,Λ) as an attribute graph, where V (resp.
E) represents the set of vertices (resp. edges) in G and Λ = {a1, a2, ..., at } represents the
set of all attributes in G. Each vertex u ∈ V is associated with a set of attributes, denoted
by Λ(u) ⊆ Λ. n = |V | and m = |E| represent the number of vertices and edges in G,
respectively. Given an attribute subset λ ⊆ Λ, we use V (λ) to denote the set of vertices that
contain at least one attribute in λ, i.e., ∀v ∈ V (λ),Λ(v)∩λ �= ∅. Given an attribute graphG,
a subgraph S = (VS,ES,ΛS) is an induced subgraph of G, if VS ⊆ V , ES = E∩(VS ×VS)

and ΛS ⊆ Λ. Given a vertex u, we use N(u, S)uS to denote the set of its neighbors in S,
and d(u, S)uS = |N(u, S)uS| to denote its degree in S.

Definition 1 (k-core) Given a graph G and a positive integer k, an induced subgraph S ⊆ G

is the k-core ofG, denoted byCk(G), if it satisfies the following constraints. i) d(u, S)uS ≥
k for each vertex u ∈ VS ; ii) S is maximal, i.e., any supergraph S′ ⊃ S is not a k-core.

657World Wide Web (2022) 25:655–677

Table 1 Summary of notations
Notation Definition

G an unweighted undirected attribute graph

V,E vertex set and edge set in G

Λ all attributes in G

λ, λ0 the subset of Λ

u, v,w vertex in G

a, ai attribute in G

Λ(u) attribute set of vertex u

V ({a}), V (λ0) the set of vertices that contain a / at

least one attribute in λ0

S the subgraph of G

N(uS) the set of u’s neighbors in S

d(uS) the degree of u in S

Ck(G) the k-core of G

̂N(u, S, λ), ̂N(u, λ) the resonant neighbor set of u in S depending on λ

̂d(u, S, λ), ̂d(u, λ) the resonant degree of u in S

̂Ck(G, λ), ̂Ck(λ) the attribute k-core of G depending on λ

Lλ,La the layer structure of vertices in V (λ) / V ({a})
lλ(u), la(u) the layer number of u in Lλ / La

d+(u) the degree upper bound of u in ̂Ck(G, λ)

nd+(u) the new degree upper bound of u in ̂Ck(G, λ)

To compute the k-core, we can iteratively delete the node that violates the degree con-
straint, which time complexity isO(m) [1]. Based on the k-core model, we can measure the
cohesiveness of a community. However, in real applications, such as social networks,

users with common hobbies are usually closer to each other than others, because it is
easier for them to build contacts through the shared interests.

To better model the communities in attribute graphs, we introduce the concept of resonant
degree.

Then, we present the formal definition of attribute k-core based on resonant degree.

Definition 2 (resonant degree) Given a graph G and a subset of attributes λ ∈ Λ, let S

be the subgraph induced by V (λ). For u ∈ VS , we use ̂N(u, S, λ) to denote the resonant
neighbor set of u in S depending on λ, such that each resonant neighbor of u has at least
one common attribute with u, i.e., ∀v ∈ ̂N(u, S, Λ) satisfies that Λ(u) ∩ Λ(v) �= ∅. The
resonant degree of u in S equals |̂N(u, S, λ)|, denoted by ̂d(u, S, λ).

Definition 3 (attribute k-core) Given an attribute graph G and a subset of attributes λ ∈ Λ,
an induced subgraph S is the attribute k-core of G depending on λ, denoted by ̂Ck(G, λ), if
it satisfies i) each vertex u ∈ S has at least k resonant neighbors, i.e., ̂d(u, S, λ) ≥ k; and
ii) S is maximal, i.e., any superset of it is not an attribute k-core.

For the simplicity, when the context is clear, we use ̂N(u, λ)uλ, ̂d(u, λ)uλ and ̂Ck(λ)λ

instead of ̂N(u, S, λ), ̂d(u, S, λ) and ̂Ck(G, λ), respectively. In addition, we use degree

658 World Wide Web (2022) 25:655–677

and resonant degree interchangeably. We use |̂Ck(λ)λ| to denote the number of vertices in
̂Ck(λ)λ.

Obviously, different selected attribute sets can lead to different attribute k-cores. In this
paper, in order to analyze the properties of the given attribute graph, we aim to find an
attribute set λ∗ to maximize the size of the corresponding attribute k-core.

Problem Statement Given an attribute graph G = (V ,E,Λ), two positive integers k and
b, the attribute k-core maximization problem aims to identify a set λ∗ of b attributes from
Λ, such that the size of corresponding attribute k-core is maximized, i.e.,

λ∗ = arg max
λ⊆Λ∧|λ|=b

|̂Ck(λ)λ|

2.2 Problem properties

According to Theorems 1 and 2, the investigated problem is NP-hard, and the object
function is monotone but not submodular.

Theorem 1 Given an attribute graph G, the attribute k-core maximization problem is NP-
hard for any k.

Proof When k ≥ 1, we reduce the maximum coverage problem [6] to the attribute k-core
maximization problem. The maximum coverage problem that is given several sets and a
number b, each set may have several same elements, we must select at most b sets such
that the maximum number of elements are covered, i.e., the union of the selected sets has
the largest size. We consider an arbitrary instance of the maximum coverage problem with
s sets T1, T2, . . . , Ts and t elements {e1, e2, . . . , et } = ⋃

1≤i≤sTi . Then we construct a
corresponding instance of the attribute k-core maximization problem in an attribute graph
G as follows.

In this attribute graph G, the attribute set of this graph is A with s attributes
{a1, a2, . . . , as}, where each attribute ai corresponds to the set Ti for any 1 ≤ i ≤ s. The
set of vertices in G consists of two parts: M and P . M consist of k + 1 vertices in which
every pair of vertices in M are adjacent, and the associated attribute set of every vertex in
M is A. P consist of t parts P1, P2, . . . , Pt , where each part Pj (1 ≤ j ≤ t) corresponds to
the elements ej and Pj consists of k vertices pj,1, pj,2, . . . , pj,k . For each Pj (1 ≤ j ≤ t)
we add an edge for each pair of vertices such that each Pj is a k-clique. At this stage, the
degree of each vertex in P is k − 1. Next, we add an edge from each vertex in P to any ver-
tex in M to make sure the degree of each vertex in P is exactly k. Then, we add attributes
for each vertex in P . If Ti consist of ej , we add attribute ai to the associated attribute set of
each vertex in Pj . Figure 2 is an example of the attribute G with k = 3 constructed from 4
sets and 4 elements.

With the construction, we ensure that (i) none of vertex in M will be deleted, because
the number of resonant neighbors of each vertex in M will not less than k no matter what
attribute set we choose fromA; (ii) the degree of all vertices in P is exactly equals to k; (iii)
Pj will be deleted unless we select the corresponding attribute; and (iv) all Pj have the same
size for 1 ≤ j ≤ t . By doing this, the optimal solution of the attribute k-core maximization
problem corresponds to the optimal solution of the maximum coverage problem. Since the
maximum coverage problem is NP-hard, we prove that the attribute k-core maximization
problem is NP-hard for any k ≥ 1.

659World Wide Web (2022) 25:655–677

Figure 2 Example of NP-hard proof

Theorem 2 The object function f (λ) = |̂Ck(λ)λ| is monotonic but not submodular.

Proof Monotonic. Suppose there is an attribute set λ0 ⊂ λ′
0. The attribute k-core ̂Ck(λ)λ0

must be contained in ̂Ck(λ)λ′
0, because adding any attribute in λ′

0 \ λ0 can not decrease the
degree of u ∈ ̂Ck(λ)λ0. Thus, f (λ0) ≤ f (λ′

0) and f is monotonic.

Non-submodular The function f is submodular if f (λ1∪λ2)+f (λ1∩λ2) ≤ f (λ1)+f (λ2)

for any attribute subsets. We prove the theorem by construct a counter example. As shown
in Figure 1, for k = 3, suppose λ1 = {a1} and λ2 = {a2}. We have f (λ1) = 9, f (λ2) = 8,
f (λ1 ∪ λ2) = 13 and f (λ1 ∩ λ2) = 0. The inequation does not hold. Thus, function f is
non-submodular.

660 World Wide Web (2022) 25:655–677

3 Baseline algorithm

A naive solution for the problem is to enumerate all the possible attribute sets with size b and
return the optimal result. The time complexity isO(

(|Λ|
b

)

m), which is not affordable for real-
life networks. Considering the NP-hardness of the problem, we resort to the greedy heuristic
by iteratively choosing the best attribute. Besides, as the monotonic property discussed in
Theorem 2, the size of attribute k-core |̂Ck(λ)λ| is positively correlated with |λ|, which
means ̂Ck(λ)λ will be expanded with new attribute added into λ. Details are shown in the
following theorem.

Theorem 3 Suppose that λ ⊆ λ′ is the currently selected attribute set. If vertex u belongs
to ̂Ck(λ)λ, u must be in ̂Ck(λ)λ′.

Proof We have that λ ⊆ λ′. Therefore, ̂Ck(λ)λ must be contained in ̂Ck(λ)λ′ according to
Theorem 2.

The baseline greedy method is shown in Algorithm 1. We first compute the k-core of G

in Line 1 since any attribute k-core must be inside the k-core of G.
Then, we initialize an empty set λ to store all the selected attributes (Line 2). At each

iteration, we compute the corresponding attribute k-core and choose the best attribute whose
addition can enlarge the size of attribute k-core most (Lines 4-5). The algorithm termi-
nates when b attributes are selected. The time complexity isO(bm|Λ|), which significantly
reduces the computation cost compared with the native approach.

4 Optimized solution

As shown in the experiment results, the baseline greedy method can greatly accelerate the
search with competitive results. However, it is still cannot scale for large networks. In this
section, we first present a novel core-spread searching framework and then introduce some
pruning techniques to reduce the candidate space.

4.1 Core-spread framework

As observed in the greedy framework, a major cost is to compute the marginal gain of adding
an attribute to the currently selected attribute set. Therefore, we introduce the core-spread
framework to facilitate the computation. Before presenting the details of the framework,
we first apply the example in Figure 3 to clarify some notations and concepts. Suppose the
currently selected attribute set is λ0 and the new added attribute is a.

The left (resp. right) dotted ellipse is V (λ0) (resp. V ({a})), and the left (resp. right) solid
ellipse represents ̂Ck(λ)λ0 (resp. ̂Ck(λ){a}). Note that, we use UV = V (λ0)∪V ({a}) (resp.
IV = V (λ0)∩V ({a})) to represent the union (resp. intersection) of V (λ0) and V ({a}). Sim-
ilarly, we use UC = ̂Ck(λ)λ0 ∪ ̂Ck(λ){a} (resp. IC = ̂Ck(λ)λ0 ∩ ̂Ck(λ){a}) to represent the
union (resp. intersection) of ̂Ck(λ)λ0 and ̂Ck(λ){a}. When adding a new attribute a to λ0, it
is obvious that vertices in IV may have their resonate degree changed and even affect other
vertices, such that some vertices will join the updated attribute k-core, i.e., ̂Ck(λ)λ0 ∪ {a}.
Hence, if we can efficiently calculate the update degree for promising vertices instead of
computing the attribute k-core from scratch, we can save a lot of computation.

661World Wide Web (2022) 25:655–677

In our core-spread framework, each vertex in UV has three statuses. The vertex is
explored if it has been checked. If the vertex satisfies the resonate degree constraint, its
status is survived, otherwise it is marked as deleted. A deleted vertex will not involve in
the enlarged attribute k-core, and a currently survived vertex may be deleted later after fur-
ther verification. In this paper, we derive the upper bound d+(u) of u’s degree to quickly
filter unpromising ones. Specifically, d+(u) is the number of vertices in the union of u’s
survived neighbors, unexplored neighbors and all neighbors in UC. We will remove u if
d+(u) < k. In the framework, we traverse from all vertices of IV , which are called source
vertices. With the addition of a new attribute, some source vertices will preserve in the
updated attribute k-core, which further facilitates some originally unsatisfied vertices retain
in the final attribute k-core.

The core-spread framework Algorithm 2 illustrates the pseudocode of the framework.
At first, for each vertex u ∈ UV , the explored value e(u) and the survived value s(u) are

both initialized as 0 (Lines 1-2). For each vertex u in UC, we initialize its explored value
and survived value as 1, its upper bound degree as +∞ in Lines 3-4. This is because the
vertices in UC must exist in the corresponding attribute k-core. Then, we put all vertices in
IV , i.e., source vertices, into a queueH (Line 5), and we visit the vertices inH iteratively.
For each processed vertex u, we set e(u) as 1 and compute its upper bound degree in Lines
8-9. If d+(u) ≥ k, its survived value is set as 1 (Lines 10-11) and its unexplored neighbors
will be pushed into H (Lines 12-14). Otherwise, u is not survived due to the violation of
degree constraint, and we invoke SHRINK algorithm to update the upper bound degree of u’s
neighbors in Lines 15-17. Finally, we return all the survived vertices as the result in Line 18.

662 World Wide Web (2022) 25:655–677

Shrink procedure Algorithm 3 shows the details of SHRINK process for a checked vertex
u, which aims to update the upper bound degree of u’s neighbors considering the removal
of u. We firstly initialize a vertex set T as ∅ in Line 1. Then we update the upper bound
degree of its survived neighbors and check neighbors’ new upper bound degree in Lines 2-
5. Specifically, the upper bound degree of its neighbors is reduced by 1 (Line 3). We put the
vertices that violate the upper bound degree constraint into T (Lines 4-5). For each vertex in
T , we set its survived value as 0 and process it by recursively invoking the SHRINK process
(Lines 6-8).

Discussion Based on the core-spread framework, we can speedup the computation of
marginal gain when adding a new attribute. However, it still has some drawbacks: i) the
upper bound is not tight, and ii) the searching cost is large considering the large number
of attributes. Therefore, in the following sections, optimized upper bound and novel search
paradigm are developed to further accelerate the processing.

4.2 Layer-based optimization

In the core-spread framework, we leverage the degree upper bound to filter the unpromis-
ing vertices. Apparently, a tighter and efficient-computed upper bound could accelerate the
processing. In this subsection, we employ a layer structure to speedup the computation and
derivation of bound. Given a set λ of attributes, the layer structure Lλ organizes the vertices
in V (λ) following the core decomposition procedure. That is, we iteratively peel the vertices

663World Wide Web (2022) 25:655–677

Figure 3 Example of adding attribute a into λ0

that violate the attribute k-core constraint and store them in the same layer. The rest vertices
are processed in the same manner until all the vertices are maintained in the corresponding
layers.

Layer construction Different attribute sets lead to vertex sets. We construct the layer struc-
ture for each candidate attribute ai and the currently selected attribute set λ0. The details
of layer construction are shown in Algorithm 4. We initialize i = 1 to denote the number
of layer and store all the vertices associated with attribute set λ into N (Line 1). We pro-
cess the vertices in N iteratively. In each iteration, we store all the vertices that violate the
degree constraint currently in the same layer Li

λ (Line 3). Then, we remove Li
λ from N .

The iteration terminates when all the vertices in N satisfy the degree constraint. The sub-
graph induced by the remained vertices in N is the corresponding attribute k-core ̂Ck(λ)λ,
and we store the remained vertices in layer L+∞

λ (Line 6). Eventually, we return Lλ andN
in Line 7.

For a given vertex u, we use lλ(u) to denote its layer number inLλ. The layer construction
phase follows the procedure of k-core decomposition, which time complexity isO(m). Note
that, we need to construct the layer for each attribute, which will be done in the first iteration
of the greedy framework.

Following is a layer construction example.

Example 2 Reconsidering the graph in Figure 1, suppose the currently selected attribute
set λ0 = {a1} and the verified attribute a = a2. Then, we have ̂C3(λ0) =
{v5, · · · , v9, v14, · · · , v17} and ̂C3({a}) = {v14, · · · , v21}. The constructed layer struc-
tures for λ0 and a are shown in Figure 4. Note that, for the last layer (i.e., +∞ layer),
we only draw partial vertices. Initially, for the vertices in V (λ0), the resonant degree of
v1, v2, v12, v13, v18 are less than 3. Thus, we put them in L1

λ0
and remove them from V (λ0).

Then, the resonant degree of v3, v4, v10 are smaller than 3, and we have L2
λ0

= {v3, v4, v10}.
Moreover, we put v11 into the third layer, i.e., lλ0(v11) = 3. After deleting v11 from
V (λ0), the remained vertices correspond to that of ̂C3(λ0), and we put them into the
+∞ layer. Similarly, we build the layer structure La for attribute a, which is shown in
the right part of Figure 4. For all vertices in V ({a}), we can use same method to build
L1

a = {v9, · · · , v12, v25}, L2
a = {v13, v22, v24, v26} and L3

a = {v23}.

Given the currently selected attributes set λ0 and the newly added attribute a, it is easy to
find that many vertices can co-exist in both layer structures, i.e., Lλ0 and La . According to
the layer construction procedure, the vertices in lower layer can provide degree support for
the vertices in higher layer, even may make them join the corresponding attribute k-core.

664 World Wide Web (2022) 25:655–677

Therefore, during the traversal, we need to consider the impact of neighbors of the currently
processed vertex with higher layer value. Furthermore, the vertices in lower layer cannot
be ignored directly. Reconsider the example in Figure 4. For two vertices v10 and v13, in
V (λ0), we have lλ0(v10) > lλ0(v13), but la(v10) < la(v13) in La . Therefore, they can affect
each other. The details can be explained by the concept and theorem of active-path, which
are shown as follows.

Definition 4 (active-path) Given an attribute set λ0 and an attribute a, we say there is an
active-path from a source vertex u to another vertex v, if for each two consecutive vertices
x and y (they must be neighbor) along this path satisfying la(y) > la(x) or lλ0(y) > lλ0(x).

Theorem 4 For each vertex u ∈ UV\UC\IV , it may join the updated attribute k-core iff
there exists a vertex v in IV that can form an active-path with u (i.e., v � u).

Proof Suppose the currently selected attribute set is λ0 and the added attribute is a. The
vertices in UV\UC\IV can be divided into two partitions, V ({a})\V (λ0)\UC and V (λ0)\
V ({a}) \ UC. We first prove for each vertex u ∈ V ({a}) \ V (λ0) \ UC. All the neighbors
of u can be divided into two sets N1 and N2, where the layer value of vertex in N1 is lower
than la(u) and the layer value of vertex in N2 is no smaller than la(u). Clearly, the size of
N2 is less than k. If there is no vertex in IV can form an active-path with u, all the vertex in
N1 have been deleted when u is processed in the computation of ̂Ck(λ0 ∪ {a}). Therefore,
u will be deleted. When u ∈ V (λ0) \ V ({a}) \ UC, the proof is similar. Thus, this theorem
holds.

Recall that in the core-spread framework, we conduct the exploration from IV , and
traverse through their neighbor. To further filter the visiting space, we partition the space
into three parts. Reconsider the example in Figure 3. For ease of illustration, we useL (resp.
R) to represent the region of V (λ0) ∩ UC \ ̂Ck(λ){a} (resp. V ({a}) ∩ UC \ ̂Ck(λ)λ0). The
partition details and the corresponding theorems are shown as follows.

– Partition 1: The vertices in IC;
– Partition 2: The vertices inR ∪ L;
– Partition 3: The vertices in IV \ (IC ∪ R ∪ L).

Theorem 5 In the core-spread framework, we do not need to traverse from the vertices in
IC.

Proof According to Algorithm 4, since the vertices in IC are in ̂Ck(λ0) and ̂Ck({a}), for
each u ∈ IC, the value of lλ0(u) and la(u) are both +∞. Thus, based on Definition 4,
no vertex can form an active-path from the vertex in the IC. Therefore, we do not need to
traverse from the vertices in IC.

Theorem 6 In the core-spread framework, for each vertex u in L, we only need to traverse
from its neighbors v in V ({a}) with higher layer value i.e., la(v) > la(u); for each vertex
u inR, we only need to traverse from its neighbors v in V (λ0) with higher layer value i.e.,
lλ0(v) > lλ0(u).

665World Wide Web (2022) 25:655–677

Proof Same as the proof for Theorem 5. According to Algorithm 4, since the vertices in L
are in ̂Ck(λ0), the layer value of each vertex u ∈ L is set as +∞ i.e., lλ0(u) = +∞. Hence,
the layer value of u’s neighbor in V (λ0) will not be larger than that of u, which means that
there is no active-path from u to its neighbors. Besides, if u’s neighbors v in V ({a}) with
no larger layer value i.e., la(v) ≤ la(u), they also can not form active-paths from u to v.
Thus, we only need to traverse from u’s neighbors v in V ({a}) with higher layer value i.e.,
la(v) > la(u). The proof for the vertices inR is similar to that for L.

Based on the above analysis, we can leverage the theorem to mark the vertices that can
contribute to the degree of attribute k-core first. Generally, we mark the vertices along the
active-path and the unmarked vertices definitely cannot exist in the attribute k-core (i.e.,
Algorithm 5). Then, we compute the newly degree upper bound of vertices based on the
layer structure (i.e., Algorithm 6). The details of two algorithms are shown as follows.

Mark Algorithm In the MARK algorithm, we use m(u) to store u’s mark value and return
the number of marked vertices. It starts by initializingM with IV\UC and markSize with
the number of vertices in UC in Lines 1-2. We set m(u) = 0 for each vertex u ∈ UV (Lines
3-4) and setting m(u) = 1 for each vertex u ∈ UC (Lines 5-6). Then, we try to visit each
vertex in L and check its neighbors in V ({a}) (Lines 7-10). According to Theorem 6, we
do not need to start the traversal from neighbors in V (λ0). For each processed vertex u, if
its resonate neighbor is not marked, we compare layer values of u and its neighbors. Note
that, we use la(u) to denote the layer value of u based on attribute set {a}. Specifically, if u

666 World Wide Web (2022) 25:655–677

and its neighbor v satisfy la(v) > la(u), which means v’s layer value is higher than u’s, we
enlargeM by pushing v and set m(v) = 1 (Lines 9-10). The same procedure as Lines 7-10
is conducted by replacing L with R and {a} with λ0. We iteratively process vertices in M
in Lines 12-19.

For each processed vertex u, we visit its unmarked neighbors. If its neighbor is in V (λ0)

and has larger layer value than u, we push this neighbor intoM and set it marked. Similarly,
we push the neighbor of vertex u if its neighbor has larger layer value than u in V ({a}).
Finally, we return the result in Line 20.

Upper Degree Algorithm Based on the layer structure and the MARK algorithm, we
present the new upper bound degree nd+(u) for a vertex u. nd+(u) is the number of ver-
tices in the union of u’s survived neighbors, u’s neighbors in UC, u’s unexplored but marked
neighbors. Details about computing the new upper bound degree for the chosen vertex u

are shown in Algorithm 6. We initialize nd+(u) with 0 in Line 1 and process all neighbors
of vertex u in Lines 2-6. For a vertex u, it will be removed if nd+(u) < k, which can be
verified by the following theorem.

Theorem 7 A vertex u ∈ UV \UC can not join in the updated attribute k-core if nd+(u) <

k.

Proof The neighbors of u can be divided into two categories, marked neighbors and
unmarked neighbors. According to the properties of the Algorithm 5, unmarked neighbors

Figure 4 Example of the layer structure

667World Wide Web (2022) 25:655–677

will not be added to the updated attribute k-core. All marked neighbors may be counted into
the upper degree of u except for the marked but deleted ones, and the deleted neighbors
will definitely not be added to the updated attribute k-core. Thus, nd+(u) is a correct upper
bound of u’s degree. If nd+(u) < k, u can not be included into the attribute k-core.

668 World Wide Web (2022) 25:655–677

Table 2 Statistics of datasets
Dataset Vertices Edges Λavg davg

Brightkite 58,228 214,078 11.48 7.35

Gowalla 196,591 950,327 8.37 9.67

Yelp 252,898 956,021 7.35 7.56

Youtube 1,157,828 2,987,625 9.51 5.16

DBLP 977,288 3,432,273 11.8 7.02

Flickr 581,099 4,972,275 9.90 17.11

4.3 Compute attribute core

Based on the new upper bound degree derived, Algorithm 7 is presented to incrementally
compute the attribute k-core when adding a new attribute. We first initialize two heaps Ha

and Hλ0 in Line 1, which indicate the unexplored vertices of V ({a}) and V (λ0), respec-
tively. Then we set the explored value e(u) and the survived value s(u) of each vertex
u ∈ UV as 0 in Lines 2-3. The vertices in UC belong to the attribute k-core, so we set their
explored value and survived value both as 1 and their upper bound degree as +∞ (Lines
4-5). For each vertex u ∈ L, we process its neighbors in Lines 7-9. If its neighbor v is not
in Ha ∪ Hλ0 ∪ UC and has larger layer value than u, we push it into Ha (Lines 8-9). We
do the same process as Lines 6-9 by replacing L with R and {a} with λ0. Then, we push
all the vertices in IV \ (IC ∪ R ∪ L) (i.e., partition 3 discussed in Section 4.2) into Ha

for processing (Line 11). We iteratively process each vertex inHa ∪Hλ0 in Lines 12-31. If
Ha is not empty, for each vertex u ∈ Ha , we first set its explored value e(u) as 1 and com-
pute its upper bound degree by invoking UPPER DEGREE(u) (Lines 14-16). u is survived
if its upper degree is no less than k (Lines 17-18). The change of u’s state will effect its
neighbors, so we process its unexplored neighbors iteratively in Lines 19-26. If u ∈ IV and
la(v) > la(u), we push v into Ha (Lines 20-22). Similarly, if u ∈ UV and lλ0(v) > lλ0(u),
we push v into Hλ0 (Lines 23-24). If u ∈ V ({a}), we do the same process as Lines 21-22.

Figure 5 Effectiveness evaluation by varying k

669World Wide Web (2022) 25:655–677

u is deleted if nd+(u) is unsatisfied, and we invoke SHRINK(u). IfHλ0 is not empty, we do
the same process as Lines 14-29 by replacing a and λ0. We stop the iteration when there is
no vertex in Ha ∪ Hλ0 . Then we invoke the SHRINK algorithm to process all marked but
unexplored vertices because these vertices must be deleted. Finally, we return all survived
vertices as the updated attribute k-core in Line 33.

4.4 AKC algorithm

Suppose the currently selected attributes set is λ0 and the newly added attribute is a. We use
UB(λ0, a) to denote the upper bound size of updated attribute k-core, which can be obtained
by the MARK algorithm, i.e., markSize. Specifically, there is no active-path contains the
unmarked vertices, so the unmarked vertices cannot be added to the attribute k-core. Then,
we have Theorem 8, which can further filter some unpromising attribute in current iteration.
The correctness of the theorem is easy to verify. Thus, we omit the proof here.

Theorem 8 In each iteration, if UB(λ0, a) is smaller than the current best result, attribute
a can be filtered directly.

By integrating all the techniques proposed, we come up with the optimized algorithm
AKC, which details are shown in Algorithm 8. We obtain the k-core of G in Line 1 and ini-
tialize λ0 as ∅ to store the current best attribute set in Line 2. In Lines 3-4, we compute the
layer structure and the corresponding attribute k-core of each attribute by invoking Algo-
rithm 4. We put the best attribute with the largest attribute k-core into λ0 (Line 5). In each

670 World Wide Web (2022) 25:655–677

iteration, we initialize δ with −∞ to denote the size of updated attribute k-core. For each
unselected attribute a ∈ Λ \ λ0, we compute the number of marked vertices by Algorithm 5
as the upper bound size of attribute k-core (Lines 8-9). This is because the unmarked ver-
tices cannot be added into the attribute k-core. We continue the algorithm if UB(λ0, a) < λ

(Line 10). Then, we compute the updated attribute k-core by Algorithm 7 (Line 11).
If the size of the current attribute k-core is larger than δ, we update δ and the best attribute

a∗ (Lines 12-14). The new current best attribute set λ0 and layer information are updated in
Lines 15 and 16. The algorithm terminates until b attributes are selected.

5 Experiments

In this section, we evaluate the effectiveness and efficiency of our proposed techniques on
6 real-word networks.

5.1 Experiment setup

Algorithms To the best of our knowledge, there is no existing work for our problem.
For the effectiveness, we implement three algorithms (i.e., Random, TopV-Cover and
TopC-Cover) to select different attribute set compared with our greedy strategy. We also
implement and evaluate four algorithms (Baseline, BL-S, BL-SA and AKC) to verify the
efficiency of proposed techniques. A brief description of the employed algorithms is as
follows.

– Exact: the exact algorithm that enumerates all the combinations of attributes and returns
the optimal result.

– Random: algorithm that randomly chooses b attributes from all attributes.
– TopV-Cover: algorithm that selects the top-b frequent attributes.
– TopC-Cover: algorithm that selects the top-b attributes with the largest corresponding

attribute k-core size.
– Baseline: baseline greedy method, i.e., Algorithm 1.
– BL-S: greedy method which adopts the framework in Algorithm 2 to compute the

attribute k-core.
– BL-SA: integrates BL-S with Theorems 5 and 6.
– AKC: algorithm that integrates all the developed techniques, i.e., Algorithm 8.

Datasets We conduct the experiments with 3 real-world attribute graphs and 3 semi-
synthetic datasets. Table 2 presents the statistic details of the datasets, where Λavg is the
average attribute number for each vertex and davg is the average degree of vertices. DBLP1,
Flickr2 and Yelp3 are real-world attribute graphs. DBLP is an authors’ relationship network
with their paper information as keywords. For each author, we select the 30 most frequent
keywords from all the titles of his published papers as his attributes. Flickr is an online user
relationship network with their personal interests. For each user, we choose the 30 most fre-
quent tags of its associated photos as his attributes. The Yelp dataset is extracted from the
Yelp website, which consists of their businesses, reviews, and user data. The set of attributes

1http://dblp.uni-trier.de/xml
2https://www.flickr.com
3https://www.yelp.com/dataset

671World Wide Web (2022) 25:655–677

http://dblp.uni-trier.de/xml
https://www.flickr.com
https://www.yelp.com/dataset

for each user is the categories of the 30 most frequently visited restaurants by that user.
The other 3 datasets, i.e., Brightkite, Gowalla and Youtube, are real-world networks, which
are download from SNAP4. Since the vertices in these networks have no attributes, we first
generate 400 attributes and then randomly select 20-30 attributes from 400 attributes as the
attribute set for each vertex.

Parameters and workloads We conduct the experiments by varying the degree constraint
k and the budget b. For parameter b, we vary it from 2 to 10 with b = 6 as the default value.
Due to the different properties of the networks, for parameter k, we vary it from 5 to 25 with
k = 15 as the default value for three real-world datasets, and vary it from 6 to 10 with k = 8
as the default value for the three semi-synthetic datasets. We evaluate the effectiveness and
efficiency of the algorithms by reporting the identified the corresponding attribute k-core
size and response time, respectively. For each setting, we run the algorithm 10 times and
report the average value. All the programs are implemented in C++. The experiments are
performed on a machine with an Intel i5-9600KF 3.7GHz CPU and 64 GB memory.

5.2 Effectiveness evaluation

To evaluate the effectiveness of proposed methods, we report the size of returned attribute
k-core. Firstly, we conduct the experiments by comparing AKC with other 3 heuristic meth-
ods. Then, we report the results by comparing with the exact solution. Finally, we present
the case studies on DBLP dataset.

Effectiveness evaluationby varying k andb Comparing AKCwith Random, TopC-Cover
and TopV-Cover, Figures 5 and 6 report the returned attribute k-core size by varying k and
b, respectively. For Random, we report the average result by conducting 500 independent
tests. As we can see, AKC always outperforms the other algorithms, and the two cover
based methods are better than Random. The result size increases when b grows, because
more attributes are selected. The core size decreases when k becomes larger, since vertices
need larger degree to stay engaged. The result size of Random always very small due to the
cardinality and distribution of Λ. Thus, Random may select a lot of unpromising attributes
and lead to a smaller attribute k-core. Although the two cover based methods contain a lot
of promising attributes, they do not consider the correlation among attributes. Thus, they
still cannot perform as well as AKC.

Compare with the exact solution To further evaluate the effectiveness of proposed greedy
framework, we report the results by comparing AKC with Exact. The experiments are con-
ducted on two real-world datasets, i.e., DBLP and Flickr, and the results are shown in
Figure 7. Due to the high computation cost of the exact solution, we only report the results
for b = 2. The number on each bar denotes the corresponding running time. As shown,
AKC achieves almost the same results as Exact. In addition, AKC is much faster than Exact.
For example, on DBLP datasets with k = 25, AKC can finish in 0.81s, while it takes 63945s
for the exact solution. Thus, the greedy framework can greatly accelerate the search with
competitive results.

4https://snap.stanford.edu/data

672 World Wide Web (2022) 25:655–677

https://snap.stanford.edu/data

Figure 6 Effectiveness evaluation by varying b

Case Studies To demonstrate the properties of the investigated model, we conduct case
studies on DBLP datasets, which results are shown in Figures 8 and 9. In Figure 8, with
k = 20, the whole graph itself is a k-core. The red part is the attribute k-core depending
on attribute set {language, structure, parallel, system, matrix}, while the blue vertex part
is the attribute k-core formed by attribute set {graph, queue, network, complexity, search}.
The number of vertices in red is 25, and the number of blue vertices is 43. Obviously, when
different sets of attributes are selected, the corresponding attribute k-core is different and
reveals different natures of the network. Thus, it is necessary to investigate the properties of
attribute k-core. In Figure 9, for b = 5, the figure shows the corresponding attribute k-core
returned by AKC when k = 20 and 30, respectively. In Figure 9a, the selected attribute set
is {scheme, community, effective, technology, access}. In Figure 9b, the selected attribute
set is {hoc, community, effective, technology, access}. For the convenience of viewing, we

Figure 7 Compare with the exact solution

673World Wide Web (2022) 25:655–677

Figure 8 Case Studies on DBLP with k = 20

only draw the main component of each result. As observed, with the increase of k, the theme
of the community also varies.

5.3 Efficiency evaluation

To evaluate the efficiency of proposed techniques, in this section, we conduct the experi-
ments by comparing AKC with Baseline, BL-S and BL-SA.

Efficiency evaluation by varying k and b Figures 10 and 11 present the results by varying
k and b, respectively. As we can see, AKC is much faster than the other three algorithms
under all the settings. When increasing k, the response time is decreasing in most cases,
since the k-core size decreases correspondingly. With the increase of b, the response time
increases, because we need to perform more iterations to select sufficient attributes. As
shown, BL-S has better performance compared to the Baseline, because BL-S only needs
to conduct the computation for the vertices related to the currently accessed attribute set.

Figure 9 Case Studies on DBLP with b = 5

674 World Wide Web (2022) 25:655–677

Figure 10 Efficiency evaluation by varying k

Although BL-SA only chunks the vertices in IV compared to BL-S, it can skip many unnec-
essary explorations. Thus, BL-SA is faster than BL-S. As observed, with more technique
equipped, the algorithm runs faster, which verifies the advantages of developed techniques.

Scalability evaluation In Figure 12, we evaluate the scalability of proposed methods.
Specifically, we generate four subgraphs by randomly sampling 20-100% of the graph, and
report the response time. Obviously, as the graph size grows, the response time increases.
As observed, AKC is always faster than others, and preserve good scalability.

Figure 11 Efficiency evaluation by varying b

675World Wide Web (2022) 25:655–677

Figure 12 Scalability evaluation on all datasets

6 Related work

Cohesive subgraph detection is a fundamental problem in graph analysis. Different cohesive
subgraph models are proposed in the literature, such as k-core [1], k-truss [19], clique [14],
etc. As a popular model, k-core is widely adopted in many applications, e.g., community
detection [21], influential community search [8], information propagation [2], etc. The k-
core model is firstly introduced by Seidman in [12] for simple graphs. As the advance
of online social network, users are often equipped with multiple attributes. In [20], Zhou
et al. investigate graph clustering on attribute graph by considering both graph structural
and attribute information. In [10], authors investigate the graph modeling with correlated
attributes. [7] explores the attribute associations in the graphs. In [17], Yang et al. investigate
the community detection problem in attribute graph. In [3] and [5], given a set of query
attributes and query vertices, authors investigate the community search problem in attribute
graph by leveraging the k-core and k-truss, respectively. In [9], a new community search
model is further developed. As observed, in the literature, most of the researches focus on
community search for a set of query attributes instead of identifying the critical attributes
in the network. In addition, in their models, they usually emphasize each vertex containing
one or all the query attributes instead of requiring the share of common attributes between
neighbors. To the best of our knowledge, we are the first to investigate the attribute k-core
maximization problem.

7 Conclusion

Identifying critical attributes is of great importance for attribute graph analysis. In this paper,
we conduct the first research to investigate the attribute graph maximization problem. Given
an attribute graph, it aims to retrieve a set of b attributes, which can lead to the largest
attribute k-core. Due to the NP-hardness of the problem, a greedy framework is proposed.
Layer-based filtering methods and searching paradigms are developed to scale for large

676 World Wide Web (2022) 25:655–677

networks. Finally, experiments over real-life networks are conducted to demonstrate the
effectiveness and efficiency of proposed model and techniques.

Acknowledgments This work is support by NSFC 61802345, ZJNSF LQ20F020007, ZJNSF LY21F020012
and Y202045024.

References

1. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. arXiv:cs/0310049
(2003)

2. Caliò, A., Tagarelli, A., Bonchi, F.: Cores matter? an analysis of graph decomposition effects on
influence maximization problems. In: ACM Conference on Web Science, pp. 184–193 (2020)

3. Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large attributed graphs. VLDB
(2016)

4. Guan, S., Ma, H., Wu, Y.: Attribute-Driven Backbone Discovery. In: KDD, pp. 187–195 (2019)
5. Huang, X., Lakshmanan, L.V.S.: Attribute-driven community search. PVLDB (2017)
6. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations,

pp. 85–103. Springer (1972)
7. Lee, J., Park, K., Prabhakar, S.: Mining statistically significant attribute associations in attributed graphs.

In: ICDM, pp. 991–996 (2016)
8. Li, R.H., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. PVLDB 8(5),

509–520 (2015)
9. Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., Gao, Y.: Vac: Vertex-Centric Attributed Community

Search. In: ICDE, pp. 937–948 (2020)
10. Pfeiffer, J.J. III., Moreno, S., La Fond, T., Neville, J., Gallagher, B.: Attributed graph models: Modeling

network structure with correlated attributes. In: WWW, pp. 831–842 (2014)
11. Qi, G.J., Aggarwal, C.C., Huang, T.: Community detection with edge content in social media networks.

In: ICDE, pp. 534–545 (2012)
12. Seidman, S.B.: Network structure and minimum degree. Social Networks (1983)
13. Sun, R., Chen, C., Wang, X., Zhang, Y., Wang, X.: Stable community detection in signed social networks.

TKDE (2020)
14. Sun, R., Zhu, Q., Chen, C., Wang, X., Zhang, Y., Wang, X.: Discovering cliques in signed networks

based on balance theory. In: DASFAA, pp. 666–674 (2020)
15. Wang, X., Zhang, Y., Zhang, W., Lin, X.: Efficient distance-aware influence maximization in geo-social

networks. TKDE 29(3), 599–612 (2016)
16. Wang, X., Zhang, Y., Zhang, W., Lin, X., Chen, C.: Bring order into the samples: A novel scalable

method for influence maximization. TKDE 29(2), 243–256 (2016)
17. Yang, J., McAuley, J., Leskovec, J.: Community Detection in Networks with Node Attributes. In: ICDM,

pp. 1151–1156 (2013)
18. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: efficient (k,

r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)
19. Zhao, J., Sun, R., Zhu, Q., Wang, X., Chen, C.: Community Identification in Signed Networks: a K-Truss

Based Model. In: CIKM, pp. 2321–2324 (2020)
20. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. VLDB (2009)
21. Zhu, R., Zou, Z., Li, J.: Fast diversified coherent core search on multi-layer graphs. VLDB J. 28(4),

597–622 (2019)
22. Zhu, W., Zhang, M., Chen, C., Wang, X., Zhang, F., Lin, X.: Pivotal relationship identification: The

K-Truss minimization problem. In: IJCAI, pp. 4874–4880 (2019)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

677World Wide Web (2022) 25:655–677

http://arxiv.org/abs/cs/0310049

	The art of characterization in large networks: Finding the critical attributes
	Abstract
	Introduction
	Challenges and Contributions
	Roadmap

	Preliminaries
	Problem definition
	Problem Statement

	Problem properties
	Non-submodular

	Baseline algorithm
	Optimized solution
	Core-spread framework
	The core-spread framework
	Shrink procedure
	Discussion

	Layer-based optimization
	Layer construction
	Mark Algorithm
	Upper Degree Algorithm

	Compute attribute core
	AKC algorithm

	Experiments
	Experiment setup
	Algorithms
	Datasets
	Parameters and workloads

	Effectiveness evaluation
	Effectiveness evaluation by varying k and b
	Compare with the exact solution
	Case Studies

	Efficiency evaluation
	Efficiency evaluation by varying k and b
	Scalability evaluation

	Related work
	Conclusion
	References

