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Abstract
Heterogeneous information network (HIN) embedding represents heterogeneous nodes as
vectors in the low-dimensional space. Meta-path is used to measure the nodes similarity
to guide HIN embedding. Existing works assume that different meta-paths share the same
semantic space and directly fuse the different mate-paths for node similarity calculation.
This ignores the incompatibility of different meta-paths, which cannot reflect the real rela-
tionship between nodes. To solve the problems of existing works, a novel Semantic-Aware
HIN Embedding (SAHE) is proposed to fuse incompatible meta-paths for node similarity
measurement. The key idea of the proposed method is to measure the relative similarity
relationship on each meta-path in its own semantic space, and aggregate these similarity
relationships to obtain the node similarity to calculate HIN embedding. The kendall tau dis-
tance is used to aggregate the different similarity relationship in multiple semantic spaces.
The semantic preference is extracted as a constraint to optimize the aggregated similarity
matrix. The Kullback-Leibler Divergence (KL Divergence) is used to learn nodes embed-
ding by measuring the node similarity distribution in the embedded space. Experiments on
three real HIN datasets verify that the superiority of the proposed model is superior to other
state-of-the-art methods on the node classification and the node clustering tasks.
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1 Introduction

Heterogeneous information network (HIN) embedding learns the representation of nodes in
the low dimensional vector space by preserving its rich semantic information [38]. The key
idea of HIN embedding is to measure the similarity between nodes in heterogeneous infor-
mation network. The more similar the two nodes are, the closer the two nodes are in the
mapping space[3, 29]. Meta-path based methods has been widely used in HIN embedding,
since meta-paths can obtain rich semantics through multiple connections between nodes in
HIN[7, 11, 18]. The basic idea of meta-path is to establish a path between nodes based on
semantic relatedness over HINs. The meta-path is used to sample two nodes and compute
the semantic similarity of the two nodes to learn node embedding. In HIN, each meta-path
can capture its own semantic information [9, 15]. Take Figure 1 as an example, supposing
there is a DBLP HIN, author a2 connected with a3 following the meta-path M1 (APTPA),
and author a1 connected with a2 following the meta-path M2 (APVPA). Thus, the underly-
ing semantics are, author a2 and a3 are related due to the same topic of their papers, while
author a1 and a2 are related because their papers in the same venue.

Figure 1 An example of incompatibility problem in HIN embedding, in which (a) gives a DBLP Network
schema, (b) lists three similarity matrices based on three meta-paths. The key problem is how to aggregate
the similarity matrices with incompatible meta-paths into the matrix of (c)
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Existing methods [8, 15] usually assume that different meta-paths share the same seman-
tic space, and ignore the incompatibility problem between different meta-paths. These
methods either average the similarity calculated by multiple meta-paths [6], or directly con-
catenate the embedding of each meta-path to get an overall embedded representation [4].
The similarities between nodes calculated according to different meta-paths may be differ-
ent — two nodes may be similar according to one meta-path, while not similar according
to another meta-path. The distances of nodes in mapping spaces with different meta-paths
are also different. This similarity difference results from inconsistent semantics of different
meta-paths. The similarity relationships of nodes in different similarity matrices are incon-
sistent, which leads to the incompatibility problem of meta-paths. Methods ignoring this
incompatibility can lead to unreliable results.

Figure 1 presents an example of node embedding in HIN to illustrate incompatibility
problem of meta-path. In DBLP HIN, it is assumed that the node similarity matrices M1S,
M2S and M3S are calculated based on three different meta-paths M1, M2 and M3. There are
contradictions in the similarity matrices calculated based on different meta-paths. For two
pairs of nodes, the similarity relationships they calculated based on different meta-paths are
opposite. The similarity between (v1, v2) in M1S and M2S are both 0.5, the similarity of
(v1, v2) in M1S is smaller than the similarity of (v1, v3), but the similarity of (v1, v2) in M2S
is higher than the similarity of (v1, v3). Because the semantics of different meta-paths are
different, the strength of the same similarity value of in different similarity matrices may
be different. On the other hand, different similarity values may represent the same similar-
ity strength. The similarity of (v2, v3) in M1S and M3S is 0.4 and 0.1 respectively, but the
similarity strength is the weakest in their respective similarity matrices. This shows that the
similarity calculated according to different meta-paths is not compatible. Averaging the sim-
ilarity calculated by multiple meta-paths[6] or directly concatenating the node embedding
with each meta-path[4] cannot handle the incompatibility problem above, and may affect
the node classification performances and node clustering performances. In addition, exist-
ing methods use the method of zero-filling on the similarity matrix completion problem, as
in the case of M2S, which does not truly reflect the similarity between nodes.

To solve the problems of the existing works, this paper proposes a novel Semantic-Aware
HIN Embedding (SAHE) method, which aggregates the incompatible meta-paths in their
own semantic spaces. The key idea of the proposed model is to convert the node similarity
into the similarity relationship on each meta-path in its own semantic space, to aggregate
multiple meta-path based similarity matrices. Instead of calculating the node embedding
by using node similarity directly in the same semantic space, the proposed method can
avoid the noise problem caused by the similarity difference, so that incompatibility of dif-
ferent meta-paths can be solved. The SAHE method first use Pathsim method to calculate
the meta-path based similarity matrices according to different meta-paths, and then defines
the Kendall tau distance by the similarity relationship, to measure the distance between the
aggregated similarity matrix and the meta-path based similarity matrices. Next, the seman-
tic preference is extracted as a constraint to optimize the aggregated similarity matrix.
Finally, the KL divergence[21] is used to minimize the distribution difference between the
aggregated similarity matrix and the node embedding to obtain the node representation.

The main contributions of this work are as follows:

1) This work studies the problem of incompatible meta-paths in HIN embedding. The
semantic similarity between nodes can be preserved with the consideration of the
incompatible problem to improve the embedding performance.
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2) A novel Semantic-Aware HIN embedding (SAHE) is proposed to embed HIN. We mea-
sure the similarity relationships on each meta-path in its own semantic space to solve
the incompatibility problem.

3) We extract the semantic preference ranking from meta-path based matrices and use it
to optimize the aggregated similarity matrix.

The rest of the paper is organized as follows: we first review the related works in Section 2.
Then Section 3 introduces the preliminaries. Section 4 presents the details of the SAHE
model. Section 5 shows the experimental results and performance analysis. Finally, the
conclusion and future works are shown in Section 6.

2 Related works

The research of heterogeneous information network (HIN) has recently received widespread
attention because it can represent rich semantic information. HIN can describe the network
with multiple types of nodes and edges, which is not possible in a homogeneous network
[4, 32, 38]. HIN is becoming a new research direction in the field of data mining since HIN
integrates more effective information and contains richer semantics in nodes and edges.
By mining the information of the HIN, more data in the network can be fully analyzed.
How to mine effective information in different types of nodes and edges has become a
new challenge. The analysis of heterogeneous information networks is difficult due to its
complexity.

HIN embedding aims at learning the representation of heterogeneous nodes in the
mapped low-dimensional vector space, and it can improve the performance of data mining,
such as classification, clustering and recommendation. However, previous works mainly
focus on learning the vector representation of nodes in homogeneous information networks.
Deepwalk [17] is inspired by the idea of natural language processing. It treats nodes as
words and uses sequences generated by random walks as sentences, and then applies the
Skip-gram model to these random walk sequences to learn node embedding. Node2vec [10]
is an embedding method similar to Deepwalk, which also uses the Skip-gram model. Unlike
Deepwalk, Node2vec has a unique random walk strategy. Node2vec combines depth-first
search strategy and width-first search strategy to sample nodes and generate random walk
sequences. LINE [28] considers not only the first-order neighbor relationship, but also the
second-order neighbor relationship when learning node embedding. That is, even if two
nodes are not directly connected, they can establish an indirect connection through their
first-order public friends. In addition, it uses negative sampling techniques to optimize the
model. GCN [13] learns node embedding through graph convolutional neural network, and
GCN cannot learn the weight of each neighbor node during convolution. GAT [30] was
proposed to solve the above-mentioned problems of GCN. GAT uses the attention mecha-
nism to learn the weight of each neighbor node and aggregate the neighbor information of
the node. The MVC-DNE [35] method based on deep learning performs network embed-
ding by fusing data from two views of structure and attributes. Most of the above methods
can learn node embedding of homogeneous information networks, without considering the
types of nodes and edges. If these methods are applied directly to high-complexity HIN, the
embedding effect may be reduced.

Some exiting methods have been proposed on HIN embedding [2, 6, 12, 24, 25, 36].
Metapath2vec [6] method is proposed as an extension of Deepwalk in HIN embedding. It
sets different meta-paths for random walks according to the semantic information in HIN.
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Similar to the Deepwalk model, it applies the Skip-gram to the random walk sequences of
heterogeneous nodes to obtain the nodes embedding. Unlike most methods that use Skip-
gram models to learn random walk sequences, Hin2vec [8] builds a neural network model.
This model learns nodes embedding and meta-paths embedding by maximizing the pos-
sibility of node relations. Hin2vec model does not rely on artificially set meta-paths, but
automatically learns meta-paths from network data. EOE [34] learns the potential node
representations of two networks and uses a harmonious embedded matrix to transform
the representations of different networks into the same space. These methods ignore the
incompatibility of different meta-paths and miss the different semantic relationships of
nodes.

Though several works notice the incompatible semantics of HIN, they ignore that dif-
ferent meta-paths have their own semantic spaces and cannot solve the problem of node
similarity aggregation among different semantic spaces. A HIN embedding model based on
deep learning method called Esim [22] is proposed, which transcribes semantics in HINs by
meta-paths. It fuses multiple meta-paths by assigning different weights to different meta-
paths. However, it relies heavily on the weight of the manually set meta-path to represent
learning, which may not conform to the real network and cannot achieve a better embedding
effect. HERec [23] uses a fusion function to fuse the node embeddings learned by different
meta-paths into the final node embedding. DMGI [16] is a multi-relational network embed-
ding method that uses an attention mechanism to learn node embedding. Multi-relational
network is a special type of heterogeneous network, with a single type of nodes and mul-
tiple types of edges. DMGI cannot learn the node embeddings of general heterogeneous
information networks (that is, there are multiple types of nodes and edges). DyHNE [33]
gives different weights to various meta-paths, so as to evaluate the importance of differ-
ent meta-path to node embedding. The HAN [32] method uses semantic-level attention
and node-level attention to learn the importance of meta-paths and node neighbors at the
same time, and aggregates the node representations of multiple meta-paths to obtain the
final node representation. These methods of combining weight coefficient cannot solve the
incompatibility problem of meta-paths. Since meta-path can learn the similarity between
higher-order neighbors and better capture the semantic information of various aspects of
HIN, it is necessary to study the incompatibility of meta-paths.

3 Preliminaries

Definition 3.1 (Heterogeneous information network) Let a graph G = (V ,E) represents a
heterogeneous information network, V is the set of all nodes vi and E is the set of all nodes
ei in the graph G. Each node vi ∈ V has its own node type and each edge ei ∈ E has its own
edge type. T and R represent the set of node types and the set of node types respectively. The
necessary and sufficient condition for a heterogeneous information network is |T |+|R| > 2.

Figur 1(a) illustrates a small bibliographic HIN with |T | = 4 and |R| = 3. It contains
four edge types that connect nodes, and the four types of nodes are: author (A), paper (P),
venue (V), and topic (T). To simplify the model, it is assumed that each node belongs to a
single type.

Definition 3.2 (Network schema) The network schema is defined as TG = (T , R) , which
is the meta template for a heterogeneous information network G = (V ,E) . There are node-
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to-node type mapping and edge-to-edge type mapping in the network schema, which are ϕ:
V → T and ψ : E → R.

Figure 2 shows the schema of the DBLP HIN in Figure 1.

Definition 3.3 (Meta-path) A meta-path M is donated as a path as a path pattern connecting

different types of nodes T1
R1−→ T2

R2−→ . . .
Rl−1−→ Tl , where R1, R2, . . . , Rl represent edge

type of node type T1 to Tl .

Figure 1(a) shows a meta-path A
write−→ P

publish−→ V
publish−1

−→ P
write−1−→ A in DBLP,

where the semantic information represented by this meta-path is authors(A) publish papers
(P) in the same venue (V), short as “APVPA”. M is the set of all meta-path Mm. A path
instance m = (v1v2 . . . vl) following the meta-path Mm ∈ M represents a path between v1
and vl in network G, and short as mv1∼vl

.

Definition 3.4 (Node Embedding of HIN) In a HIN G = (V ,E), each node is mapped to
a d–dimensional space Sd and represented by a vector vd , where d � |V |. The purpose of
the proposed model is to learn node embedding vd in heterogeneous information network.

4 The proposedmodel

To solve the incompatibility of different meta-paths in HIN embedding, this work pro-
poses a SAHE model based on similarity relationship, which is used to aggregate multiple
meta-paths to get the node representation. The key idea of SAHE method is convert the
node similarity to the similarity relationship on each meta-path in its own semantic space.
Figure 3 shows the framework of the SAHE model. The model consists of four main steps:
node similarity calculation, node similarity aggregation, semantic preference extraction and
embedding learning.

The following subsections detail the steps of this method.

Figure 2 The HIN schema of DBLP with four node types and four directed edge types
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Figure 3 The framework of the proposed SAHE model

4.1 Node similarity calculation on single meta-path

The proposed model first calculates the node similarity based on each meta-path. Due to
the skewed distribution of the HIN, the similarity method based on random walks is biased
toward those nodes with large degrees. It cannot reflect the real network topology. Pathsim
is used in our model because it considers all nodes connected through meta-path, thus avoid-
ing the skew distribution problem. PathSim is a method commonly used to measure node
similarity in HIN. It uses symmetric meta-paths to extract the connected path between two
nodes to measure node similarity, which not only uses related heterogeneous information,
but also extracts the rich semantics of nodes and edges [5, 27].

The basic idea of PathSim is that if two nodes in the network are connected by more
meta-path instances, the similarity between them is higher. Given a meta-path Mm and two
nodes of the same type vi and vj , PathSim is defined as follows:

ms
(
vi, vj

) = 2 × ∣∣mvi∼vj

∣∣
∣
∣mvi∼vi

∣
∣ + ∣

∣mvj ∼vj

∣
∣ , (1)

where ms
(
vi, vj

)
denotes the similarity between node vi and vj , simply expressed as msij .

mvi∼vj
, mvi∼vi

, mvj ∼vj
∈ Mm, mvi∼vj

, mvi∼vi
and mvj ∼vj

are the path instances following
meta-path Mm between (vi , vj ), (vi , vi) and(vj , vj ), respectively.

As shown in (1), given a meta-path Mm, msij is defined into two parts: the similarity
between nodes depends on the number of path instances between them following meta-path
Mm; number of path instances from node to itself. For each meta-path Mm, Pathsim is used
to calculate the node similarity and obtain a symmetric matrix MmS with a diagonal equal
to 1: msij = msji and msii = 1.
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4.2 Node similarity aggregation onmultiple meta-paths

After calculating the node similarity on single meta-path, our key step is to aggregate the
node similarity on these incompatible meta-paths. According to the definition of node simi-
larity in (1), the proposed method determines the meta-path based similarity matrices of |M|
meta-paths. However, the nodes similarity with different meta-paths is not always related to
each other: two nodes may be similar according to one meta-path, while not similar accord-
ing to another meta-path. A Kendall tau distance is defined to aggregate different meta-paths
by converting the node similarity to the similarity relationship.

Kendall tau distance is generally used to calculate the reverse ordinal numbers between
two sequences [31]. It has many advantages in measuring sequence differences and attracts
a lot of attention in many fields. We extend it to convert node similarity into similarity
relationship and calculate the consistency of the two matrices. The smaller the Kendall tau
distance, the two matrices more consistent. Our method obtains the aggregated similarity
matrix by minimizing the Kendall tau distance, which has the smallest difference with all
similarity matrices. Therefore, the problem of incompatible meta-paths is solved. Since
each meta-path has its own semantics, the similarity relationship in the meta-path similarity
matrix is compared by defining the Kendall tau distance. First, the Kendall tau distance
between the two similarity matrices is defined as

K (MmS,AS) =
|v|∑

i=1

K (MmSi,ASi) , (2)

where AS is the aggregated similarity matrix, and the Kendall tau distances of each row
vector in the two matrices is defined as follows:

K(MmSi,ASi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
(
msij > msik ∧ asij > asik

)

∨ (
msij < msik ∧ asij < asik

)

∨ (
msij = msik ∧ asij = asik

)

1, if
(
msij > msik ∧ asij < asik

)

∨ (
msij < msik ∧ asij > asik

)

∨ (
msij > msik ∧ asij = asik

)

∨ (
msij < msik ∧ asij = asik

)

∨ (
msij = msik ∧ asij > asik

)

∨ (
msij = msik ∧ asij < asik

)

. (3)

If the relative similarity relationship in the two row vectors is the same, the distance
remains unchanged. If the similarity relationship in the two row vectors is reverse, then the
distance is accumulated. The sum of the distances between the meta-path based similarity
matrices and the aggregated similarity matrix is:

K (MmS,AS) =
|M|∑

m=1

|V |∑

i=1

K (MmSi,ASi) . (4)

Based on the above analysis, the similarity aggregation problem is defined as: given |M|
similarity matrices MmS, according to |M| meta-paths, find an aggregated similarity matrix
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AS. Minimize the distance between MmS and AS, and stochastic gradient descent [1] is
used to solve this optimization problem:

AS∗ = arg min K (MmS,AS)

= min
|M|∑

m=1

|V |∑

v=1

K (MmSi,ASi) .
(5)

In example of Figure 1, the aggregated similarity matrix calculated by SAHE is shown
in Figure 4. We can calculate the Kendall tau distance between AS and (M1S,M2S,M3S).
Since there is an reverse similarity relationship between row vector v1 in M2S and AS :
m2s12 > m2s13 while as12 < as13 , K (M2S1,AS1)=1. No reverse similarity relationship
between other row vector in M2S and AS, K (M2S,AS1) =1. The similarity relationship
in the other two similarity matrices M1S and M3S is the same as the aggregated similarity
matrix AS: K (M1S,AS1)+ K (M2S,AS1)+ K (M3S,AS1)=1. Only one pair of nodes has
the reverse similarity relationship between (M1S,M2S,M3S), which means the aggregated
similarity matrix AS maintain high consistency with meta-path based similarity matrices.

4.3 Semantic preference extraction

Semantic preferences are extracted from the multiple meta-path based similarity matrices to
optimize the aggregated similarity matrix. The majority principle [14], as the name suggests,
is the obedience of minority to majority. It is widely used in economics and sociology due
to its low complexity and easy to understand. The majority principle represents the majority
opinion, and the semantic relationship is determined by obtaining more semantic informa-
tion of meta-path. The majority principle is extended to the semantic preference ranking:
if there are three nodes

{
vi, vj , vk

}
, nodes (vi, vj ) are more similar in most similarity

matrices than node (vi, vk), then according to the majority preference, the aggregated simi-
larity matrix should satisfy the ranking: similarity of nodes (vi, vj ) is higher than the nodes
(vi, vk)’s. In other words, vi prefers vj to vk in the aggregated similarity matrices. Formally,
if

∣∣msij > msik
∣∣ >

∣∣msij < msik
∣∣ ,then vj 	 vk , where ’	’ denotes the prefer relationship.

If nodes (vi, vj ) are less similar in more similarity matrices than node (vi, vk), then accord-
ing to the majority preference, the aggregated similarity matrix should satisfy the ranking:

Figure 4 The aggregated
similarity matrix AS calculated
by SAHE in the example of
Figure 1
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similarity of nodes vi, vj is lower than the nodes (vi, vk)’s. Formally, if
∣
∣msij > msik

∣
∣ <∣

∣msij < msik
∣
∣, then vk 	 vj . Particularly,

∣
∣msij > msik

∣
∣ = ∣

∣msij < msik
∣
∣ appears in some

cases. Pj and Nj are defined to solve this problem:

Pj =
|v|∑

k=1

∣
∣msij > msik

∣
∣ , j 
= k. (6)

Nj =
|v|∑

k=1

∣
∣msij < msik

∣
∣ , j 
= k. (7)

Pj represents the number of nodes whose similarity lower than node vj with node vi . If
Pj > Pk , then vj 	 vk , else vk 	 vj . Nj represents the number of nodes whose similarity
higher than node vj with node vi . If Nj < Nk ,then vj 	 vk , else vk 	 vj . Based on
the above semantic preference ranking, for one node vi , the similarity relationship ranking
between any two other nodes (vj ,vk) and vi can be determined. This ranking can be used
as a constraint to optimize the aggregated matrix. Algorithm 1 describes the process of
semantic preference ranking.

In example of Figure 1, three similarity relationship rankings are calculated based on
semantic preferences ranking. v1 : v1 	 v3 	 v2, v2 : v2 	 v1 	 v3, v3 : v3 	 v1 	 v2. It
can be clearly seen that this ranking is consistent with the similarity ranking in Figure 4.

4.4 Embedding learning

Given a heterogeneous information network G = (V ,E) and multiple meta-paths Mm ∈ M

, an aggregated similarity matrix AS preserves node similarities obtained by the algorithm 1.
The purpose of the SAHE method is to learn the embedding of nodes in HIN, which can
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be explained by minimizing the distribution difference between the aggregated similarity
matrix AS and the node embedding matrix H. Since the elements stored in the two matrices
are inconsistent, it is not easy to calculate the distribution difference. The activation function
sigmoid is used to convert the embedding matrix H into a similarity matrix HS.

hs
(
vi,vj

) = 1

1 + e−hT
i hj

, (8)

where hi and hj are the embedding vector of node vi and vj , respectively. The embed-
ding matrix can be converted to a fitting similarity matrix, denoted as HS, where hsij =
hs

(
vi, vj

)
.

KL divergence [26] represents the loss of information when fitting a theoretical distri-
bution to a real distribution. Aggregated similarity matrix AS is the real distribution while
fitting similarity matrix HS is the theoretical distribution. Our goal is to minimize the KL
divergence between AS and HS:

L = KL(AS‖HS). (9)

Since similarities between any node vi and any other node vj in the similarity matrix can
represent the probability distribution, the loss denotes as:

L =
|V |∑

i=1

|V |∑

j=1

KL
(
asij‖hsij

) =
|V |∑

i=1

|V |∑

j=1

asij log
1

hsij
. (10)

The optimization objective is to find a node embedding matrix H∗ by minimizing the
following loss function and stochastic gradient descent [1] is used to solve this optimization
problem:

H∗ = min
|V |∑

i=1

|V |∑

j=1

asij log
1

hsij
. (11)

The details of the optimization of embedding learning are shown in algorithm 2. A binary
classifier is used to distinguish between node samples coming from the aggregated similar-
ity distribution AS and a noise distribution. And an auxiliary random variable D is used for
this classification, D = 1 for a node from the aggregated similarity distribution and D =0 for
a sample extract from the noise distribution. σ is the sigmoid function and n is the number
of nodes we extract form noise distribution. In our experiments, we use n =3.
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5 Experimental results

The embedding performances of the SAHE method are verified on three real-world HIN
datasets. First, the experiments compare the node classification and clustering performances
of the proposed model with the other latest existing works. Second, the influences of
parameters are verified on the performances of the proposed method.

5.1 Datasets

Three datasets from different fields, including the DBLP network [19], the Movielens net-
work [37], and the Yelp network [20]are used in the experiments to evaluate the performance
of the proposed model.

– DBLP is an author-centric dataset in the field of computer science. The DBLP network
consists of four types of nodes: author(A), paper(P), topic(T) and venue(V). The edge
types include authorship(P-A), topic of paper (P-T), publishing venue (P-V), and the
cite relation (P-P). The schema is shown in Figure 2.

– Movielens is a movie-centric dataset in movie field consisting of four types of nodes:
movies(M), users(U), age(A), and occupation(O), three edge types: user’s like (U-M),
user’s age (U-A) and user’s occupation (U-O). Figure 5(a) shows the schema of the
Movielens HIN.

– Yelp is a business-centric dataset containing user information, business information,
and user reviews of businesses. We extract some data include business(B), user(U),
city(Ci), compliment(Co) as nodes, and evaluation relation (U-B), user’s like(U-Co)
and location (B-Ci) as edges. Figure 5(b) shows the schema of the Yelp HIN.
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Figure 5 Schemas of two heterogeneous information networks

The network of the original dataset is sparse and has a skewed distribution. A large
number of nodes are in the network and most nodes are with a small degree. It is difficult
to analyze the entire network. We therefore randomly sample the original network and set
a minimum degree to filter out nodes whose degree are less than the minimum degree. The
minimum degree in DBLP, Movielens and Yelp is 3,4,4 respectively. The basic statistics and
meta-paths of these three HIN networks are summarized in Table 1. The length of meta-
path is the number of relations in the meta-path. For example, in the DBLP network, the
meta-path APA can be described using the length-2 meta-path.

5.2 Baselinemethods

We compare the proposed methods with two types of embedding methods: methods for
homogeneous information networks and methods for heterogeneous information networks.
These methods have been introduced in the related work in Section 2. Here we present the
details of the method in the experiment. For the fairness of the experiment, the dimension d

of the embedding vector space of all methods is set to be 64.
For homogeneous information networks, Deepwalk[17], Node2vec [10] and Line [28]

method are used to compare with the proposed method. These three methods are network
embedding method based on random walk. To apply these methods directly to HIN embed-
ding, the heterogeneity of nodes will be ignored, and heterogeneous nodes will be regarded
as homogeneous nodes. For these three methods,we used the default settings from the
original article.

For heterogeneous information networks, meta-path based methods Metapath2vec [6],
Esim [22], HAN [32] and non-metapath based method Hin2vec [8] are used to compare

Table 1 The basic statistics and meta-paths of three HIN datasets

Datasets |V | |E| #labels Meta-paths

DBLP 9150 45165 4 APA, APTPA, APVPA

Movielens 1682 28270 5 MUMUM, MUAUM,MUOUM

Yelp 7285 35191 10 BUB, BCiB, BUCoUB

13World Wide Web (2022) 25:1–21



with the proposed method. In order to verify the ability of the proposed method to solve the
problem of meta-path incompatibility, the Kendall tau distance is deleted and the average
similarity calculated by different meta-paths is used as a variant of SAHE, called SAHEavg,
and the variant is compared with SAHE. For each dataset, the meta-paths used by Metap-
ath2vec, Esim and HAN in the experiment are the same as SAHE. Since different datasets
have different weight settings, various weights are assigned to Esim and the best perform-
ing one are chosen on different datasets. The parameter settings of the Hin2vec method are
the same as in the original article.

5.3 Node classification

Node classification classifies the nodes into different categories, where the input of the node
classifier are the learned embeddings. In the experiments, we mainly focus on the central
node in the datasets for classification. Author, movie and business are used as the central
node for classification on the DBLP, Movielens and Yelp datasets respectively. A group of
nodes are randomly selected as the labeled training nodes, and the remaining nodes are used
as test nodes. The embeddings of the training nodes are used as input and a logistic regres-
sion classifier is trained to predict the most likely labels for the test nodes. The network
datasets used in the experiments are divided into training and test sets, and the ratio of the
training set gradually increases from 5% to 50%. Each experiment is 10 repeated trials and
the average Micro-F1 and Macro-F1 scores are recorded. The experiment results are shown
in Tables 2 and 3.

As is shown in Tables 2 and 3, when the ratio of training data increases, the perfor-
mance is better in general which explains that the accuracy is positive related to training
ratio. (1) The results show that the node classification performance of the SAHE method
is always better than the baselines. The performance improvement obtained by SAHE on
the best benchmark (HAN) is about 2%-8%. When the training ratio is less than 20%, the
performance of the SAHE method is much higher than the baseline methods. This means
that the proposed method requires only a small amount of training data to obtain effective
embedding results. (2) The performance of DeepWalk, Node2vec and Line is lower than
Metapath2vec, Esim, Hin2vec, HAN and SAHE. Thus, the methods for homogeneous net-
work embedding are significantly worse than heterogeneous network embedding methods
in node classification task. Because the homogeneous network embedding methods ignore
the heterogeneity of nodes. (3) By comparing the performance of heterogeneous informa-
tion neetwork baselines(Metapath2vec, Esim, HAN, Hin2vec), HAN is the best in baselines
because the fusion embedding learned through the attention mechanism can improve the
embedding ability. Metapath2vec is the least performance method among the heterogeneous
network comparison methods, because this method only extracts the semantic information
of a meta-path. (4) The node classification performances of SAHE method are superior than
that of SAHEavg method in all cases. This shows that the proposed method improves the
performance of network embedding by solving the problem of meta-path incompatibility.

5.4 Link prediction

We conduct experiments on three datasets to compare the link prediction performance of
node embeddings learned by SAHE and the baseline methods. In this task, we predict
the citation relationship (P-P) between papers in DBLP, and the friend relationship (U-U)
between users in Movielens and Yelp. We first randomly divide the edges of the dataset
into a training set and a test set. Here, we set 75% of the edges as the training set and the
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Table 2 Micro-F1 scores of node classification task

Datasets Methods Training ratio

5% 10% 15% 20% 30% 40% 50%

DBLP Node2vec 0.5945 0.6786 0.7147 0.7496 0.7648 0.7913 0.7952

Line 0.5842 0.6789 0.6989 0.7189 0.7493 0.7543 0.7611

Metapath2vec 0.6024 0.7052 0.7103 0.7457 0.7741 0.7916 0.8197

Esim 0.6693 0.7247 0.7372 0.7539 0.7647 0.7857 0.8011

Hin2vec 0.6541 0.7034 0.7343 0.7784 0.8091 0.8204 0.8219

HAN 0.6752 0.7137 0.7531 0.7846 0.8105 0.8326 0.8565

SAHEavg 0.6674 0.7316 0.7371 0.7564 07681 0.7817 0.8059

SAHE 0.7561 0.7995 0.8053 0.8265 0.8419 0.8671 0.8809

Movielens Node2vec 0.5585 0.5881 0.5978 0.6063 0.644 0.6565 0.6661

Line 0.5321 0.5685 0.5968 0.6187 0.6302 0.6474 0.6628

Metapath2vec 0.573 0.5887 0.5914 0.6079 0.6268 0.6594 0.6942

Esim 0.5752 0.6235 0.6314 0.6308 0.6537 0.6604 0.6829

Hin2vec 0.5627 0.6119 0.6145 0.6305 0.6637 0.6875 0.6962

HAN 0.5816 0.6382 0.6428 0.6558 0.672 0.6903 0.7256

SAHEavg 0.5715 0.6334 0.6341 0.6462 0.6651 0.6708 0.7011

SAHE 0.6117 0.6525 0.6576 0.6732 0.6943 0.7259 0.7481

Yelp Node2vec 0.2916 0.3426 0.3509 0.3554 0.3802 0.388 0.3923

Line 0.2745 0.3307 0.3318 0.3422 0.3584 0.3699 0.3836

Metapath2vec 0.3189 0.3548 0.3519 0.3527 0.3744 0.3809 0.3914

Esim 0.3238 0.3604 0.3639 0.3664 0.3847 0.3816 0.3938

Hin2vec 0.3096 0.3628 0.3661 0.3885 0.404 0.4121 0.4325

HAN 0.3211 0.3562 0.3818 0.4323 0.4104 0.4214 0.4386

SAHEavg 0.3265 0.3643 0.3773 0.3784 0.3891 0.3922 0.4105

SAHE 0.3528 0.3817 0.4143 0.4279 0.4307 0.4333 0.4521

remaining edges as the test set. Then, the node embedding is used as a feature of the classi-
fier to train the training set and evaluate the link prediction performance on the test set. The
AUC and AP scores are used as indicators to reflect the quality of node embedding. The
higher the values of AUC and AP are, the better the link prediction performance is. Table 4
shows the performances of link prediction of various methods on three datasets and the best
performance is highlighted in bold.

Similar as the node classification task, the SAHE method significantly perform better
than all baseline methods on three datasets. Compared with the baselines, the AUC and
AP scores of link prediction of SAHE increased by about 2%- 22% in DBLP, 3%- 11% in
Movielens, and 4%- 12% in Yelp. It shows that the proposed method can improve the per-
formance of network embedding by capturing heterogeneous semantic information. And the
link prediction performances of SAHE method are superior than that of SAHEavg method
in all cases. This results verify the ability of the proposed method to solve the problem
of meta-path incompatibility on link prediction task. Different from the node classification
task, on the DBLP data set, node2vec performs better than the traditional heterogeneous
method metapath2vec. This may be due to the fact that the node2vec method obtains more
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Table 3 Macro-F1 scores of node classification task

Datasets Methods Training ratio

5% 10% 15% 20% 30% 40% 50%

DBLP Node2vec 0.5638 0.6463 0.6864 0.7162 0.7415 0.7686 0.7776

Line 0.5584 0.6617 0.6774 0.6961 0.7302 0.73 0.7399

Metapath2vec 0.5443 0.6861 0.6874 0.7315 0.7588 0.7868 0.8027

Esim 0.5458 0.7239 0.7221 0.7436 0.7516 0.7775 0.7828

Hin2vec 0.6097 0.6768 0.7326 0.7629 0.7894 0.8018 0.8143

HAN 0.6815 0.6985 0.7348 0.7764 0.8069 0.8242 0.8317

SAHEavg 0.6562 0.7204 0.7283 0.7345 0.7608 0.7854 0.8009

SAHE 0.7503 0.7638 0.7946 0.8112 0.8235 0.8348 0.8693

Movielens Node2vec 0.5627 0.6076 0.6383 0.6425 0.6779 0.6931 0.6796

Line 0.5373 0.5532 0.6076 0.6362 0.6497 0.6502 0.6722

Metapath2vec 0.5542 0.6129 0.6438 0.6746 0.6906 0.7281 0.7338

Esim 0.5389 0.6217 0.6509 0.6629 0.683 0.7025 0.7271

Hin2vec 0.5691 0.6257 0.6337 0.6656 0.6998 0.7137 0.7411

HAN 0.5754 0.6375 0.6812 0.6856 0.7088 0.7423 0.7612

SAHEavg 0.5485 0.6272 0.6514 0.6713 0.6777 0.7174 0.7275

SAHE 0.6946 0.6741 0.6954 0.7107 0.7345 0.7539 0.7737

Yelp Node2vec 0.2807 0.3248 0.3288 0.3365 0.3551 0.3632 0.3829

Line 0.2512 0.3196 0.3089 0.3195 0.3313 0.3548 0.3603

Metapath2vec 0.2904 0.321 0.3278 0.3368 0.3315 0.3523 0.3759

Esim 0.3016 0.3348 0.3407 0.3422 0.3579 0.3603 0.3765

Hin2vec 0.2868 0.3484 0.3538 0.3608 0.3813 0.4044 0.4189

HAN 0.3124 0.3615 0.3603 0.3874 0.4012 0.4153 0.4228

SAHEavg 0.3085 0.3385 0.3521 0.3579 0.3518 0.3604 0.3625

SAHE 0.3414 0.3743 0.3854 0.4019 0.4164 0.4207 0.4332

structural and semantic information in the DBLP data set compared with the single metapath
metapath2vec method.

5.5 Node clustering

We also conduct expeiments on three datasets to verify the performances of the proposed
SAHE method on node clustering task. Node clustering regroups nodes into clusters accord-
ing to the similarity between nodes. The labeled node field of the clustering task is the same
as the node classification task, such as the author type in DBLP, the movie type in Movie-
lens and the business type in YELP. Specifically, the nodes embedding is treated as nodes
feature while the k-means algorithm is used to cluster the nodes. The real group consists of
nodes with the same label and is compared with the group obtained by the clustering task.
The performance of the clustering task is evaluated with Normalized Mutual Information
(NMI) and the Adjusted Rand Index (ARI). The average NMI and ARI scores for the 10
repeated trials are shown in Table 5.
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Table 4 AUC and AP scores of the link prediction task

Methods DBLP Movielens Yelp

AUC AP AUC AP AUC AP

Node2vec 0.5879 0.6213 0.6111 0.609 0.6048 0.6146

Line 0.5654 0.5541 0.5992 0.5865 0.5849 0.6295

Metapath2vec 0.5831 0.5807 0.6213 0.6294 0.6403 0.6396

Esim 0.6031 0.6119 0.6232 0.6206 0.6168 0.6152

Hin2vec 0.7514 0.7432 0.6507 0.6248 0.6264 0.6363

HAN 0.7892 0.7853 0.6682 0.6577 0.6667 0.6722

SAHEavg 0.6025 0.6601 0.6328 0.6585 0.6684 0.6517

SAHE 0.8062 0.7963 0.6805 0.6928 0.7075 0.8194

The experimental results show that the node clustering performances of the proposed
SAHE method is consistently better than other baselines on different datasets. Compared
with the baselines, the NMI and ARI scores of node clustering of SAHE increased by about
3%- 9% in DBLP, 1%- 9% in Movielens, and 1%- 7% in Yelp.

Similar to the node classification task, the clustering effect of HAN is still the sec-
ond best. The methods for homogeneous network embedding are significantly worse than
heterogeneous network embedding method in most cases. And the node clustering perfor-
mances of SAHE method are superior than that of SAHEavg method in all cases. We observe
that the performance of Hin2vec is not good in clustering experiments, sometimes even
worse than the embedding method for homogeneous information network, this shows that
the performance of HIN is unstable.

Comparing the performance of methods for heterogeneous information network, HAN,
metapath2vec and Esim achieves higher NMI and ARI than Hin2vec on the DBLP, Movie-
lens and Yelp datasets. This result shows that the method of manually setting the meta-path

Table 5 NMI and ARI scores of the node clustering task

Methods DBLP Movielens Yelp

NMI ARI NMI ARI NMI ARI

Node2vec 0.5028 0.4944 0.0922 0.0675 0.158 0.1372

Line 0.4771 0.4634 0.1334 0.0913 0.1362 0.1268

Metapath2vec 0.5146 0.4979 0.0962 0.0689 0.1321 0.1153

Esim 0.5381 0.5268 0.0776 0.0607 0.1789 0.1554

Hin2vec 0.4912 0.4765 0.055 0.0253 0.1637 0.1501

HAN 0.5215 0.5307 0.115 0.1026 0.1789 0.1653

SAHEavg 0.5148 0.5011 0.1056 0.0862 0.1653 0.1670

SAHE 0.5689 0.5571 0.1443 0.1189 0.2065 0.1784
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Table 6 Influence of Node embedding dimension d on SAHE

Datasets Metrics d=16 d=32 d=64 d=128 d=256

DBLP NMI 0.5517 0.5586 0.5689 0.5416 0.5403

ARI 0.5383 0.5328 0.5571 0.5529 0.5217

Movielens NMI 0.1279 0.1323 0.1443 0.1537 0.1205

ARI 0.0969 0.1038 0.1189 0.1266 0.0884

Yelp NMI 0.1889 0.1925 0.2065 0.1917 0.1908

ARI 0.1661 0.1679 0.1784 0.1645 0.1633

(Metapath2vec, Esim) is better than the method of automatically selecting the meta-path
(such as Hin2vec). It may be related to the fact that the manually set meta-path is more
consistent with the semantic relationship in the real network. In other words, meta-path
selection strategies require expert prior knowledge, as they are not only related to the direct
connection of nodes in the network.

5.6 Parameter analysis

The experiments evaluate the node clustering task of the SAHE model with different values
of node embedding dimension d and different numbers of meta-paths |M|. Other parame-
ters, such as those in the optimization process, are not analyzed because they are not relevant
to the contributions of this paper. In order to study the influence of d, we observe the cluster-
ing performance by increasing d from 16 to 256. The results of the node classification task
are similar to the clustering results. Tables 6 and 7 only show the results of node clustering.

We observe that when d is less than 64, a smaller d leads to worse performance, which
because the small size is not enough to capture more valid information for the node. The
clustering performance is best at d = 64 or d = 128, and then decreases with increases the
of d, this may be due to over-fitting caused by over-dimension. The experiment at d = 64
showed good performance on DBLP and Yelp, while d = 128 performed well on Movielens.
In different networks, different dimensions are required.

Table 7 shows that as the number of meta-paths increases, the clustering performance
improves. This is reasonable since multiple meta-paths can obtain richer information from
heterogeneous information networks. It further verifies that the proposed SAHE model can
solve the incompatibility of different meta-paths.

Table 7 Influence of meta-paths number |M| on SAHE

Datasets Metrics |M|=1 |M|=2 |M|=3

DBLP NMI 0.5348 0.5577 0.5689

ARI 0.5178 0.5449 0.5571

Movielens NMI 0.1193 0.1334 0.1443

ARI 0.0972 0.1099 0.1189

Yelp NMI 0.1726 0.1932 0.2065

ARI 0.1412 0.1667 0.1784
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6 Conclusions and future works

In this paper, a novel method named Semantic-Aware HIN Embedding (SAHE) is proposed
to learn nodes embedding in heterogeneous information networks. Particularly, we solve the
incompatibility problem of different meta-paths existing in real-world HINs. The core of the
SAHE method is to convert the node similarity to the similarity relationships on each meta-
path in its own semantic space. Since the similarity matrix calculated from the same meta-
paths has no incompatibility problems, minimizing the distance between the aggregated
similarity matrix and the meta-path based similarity matrices can solve the incompatibility
problem. In addition, an innovative semantic preferences ranking is proposed as a constraint
to optimize the aggregated similarity matrix. Extensive experimental evaluations confirm
that the SAHE model can capture more semantic information of complex HINs, and overall
exceeds the baseline.

To improve the proposed method, future works will focus on the following aspects. First,
the proposed method selects meta-path manually, we plan to upgrade it to select the most
influential meta-paths automatically and ensure that these meta-paths can preserve rich
semantic information in HIN. Second, the proposed model will be extended to solve the
problem of node representation on more complex networks, such as dynamic heterogeneous
networks, attributed heterogeneous networks and large-scale heterogeneous networks.
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