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Abstract
We explore the semantic-rich structured information derived from the knowledge graphs
(KGs) associated with the user-item interactions and aim to reason out the motivations
behind each successful purchase behavior. Existing works on KGs-based explainable rec-
ommendations focus purely on path reasoning based on current user-item interactions,
which generally result in the incapability of conjecturing users’ subsequence preferences.
Considering this, we attempt to model the KGs-based explainable recommendation in
sequential settings. Specifically, we propose a novel architecture called Reinforced Sequen-
tial Learning with Gated Recurrent Unit (RSL-GRU), which is composed of a Reinforced
Path Reasoning Network (RPRN) component and a GRU component. RSL-GRU takes
users’ sequential behaviors and their associated KGs in chronological order as input and
outputs potential top-N items for each user with appropriate reasoning paths from a
global perspective. Our RPRN features a remarkable path reasoning capacity, which is
regulated by a user-conditioned derivatively action pruning strategy, a soft reward strat-
egy based on an improved multi-hop scoring function, and a policy-guided sequential
path reasoning algorithm. Experimental results on four of Amazon’s large-scale datasets
show that our method achieves excellent results compared with several state-of-the-art
alternatives.
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1 Introduction

As the semantic-rich information representation, KGs, which contains a large number
of diverse entities and interactions in the real world, have achieved excellent capabili-
ties in explainable recommendation [22, 32]. On the one hand, the abundant entities in
KGs are beneficial to excavate more abundant information for a superior recommenda-
tion. On the other hand, the various relations can be regarded as explicit interpretations
among the entities, which endows the recommendation systems with potential explanation
capabilities.

To date, much research on the KGs-based explainable recommendation are mainly
divided into two streams. One is the KGs embedding based models [3], such as Trans Fam-
ily methods [14, 21], and the skip-gram based methods [16, 43]. These methods usually
make a recommendation based on entities’ similarity. Another stream is the path-based rec-
ommendation [18, 19]. For example, a multi-constraint method [45] searches the “best fit”
individualized learning path for learners. Both of these two modeling streams are valid and
practical. However, we argue that the path-based approach features [11, 12, 28] are more
potential for explicit reasoning and better explainability. Thus, in this work, we follow the
path-based approach to expand the explainable recommendation with sequential modeling
capacity.

Although these two methods have achieved excellent explainable recommendation, they
don’t consider users’ sequential historical behaviors. We argue that the sequence of users’
historical behaviors can enhance the recommendation performance. Given an example in
Figure 1. Considering only Mike’s first behavior, we can reasonably conjecture that Mike

may like “Another Pants of PRADA” from the path “
Purchased−−−−−−→ Pants of PRADA

Belong to−−−−−−→
PRADA

−(Belong to)−−−−−−−−→ Another Pants of PRADA”. However, when considering Mike’s his-
torical behaviors’ sequence: Pants of PRADA → Pants of ZARA → Pants of GUESS, we
can rationally speculate what Mike really considered is something that has common fea-
tures existed among all these three different brands rather than just another pair of pants
from “PRADA”. Thus, “Sport Pants” may be a more appropriate recommendation item than

Figure 1 An recommendation example based on a user’s sequential historical behaviors with their associated
KGs
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the “Another Pants of PRADA” since Mike’s three historical behaviors all have a path to it.
Several recommendation methods have been proposed from this perspective. For example, a
knowledge-aware attentional reasoning network [47] predicts users’ preferences by produc-
ing the representations of users’ sequential historical interest and users’ potential intent. An
RNN-based network [30] leverages the sequence in one path. However, none of these meth-
ods has considered the KGs-based explainable recommendation as a sequential modeling
issue.

However, there are several challenges to model KGs-based explainable recommendation
as a sequential problem. Firstly, it is a formidable task. Current KGs-based recommenda-
tions aim to excavate KGs’ abundant information in a spatial domain, while a sequential
problem generally transforms features from a temporal perspective. Secondly, the mea-
surement between the user and the terminal item in one path can not be easy since the
relations between them are complicated. Thirdly, the size of the action space in KGs can
run to millions. Hence, it is critical to design an efficient action-pruned method. Fourthly,
a recommendation system must guarantee the diversity of reasoning paths since a model
tends to trace actions and entities that have similar semantics with the previously positive
samples.

To solve the first problem, we propose a Reinforced Sequential Learning with GRU
architecture denoted as RSL-GRU in this paper. Specifically, it contains an RPRN and a
GRU component to jointly search optimal items both in the spatial and temporal domain. To
address the second problem, we propose an improved multi-hop scoring function. Although
the multi-hop scoring function [33] can measure the relationship between users with termi-
nal items, we argue that the user’s preference for prior items can influence his subsequent
choice. Considering this, we come up with an improved multi-hop scoring method. To deal
with the third problem, we propose a user-conditional derivatively action pruning strategy
to efficiently search promising actions in fixed action search space. To address the fourth
problem, we come up with a policy-guided sequential path reasoning algorithm.

The major contributions of this paper are as follows:

– We propose a novel architecture called RSL-GRU to successfully model the KGs-
based explainable recommendation as a sequential problem, which is driven by
an RPRN and a GRU component.

– We design an RPRN to excavate information from KGs, which contains a
soft reward function based on an improved multi-hop scoring strategy, a user-
conditional derivatively action pruning strategy, and a policy-guided sequential
path reasoning algorithm.

– We extensively evaluate the performance of our method on several Amazon e-
commerce datasets in terms of accuracy recommendation and path reasoning.
The results show the superiority of our method compared with state-of-the-art
baselines.

2 Preliminaries

In this section, we introduce the concepts of the KGs and formulate the problem. Some
important notations in this paper are summarized in Table 1.
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Table 1 Important notations

Notation Description

U,u user entities set U, u ∈ U

I,i item entities set I, i ∈ I

ε, ε∗,e entities set, e ∈ ε, ε∗∈ε

R, r relations set R, r ∈ R

GR1:K the dynamic KGs, consists of K KGs GR

T,t the number of steps or edges in a path

r̃t,j t-hop pattern

pt{e0,et } t-hop path

K the number of segmented periods

N the number of recommended items

h∗t the historical relations and entities

prior to step t

S, s state of entities, s ∈ S

˜A pruned action space

M number of selected actions after pruned

R∗,r∗
reward set R, r∗∈R∗

P,p path set, p ∈ P

Q,q probability set, q ∈ Q

π(·|s, ˜Au) policy network
ˆv(s) value network

O,o Observation set, o is of each segmented period o ∈ O

2.1 Knowledge graphs

Definition 3.1 (Knowledge Graphs) Formally, we establish the special KGs denoted asGR ,
which consists of a series of segmented users’ sequential items I with their associated KGs.
It contains a subset of entities sets ε and a relation set R. The entities sets ε are composed
of user entities U , a set of sequential items entities I, an associated entity set ε∗, where
U ∪ I ∪ ε∗ ⊆ ε and U ∩ I = φ.

Definition 3.2 (t-hop path) a t-hop path is denoted as pt (e0, et ) = {e0 r1↔ e1
r2↔ ...

rt−1↔
et−1

rt↔ et }, where ei

ri+1↔ ei+1 represents forward edge ei

ri+1−−→ ei+1 or backward edge

ei

ri+1←−− ei+1.

Definition 3.3 (t-hop pattern) a sequence of t relations for two entities is called a t-hop
pattern (e0, et ) if there are a series of uniquely typed entities e1, ...et+1. It can be formed by
r̃t = {r1, ..., rt }.

Definition 3.4 (1-reverse t-hop pattern) a 1-reverse t-hop pattern is denoted by r̃t,j =
{r1, ..., rj , rj+1, ..., rt } (j ∈ [0, t]). Generally, r1, ..., rj are forward, and rj+1, ...rt are
backward.
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2.2 Problem formulation

As users browse or purchase products every day, our KGs sequentially grow over
time too. Then KGs from the first period to the last period k form a sequence
GR

1:K = {GR
1 ,GR

2 , ...,GR
k }, where GR

k represents a series of users’ sequential items I
with its associated KGs in time k. So we can define our recommendation problem as
follows.

Definition 3.5 (Reinforced Path-Reasoning Sequential Recommendation problem,
RPRS-Rec) Given a series of sequential KGs GR

1:K , the goal is to find a set of recom-
mended items {in}n∈[N] ∈ I, and give the reasoning path pt (u, in) between the user
and the recommended items at the same time, where N is the number of final recom-
mended items, T is the number of edges in each path, K is the number of segmented
periods.

3 RSL-GRU architecture

In this section, we introduce the technical details of our RSL-GRU architecture.

3.1 Overall structure

As a user’s behaviors in e-commerce platforms are fast-changing, so do our KGs. There-
fore, we build a sequential KGs-based model to globally generate top-N recommenda-
tions with their reasoning paths for each user. It mainly consists of three components:

Figure 2 The overall architecture of RSL-GRU for sequential KGs-based explainable recommendation
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sequential KGs building, reinforced path reasoning using RPRN, and sequential mod-
eling using GRU. Considering the complexity and long-tail distribution of KGs, we
adopt a sequence of day-level KGs. For each period, we firstly to establish the KGs
GR

k based on the user’s sequential behaviors and their associated KGs in chronological
order. Here, to decrease the computation, we adopt a blocking strategy to divide each
subgraph GR

k into b sub-blocks GR
kb. Then, we execute path reasoning on each block

using a well-designed RPRN and integrate all excavated information of all blocks into
a whole observation ou

k of this period. Finally, we feed these sequential learned user’s
observations into a GRU network combined with an attention mechanism to output the
top-N items with appropriate reasoning paths. Figure 2 shows the overall structure of our
method.

3.2 Sequential KGs building using blocking strategy

Recall that the sequence of KGs plays a vital role in recommendation tasks. Considering
this, we come up with a method to build a sequential KGs efficiently and effectively. Firstly,
we sort all users’ historical behaviors in chronological order. Then, we segment every three
days of them into a period and there are K periods in all. Next, we build a subgraph for
each period. In each period, according to the sequence of the user’s historical behaviors,
we extract corresponding entities and relations in KGs. Thus, we construct a new sequen-
tial KGs based both on users’ historical behaviors and KGs’ information for each period.
However, this method will lead to a huge amount of calculation due to the following two
reasons: (1) There are huge numbers of entities and relations in KGs, so the computation in
each subgraph will be enormous; (2) We need to establish a subgraph for each period, which
is repeated and abundant. Thus, we utilize the blocking strategy to establish each subgraph
efficiently. For users’ historical behaviors in each period, we rely on a divide-and-conquer
strategy to partition the whole graph into non-overlapping sub-blocks {GR

k1, ...,G
R
kb} with

the same size. Since each block is much smaller than the whole subgraph GR
K , it would be

faster if we excavate the KGs information in each block using the well-designed RPRN.
It is noted that we ignore the relations between each block, which has been proved that
it can effectively increase the computing speed with no loss to the final results [25]. As
shown in Figure 2, we finally built a series of sequential subgraph GR

k , each subgraph GR
k

is established by b sub-blocks GR
kb.

3.3 Reinforced path reasoning using RPRN

The RPRN is a Reinforcement Learning (RL) model, which considers the information
extraction problem as a Markov Decision Process(MDP) [26]. It firstly extracts node
embeddings into a unified representation. Specifically, the agent in the RPRN starts
from a user u and then obeys the guidance of the soft reward function to walk down
along the pruned actions space ˜A that pruned by the user-conditional derivatively action
pruning strategy until it reaches the terminal entities et . In this process, the agent will
record all possible paths P with their reward R∗ driven by the policy-guided sequen-
tial path reasoning algorithm. After that, we can get the user’ observation representation
Ou

k of all periods KGs GR
1:K . The details of our RPRN will be introduced in the next

section.
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3.4 Sequential recommendation using GRUwith attentionmechanism

The user’s observation ou
k stands only for partial preferences, which couldn’t sequentially

speculate the user’s preferences. Considering this, we model our RPRS-Rec problem as a
sequential MDP.

As we all know, GRU always has an excellent performance in solving sequential prob-
lems due to its excellent ability to resolve the gradient vanishing problems. Thus, we adopt
a GRU network here to recommend the final top-N items with reasoning paths. Specifically,
it takes as input a sequence of embedding representations Ou

k = {ou
1 , o

u
2 , ..., o

u
k }. Next, the

hidden unit of GRU with an update gate zk and a reset gate r̀k controls the flow of informa-
tion to select superior hidden states hk from the candidate states ˜hk . Afterward, the GRU
network summarizes all observations Ou

k using a policy gradient conditioned on the user. It
can be formalized as follows.

zu
k = σ(Uzo

u
k + Wzh

u
k−1 + bz)

r̀u
k = σ(Ur̀o

u
k + Wr̀h

u
k−1 + br̀ )

˜hu
k = tanh(Uco

u
k + Wc(r

u
k 
 hu

k−1) + bc)

hu
k = (1 − zu

k ) 
 hu
k−1 + zu

k 
˜hu
k

(1)

where ou
k ∈ Rd is the input vector, U ∈ R3×d×d formed by Uz, Ur̀ and Uc is the transition

matrix for ou
k , the logistic function σ(x) = 1/(1 + e−x) is used to do non-linear projec-

tion, 
 is the element-wise product between two vectors.˜hk is the candidate state activated
by element-wise tanh(x). The output hk is the current hidden state where k is the number
of periods. To enhance the short-term interest in each hidden state, hu

k contains not only
information of the current period observation ok but also critical information of the for-
going period hu

k−1. In this way, the hidden units of GRU encapsulate the entire historical
observations o1:k and output a sequence of hidden representation {h1, h2, ..., hk}. Finally,
we adopt softmax function to output the top-N items. To simplify, the RSL-GRU ignores
the impossible newborn connection between two periods of observations.

Considering that different period’s observation has different contributions to the final
user’s preferences recommendations, we adopt an attention mechanism to measure the
importance. Specifically, we have the hidden representation of each period {h1, h2, ..., hk},
the attention mechanism is shown as follows.

ei
u = qT

u ∗ hi

ai
u = exp(ei

u)
∑K

k=1 exp(ek
u)

o′
u =

K
∑

k

ak
u ∗ hi

(2)

where qT is the attention vector, it’s the sum of each user’s reward in each period. o′
u is the

final learned embedding of the user u. Thus, the rewards of each state in each period are
also affected by the attention vector.

3.5 Optimization

As aforementioned, the sequential KGs-based explainable problem needs to be jointly
optimized both in spatial and temporal domains.

The optimal goal of RPRN is to learn a policy to maximize the expected cumulative
reward after multi-step for each user u. To solve this problem, we use a policy network
π(·|s, ˜Au) and a value network v̂(s) [33]. More specifically, the policy network π(·|s, ˜Au)
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is designed to quantify the effect of each action on the current state s. It takes the current
state s and pruned action space ˜A(u) as input and emits the probability of each action, with
zero for actions not in ˜A(u). The value network v̂(s), which is the baseline in REINFORCE,
is used to map the state s into real value. To minimize the error of the expected cumulative
reward, we use Adam optimizer to train the RPRN. The optimal formula of the RPRN can
be defined as follows.

J (θ) = Eπ [sumt=T −1
t=0 γ tR∗

t+1|s0 = (u, u, φ)] (3)

where γ t is the discount factor at step t, R∗
t+1 is the reward of step t + 1, s0 is the initial

state. θ is the hyperparameters in those two networks.
From the optimal results of the RPRN, we can get the optimal value of the expected

cumulative rewards between users with the terminal items after multi-step in each KGs
period, which is defined as gk ∈ [0, 1]. As mentioned above, these optimized values stand
only for the optimal one in one segmented period. Thus, we here further adopt the GRU
network to get globally optimal for each user. The optimal goal of the GRU network is to
minimize the negative samples’ effect. Specifically, we here employ the entities with non-
zero rewards as positive samples and the remaining entities as negative samples. Thus, the
loss function in the GRU network aims to maximize the following negative log-likelihood
function.

L = −{
∑

y∈O+
ylog(g̃) +

∑

y∈O−
(1 − y)log(1 − g̃)} (4)

where O+ are the positive samples, O− are the negative samples.

3.6 Policy-guided sequential path reasoning

In this section, we will explain our policy-guided sequential path reasoning algorithm,
which can output the potential top-N items for each user with their reasoning paths from a
global perspective. Its details are shown in Algorithm 1. It takes the user u, the policy net-
work π(.|s, ˜Au), value network v̂(s), and the similarity threshold ϕ as input and outputs a set
of global reasoning paths PK for each user with corresponding paths probabilities QK and
paths rewards R∗

K . Each t-hop reasoning path ends with an item entity, which is regarded as
one of the N final recommended items.

The algorithm firstly calculates users’ interests p(a) among all pruned actions ˜Ak,t in
each sequential KG GR

k , then it adds M actions with the highest probability interests in each
step t to each reasoning path, thus we can obtain a temporary candidate reasoning paths
P

tmp
k,T with corresponding paths generative probabilities Q

tmp
k,T and paths rewards R

∗tmp
k,T .

However, all the candidate reasoning paths are optimal in each sub-graph GR
k but not opti-

mal in all of them. Thus, it recalculates the change of users’ interests probabilities p(sk,T )

for the terminal entity in each temporary path over time. A reward attention function is
designed to calculate users’ initial interests distribution wk,t . Both users’ interests proba-
bilities p(sk−1,T ) of the former period and interests distribution wk,t of the current period
are put into GRU to output the interests probabilities p(sk,T ) of the current period. To
guarantee the diversity of reasoning paths, this algorithm sets a similarity threshold ϕ. The
similarity of any two paths should exceed ϕ. Otherwise, filter out one of the paths based on
users’ interests. Finally, all the reasoning paths p̂ corresponding with their sequential paths
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probabilities p(sk,T ) and paths rewards wk,t will be saved into the reasoning paths set PK ,
paths probabilities set QK and paths rewards set R∗

K .

4 Reinforced path reasoning network

In this section, we introduce the detailed structure of RPRN. Its overall architecture is shown
in Figure 3. To better understand the model, we firstly introduce the improved multi-hop
scoring function.
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Figure 3 The architecture of RPRN

4.1 Improvedmulti-hop scoring function

The original multi-hop scoring function [33] only measures the relationship between the
user and the terminal entity in a path. We argue that the user’s preference for the terminal
entity is affected by his former ones. Considering this, we propose an improved multi-hop
score function.

f (e0, et |̃rt,j ) =< 1
j
(sum

j

s=1(e0 + sums
i=1rs)),

1
t−s+1 (sumt

s=j+1(et + sums
i=j+1rs)) > +bet

(5)

where < ., . > is dot operation, e, r ∈ Rd, bet ∈ Rd are d-dimensional vectors of the
entities e and relations r and the bias of entity e. It calculates the relationship between the
user and the terminal entity based on a cumulation of all preferences for the prior ones.

4.2 Components of RPRN

The RPRN contains a continuous state space S, an available action set A = a1, a2, ..., an,
and a reward set R∗.

4.2.1 State

The state st is a tuple (u, et , h
∗
t ) at step t , where u is the starting user entity, et is the terminal

entity the agent has reached after t steps, and h∗
t = {et−k, rt−k+1, ..., et , rt } is the historical

path prior to step t .

4.2.2 Action

The whole actions space contains all possible outgoing edges with their connected entities
at state st except for the historical ones. Formally, the complete action space can be defined
as At = {

(r, e)|(et , r, e) ∈ GR, e /∈ {e0, .....et−1}
}

. Since some entities’ action space in the
real-world can up to millions, it is inefficient and impractical to calculate all of them. Thus,
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we propose a user-conditioned action derivatively pruning strategy. Its principle will be
introduced in the next section. The final pruned action space ˜A is defined as follows.

˜At(u) = {(r, e)|len(rank(f ((r, e)|u))) < M, (r, e) ∈ At } (6)

whereM is the integer number of actions space after pruned, f ((r, e)|u) is the action scoring
function, which is defined as a 1-reverse k-hop pattern with the smallest k using formula (5).

4.2.3 Reward

We propose the following scoring criteria to evaluate the paths.

Global accuracy The global accuracy of a path dividing the user’s selective probability on
the terminal item et by the sum of the user’s preferences for all items.

R∗
GLOBALT

=

⎧

⎪

⎨

⎪

⎩

f (u,et )
∑

f (u,i)
= f (u,et )

∑

f (u,i |̃r1,1) , i ∈ Iandet ∈ I

0, otherwise

(7)

where et = ∑t=T
t=1 rt represents the path embedding for the relation chain r1 → r2 → ... →

rT .

Path diversity A recommendation system with excellent explainability should provide
diverse reasoning paths. Hence, we define a diversity reward function as follows.

R∗
DIV ERSIT YT

= − 1

|F |
|F |
∑

i=1

cos(̃r, r̃i ) (8)

where F is the number of existing paths, r̃ = {r1, r2, ..., rt } is the relation embedding for
the path.

4.3 User-conditioned action derivatively pruning strategy

The basic principle is as follows. It firstly chooses a user as the initial state and then maps
every connected action (r, e) to a real-valued score conditioned on the user. Next, it chooses
M actions with the highest scoring as the start entities of the next step and repeats the above
operations until the final step T .

Take the sequential KGs part of Figure 3 as an example. Supposing choosing two candi-
date actions in a two-step path, the agent starts from u and calculates the scoring of its all
neighbor actions, such as i2, f2, b1, i3. Supposing that i2, f2 have the top two highest scor-
ings, thus they are chosen as the start of next step and stored into the current state s1. Repeat
the above process until the terminal step. Through this strategy, the calculation complexity
is fixed in a certain quantity as the step grows rather than exponentially growing in PGPR.

5 Experimental evaluation

In this section, we extensively evaluate the performance of RSL-GRU architecture on real-
world datasets.
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5.1 Experiments setup

In this section, we apply our RSL-GRU method on the following four Amazon datasets to
evaluate its performance in different domains. We firstly introduce the datasets and base-
lines briefly. Then, we design several experiments aiming to address the following research
questions:

– RQ1. How does RSL-GRU perform in top-K recommendation compared with the
baselines?

– RQ2. What is the influence of improved scoring function?
– RQ3.What is the impact of user-conditioned derivatively action pruning strategy?
– RQ4. What is the influence of attention mechanism?
– RQ5. How does RSL-GRU perfom in terms of explainability?

5.1.1 Datasets

We apply our RSL-GRU method on the following four widely used Amazon e-commerce
datasets1 from different domains to evaluate its performance, such as Beauty, Clothing,
Books, Movies&T V . Each dataset consists of both users’ behaviors and meta information.
Here, we firstly deleted the users whose clicked items are fewer than 3. Then, we sort the
remaining users’ behaviors by time-stamp. These datasets span fromMay 1996 to July 2014.
We argue that behaviors from a long time ago make no sense for the users’ recent preference
recommendation. Thus, we only randomly sample users’ latest three months behaviors in
each dataset to predict the top-N recommendation items. In average, we selected 91,946,
85,130, 97,950 and 59,000 users’ behaviors in Beauty, Clothing, Books, Movies&T V ,
respectively. Then, each dataset is segmented into 30 periods and each period contains users’
three days level sequential behaviors. Considering the long-tail distribution in KGs, we then
adopt Term Frequency-Inverse Document Frequency (TF-IDF) to prune the relations with
less prominent features and keep the frequency of feature words less than 5,000 with TF-
IDF score > 0.1. Finally, the users’ behaviors are divided into training and testing sets of
30% and 70%, respectively.

5.1.2 Baselines

We compare our method with the following state-of-the-art baselines.

– FMG (Factorization Machine Group with lasso) [40] is a meta-path based model
that employs a factorization machine to assemble user or item vectors for rating
recommendation.

– CKE (Collaborative Knowledge-based Embedding) [37] is a modern neural rec-
ommendation system to infer the top-N recommendations based on auxiliary
information.

– DAN (Deep Attention-based Network) [46] uses an attention mechanism to
extract users’ features from their history clicked sequence for a recommendation.

– PGPR [33] utilizes an RL model for recommendation items and reasoning paths
at the same time.

1https://nijianmo.github.io/amazon/index.html
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– KPRN (Knowledge aware Path Recurrent Network) [30] It’s a KGs-based path
recurrent network, which can well infer the rationale of user-item interaction
based on the well-designed path representation and a weighted pooling operation.

– KARN (Knowledge-aware Attentional Reasoning Network) [47] incorporates the
users’ clicked history sequences and path connectivity between users and items
for recommendation.

5.1.3 Parameter setting

The default parameter settings in all experiments are as follows. The path length in our
method ranges from 0 to 3. For sequential KGs building, all entities et and relations r are
embedded into a 100-dimension vector, and the historical path h∗

t is a concatenation of enti-
ties and relations. The relations are embedded bidirectionally. Besides, we set M = 250
actions at each state. Furthermore, we divide the subgraph of each period into 20 blocks. In
RPRN, we train the model 500 epochs using Adam optimization. Besides, we set a learn-
ing rate of η of 10−2 and a batch size of 64 for all datasets. The discount factor γ is 0.99.
In the process of sequential modeling, we set a ratio between positive and negative interac-
tion at 1:100, namely, 100 negative items are randomly sampled and pair with one positive
item. In each GRU, we set the learning rate at 10−1 and the batch size at 64 for all datasets.
We train our model 500 epochs using Adam optimization. The weight of the entropy loss
is 0.001. To fairly compare, all the baselines are rerun based on a 1-hop scoring function
shown in formula (5). All recommendation models are evaluated by the Normalized Dis-
counted Cumulative Gain (NDCG) (NDCG@N) and the Hit Ratio (HR) (Hit@N) at
Rank N .

Figure 4 Recommendation effectiveness of our model compared with baselines on Hit@N and ndcg@N
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5.2 RQ1. Performance comparison

In this section, we evaluate the performance of our model on four datasets compared with
several state-of-the-art baselines on the top-N recommendation. All the experiment results
are shown in Figure 4.

As shown in Figure 4, our model RSL-GRU outperforms other baselines on four datasets
with all metrics. More specifically, RSL-GRU increased by an average 1.4%, 2.3%, and
2.8% over PGPR, KARN, and KPRN, respectively, in terms of (Hit@N). When it comes
to (NDCG@N), it achieves at least 2.5%, 0.8%, 1.2% and 3.1% higher performance
than other models in Beauty, Clothing, Books, Movies&T V , respectively. According to
our research, there are three reasons that make its superiority of recommendation perfor-
mance: (1) We conducted user-conditioned recommendations based on the users’ historical
behaviors associated with their KGs.(2) We well designed an RPRN to excavate the rich
information from KGs, which can not only obtain the relation and items conditioned on
the user but also can conduct diversified path reasoning. (3) We use a GRU network with
an attention mechanism to further selectively learn users’ preferences from a sequential
perspective.

More details are as follows: (1) In Figure 4, the meta-path-based method FMG has the
worst performance among all the baselines. It just hit users’ preferences at 3%. It is mainly
because this method explores the entities and relations only based on the predefined meta-
paths, which may lead to an information gap outside the set paths. (2) Both CKE and DAN
perform much better than FMG. According to our research, both of them utilized the rich
auxiliary information, which can indirectly prove the effectiveness of mining more informa-
tion in the KGs. (3) DAN has a better performance than CKE in our experiments, and KARN
is also better than KPRN. The main reason is that the attention mechanism can help DAN
and KARN capture more reliable information, which gives a piece of explicit evidence that
the attention mechanism in our model may also be capable of learning users’ behaviors and
associated KGs more effectively. (4) Except for our model, other sequential methods, e.g.
KPRN and KARN, perform much better than the general methods (FMG, DAN, CKE). It
indicates that the sequential features with KGs information can better explore the user-item
interactions to infer users’ preferences. (5) Among all the baselines, the RL-based method
PGPR, which has an effective path reasoning process based on the well-designed KGs exca-
vation policy, has the best performance. It indicates that a policy-guided path reasoning
process can well explore the abundant information in KGs.

In addition, the time complexity of our RSL-GRU architecture is superior or comparable
to the baselines. As mentioned in section 3.2, we use a blocking strategy to build sequential
KGs. There are K sub-graphs and each sub-graph contains b sub-block. Thus, the time
complexity in building a sequential KG in each sub-block is much smaller than the whole
KG building methods in the baselines, such as PGPR [33], KPRN [30], and KARN [47].
Denote the times in sub-block KG constructing as 
, this option is conducted b times in all
K sub-graphs. Since the concentration among sub-blocks, the time complexity of sequential
KGs building is T (
) = K × b × 
. Then, our method uses a user-conditional derivatively
action pruning strategy to find M actions in each step. Thus, the time complexity of this
option grows exponentially along with the number of steps, which can be denoted as 
T

and T is selected from {1, 2, and 3}. As described above,M is set at 250, which is way lower
than the original action number. Compared with the baselines that save all actions [33], its
calculation economizes a lot. The time complexity in the multi-hop path scoring function
is T (
) = 
2 according to formula (5) and the time complexity in the reward function is
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T (
) = 
 based on formula (7) and formula (8). We use the GRU in the final sequential
modeling, its time complexity can be calculated by the product of input data and hidden
layer and denoted as 
2. Above all, the worst and best time complexities of our RSL-GRU
are 
3 and 
 respectively. In addition, its time complexity is much lower compared with
FMG and CKE. Both PGPR and our model have a
3 time complexity in the worst situation,
but our model has a much lower calculation. Although the time complexity of our model is
a little higher in the worst situation than 
2 in DAN, KPRN, and KARN, its calculation is
much smaller compared with them.

5.3 RQ2. Impact of improvedmulti-hop scoring function

We argue that a shorter reasoning path is more efficient on the reasoning, but a certain
amount of steps may provide more reliable information. Thus, we evaluate the performance
of our model under different hop with hop = {1, 2, 3}. To illustrate the effectiveness of our
method, we use PGPR as our baseline because it uses an original multi-hop function. To
fairly verify the impact of our improved multi-hop scoring function, we set our model the
same as PGPR except for the different multi-hop scoring function. Besides, the experiments
are measured by Hit@10 and NDCG@10 under the four datasets. The experiment results
are shown in Table 2.

As shown in Table 2, our method outperforms PGPR on four datasets with all met-
rics. More specifically, our improved multi-hop scoring function can achieve at least 3%
and 2% higher performance than PGPR on Hit@10 and NDCG@10, respectively. The
following advantages of our improved multi-hop scoring function make its outstanding per-
formance. Our multi-hop scoring function can measure the relevancy through the global
paths between the initial user and the terminal item rather than just the beginning and final
entities. It means that even if the initial user and terminal item of the two paths may be
the same, their relevancy may be different. Thus, the average value of the different paths
is more accurate than just direct relevancy. In summary, our improved multi-hop func-
tion can provide a recommendation with more outstanding performance than the original
one.

Besides, here are other impressive experimental results: (1) Among all the datasets, both
our model and PGPR with 2-hop and 3-hop perform superior to 1-hop under all metrics.
It depends mainly on the multi-hop function, which can effectively capture the relevancy
between entities with longer paths. (2) Both two models with 2-hop are further improved
than that with 3-hop. In terms of Hit@10, the performance of our model and PGPR with
1-hop achieves at least 0.2% higher than these with 3-hop. The reason may be that longer

Table 2 Performance comparison under different hop size with Hop = {1, 2, 3}
Hit@10 Beauty Clothing Book Movie&TV

1 2 3 1 2 3 1 2 3 1 2 3

PGPR 0.380 0.730 0.724 0.432 0.750 0.743 0.502 0.802 0.795 0.395 0.760 0.754

RSL-GRU 0.413 0.741 0.736 0.451 0.763 0.758 0.512 0.826 0.819 0.404 0.773 0.767

NDCG@10 1 2 3 1 2 3 1 2 3 1 2 3

PGPR 0.331 0.642 0.638 0.201 0.543 0.537 0.327 0.631 0.625 0.342 0.65 0.643

RSL-GRU 0.355 0.661 0.656 0.217 0.560 0.553 0.335 0.651 0.643 0.351 0.667 0.661
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paths may mislead the path reasoning process. (3) All models under 1-hop have a poor rec-
ommendation performance. It is because the entities with less information is not sufficient
for an agent to search the related recommendation items.

5.4 RQ3. Impact of user-conditioned derivatively action pruning strategy

In this section, we evaluate the performance of our model on four datasets under different
action space ˜A = {100, 150, 200, ..., 500} to illustrate the impact of our user-conditioned
derivatively action pruning strategy. Since PGPR is the only method with an original action
pruning strategy among all these baselines, we compare our method with it. To fairly com-
pare, we just set our model the same as it except for a user-conditioned derivatively action
pruning strategy. Both of them are conducted in one-hop. Besides, we measured them under
Hit@10 and NDCG@10. All experiment results are shown in Figure 5.

As shown in Figure 5, our user-conditioned derivatively action pruning strategy has
better performance than PGPR on four datasets with all metrics. More specifically, our well-
designed action pruning strategy can achieve at least 0.5 higher performance on Hit@10
and NDCG@10. According to our research, the main reasons are as follows: (1) Bene-
fit from the improved multi-hop scoring function, our user-conditional derivatively action
pruning strategy is capable of re-evaluating the current choice by comprehensively consid-
ering the entities in the whole path. Thus, it ensures a high correlation between the initial
users and the terminal items. (2) We execute the user-conditioned action pruning strategy
at each step, while PGPR only searches a certain number of actions initially. (3) Different
from randomly sampling fixed quantity actions in PGPR, our model maintains a moderate
number of actions with the highest scoring at each step.

Generally speaking, the model under both action pruning strategies shows a downward
trend as we gradually increase the action space size. The reason is as follows. Although
bigger action space means more available information, it also means there may be more
redundancy and useless interference information. For instance, there are a large number of
redundant relationships in Beauty, such as Described by and Mention, which may cause
information disorder. Thus, these two lines are both decreasing rapidly due to the increase
of action space size on Beauty.

In conclusion, the recommendation system with our user-conditioned derivatively action
pruning strategy can achieve outstanding performance under most action space size.
Besides, we also find that a small action space is helpful for better performance.

5.5 RQ4. Impact of attentionmechanism

In this section, we evaluate the impact of attention mechanism on four datasets under
Hit@10 and NDCG@10. In particular, we disable the attention mechanism as shown in
(2), and rename it as RSL-GRU-0. For a fair comparison, we set all the rest of the parameters
the same. Finally, we summarize the experimental results in Table 3 and have the following
conclusions:

– The attention mechanism does have a positive effect on our model, which at least
achieves 0.3 and 0.2 higher performance in terms of Hit@10 and NDCG@10,
respectively. One main reason is that the items that users may choose in each
period time might have different influence factors on the final recommenda-
tion. If we treat all period observations equally, it might mislead the sequential
recommendation process.
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Figure 5 The recommendation performance under different sizes of action space compared with PGPR on
Hit@N and NDCG@N

– The attention mechanism has a different improvement on each dataset. In particu-
lar, it achieves the best improvement on the Movie&T V dataset in both metrics.
After searching, we find that the users’ historical behaviors vary greatly in the
Movie&T V dataset. Thus, if we give them different weights, the model learned
by our method is more in line with the real situation.

5.6 RQ5. Explainability comparison

All the experiments above show that our RSL-GRUmodel has an excellent recommendation
performance. Still, beyond that, another desirable property of our RSL-GRU model is to
reason on paths.

To evaluate the explainability of our method, we first measure its ability to find valid
reasoning paths. We argue that a recommendation with excellent explainability should pro-
vide more valid reasoning paths. We randomly sample 125 valid paths for Beauty and
Clothing datasets, and 200 for the other two datasets. To fairly compare, we use PGPR

Table 3 The effect of attention mechanism on our model in four datssets

Metrics Methods Beauty Clothing Book Movie&TV

Hit@10 RSL-GRU-0 0.787 0.797 0.839 0.805

RSL-GRU 0.817 0.825 0.863 0.841

NDCG@10 RSL-GRU-0 0.705 0.612 0.651 0.648

RSL-GRU 0.734 0.635 0.679 0.683
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Table 4 Performance comparison in finding valid paths per user, unique items per user and paths per item
compared with baselines

Valid Paths/User Beauty Clothing Book Movie&TV

KPRN 52.78 ± 5.96 53.35 ± 6.88 127.19 ± 13.95 102.84 ± 12.76

PGPR 59.95 ± 6.28 60.78 ± 7.00 153.25 ± 21.78 126.71 ± 13.19

RSL-GRU 67.49 ± 6.21 67.93 ± 6.84 177.28 ± 22.35 155.51 ± 17.92

Items/User Beauty Clothing Book Movie&TV

KPRN 34.15 ± 6.93 33.79 ± 7.04 103.17 ± 10.74 57.79 ± 8.39

PGPR 36.91 ± 7.24 37.21 ± 7.23 115.75 ± 12.63 68.26 ± 12.94

RSL-GRU 40.72 ± 7.03 40.76 ± 7.12 123.35 ± 27.19 80.35 ± 13.21

Paths/Item Beauty Clothing Book Movie&TV

KPRN 1.54 ± 1.03 1.58 ± 1.07 1.23 ± 1.13 1.78 ± 1.27

PGPR 1.62 ± 1.25 1.63 ± 1.25 1.32 ± 1.25 1.85 ± 1.31

RSL-GRU 1.66 ± 1.17 1.68 ± 1.20 1.44 ± 1.21 1.93 ± 1.52

and KPRN as our baselines since both of them can reason on paths to generate reasonable
explanations. All experiment results are shown in Table 4. Generally speaking, our method
can find approximately 0.69 of the valid paths for each user, which is increased by 0.11
and 0.19 compared with the PGPR and KPRN, respectively. Besides, each item is endowed
with 1.7 paths on average. It means that our method can provide multiple reasoning paths
as interpretations. The two advantages of our RPRN make its outstanding recommenda-
tion performance: (1) We take into account users’ historical behaviors and their associated
KGs information to speculate on users’ preferences, which implies that our method can
sequentially excavate users the optimal recommendation items in richer and diverse choices.
(2) The RPRN architecture is equipped with a superior path reasoning capacity due to its
well-designed path reasoning policy.

Secondly, we show several cases generated by our model on the sequential explainable
task in the Movie&T V dataset. Besides, we also use different colors to indicate recom-
mended products at each period times: black for first, green for a second, red for third. In
this experiment, we set path steps at 3. As shown in the first period time G1 in Figure 6,
the user interacts with a movie called “Rudy”. Next, our method finds two paths in KGs:
it is an inspirational movie and directed by “Jon Favreau”. From these two perspectives,
our model recommends “Coach Carter” and “Term Life” both in 0.5, respectively. In the
second period, the user firstly interacts with an adventure movie “Captain America”. Thus,
our method recommends another famous adventure movie “Fast & Furious” with 0.3. It is
mainly because the user hasn’t interacted with this kind of movie before. Followed by this,
the user interacts with “Iron Man”, which is directed by “Jon Favreau”. Hence, our method
gives another “Jon Favreau” directed movie “Iron Man 2” with 0.6. The higher probability
is primarily because that the user already interacted with a movie directed “Jon Favreau”
in the first period and the later one plays a positive strengthening effect for the recommen-
dation. In the third period, the user interacts with another adventure movie “Spired Man”
directed also by “Jon Favreau”. On account of both two features that have been existed in
the former two-period time, our method reasonable guesses that the user would like a movie
meeting these two features jointly. Therefore, “Iron Man 3” is recommended with 0.8.
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Figure 6 Case study for path reasoning

6 Related work

Generally, the related works in this paper can be grouped into four categories: sequen-
tial recommendation, recommendation with KGs, recommendation with RL, sequential
explainable recommendation.

6.1 Sequential recommendation

Sequential recommendations have been becoming a hot topic in recent years. Some pio-
neer sequential models, such as LSTM [10], RNN [5], and GRU [34, 42], etc, have made
an outstanding performance in the sequential recommendation. These methods generally
predict users’ subsequent top-N recommendation items based on their previous behaviors
and contextual information. For instance, [44] adopts a Tree-LSTM model to improve the
representation by combining the syntactic structure and the semantic information, which
achieves significantly better results than standard LSTM. Considering the cold start prob-
lem due to the insufficiency of users’ feedback, Qiang et al. [6] propose a multi-view RNN
model to dynamically learn the comprehensive item representation with latent, visual, and
textual features for a further sequential recommendation. However, the monotonic temporal
dependency of RNN in [6] impairs the users’ short-term interest. To solve this problem, a
hierarchical contextual attention-based GRU network [17] comprehensively exploits users’
several current hidden states and contextual hidden state information to reflect their real
interests. In addition, there are some other methods [13, 15, 36] for sequentially embed
users’ historical behaviors. For example, Tang et al. [23] propose a convolutional sequence
embedding recommendation model as a solution to address this problem. This model uses
convolution filters to embed a sequence of users’ items into an “image” feature to capture
the users’ general preference and sequential patterns. However, the main drawback of the
sequential recommendation method is the one-sided observation, which means it only can
capture the features from a users’ perspective. Nevertheless, the complicated and enormous
relations between items also imply abundant information.
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6.2 Recommendation with KGs

To deal with the upper problems, the KGs-based recommendations have been attracting
substantial interest in the research community. These methods can be primarily divided into
two groups: KGs-based embedding methods and path-based recommendation.

KGs-embedding based models [7, 8, 39] usually leverage KGs embedding techniques to
guide the representation learning of users and items. For instance, to integrate large-scale
structured and unstructured data of KGs, a KGs-based explainable collaborative filter-
ing framework [1] is proposed, which utilizes a knowledge-base representation learning
framework to embed heterogeneous entities and a soft matching algorithm to generate per-
sonalized explanations for the recommended items. Current collaborative filtering usually
suffers from a poor recommendation performance due to the sparsity of user-item interac-
tion. To address this problem, a collaborative knowledge base embedding framework [37]
uses TransR to extract items’ heterogeneous structural representations, which also applies
stacked denoising auto-encoders and stacked convolutional auto-encoders to extract items’
textual representations and visual representations, respectively. The KGs-embedding based
models are flexible to exploit abundant embedding information from KGs. However, they
lack an explicit explanation of relations in KGs for the final recommendation.

Different from KGs-embedding based models, the path-based recommendation usually
explores the diverse relations among KGs to give an explicit and reliable explanation. For
instance, a knowledge graph attention network [29] is proposed to exploit the higher-order
reasoning paths, which recursively propagates the embeddings from a node’s neighbors to
refine the node’s embedding and employ an attention mechanism to discriminate the impor-
tance of the neighbors. To further exploit the information encoded in KGs, [28] proposes an
MRP2Rec to explore various semantic relations in multiple-step relation paths to improve
recommendation performance. The above methods only consider relationships of as a single
type. However, the recommendation problems in many applications exist in an attribute-rich
heterogeneous network environment. To address this problem, a meta-path-based method
[35] systematically learns the heterogeneous features to represent the different sizes of rela-
tionships between entities. Besides, Junwei et al. [38] use an attention-based bidirectional
LSTM to learn the influence of different paths. The path-based recommendation methods
can achieve superior recommendation performance as well as path-based reasoning. How-
ever, they are prone to generate redundancy information since they enumerate all possible
paths.

6.3 Recommendation with RL

RL has been achieving remarkable performance in non- files such as Question Answering
(QA) [2], music recommendation [31], demonstrating its excellent ability in understand-
ing the environment. In recent years, to promoting the recommendation models to search
meaningful paths rather than enumerate all possible paths in KGs, RL has been gradu-
ally introduced in recommendations. Some RL-based recommendation models [4, 9, 41]
have achieved outstanding performance in recommendation. For example, Song et al. [20]
proposed a knowledge-aware recommendation model to generates meaningful paths from
users to relevant items by learning a walking policy on the user-item-entity graph, which is
designed to deal with the data sparsity and cold start problems. Besides, a PGPR model [33]
is also proposed, which can provide the recommendation system with an ability to simulta-
neously generating reasoning paths and accurate recommendations. Specifically, it contains
a multi-hop function for calculating the relevancy between users and terminal items in one
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path, an innovative soft reward strategy for evaluating the effect of users’ choices, and a
user-conditional action pruning strategy to guide the model for searching efficiently and
effectively paths in KGs. Above all, the RL-based recommendation method can endow the
recommendation system with an excellent path reasoning process.

6.4 Sequential explainable recommendation

Recently, some research [12, 24, 27] have conducted sequential recommendations based on
KGs and user-item interactions. For instance, Baocheng et al. [24] use a hybrid of graph
neural network and a key-value memory network to extract users’ sequential interest and
semantic-based preference, which improves the strategy for constructing session graphs
from interaction sequences for the sequential recommendation task. To solve the user-
commodity sparseness in, a knowledge-guided reinforcement learning model is proposed,
which designs a composite reward function to compute both sequence and knowledge level
rewards. However, these methods cannot provide explanations of why these items are rec-
ommended to users. To address this problem, a novel explainable interaction-driven user
modeling algorithm [12] employs multi-modal fusion to learn the importance scores for spe-
cific user-item pairs, which aims to capture the users’ interaction-level dynamic preference.
To achieve better sequential explainable recommendations, several studies explore users’
potential interests comprehensively considering users’ sequential historical behaviors and
KGs. To better model the sequential dependencies within a path, Wang et al. [30] contribute
a knowledge-aware path recurrent network to leverage the sequential relations within one
path based on a newly designed weighted pooling operation. To better explore the effect of
users’ sequence and KGs on recommendation, a knowledge-aware reasoning network [47]
not only develops an attention-based RNN to capture users’ historical interests but adopts
a hierarchical attention neural network to reason on paths. Although the above methods
can achieve good performance in the sequential explainable recommendation, none of these
have considered the KGs-based recommendation as a sequential problem.

7 Conclusion and future work

This paper proposes an RSL-GRU architecture for the KGs-based sequential explainable
recommendation. It explicitly exploits abundant information in users’ historical behav-
iors associated with their KGs. Specifically, RSL-GRU uses the blocking strategy to build
a sequential KGs. Besides, an RPRN is also designed for reasoning out the motivations
behind each successful purchase behavior. To output potential top-N items for each user
with appropriate reasoning paths from a global perspective, a GRU network combined with
attention mechanism is utilized. We conduct the experiments on four Amazon e-commerce
datasets to verify the excellent performance in both sequential recommendation and path
reasoning compared with several state-of-art baselines. For future work, we would like to
examine the RSL-GRUmodel on different recommendation tasks. We also intend to explore
the heterogeneous information and contextual information of the paths in the future.
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