World Wide Web (2022) 25:569-607
https://doi.org/10.1007/511280-021-00891-6

®

Check for
updates

Finding attribute diversified community over large
attributed networks

Afzal Azeem Chowdhary’ - Chengfei Liu' - Lu Chen' - Rui Zhou' - Yun Yang'

Accepted: 28 April 2021/ Published online: 17 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Well connected users are generally discovered in communities which is one of the most
important tasks for network data analytics and has tremendous real applications. In recent
years, community search in attributed graphs has begun to attract attention, which aims
to find communities that are both structure and attribute cohesive. Meanwhile, searching
a community that is structure cohesive but attribute diversified, denoted as attribute diver-
sified community search, is still at an early stage. In this paper, we introduce our recent
effort for discovering attribute diversified community. In fact, for different applications, the
needs of attribute diversification for modelling the community are quite different. We intro-
duce three attribute diversified community models in which attribute diversification takes
different roles for presenting as an objective and as a constraint. We also discuss major tech-
niques for speeding up the attribute diversified community search. We conduct extensive
experiments to show the effectiveness and efficiency of our algorithms for finding attribute
diversified communities in various settings.

Keywords Community search - Diversity - User engagement - Attributed networks -
Indexing

This article belongs to the Topical Collection: Special Issue on Large Scale Graph Data Analytics
Guest Editors: Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang

P4 Chengfei Liu
cliu@swin.edu.au

Afzal Azeem Chowdhary
achowdhary @swin.edu.au

Lu Chen
luchen @swin.edu.au

Rui Zhou
rzhou@swin.edu.au

Yun Yang

yyang @swin.edu.au

Swinburne University of Technology, Melbourne, Australia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00891-6&domain=pdf
mailto: cliu@swin.edu.au
mailto: achowdhary@swin.edu.au
mailto: luchen@swin.edu.au
mailto: rzhou@swin.edu.au
mailto: yyang@swin.edu.au

570 World Wide Web (2022) 25:569-607

1 Introduction

Graphs have emerged as a powerful model for representing different types of data, such as
social networks, author collaboration networks, location based social networks (LBSNs),
citation networks, etc. In these graphs, discovering communities that naturally exist as
groups of fine-connected users is one the most important tasks for network data analytics
and has tremendous real applications. The networks properties are necessary to make sense
of communities that are formed by a set of entities that are densely connected with certain
relationships. Density of subgraph using structure cohesiveness is one of the state of the art
methods to detect communities. The nodes in these networks will represent entities such
as users, authors, influencers, etc. While the edges represent friendships, co-authorship,
follower relationship, etc. Several distinct models for cohesive (dense) subgraphs and com-
munities have been proposed in the literature that are based on structure cohesiveness, e.g.,
k-core [4, 39], k-truss [15], k-edge-connected graph [8, 9, 53], k-vertex-connected graph
[44], etc.

Nevertheless, most of the previous studies [4, 8, 9, 39, 44, 53] have focused on finding
communities from a graph without considering attributes. As such, the returned communi-
ties may miss out important attributes describing a variety of features of real applications.
Recently, attributed community search has been studied well in literature and has gathered
some attention. Normally, the entities in a real-life networks often exhibit properties which
are beneficial to make sense of communities through graphs. Such networks are coined as
Attributed Graphs. Here, the attributes of the nodes help search the affluent communities
which are both structure and attribute cohesive. These state of the art methods use struc-
ture cohesiveness alongside attribute cohesiveness to search attributed communities, e.g.
(k, d)-truss [1], (k, r)-core [50], (k, d)-MCC [11], k-truss CAC model [55]. These works
endeavour to find communities that are both structure and attribute cohesive. Since attribute
cohesiveness is an optional constraint to search communities, communities are also found
where attributes are diversified [12, 31, 34]. Here, the attributes of the nodes exhibit cer-
tain level of diversity within the community. However, study for community search that
takes serious consideration of structure cohesiveness but attribute diversification within a
community is still at an early stage.

In this paper, we study about attribute diversified community. By an attribute diversi-
fied community, we mean that the connected nodes inside the community exhibit difference
in terms of interested attributes. In addition, different purposes for diversification may end
up with different kinds of attribute diversified communities. Therefore, we introduce and
propose attribute diversified community search, including three attribute diversified com-
munity models in which attribute diversification takes different roles for being presented,
as an objective, and as a constraint. The first two community models proposed consider
attribute diversification as an objective. And, the last one considers attribute diversification
as a constraint.

1.1 Maximising attribute diversification

Discovering a community with members as diversified as possible has numerous applica-
tions. The relationships between connected members exhibit high diversity, i.e., diverse in
terms of attributes shared but also being cohesive with regard to their friendships/social
relationships. Here, we present attribute diversity as a search objective that needs to be
maximised. We propose two different search objectives, the max-min problem and the
max-average problem.

@ Springer

World Wide Web (2022) 25:569-607 571

An example for the max-min problem, is finding a set of users from Twitter with various
technological expertise to form a diverse collective representation. Such users are generally
representative members of the group that maintain high attribute diversity between the rela-
tionships, where members are technically sound, and the relationships can capture various
technological expertise. The high attribute diversity is maintained when the worst possible
attribute diversity value of the relationships is the best minimum value that can exist across
the community.

An example for the max-average problem, is building a team for group brainstorming
to address a cognitive bottleneck of idea generation. Group brainstorming shall engage
diversified individuals to collaborate by communicating and sharing ideas in groups, where
diversified individuals can substantially broaden the knowledge base available for idea gen-
eration and the social engagements among the individuals allow the creative effort to be
aggregated. The attribute diversity of the relationships is aggregated to maximise the overall
diversity of the community. For such applications, since they target community members for
innovations and there are evidences that maximising the overall diversity leads to creativity
[41], the desired community would be preferred to maximise the overall attribute diversity
of its members, which was previously studied in our work [14]. This max-average problem
differs from the above max-min problem, which considers the worst possible attribute value
if they can contribute to the overall average diversity of the community.

1.2 Attribute diversification as constraint

Some applications would like to find a community that exhibits certain level of attribute
diversification but has members with social relationships as cohesive as possible. One such
example is in Facebook, where we find a cohesive user set with distinct linguistics abili-
ties for promoting products across multi-lingual pages/groups for better reachability. The
cohesiveness of the group will make the communication and promotion easy. Other appli-
cations include, identifying connected influencers with diverse topic orientation in social
contagion modelling, finding sequences exhibiting anomalies in gene/protein regulation,
forming a socio-cultural contrasting group for providing expert recommendation, etc. For
these applications, the target members show high degree of cohesion that leads to better
communication between the users. We call such a community as the attribute diversified
community with maximum cohesiveness. This allows the users to be greatly involved to
get a trans-informative result and distinctive enough in terms of their user attributes. The
preliminary idea of this problem was introduced in [34].

1.3 Contributions and road map

We assimilate the models that we have proposed above and list their contributions. Then,
we present the road map that shows the flow of the paper. The main contributions of this
paper are as follows:

— We aim to find an attribute diversified community where attribute diversification is con-
sidered as a search objective to be maximised by considering it as a max-min problem
(Section 3).

— We then aim to find an attribute diversified community where attribute diversification
is considered as a search objective to be maximised by considering it as a max-average
problem (Section 4).

@ Springer

572 World Wide Web (2022) 25:569-607

— We also aim to find the most cohesive attribute diversified community where attribute
diversification is used as a constraint to find the most structurally cohesive diversified
community (Section 5).

The rest of this paper is organised as follows. In Section 2, we introduce and discuss
basics for attributed graphs. In Sections 3—5 we discuss our attribute diversified community
search works. We conduct extensive experimental evaluations and present them in Section 6.
We discuss the related works and conclude the paper in Sections 7 and 8 respectively.

2 Preliminaries

In this section, we formally introduce the commonly used community cohesiveness metrics.
An attributed graph is denoted as G = (V, E, A), where V(G), E(G) and A denote the
set of vertices G, the set of edges in G, and the set of attributes A in terms of keywords
respectively. Each vertex v € V(G) is attached with a set of attributes A, € A. Given
v € V(G), deg(v, G) denotes the degree of v in G and N (v, G) denotes the neighbours of
vinG.
Next, we define the social cohesiveness metrics used in paper.

Definition 1 k-core subgraph. Given a subgraph H C G, an integer k, H is called k-core
subgraph if for every v € V(H), deg(v, H) > k and such maximum & is called the coreness
of H.

Definition 2 Coreness. Given a graph G, the coreness of a vertex u € V(G), denoted by
¢y, is the largest k, such that u is contained in the k-core of G.

Intuitively, a k-core is a subgraph in which vertex has at least k neighbours. A k-core with
a large value k indicates strong internal connections over members. A k-core is maximal if
it cannot be extended.

Next, each Hy represents the set of all connected k-core subgraph in G and is called a
k-core set. For any integer k' > k, Hy C Hy, i.e., the k’-core set is always a subgraph of
the k-core set.

The k-shell S represents the set of vertices in G with coreness equal to k, i.e., Sx(G) =
V(H(G) \ V(Hi41(G)).

Next, we briefly describe some properties of k-core, which we will use to define our
indices further.

The idea behind hierarchy of k-cores is that, all the k-core cores of a graph are nested into
one another, i.e., a (k 4 1)-core is contained in a k-core. Thus, the following properties hold
for every integer k. a) Disjointness For the same k-core set, every k-core is disjoint from
each other in that set. b) Containment A k-core is contained by exactly one (k — 1)-core.
Therefore, the hierarchy of k-cores can be represented by a set of trees where each node is
associated with a particular k-core set with coreness k. On this basis, we define the following.

Definition 3 k-core tree node. Given a k-core subgraph H C G, each k-core tree node Ty
is uniquely associated with the vertices in H with coreness k, i.e., H N S # ¢.

Note a k-core tree node does not necessarily have vertices connected, because the k-shell
vertices may be separated by other vertices with higher coreness.

@ Springer

World Wide Web (2022) 25:569-607 573

A k-core tree node is a parent tree node if for any integers i, j and Ty, T, are
respectively associated with a k-core tree node, then Ty; is the parent of T; if,

() ki < kj; (i1) H; € H;; and (iii) any k’-core tree node with k; < k' < k; is not the
parent of Th;.

Given a k-core H is associated with a unique Ty, the k-core tree node contains vertices
in the k-shell while leaving the rest in its children. The original H can be reconstructed
recursively by the vertices in Ty and its children Ty, , ... Th,, if Ty has children.

Definition 4 k-core tree. Given a graph G, the k-core tree is constituted by all k-core tree
nodes for every integer k from O to k4, Where every core tree node is connected to its
parent if it exists.

The above core tree organizes all k-cores into a hierarchy, where each tree corresponds
to a connected component of the original graph. The core tree can be stored in O(n) space,
because each vertex exists in exactly one core tree node corresponding to its coreness and
each core tree node has exactly one parent.

While explaining our advanced search order heuristics, we use the following definitions
as the basis to explain later in Section 5.2.

Definition 5 A graph G is k-degenerate if every subgraph g of G has a vertex with degree
at most k in g. The degeneracy of G, denoted §(G), is the smallest value of k for which G
is k-degenerate. That is, the degeneracy 6(G) of G equals the maximum value among the
minimum vertex degrees of all subgraphs of G.

Definition 6 Degeneracy order. Given a graph G, a permutation (vy, vy, ..., v,) of all
vertices of G is a degeneracy ordering of G if every vertex v; has the minimum degree in
the subgraph of G induced by (v, ..., v,).

The k-degeneracy and the degeneracy ordering of the vertices of a given graph G can
both be computed in linear time [39].

These are some common notations summarised in Table 1 used throughout the paper for
simplicity.

We will introduce detailed attribute diversification metrics when introducing the specific
models.

3 Attribute diversified community - max-min problem

In this section, we talk about maximising attribute diversity as a max-min problem. The
motivating example will show how on using attribute diversity as a search objective can
solve the max-min problem. We then introduce an attribute diversified community search
work that maximises the max-min attribute diversity. Later on, we discuss the solutions.

Motivating example Let Figure 1 be a graph representing a Twitter network, where each
node represents a user and each edge represents friendship between users. Each user in
the graph has some distinct attributes which shows his/her domain areas/interests. Now,
considering a scenario where to find a small representative community, the representation
of distinct domain areas is maximised by a few number of members. Since, these members
are knowledgeable in their respective fields and show distinction within the community.

@ Springer

574

World Wide Web (2022) 25:569-607

Table 1 Notations used in the
paper Notation

Definition

G

H,H
n,m
V(H), E(H)
u, v

Ay

(u, v)
deg(u, H)
kmax

Cy
§(G)ord
8y

Sk

H*

h

an undirected attributed graph

a subgraph of G

the total number of vertices and edges in G
the vertices and edges in H

the vertices in the attributed graph
the attributes of u in G

an edge in the attributed graph

the degree of u in H

the max coreness of G

the coreness of vertex v of G

the degeneracy of G

the degeneracy of vertex v in G

the k-shell of G

the optimum result for an algorithm

a connected k-core

Therefore, we need a representative community whose relationships are attribute diversified.
The attribute diversified community model that maximises attribute diversity by considering
it as a max-min problem, is used to find a group of members that represents the diverse
domains. The max-min problem finds the community by only keeping those relationships
inside the community where the least possible attribute diversity value that can exist is the
maximum one, while still being structurally cohesive. The max-min problem will try to leave
out the worst values of attribute diversity from the community, and will only maximise the
best of the minimum possible value. The advantage of such a representative community is
that it can be found in a cost-effective manner. In Figure 1, each member has a relationship
with at least 2 other members, which makes the graph structurally strong.

{PS4, Apple, {SEO, Networks, {SEO, PS4,
Q
Linux} Linux} Android} 0

0.80 0.80
()

{RPG, SEO,

Android}
{AI, Apple,
SEO}

0.80

Figure 1 A twitter graph

@ Springer

G H
0.50 u 0.50 u
{RPG, SEO, {Android, Linux, {Android, Al,
Networks} Networks} Networks}

{Ps4, SEO,
Networks}

World Wide Web (2022) 25:569-607 575

In Figure 1, {E,l,J}, shown with shaded nodes, is the representative community found
using the max-min problem. The max-min problem leaves out all the low values to attain the
maximum possible least attribute diversity value of 0.8 across all the relationships, when
each member knows at least 2 others in the community. Next, we study on how to model
and search attribute diversified communities that maximises attribute diversity by consid-
ering it as a max-min problem. To model such an attribute diversified community, we first
define a diversity measure on the relationships. The community’s structure cohesiveness is
ensured using k-core, where each member has a relationship with at least k users in the
community. Based on the diversity measure and the k-core structure constraint, we model
an attribute diversified community that maximises the max-min problem. We then develop
efficient algorithms to solve the problem. We first show that, this problem can be solved
in polynomial time by proposing a baseline algorithm, and then we propose an enhanced
algorithm with less time complexity.

3.1 Problem definition

We first propose the diversity between any two vertices as follows.

Diversity for two vertices Given a pair of vertices u, v € G with attributes A, and A,
respectively, the diversity function is defined as div((u, v)) =1 — %.

The above diversity function defined between two vertices is based on the Jaccard dis-
tance metric. There are other distance metrics such as cosine distance, edit distance, etc.,
but they are not suitable for defining the diversity function for our problem, which is to
compute the similarity between two sets of attributes. We use Jaccard distance because it
uses set operations, where the ordering of attributes is not important. But for cosine distance
and edit distance which consider the similarity of two vectors or lists, the ordering of the
attributes is important.

Next, we propose the minimum based diversification metric.

Minimum based diversity Given H, the minimum based attribute diversification of H is
measured by
minDiv(H) = min{div((u, v))|(u, v) € E(H)}.
Next, we consider member diversification as well as structure cohesiveness over mem-
bers simultaneously to model a community. Therefore, we propose the member diversified
community model, using k-core and minimum based diversity metric.

Attribute diversified community - max-min Now, we are ready to propose the attribute
diversified community model based on max-min search objective.

Definition 7 Attribute diversified community - max-min. Given a subgraph H C G, an
integer k, H is defined as an attribute diversified community if H satisfies the following
constraints simultaneously:

— Connectivity: H is connected;
— Social cohesiveness: H is a k-core subgraph;
— Attribute diversity: H follows minDiv(H).

Accordingly, given G and an integer k, the research problem we focus on in this paper is
as follows.

@ Springer

576 World Wide Web (2022) 25:569-607

Research Problem. Attribute diversified community search - max-min. Find the sub-
graph H C G that maximises minDiv(H).

Example To briefly show the results of the max-min problem. We will discuss the exam-
ple shown in Figure 2a, where the edges are assigned random attribute diversity values on
the edges. For the max-min problem, when k=3, the attribute diversified community is the
subgraph {1,3,4,6} with maximum of minimum diversity 0.60 as shown in Figure 2c. Sim-
ilarly, when k=2, the subgraph {5,6,7} with maximum of minimum diversity 0.77 is shown
in Figure 2b.

In the following section, we firstly show that the max-min problem can be solved in poly-
nomial time by proposing a baseline algorithm. Then we propose an enhanced algorithm
with less time complexity, by taking the advantages of sort and incremental computation.
This ensures that the problem can be solved in linear time.

3.2 Baseline approach

We first show that the decision version of the max-min problem can be solved in polynomial
time. Then we show that we only need to solve at most m numbers of the decision problem.
We start from the definition of decision version of max-min problem.

Decision version of max-min problem Given a graph G, an integer k and an edge (u, v)
with attribute diversity of div((u, v)), we determine if there is subgraph H C G such
that H satisfies the first two constraints in Definition 3.1 while the min Div(H) is at least
div((u, v)).

Lemma 1 The decision version of max-min problem can be solved in O(m).

Proof sketch We prove this lemma by showing an O(m) algorithm solving the decision
problem. The algorithm is described as below. Firstly, we remove all edges with attribute
diversity below div((u, v)), which takes O(m) time. Then, we progressively delete vertices
with degree less than k from the remaining graph till all the remaining vertices with degree
no less than k, which takes O(m). If the remaining graph is not an empty set then the result
of decision problem is yes otherwise no.

Next, we show that the max-min problem can be solved in polynomial time by proposing
a lemma below.

0.88 e

(a) Input Graph (b) Result for k=2 (c) Result for k=3

Figure 2 A toy example with attribute diversity for max-min problem

@ Springer

World Wide Web (2022) 25:569-607 577

Lemma 2 The max-min problem can be solved by solving at most m numbers of its decision
version problem.

The proof is trivial since there are at most m distinct values of minDiv that we need
to try for G before the optimum result can be derived. We are ready to show the complete
baseline algorithm as follows.

Algorithm 1 Baseline.

Input : H: maximal k-core

Output: H*

1 H* <~ H,;

2 for (u,v) € E(H) do

3 H' < H, H' < remove edges in H with edge diversity less than div((u, v));
4 H' <« compute the maximal k-core for H’;
5 if minDiv(H') > minDiv(H*) then

6 | H* < H’;

7 end

8 end

9 return H*

Baseline algorithm Algorithm 1 shows the detailed steps. It takes a maximal k-core as the
input since the result can only be contained in k-core subgraph if it exists. Next, it assumes
the maximal k-core as the optimum results H* (Line 1), solves all possible decision version
of the max-min problems and improves H* (Lines 2 to 8) during the iteration. After that,
the algorithm returns optimum result H* and terminates (Line 9).

The correctness of Algorithm 1 is clear based on Lemmas 1 and 2. The time complexity
of Algorithm 1 is O(m?) since the running time of the algorithm is dominated by Lines 2
to 8 that take O(m?).

3.3 Enhanced approach

Algorithm 1 is inefficient for large graphs, since its time complexity is quadratic. In this
section, we propose a faster online algorithm with time complexity of O(mlogm + m).
With some precomputations, its time complexity can be reduced to O (m).

Intuition The key idea of the enhanced approach is as follows. If we can solve decision
problems with d in non-increasing orders, where d is the edge diversity div((u, v)), the
computations of lines 3 to 4 in Algorithm 1 can be done incrementally on progressively
reduced subgraphs, which would make the time complexity of the loop become O(m), i.e.,
the time complexity of the loop in Algorithm 1 is reduced substantially.

Enhanced algorithm We list detailed steps of the enhanced approach in Algorithm 2. It
takes maximal k-core as input and sorts edges in the k-core in non-increasing order based
on their edge diversity. Next, it solves decision problems with progressively increased d
while maintaining the current best result since edges are sorted (Lines 3 to 7). The decision
problems are solved on a progressively reduced H as shown in Lines 4, 5 and Lines 8 to
16. Since all the edges are sorted, when the current decision problem has no result, the
algorithm returns optimum result H* and terminates.

@ Springer

578 World Wide Web (2022) 25:569-607

Algorithm 2 Enhanced algorithm.

Input : H : maximal k-core
Output: H*
sort edges in E(H) in non-increasing order according to edge diversity;
H* < H;
for (u,v) € E(H) do
E(H) < E(H)\ {(u, v)};
H <« incCore(H);
If(H #) then H* < H else return H* ;
end
Procedure incCore (H)
while v € {V(H)|deg(v, H) < k} do
foru € N(v, H) do
E(H) < E(H)\ {(u,v)}
deg(u, H) < deg(u, H) — 1;
end
V(H) < V(H)\ {v};
end
return (V(H), E(H));

LIRS B Y I S

L~ i i
N ohA W N =S

—
=)

Efficient implementation We discuss optimisations when implementing Algorithm 2.

Efficient sorting. When sorting the edges in a maximal k-core, we sort edges in each
connected maximal k-core and then merge them. As such, the real running time is much
better than O(mlogm).

Constant time edge deletion while preserving order. After sorting, we link edges in the
maximal k-core and loop the edges using the linkage. As such, when deleting an edge, i.e.,
Lines 4 and 12, we can delete them from the graph in constant time while remaining edges
preserve the sorted order. With those optimisations, Algorithm 2 runs in O(mlogm + m)
time. If we consider sorting as precomputation, the time complexity of Algorithm 2 is O (m).

The experiments are reported in detail in Section 6.1.

4 Attribute diversified community - max-average problem

In this section, we talk about maximising attribute diversity as a max-average problem.
The motivating example shows using the attribute diversity as a search objective to solve
the max-average problem. The average attribute diversity will express the overall diversity
of the community. We then introduce an attribute diversified community search work that
satisfies the max-average attribute diversity. Afterwards, we discuss the solutions.

Motivating example Figure 3 shows an IMDb graph, where each node represents a per-
son working in Hollywood and the relationship represents the work they have collaborated
on. Each person’s attributes describe the different genres they have worked in. Now, con-
sider a scenario where to organize a film festival, we need a panel of acquainted jurors to
judge a wide variety of films. The acquaintance of jurors ensures that the decision making
process remains smooth because conflicts often exist implicitly in unestablished relations.
In this scenario, we may have some relationships between users whose attribute diversity
may be moderate. However, their differences with others still contribute significantly to the

@ Springer

World Wide Web (2022) 25:569-607 579

{Thriller, Comedy,{ Romance, Comedy,{Comedy, Sci-fi,{ Thriller, Music,{ Action, Music,
Action} Action} Music} Romance} Comedy}

0.80 fD\ 0.80

G () I
050 =/ 0 N/ 08 Y/ 080
{Action, Thriller, { Action, Comedy, {Action, Comedy, { Comedy, Drama, {Sci-fi, Action,
Romance} Thriller} Thriller} Romance} Drama}

Figure3 An IMDb graph

diversity of the community as a whole. Consequently, we need to find a community whose
overall diversity is maximised along with it being structurally cohesive. The attribute diver-
sified community model that maximises the average attribute diversity by considering it as a
max-average problem, can be used to find a set of connected jurors whose overall attribute
diversity express the vast expanse of the industry. From Figure 3, we see that nodes such
as {A,F,G,H} are not quite diverse enough w.r.t. each other in terms of attributes. Here, each
person is connected to at least 2 other persons which makes the graph structurally cohesive.

This problem is different from the max-min problem presented previously in Figure 1
in a way that the max-min problem can leave out these worst possible values of attribute
diversity. Whereas, max-average problem can keep them because on leaving them out from
the community we can lose these nodes causing the violation of the structure constraints,
even when these nodes can contribute to the overall diversity of the community.

In Figure 3, the subgraph induced by {B,C,D,E,l,J} shown as shaded nodes, is the overall
attribute diversified community found with the max-average problem, when each member
knows at least 2 other members in the community. For max-average problem, the worst
values of attribute diversity do not contribute much but without them the k-core constraint
cannot be satisfied. Thus, it will disqualify this community as a candidate even though the
max-average could be the best. For example, even though the attribute diversity between
{B,I} is moderately the worst, they still contribute to the community to increase its overall
attribute diversity. Whereas, the max-min problem will leave out such values of attribute
diversity.

We now study on how to model and search attribute diversified communities that max-
imises the average attribute diversity by considering it as a max-average problem. To do
this, the attribute diversity on the relationships is first defined through a diversity measure.
The relationships will maximise the overall average attribute diversity of the community.

The structure cohesiveness of a community is guaranteed by using k-core, to ensure that
each user has at least k neighbours in the community. Based on the diversity measure and
the k-core structure cohesiveness constraint, we model an attribute diversified community
that maximises the max-average problem. We first prove the NP-hardness of the problem,
and then propose efficient branch and bound algorithms with novel effective bounds.

4.1 Problem definition

Here, we use the diversity between the two vertices to propose the average based diversifi-
cation metric.

@ Springer

580 World Wide Web (2022) 25:569-607

Average based diversity Given H, the average attribute diversification of H is measured
by
Z(u,v}eE(H)div((u’ v))
[V(H)|
Next, we consider attribute diversification as well as structure cohesiveness to model
a community. We propose the attribute diversified community model, using k-core and
average based diversification metric.

avgDiv(H) =

Attribute diversified community - max-average Now, we are ready to propose the
attribute diversified community model based on max-average search objective.

Definition 8 Attribute diversified community - max-average. Given a subgraph H C G,
an integer k, H is defined as an attribute diversified community if H satisfies the following
constraints simultaneously:

— Connectivity: H is connected;
— Structure cohesiveness: H is k-core subgraph;
— Attribute diversity: H follows avg Div(H).

Accordingly, given G and integer k, the research problem we focus on in this paper is as
follows.

Research Problem. Attribute diversified community search - max-average. Find the
subgraph H C G that maximises avg Div(H).

Example To briefly show the result of the max-average problem, we will discuss the exam-
ple shown in Figure 4. Here, the edges are assigned random attribute diversified values.
For the attribute diversified community - max-average problem with k = 2, the result is
the subgraph {2,3,6,7,8,9,10,12,13} with diversity of 1.44 as shown in Figure 5a. Similarly,
for k = 3, the result is the subgraph {3,8,9,10,13} with diversity of 1.418 as shown in
Figure 5b.

Before showing efficient algorithms for solving the problem of finding attribute diver-
sified community maximising average edge diversity, we first study the hardness of the

problem.

Lemma 3 The max-average problem is NP-hard.

Figure4 A toy example with attribute diversity

@ Springer

World Wide Web (2022) 25:569-607 581

Proof sketch We reduce well known NP-hard problem, densest at least size p problem,
denoted as dalsp, to an instance of the max-average problem. Given a graph G, a size con-
straint p, dalsp problem finds the subgraph H with the highest density, defined as 170
among all subgraphs that have size no less than p. Given any instance of dalsp problem
with G and p, we construct an instance of max-average problem with k and G’ as follows.
k is set to be p — 1. G’ is created based on G as follows. G’ is a complete graph with
V(G’) = V(G). The edge diversity of ¢ € E(G’) is assigned 1 if ¢ € E(G), otherwise
0. With such construction, every subgraph in G’ with size greater than k is a k-core. The
answer for the max-average problem in G’ if it exists can be used to derive the answer for
dalsp by removing edges with edge diversity of 0. On the other hand, the answer for dalsp
in G if it exists can be transferred to the answer for the created instance of the max-average
problem by making the answer as a complete graph. It is easy to see that both the instance
construction and the answers equivalence check can be done in polynomial time.

Due to the NP-hardness, there is no polynomial algorithm for solving the max-average
problem. We will propose branch and bound algorithm for solving max-average problem,
in which we will propose upper bounds and search order optimisations to reduce the search
space as much as possible.

4.2 Search framework

For ease of understanding, we first show the basic enumeration used in the branch and
bound algorithm.

Algorithm 3 shows the basic enumeration that derives the optimum result. Initially the
input of the algorithm is G. By recursively calling itself, Algorithm 3 tries all possible
subgraphs of G if the subgraphs may contain the optimum result (Lines 12 to 16) and checks
if there is feasible solution in the current recursion (Lines 8 to 10). If there is a feasible
solution /4 in the recursion and the feasible solution is greater than the current optimum one
H*, H* is updated to i (Line 9).

Algorithm 3 basicADC.

Input : the input graph G, and integer k

Output: the optimal solution H*

H* < ¢;

basicEnum (G);

return H*;

Procedure basicEnum (H)

H' < k-core(H);

let H’ be the set of connected component in H';

foreach h € H' do

if avgDiv(h) > avgDiv(H*) then
| H* < h;

end

DRI - Y LI S

—
=

end
foreach 1 € H' do
foreach v € V(h) do
| basicEnum (h \ {v});
end

e
N R W N -

end

—
=)

@ Springer

582 World Wide Web (2022) 25:569-607

(a) k=2

Figure 5 Result for max-average problem

Search space reduction Algorithm 3 also applies space reduction optimisations based on
observations as follows.

Observation 1 The optimum result can only be contained in a connected k-core of G if it
exists when the enumeration starts.

Observation 2 During the recursion with an input H, the optimum result can only be
contained in a connected k-core of H.

With the observations, when a recursion starts, Algorithm 3 first reduces the input to the
maximal k-core, which would make the input become a set of maximal connected k-core.
Algorithm 3 only tries combinations in each connected k-core. As such, the search space
can be reduced significantly.

The correctness of Algorithm 3 is clear. This is because all combinations of vertices that
potentially lead to the optimum result are explored by the algorithm. However, it cannot
scale to even medium size datasets. In the following sub-section, we will propose upper
bounds and study upper bound based prunings to improve the search performance. To make
the prunings more effective, we also propose heuristic rules to find subgraphs with large
diversity as early as possible. Those optimisations improve the performance substantially.

4.3 Optimisation

Upper bound based pruning The idea is that we estimate the upper bound of the average
edge diversity of the current search branch. If the upper bound is smaller than the diversity
of the optimum result found up to the time, we terminate the search branch.

Next, we will propose three upper bounds.

Upper bound based on core property We firstly show an upper bound for a connected
k-core based on core property. The upper bound for 4 is defined as follows.

Z(u,v)eE(h)diU((’4» v))
k+1

The upper bound based on core property would only be tight when 4 contains an opti-
mum result with size close to k + 1. However, it has limited pruning effectiveness when &
contains large size results. Next we study tight bounds for arbitrary 4.

ubcore(h) = (D

@ Springer

World Wide Web (2022) 25:569-607 583

Maximum average diversity in a core Given a connected k-core A, this bound is defined
as follows.

ubavg(h) = max{avgDiv(h)|h' C h} 2)
Lemma 4 ubavg(h) is an upper bound for h.

Proof Let h* be the attribute diversified community contained in i and k' be argmax;
{avgDiv(h')|h' C h}. By definition since h* must be a k-core while i’ relaxes the k-core
constraint. As such #* C i’ must hold. Therefore, avg Div(h*) < avgDiv(h") must hold.
Otherwise, A" will not be argmaxy{avg Div(h")|h’ C h}. We finish the proof. O

Approximate maximum average diversity in a core The computational cost of ubavg (h)
is expensive. It would take oqvmP) if using the algorithm in [23]. However, there is
a simple yet effective approximate algorithm [7] that can achieve % approximation. As
such we can use the approximation algorithm to get an at least % ubavg(h) value first
and then multiple it by 2 to derive a slightly loose bound, denoted as apxubavg(h). In
implementation, ubcore(h) and apxubavg(h) are prioritised as they are cheap.

Search order For each connected k-cores that cannot be pruned, we sort them in non-
increasing order according to their upper bounds. By doing this, we can heuristically find
community with large average diversity as early as possible. This would make the upper
bound based pruning more effective.

Algorithm 4 advADC.
Input : the input graph G, and integer k
Output: the optimal solution H*
H* < ¢;
advEnum (G);
return H*;
Procedure advEnum (H)
H' <« k-core(H);
let H' be the set of connected component in H';
foreach 1 ¢ H' do

if avgDiv(h) > avgDiv(H™) then

| H* < h;

end
end
foreach h € H' do

| calculate necessary upper bounds of /& and prune & based on H* ;

end
sort / in the pruned H';
foreach 1 € H' do

foreach v € V(h) do

| advEnum (h \ {v});

end

end

R-EE- R - N I 7 T S

[T R
S 0 X NN R W N =D

@ Springer

584 World Wide Web (2022) 25:569-607

The advanced algorithm Algorithm 4 shows the algorithm with the discussed optimisa-
tions. Different from Algorithm 3, it has an extra loop (Lines 8 to 13) to efficiently prune
connected k-core with least cost; after that, search order optimisations are applied (Line 18).
The correctness of Algorithm 4 is immediate given the correctness of Algorithm 3 and
the correctness of upper bounds discussed.
The experiments are detailed in Section 6.2.

5 Attribute diversified community with maximum cohesiveness

In this section, we present the following motivating example to show how limiting the
attribute diversity will effect the structure cohesiveness of the community. Then, we intro-
duce an attribute diversified community search work that aims to maximise the structure
cohesiveness while maintaining attribute diversity to a certain level. Lastly, we introduce
the community model and search problem, before moving on to discuss the solutions.

Motivating example In Figure 6, a user of Facebook communicates in at least one or more
languages like, English (E), French (F), German (G), Mandarin (M), etc. We consider a sce-
nario, where we need to find a multi-lingual set of users to help marketing a product(s). The
product(s) can be marketed across pages/groups of different languages to have a broader
and diverse customer reach. The acquaintance between the users will help in marketing the
product as they can convey their idea with ease and simultaneously share them through
their mutual connections. The diversity among the users makes the community diverse in
terms of the maximum number of languages shared, i.e., strong attribute diversification.
Therefore, we need to find a community that is attribute diverse to a certain extent but
maximises structural cohesiveness also. The attribute diversified community with maximum
cohesiveness model can be used to find a community that maximises structural

{A,S,C} {A,S,P} {A,S,G,H} {AF,S,E}

\&J
{S,E,C}

0.80

{G,PE} {G,US,F}

Figure 6 A Facebook graph

@ Springer

World Wide Web (2022) 25:569-607 585

cohesiveness, while being diverse enough from the prospective of languages that a user can
interact with. Each user is also connected to at least 2 other users to maintain a certain
degree of structural cohesiveness.

The novel community model introduced considers attribute diversification as a constraint
while maximising the structure cohesiveness as the primary search objective. In this model,
the structure cohesiveness is based on the widely used k-core model, where each user inside
the community has the maximum number of at least kK number of connections.

In Figure 6, the attribute diversified community with maximum cohesiveness formed
is by limiting the attribute diversity to 0.75 which is the subgraph induced by {I,J,K,L,M},
where each user knows at least 3 other users in the community, shown as shaded vertices
in Figure 6. This implies that there are no other users in the community that can be more
structurally cohesive for this level of attribute diversification.

This section is devoted to the study on how to model and search the attribute diversi-
fied community with maximum cohesiveness. We first define the diversity measure between
every user of the community to capture the attribute diversification. Therefore, we define
subgraph diversity measure, designed to find a community which maximises the structure
cohesiveness. Based on the subgraph diversity measure, we model the attribute diversified
community with maximum cohesiveness using attribute diversification as a constraint. We
develop two efficient indices for real-time solutions, namely the CD-index, based on the hier-
archical core decomposition and the novel advanced KD-index, a modified hierarchical core
index stored at different intervals of . We then develop an efficient exact algorithm by
proposing effective strategies for pruning the search space and implementing two heuristic
search orders on vertices. We also propose pre-pruning techniques for reducing the input
data.

5.1 Problem definition

In this section we introduce an attribute diversified community search work that focuses on
finding a community maximising the structure cohesiveness while maintaining the attribute
diversity to a certain level. The community model is discussed firstly. Then, the solutions
are presented thereafter.

The notations specific to this section only are summarised in Table 2.

We formally define the subgraph diversity below.

Definition 9 Subgraph diversity, t(H). Given a subgraph H C G, we define its subgraph
diversity as:

T(H) = min{div(u,v) > t|Vu,v € V(H),u # v}

Table2 Summary of notations

used in this section Notation Definition
T the user given diversity threshold
T(H) the subgraph diversity threshold of H
D the corresponding diversity subgraph of H
Hy the k-core set of G
R, P, X the vertex sets
k* the optimal social core number found

@ Springer

586 World Wide Web (2022) 25:569-607

Definition 10 (k, t)-core. Given a subgraph H < G, a user given attribute diversity
threshold t, H is a (k, t)-core, if H satisfies the following constraints simultaneously:

— Connectivity: H is connected;
— Structure cohesiveness: Vv € V(H), deg(v) > k;
— Subgraph diversity: T(H) > t.

Research Problem. Attribute diversified community search with maximum cohesive-
ness (ADC-MC). Given an attributed graph G, a user given attribute diversity threshold t,
find a (k, t)-core H C G such that k is maximum.

We introduce the following theorem based on the above definition of a (k, t)-core.

Theorem 1 ADC-MC of a graph G can be found inside any maximal connected k-cores of
G if they exist.

Proof From Definition 1, the vertices that are not part of any maximal connected k-cores
clearly cannot meet the structural cohesiveness requirement. Thus, the ADC-MC of a graph
G can only be found inside any connected maximal k-cores of G, which maximises the
structure cohesiveness while satisfying the diversity constraint 7. O

Before moving forward, we introduce the following definition and present an observation
as follows.

Definition 11 Diversity Graph. Given a diversity threshold z, let D denote a new graph
named diversity graph with V(D) = V(G) and E(D) = {(u,v) | div(u,v) > t and
u,v e V(G)}.

Observation 3 Given a (k, t)-core H, the V(H) induced subgraph of D is a complete
subgraph (i.e., a clique).

Discussion On analysing the process to find the most cohesive (k, 7)-community, we first
find all the maximal cliques in D, and then for each clique we use k-core decomposition to
arrive at the largest k. The bottleneck lies in initially enumerating a large number of redun-
dant maximal cliques to get the optimal result. Hereafter, to overcome the above bottleneck,
we propose two novel indices to answer our query in optimal time. Further, we introduce
local search order heuristics to speed up the clique enumeration to find the optimal k£ denoted
by k* and the corresponding (k*, t)-core denoted by H*.

Now, we first introduce a baseline index. This baseline index only saves vertices that
are structurally promising. Then, we introduce two heuristics to speed up the search for
finding k*. Later on, we propose a novel advanced index structure that can help us to identify
the vertices that are both structure cohesive and attribute diversified. The advanced index
improves the efficiency to find the optimal result as demonstrated later in the experiments.

5.2 Baseline approach
The idea here is to organise the vertices in a hierarchical manner which helps to speed up
the baseline algorithm. We use a core based heuristic, where vertices of the larger core are

prioritised over the vertices in the smaller core. The heuristic terminates the search early if
the core number of the vertex explored is smaller than the largest k found so far.

@ Springer

World Wide Web (2022) 25:569-607 587

Index construction Given a graph G, the baseline index organises the vertices V (G) based
on the k-core subgraph with different k. The baseline index contains all the vertices in V (G)
and each vertex is contained in only one k-core tree node.

By using the nested property of core decomposition [4], we build the pre-computed hier-
archical index, denoted by CD-Index in O(m) time. The index is saved in a space and cost
effective hierarchical manner.

Given a maximal connected k-core set of graph G, we construct the k-core tree. The k-
core tree contains all the vertices in V (G), and each vertex is exclusively contained in one
k-core tree node, where the coreness of the vertices is k. The structure follows a parent-child
relation between the two nodes, i.e., parent k-core tree node and child k-core tree node.
The creation of the relation between the expected parent-child k-core tree nodes follows
the containment relation of the k-core components. Thus, the k-core tree formed for each
connected k-core set represents the hierarchical nature of core decomposition.

If we have a disconnected graph G, the index construction can be done for each k-core
setin G.

The core based heuristic used to retrieve a maximal k-core set in linear time reduces the
time complexity significantly.

Example In Figure 7a, we apply arbitrary values to the edges and assume both the social
graph H and its diversity graph D are the same. We precompute CD-Index as shown in
Figure 7b. We see vertices of each tree node corresponding to a particular k. Here, the k-core
tree structure constructed maintains the parent-child relationship between the k-core nodes.

Algorithm 5 baseKDAIgo.

Input: CD-Index of G, diversity threshold t
Output: H* : the most cohesive (k*, t)-core community for k*

1 H* < ¢, k* < 0;

2 kpax < maximum social core number from CD-Index;

3 BasicADC-MC (knax, k*, 7);

4 return H*;

5 Procedure BasicADC-MC (kyax, k™, T)

6 foreach k € range(kyayx, 2) | k > k* do

7 H, < k-core set from CD-Index;

8 foreach i € H; do

9 delete the social edges in 2 with diversity less than 7 and find the
maximal social core number k’;

10 if ¥’ > k* then

11 H <« connected (k', T)-core subgraph;

12 D <« diversity subgraph of H;

13 H* < bkPivotMod (¢, V(D), ¢, H*);

14 end

15 end

16 end

Algorithm 5 shows the process of finding k* for which a (k*, 7)-core can exist for a given
diversity threshold 7. Initially at line 2, the maximum social core number k;,,, from the CD-
Index is identified and the BasicADC-MC subroutine is called in Line 3. The BasicADC-MC

@ Springer

588 World Wide Web (2022) 25:569-607

2-core

4-core

(b) k-core tree structure

(a) Input graph

Figure 7 Example for attribute diversified community with maximum cohesiveness

subroutine enumerates all the possible k-core set to find £* in Lines 5 to 16. The subroutine
does this by retrieving a k-core set Hy from CD-Index in Line 7, and then exploring each
connected k-core set & € Hy in Lines 8 to 15. It continues exploring as long as the k values
of the core sets are greater than k* found so far. In doing so, the search space is limited only
to the current core set.

We present two heuristic approaches based on the vertex search orders irrespective of the
social core number. These heuristics are based on the diversity core number for the vertices
of the diversity graph D of H. We explore and show their effect on the efficiency of the
search space enumeration for finding the optimal result.

Algorithm 6 bkPivotMod(R, P, X, H™).

1 if (P U X = ¢) then

2 k' < kCoreCheck(R);// compute the maximum social core
number of R

3 H’ < optimal (k’, T)-core community in R;

4 if ¥’ < k* then continue;

5 k* <~ k;

6 H* < H';

7

8

9

end
choose a pivot vertex uin P U X to maximise |P \ N(u)|;
foreach (v € P\ N(u)) do
10 bkPivotMod (RU {v}, PN N(v), X N N(v), H*);
1 P «— P\ {v};
12 X <« XU{};
13 end

Pivot selection After retrieving Hy (Line 6, Algorithm 5) from CD-Index. For each con-
nected subgraph k-core set i € Hy, we use an implementation of bk algorithm [6], using
a pruning technique technique called pivoting [26]. We modify this bk-based pivoting
algorithm according to our problem needs. The pivot based bk algorithm, bkPivotMod imple-
mentation is given in Algorithm 6. We have a social core number check whenever a clique
is generated (Line 2, Algorithm 6) to further optimise k*. If optimised, k* will then act as
a lower bound to prune out insignificant search branches later (Line 9, Algorithm 5). This
check ensures, a maximal social core number will exist that satisfies both, maximising the

@ Springer

World Wide Web (2022) 25:569-607 589

structure cohesiveness (our objective) by satisfying the diversity threshold. The modified
bk-based pivoting implementation is given in Algorithm 6.

We can further improve the search order mechanism of bkPivotMod algorithm by
introducing a heuristic based on the degeneracy order of the vertices in D of H.

Using degeneracy order with pivot selection

Algorithm 7 bkPivotDeg(V (D), k*).

8(D) <« the degeneracy order of V(D);
foreach (v; in a degeneracy ordering of vy, v2, v3, --- € V(D)) do
if (§,; < k*) then
P < P\ {vi};
X «— XU{v};
continue;
end
bkPivotMod (R U {v;}, PN N(v;), X N N(v;), H*);
P < P\{uvi};
X <« XU{v};

R B AL I SV

—
=4

end
return H*;

- -
[S

We use the degeneracy order when evaluating vertices in the diversity graph D of H,
which can nicely bound the search depth of the promising subgraph to the degeneracy of the
subgraph. Generally, the degeneracy of the subgraph is much smaller than the total number
of vertices contained in the subgraph.

The degeneracy based bk-pivoting algorithm, bkPivotDeg implementation is given in
Algorithm 7. The implementation of degeneracy based heuristics uses the bkPivotMod algo-
rithm as a subroutine to further improve the efficiency of the search order enumeration [16,
17]. We limit the search branch to only enumerate the vertices in the degeneracy ordering
as long as the vertex degeneracy is greater than optimal k£ found. In this way we restrict and
reduce the search space significantly.

Also, we can modify the bkPivotMod algorithm by further adding a structure constraint
check after choosing a pivot vertex u, Line 8 of Algorithm 6. This check helps stop gen-
erating candidate maximal cliques not satisfying the constraint. These candidate maximal
cliques are represented by the vertices of R U P, where R is a partial clique which may
contain the optimal result, and P is the set of candidates vertices to further expand R. We
present the following theorem based on the above discussion.

Theorem 2 The enumeration stops if R U P induced social subgraph does not satisfy the
structure constraint.

Proof For every vertex u € P U X, a vertex u can only be added to the current optimum
result R if it is in the R U P induced social subgraph such that k > k*. This is because the
vertex u that is added from P to R should at least be a connected induced k’-core social
subgraph. Therefore, the vertex © € R U P may be discarded in the following search due to
the structure constraint check. This structure constraint check works as an early termination
condition to further reduce the search space significantly. O

@ Springer

590 World Wide Web (2022) 25:569-607

Apart form the above heuristics, we further optimise the search order enumeration by
reusing the computation incurred for implementing Theorem 2.

1. If V(R U P) is the same as its child V (R, U P.) during a recursion, then we can skip
the social core number constraint check as the maximal social core number remains the
same.

2. If the social core number of R, U P, is less than its parent social core number R U P,
then we can terminate the exploration branch as we can not further optimise k’.

3. 'We can further skip the social core number constraint check, when V (P.U X) is empty,
and V(R. U P.) is the same as its parent V(R U P) because both P and P. are empty.

Example In Figure 7a, suppose a query comes for 7=0.65. Using the pre-computed CD-
Index, we directly get the corresponding maximal k-core subgraph for k=4, i.e., the
subgraph induced by {1, 3, 4, 5, 6}, which is also our optimal result for k*=4.

Correctness The correctness of Algorithm 5 is based on the correct construction of the
heuristic core based CD-Index, the correctness of state of the art enumeration algorithm [6,
16, 17] and correct computation of the structure constraints [39]. Algorithm 5 correctly finds
the maximal k by returning the most cohesive (k, t)-core.

Space complexity During the index construction phase, the vertices are saved only once
corresponding to their respective k-core tree node. Therefore, the space cost of the index
is bounded by O(n). Also, to save a set of edges cost O(m) and the adjacency list of each
node cost O(m + n). Hence, the total space cost is bounded by O(m + n).

Time complexity For finding the optimal result, retrieving a set of k-core vertices from
the index takes O(V (Hy)) time. The time complexity of the state of the art enumeration
algorithm [6] is equal to the number of cliques generated but due to the structure constraints
check and the local search order heuristics presented later, the time complexity is reduced
significantly.

5.3 Advanced KD-index

The core based heuristic CD-Index only considers prioritising vertices that are structurally
promising. Since the definition of the (k, 7)-core considers both the structure and the
attribute properties, a heuristic that prioritises vertices that are promising from both structure
cohesive and attribute diversified perspectives would be better.

Accordingly, we propose a novel index structure, KD-Index to help us identify the vertices
that are promising both from structure cohesive and attribute diversified perspectives. We
make the index more general for different queries by pre-computing promising vertices
for different diversity thresholds. We term each distinct diversity thresholds as a diversity
threshold point denoted by ¥. We denote them as T = {¥q, ..., ¥y}, where T, a set of
diversity threshold points spaced at equal intervals within (0, 1) that follows a total order,
and N is the total number of diversity threshold points. For any 2 diversity threshold points
¥;, ¥, such thatforany i < jandi # j, ¥; < ¥; follows a total order.

Index construction Given a graph G, the advanced index organises the vertices V (G) for
each diversity threshold point ¥ € T. Each ¥ will have its own hierarchical k-core tree
structure, such that the diversity value of the edges of the promising vertices will satisfy

@ Springer

World Wide Web (2022) 25:569-607 591

the corresponding ¥ value. We do this by deleting all the edges whose diversity values are
less than current ¥; i.e., div((u, v)) < 7, and then do k-core decomposition to create the
corresponding k-core tree. We repeat this process for every diversity point ¥ € T. Thus,
a k-core tree will be created for every ¥ € T. Here, every k-core tree will have the same
structure as that of the baseline index CD-Index. The same way, every k-core tree will be
divided into k-core tree nodes. Every promising vertices will belong to a specific k-core tree
node. Therefore, each ¥ will have its own unique hierarchical k-core tree.

So whenever a query comes, we first identify the diversity threshold point ¥ from the set
T such that ¥ is just smaller than 7. In this way, we can retrieve the reduced k-core subgraph
from the k-core tree corresponding to the current ¥. In this way, we significantly reduce
our search space from redundant enumeration. We can deduce the following observation:

Observation 4 The optimum k* can only be found in a connected k-core subgraph
corresponding to the current ¥, if it exists when the enumeration starts.

Using the above observation, the major advantage of the advanced index is that we reduce
the size of the retrieved subgraph. This reduces the search space enumeration to get the
optimal result.

Example In Figure 8a-c, we pre-compute KD-Index at 3 diversity threshold points, i.e., T =
{0.25, 0.5, 0.75} and vertices of each tree node corresponding to a particular k for respective
¥’s. Again, for a query t=0.65, now using the pre-computed advanced KD-Index, we first
identify the ¥ just below 0.65. In this case it is 0.50. We directly get the corresponding
maximal k-core subgraph for maximal k=4, i.e., the subgraph induced by {1, 3, 4, 5, 6}, as
shown in Figure 8b.

Another advantage of the index is when an optimal k* is not encountered for the current
¥, we terminate the algorithm. Because, if we can not get a feasible solution for the current
¥, then we definitely cannot get a feasible solution for any diversity threshold point greater
than the current V.

Space complexity For the advanced index, vertex set is saved at most O(|7| - |V(G)|)
in the worst case, where |7 | is the total number of diversity points and each vertex is
saved only once for a specific diversity point. Hence, the total space cost is bounded by

O(TI-IV(G)D.

2-core | 2,8,9,10,11,12 | 2-core 9,10, 11 2_core

|y V]
L=

3-core 3-core 3_core

4-core 1,3,4,5,6 4-core

(a) ¥=0.25 (b) ¥=0.50 (c) ¥=0.75

Figure 8 Tree structure for different diversity threshold points

@ Springer

592 World Wide Web (2022) 25:569-607

5.4 Advanced solution for finding most cohesive (k, t)-core

With the advanced KD-Index, we can optimally retrieve the vertex set by identifying the ¥,
threshold point by only visiting the vertices of the reduced (k, ¥,)-core set H;. Algorithm
8 shows the pseudo code for finding the maximal k.

Then, we find the first diversity threshold point ¥ that is just smaller than the given
parameter T in Line 2. Corresponding to the current ¥, we identify the maximum social
core number k,,, from the KD-Index in Line 3. Then, we call a subroutine EffiADC-MC to
start our enumeration in Line 4.

The EffiADC-MC subroutine works the same way as the BasicADC-MC subroutine of
Algorithm 5 but with an improved vertex degeneracy based enumeration algorithm bkPivot-
Deg in Line 14. The bkPivotDeg algorithm is presented in Algorithm 7. As previously said,
the vertex degeneracy order bounds the depth of the promising subgraph to the degeneracy
of the subgraph. Also, it uses the pivoting mechanism bkPivotMod to further improve the
enumeration.

Algorithm 8 advKDAIgo.

Input: KD-Index of G, diversity threshold 7, T set of diversity threshold points
Output: H* : the most cohesive (k*, 7)-core community for k*

1 H* < ¢, k* < ¢;

2 Identify ¥ from T = (Y1, ..., ¥,) such that ¥ is just smaller than t;

3 kpay < maximum social core number from KD-Index corresponding to ¥';

4 H* < EffiADC-MC (kpax, k*, T);

5 return H*;

6 Procedure Ef£fiADC-MC (kjax, k*, T)

7 foreach k € range(kyax, 2) | k > k* do

8 Hy < set of (k, ¥)-core set from KD-Index;

9 foreach i € H; do

10 delete the edges in & with diversity less than t and find the maximal
social core number k’;

11 if ¥’ > k* then

12 H <« (k', T)-core subgraph;

13 D <« diversity subgraph of H;

14 H* < bkPivotDeg(V (D), k*);// Implements
pivot-based bk algorithm using degeneracy
order

15 end

16 end

17 end

Correctness The correctness of Algorithm 8 is based only on the correct construction of
the advanced index KD-Index and correctly computing Theorem 2. Also, the state of the art
enumeration algorithm and computation of the structure constraints are the same as before.

Complexity During the advanced index construction phase the vertices are saved only once
corresponding to their respective core numbers at each interval. Therefore, the space cost
of the index is bounded by O(n - |T), where n is the number of vertices in G and |7 | are
the number of diversity threshold points. For finding the optimal result, retrieving a set of

@ Springer

World Wide Web (2022) 25:569-607 593

vertices from KD-Index costs O(V (Hy)) time corresponding to the diversity threshold point

¥ such that ¥ is just greater than 7, and the time cost for further enumeration is again equal

to the number of cliques generated during the recursion. The clique enumeration is reduced

significantly using the local order degeneracy heuristic and structure constraints checks.
The experiments are detailed in Section 6.3.

6 Experiments

All the experiments for the 3 problems were conducted on a PC with 2.4GHz Intel Core i7
(6-core) processor, |6GB RAM, running Windows 10. All the algorithms were implemented
in C++ with -O3 optimisation level using Microsoft VSCode with MinGW 64-bit compiler.

6.1 Attribute diversified community search - max-min problem

Implemented algorithms We implemented the algorithms proposed in Sections 3.2 and
3.3. Algorithms 1 and 2 are denoted as Alg-1 and Alg-2 correspondingly in this section. For
extra performance evaluations, we also extended our algorithms to finding top-I results and
reported the performance.

Datasets The six real datasets include Facebook_0, Twitter, Brightkite, Deezer, Gowalla
and DBLP, that are obtained from snap.standford.edu and konect.uni-koblenz.de. The data
were cleaned by removing all self loops. For Facebook_0 and Twitter, the diversity val-
ues between the relationships were pre-computed using Jaccard similarity based on the
attributes of vertices. For Brightkite, Deezer, Gowalla and DBLP, random values lying
between (0,1) were generated between the relationships of the edges. Table 3 presents the
statistics for all datasets.

Parameter settings The experiments were evaluated using different settings of query
parameters: k (the minimum core number) and / (top-/ results). The ranges of the param-
eters and their default values are shown in Table 4, in which we select reasonable k and [
based on datasets.

6.1.1 Efficiency evaluation

Varying k Figure 9 shows results for different values of k when [has the default values.
The figure clearly states the results that Alg-2 performs better than Alg-1 because of its

Table 3 Real world datasets used

for max-min problem Datasets Vertices Edges dmax davg
Facebook 333 2,519 77 7.56
Twitter 344 3,362 100 9.77
Brightkite 58,228 214,031 1,134 7.3
Deezer 143,884 846,897 420 11.77
Gowalla 196,595 947,059 14,730 9.67
DBLP 317,080 1,049,866 343 6.62

@ Springer

594 World Wide Web (2022) 25:569-607

Table 4 Parameter settings for the datasets used in max-min problem

Datasets Default & Default / Range of k Range of /
Facebook_0 6 14 3,4,5,6,7,8,9 10,12,14,16,18,20
Twitter 18 50 12,14,16,18,20,22 20,40,60,80,100,120
Brightkite 16 20 10,12,14,16,18,20,22 10,20,30,40,50
Deezer 15 60 8,10,12,14,16,18,20 40,60,80,100,120
Gowalla 22 30 15,20,25,30,35,40 10,20,30,40,50
DBLP 32 125 10,15,20,25,30,35 100,150,200,250,300

almost linear time complexity. While Alg-2 is performing, the size of the graph progressively
decreases on edge deletions and thus the search space reduces. On the other hand, as we
increase the value of k, the run-time of both becomes nearly the same. For Alg-1, it performs
poorly due to its quadratic time complexity. For a large dataset like DBLP, we see that for
values of k = 10, 20, Alg-2 significantly outperforms Alg-1 and as we increase k, both of
them become almost linear while Alg-2 still performs better. On the other hand for small and
medium datasets like Facebook, Twitter, Gowalla, Brightkite and Deezer, we see that Alg-2
performs better for all values of k.

Varying I As shown in Figure 10, we vary the parameter / for fixed k as the default values
for different datasets. For Facebook and Twitter datasets, the infinite times are set at 1 and
100 secs respectively. Over all the datasets, the processing time to get the top-I diversified
communities for both algorithms, Alg-1 and Alg-2 tend to remain the same while Alg-2 still
beats Alg-1. In the Twitter dataset, for the values of /=20, 40, 60, Alg-1 finds the top-/ results
beyond the infinite time threshold that we set to be 100 secs. In contrast, for the values
of /= 80, 100, 120, Alg-1 finds the results in 97.56, 94.35 and 83.28 seconds respectively.
From all the figures, we can clearly make out that Alg-2 is 100-300% faster than Alg-1 on all

the datasets. Both of the results tend to remain the same on varying [because the I'" value
increases on subsequent edge deletions in top-/ results.

0.30] INF 6——————+—— 10
70 —— Agl g ——Agl g —— Alg-1
00251 —— Alg-2 o —— Alg-2 o —— Alg-2
_go.zo— g g 6
©0.15/ o 10 o
c c c 4
‘©0.10- S S
=] c c 2

3 4 5 6 7 8 9 12 14 16 18 20 22 10 12 14 16 18 20 22

(a) Facebook_-0 (b) Twitter (c) Brightkite

210 140, 40
©180 —— Alg-1 ©120 —— Alg-1 @35 —— Alg-1
© 150 —u— Alg-2 ©100- —%— Alg-2 @ 30 —u— Alg-2
£120 X £25
2 9% 2 60 20
g 60 £ 40 €10
2 30 2 20 g s

0 * " y " S L. . y " " :)
8 10 12 14 16 18 20 O1s 20 25 30 35 40 %1 15 20 25 30 35
(d) Deezer (e) Gowalla (f) DBLP

Figure 9 Varying k for the datasets used in max-min problem

@ Springer

World Wide Web (2022) 25:569-607 595
INFfo————0—9| INFe—¢—o—¢ o 57

0 —— Algl F —e Algl 3,
0 0.8 —— Alg-2 o —u— Alg-2 g e —+—¢
= 0.6 -§ 10- -53' —— Alg-1
Zo4 g 22 *— Alg-2
= c = *®
So2 E 51
o o 1- o

e ———% |

O 12 14 16 18 20 20 40 60 80 100 120 070 20 30 40 50

(a) Facebook_0 (b) Twitter (c) Brightkite
15- 12- 10-

512,‘__’—’_’___‘ 510,‘_‘/0\.\’ @ 8-”_‘*/‘“
£ £ 8 £
= 9 —— Alg-1 = 5l = 6
26 —— Alg2 2 e, D ——*
< S 4 e Mgl S _e Alg-l
5 3 — " S o 5 2
4 -4 —u— Alg-2 -4 —— Alg-2

%4 60 80 100 120 00 20 30 40 50 0160 150 200 250 300

(d) Deezer (e) Gowalla (f) DBLP

Figure 10 Varying [for the datasets used in max-min problem

Scalability We vary the size of the graph to see the scalability of Alg-1 and Alg-2. We
show the results in Figure 11. It shows that Alg-2 does not get affected for finding the most
diversified community and thus remains almost constant. But, Alg-1 evidently shows that its
time increases with the increasing size of the graph.

6.1.2 Effectiveness evaluation

A case study on IMDb was conducted to demonstrate the effectiveness of our proposed max-
min model. This dataset contains 5090 nodes and 8577 edges. We used the dataset at 12%
scalability by selecting random edges. We specifically use this dataset to show the motivat-
ing example presented in Figure 3 for the max-average problem. We then pre-process the
IMDb dataset to show an edge between two nodes, i.e., personalities, who have worked in no
less than 5 films. Each vertex has 3 distinct keyword genres. Each genre is given an abbre-
viation such as M for Music, D for Drama, B for Biography, Cr for Crime, Wr for War,

1.0f 100f 81
5~ Agl 0 —— Alg-1 T — Algl
g0.8' —u— Alg-2 g 80 _w— Alg-2 aE)G' —u— Alg-2
o6 £ 60 s,
204 2 a0 2
c [=4
50.2 S 20 52
4 E L e e
0.0 4 ’ .) 0l e . : g NE : " ‘
40 60 80 100 40 60 80 100 40 60 80 100
(a) Facebook_0 (b) Twitter (c) Brightkite
25, 12 5,
220 210 T, —+ Aol
g g gl aE,» —»— Alg-2
=15 —— Agl 5 53
210 - Ag2 2%, e 2
£ . g4 —— Mgl B
2 Z 2 —u— Alg-2 2
0) ‘) L) ‘) L. ‘ ! ‘
40 60 80 160 %40 60 80 100 %40 60 80 160
(d) Deezer (e) Gowalla (f) DBLP
Figure 11 Scalability for the datasets used in max-min problem

@ Springer

596 World Wide Web (2022) 25:569-607

C for Comedy, R for Romance, SF for Science Fiction, Ac for Action, H for History, T for
Thriller, S for Sport, Fm for Family, FN for Film Noir, N for News, etc.

The community found by max-min model contains 11 personalities from Hollywood with
their 14 social relationships that maximise the minimum attribute diversity. In the commu-
nity, each personality is socially connected to at least 2 other personalities. The community
expresses high attribute diversity as compared to a k-core model. This community has
high diverse social connections between the personalities whose members form a diverse
representative group.

In Figure 12, the result for the max-min model is illustrated for IMDb.

We conducted a case study on Facebook_0 dataset to demonstrate the effectiveness of
our proposed max-min model. Compared to k-core, the max-min model allows us to find a
group of diverse representative members whose members exhibit high diverse relationships.
Figure 13 shows a case of Facebook_0 with k = 6. This community has 22 users with 100
diversified relationships.

In Figure 13, the result for the max-min model is demonstrated. First of all, the com-
munity found is still dense. Secondly, the found members have diverse relationships. The
number of members in the resultant community is not large, however, they are representa-
tive.

6.2 Attribute diversified community search - max-average problem

Implemented algorithms We implemented all algorithms proposed in this paper. Algo-
rithms 3 and 4 are denoted as Alg-3 and Alg-4 correspondingly in this section. All the
algorithms have found the attribute diversified community maximising the max-average
problem and have correspondingly reported the performance.

Datasets The four real datasets include Facebook, Brightkite, DBLP and ACM that
are obtained from snap.standford.edu and konect.uni-koblenz.de. The data were cleaned
by removing all self-loops. The edge diversity values were pre-computed using Jaccard
similarity. Table 5 presents the statistics for all datasets.

Parameter settings The experiments were evaluated using different settings of query
parameters: k (the minimum core number) to detect results, i.e., most attribute diversified
community. The range of the parameter k is shown in the last column of Table 5. All the
experiments were conducted at least 5 times and their average was taken.

Figure 12 Case study on IMDb
for k=2
I
48()

1458 (E

851(

@ Springer

World Wide Web (2022) 25:569-607 597

270 20 211

Figure 13 Case study on Facebook 0 for k = 6

6.2.1 Efficiency evaluation

Varying k We vary the value of k for detecting results. The range of k for every dataset is
chosen to select a diversified community with high cohesiveness. We report the results in
Figure 14. For all the datasets, we see that Alg-4 outperforms Alg-3 for different values of
k. This is because of the pruning effectiveness over the enumeration search space which is
much higher for smaller values of k compared with large values of k. Because the size of
maximal k-core is greater for small values of k, it makes bound check in Alg-4 more effective
than Alg-3. But for larger values of k, the bound in Alg-4 becomes tighter by following
Definition 4.1. For DBLP and ACM datasets, Alg-4 performs slightly better than Alg-3 by a
magnitude margin of around 20%. Although Alg-4 performs better, the graph itself is very
dense, which makes the bound check moderately effective for those value of k.

Scalability To see the scalability of the proposed Alg-3 and Alg-4 on varying the size of
graph. We show the results for attribute diversified communities for different datasets with
default & set at 55, 39, 40, 18 in order as presented in Table 5. Figure 15 shows that, Alg-
4 performs better than Alg-3 in all the scenarios when varying graph sizes, with the main
reason being the effective upper bound check and search order optimisation for Alg-4.

Also, since the density of the graph varies with different ratios, the pruning effectiveness
of Alg-4 clearly outperforms Alg-3.

Table 5 Real world datasets used for max-average problem

Datasets Vertices Edges dinax Range of k

Facebook 3,892 17,237 62 52,53,54,55,56
Brightkite 58,228 214,031 1,134 36,39,42,45,48
DBLP 317,080 1,049,864 343 25,30,35,40,45
ACM 359,748 1,063,553 5,720 10,12,14,16,18

@ Springer

598 World Wide Web (2022) 25:569-607

S
S

G INF ZINF O G INF

0103 v —— Alg-3 030 —— Alg-3 o —— Alg-3
_gmz g3 _gloz —— Alg-4 g —— Alg-4 _§10 —— Alg-4
Z101 - Algd g 2% g1

€1 g10t ——— g0 S10

=1 » =] =3 =3

52 53 54 55 56 33 36 39 42 30 35 40 45 50 0 12 14 16 18
(a) Facebook (b) Brightkite (c) DBLP (d) ACM

Figure 14 Varying k for the datasets used in max-average problem

Pruning effectiveness evaluation We also evaluate the pruning effectiveness when vary-
ing k. This is evaluated by two measurements: the number of recursions used by Alg-4 over
the number of recursions used by Alg-3, denoted by Alg-4/Alg-3, and the percentage of the
total search space explored by Alg-4 for finding the attribute diversified community results,
denoted by Alg-4/theo. Here, theo means the total number of theoretical recursions. The
results are shown in Figure 16. The search space explored by Alg-4 for both Facebook and
Brightkite is around 50%, for DBLP is around 40% and for ACM is around 25% as com-
pared to Alg-3. This clearly justifies the pruning effectiveness of the upper bound and search
order optimisation. On the other hand, Alg-4 only needs to explore very small percentage of
the possible search space to get the most diversified result, i.e., between 10-20% on average.

6.2.2 Effectiveness evaluation

We use the IMDb dataset with the same settings as described in Section 6.1.2 to demonstrate
the effectiveness of our max-average model.

The community found by the max-average problem contains 28 film personalities and
44 diversified relationships from the Hollywood film industry that are connected with
minimum degree of at least 2. Compared to k-core, the max-average model allows us to
find meaningful communities whose relationships exhibit diversity in terms of interested
attributes. This community expresses the wide depth across different genres and helps to
find connected personalities who have worked together more often. In Figure 17, the result
for the max-average problem is illustrated for IMDb.

We conducted a case study on Facebook_0 dataset to demonstrate the effectiveness of
our proposed max-average model. Compared to k-core, max-average model allows us to
find meaningful communities whose members exhibit difference in terms of interested
attributes. Figure 18 shows a case of Facebook with k& = 6. This diversified community has
35 users with 235 relationships as compared to the community found in Figure 13 where a
representative community of users is found.

As you can see for both the case studies, the community found by the max-average prob-
lem encompasses more nodes than the community found by the max-min problem because
it includes a number of nodes with less attribute diversity but they contribute more to the

@
A
~

w w w
Ve —+ Alg3 w10 Wy g2 T+ A3
£ £° — ngs g 210" o aga
2200 o 2 2101
g 100 —— Alg-3 'EZ g —— Alg-3 E
< —— Alg-4 go c 4 —— Alg-4 €100
4 ¢ ; 0o - € 5. ; o : .
40 60 80 100 40 60 80 100 240 60 80 100 40 60 80 100
(a) Facebook (b) Brightkite (c) DBLP (d) ACM

Figure 15 Scalability for the datasets used in max-average problem

@ Springer

World Wide Web (2022) 25:569-607 599

x . ES . ES N

%10 T3 Alga/Ag3 60— Alg-4/alg-3 [Alg-4/Theo | = 100 3 Alg-4/Alg-3 [Alg-4/Theo | — 100 =3 Alg-4/Alg-3

2 3 Algdmheo 5 50 ; B Z 80 : 2 80 =3 Ag4/meo

o o 40 3 60 g 60

T 5 < 30 8 @

) 0 20 & 40 & 40

S T 10 [LN T S 20

© % § © § s sy © % E g i @© ; 4 B i 4

S ol i ol ml m S o @i Bm o Bml 8 Bl H OB b @mlg olal B E 8

Ll 52 53 54 55 56 w 33 36 39 42 45 w0 30 35 40 45 50 w 10 12 14 16 18
(a) Facebook (b) Brightkite (c) DBLP (d) ACM

Figure 16 Pruning effectiveness for varying k for the datasets used in max-average problem

Figure 17 Case study on IMDb
for k=2

Figure 18 Case study on
Facebook 0 for k=6

@ Springer

600 World Wide Web (2022) 25:569-607

overall diversity of the community and leaving them out will cause them to lose the structure
constraints.

6.3 Attribute diversified community search with maximum cohesiveness

Implemented algorithms Here is the description of the different algorithms used in the
experiments part. Alg-A denotes the combination of baseline hierarchical k-core based index,
Algorithm 5 with pivot based bk-algorithm, Algorithm 6. Alg-B denotes the combination of
baseline hierarchical k-core based index, Algorithm 5 with pivot based bk-algorithm using
the optimisations and local degeneracy order of the vertices, Algorithm 7. Alg-C denotes
the combination of advanced index, Algorithm 8 with pivot based bk-algorithm, Algorithm
6. Alg-D denotes the combination of advanced index, Algorithm 8 with pivot based bk-
algorithm using the optimisations and local degeneracy order of the vertices, Algorithm 7.

Datasets The six real datasets include Facebook, Twitter, out_arenas, Brightkite, DBLP
and ACM datasets are obtained from snap.standford.edu and konect.uni-koblenz.de. Face-
book and Twitter datasets have their users and real keyword attributes anonymised to
calculate the diversity values. Facebook dataset only uses language attributes and users are
deleted if they do not have language attributes. Whereas for other datasets between every
pairwise nodes, synthetic attributes are randomly generated for real values between (0, 1)
which are used as diversity values. These values are once generated and saved along with the
index for the entire run of the experiments to maintain consistent result. Different properties
of each dataset are shown in Table 6.

Parameter settings Since the user usually does not need diversity values less than 0.50. We
set our baseline CD-Index at this diversity threshold point. We then create the advanced KD-
Index for 5 diversity threshold points, i.e., T = {0.50, ..., 0.90} to perform experiments.
The user given diversity threshold 7 is the input to all the algorithms along with the graph.
k represents the optimal social core number achieved for diversity threshold 7.

6.3.1 Efficiency evaluation

Overall running time of algorithms We evaluate the different algorithms by varying the
user input query diversity threshold 7 that lies between the range of {0.50-0.90} across all
datasets.

Figure 19 shows the results of the algorithms based on the advanced index KD-Index
which performs better than the algorithm based on the basic k-core index CD-Index. The

Table 6 Real world datasets

Datasets Vertices Edges dnax davg Size (MB)
Facebook_0(Fb_0) 333 2,519 77 7.56 0.054
Twitter_407 344 3,362 100 9.77 0.044
out_arenas 10,647 24,315 205 2.27 0.67
Brightkite 58,228 214,031 1,134 7.30 2.90
DBLP 317,080 1,049,866 343 6.62 14.94
ACM 359,748 1,063,553 5,720 2.95 15.99

@ Springer

World Wide Web (2022) 25:569-607 601

=] 807 - ——Alg-A ——Alg-C % . GINF g e
< 707 ¢ ——Alg-B ——Alg-D —103 -t < M
w60t . R g gloz'
@ 50 . * = — AlgA $. ¢ e .
¥ % oo 2100 v~ wge 4 210t Ao I
1 . & c . c = * PY
220 LI " 5 4 4 Algc . S 1l—e AlgC e
£10 t TS T AP $ F — AgD
2 0.540.580.620.660.700.740.78 0.620.660.700.740.780.82 0. 86 0.620.660.700.740.78 0. 82086
k=5 5 5 5 4 4 4 k=17 16 11 10 8 6 k=7 6 6 5 4 4 3
(a) Facebook_0 (b) Twitter_407 (c) out_arenas
3 INF: : .] . .- .Alg—A' D INF- — .Alg-A. @ INF{ . . - .A‘grA.
[J] N 3 —— Alg-B [J]]. . Fy o —— Alg-B [J) . . —— Alg-B
E 10 T —~—ngc £ Yo o4 —— ngc £1071 . . —— Alg-C
* Alg-D - —»— Alg-D
g\ 1 ¢ ¢ Ag .810’1 . o Alg-D -?10’2 * * 9
c * c E 4 c -
c c . c * ‘
Z10-1 s . £102 * 2 10-3. "
060064068072076080084 0.600.640.680.720.760.80 0.84 060064068072076080084
k=23 21 17 13 10 6 k=58 54 38 27 21 15 10 k=20 17 15 11 8 6
(d) Brightkite (e) DBLP (f) ACM

Figure 19 Overall running time for different ¢

overall running times for Alg-C and Alg-D decrease since they are based on the KD-Index,
which reduce the search space enumeration to get the result. Also the advantage of the
KD-Index is quite evident over the CD-Index. For some datasets, Alg-A and Alg-B cannot
even enumerate and hence achieve the respective infinite running time values set for the
each dataset for some values of 7. In Twitter 407 dataset, for some low values of 7, Alg-C
performs almost the same as Alg-D, but as t increases, Alg-D performs better than Alg-C.
Twitter_407 is denser than others and the advanced optimisation based on the degeneracy
order of the vertices does not play a significant role. In comparison for all the other datasets,
Alg-D outperforms Alg-C by the orders of magnitude of at least 100 times in out_arenas,
10-100 times in Brightkite, 2-5 times in DBLP and ACM.

Next, when we increase the user input query diversity threshold 7, the maximum k for
which we find the most cohesive diversified community also decreases in an almost linear
pattern. For some intermediary values, all the algorithms take slightly more time than the
previous values, which is because on decreasing k the size of the k-core subgraph under
consideration is the largest than the previous larger k found (as a k-core lies in a (k+1)-core,
because of the hierarchical nature of core decomposition).

Scalability We evaluate the scalability of the algorithms by randomly selecting 20%, 40%,
60%, 80%, 100% vertices in each dataset. For a given user input query diversity threshold
7, we compare the time taken to get the optimal k for different datasets. Figure 20 shows
the results for different datasets. Generally, Alg-C and Alg-D based on the KD-Index perform
better than Alg-A and Alg-B based on CD-Index. For Brightkite dataset with 20% vertices, it
takes more time as the most cohesive diversified community exists for k=14 in comparison
to k=17, which we get for vertex sizes greater than 20% of the dataset. Therefore, extra cost
is incurred as the size of the k-core subgraph existing in 20% of the dataset which is more
than the rest enumerated afterwards.

Time cost of index construction We evaluate the time taken to create the indices for dif-
ferent datasets. We also vary the number of diversity values (default is 5, represented by | T|

@ Springer

602 World Wide Web (2022) 25:569-607

T coo
3;2 . . ©1l40: —— Alg-A —— Alg-C L2102, * :
x 297 o . 1200 o - —— N . 9]
£3.0 " ——AlgA —AlgC €100 Alg-B Alg-D €
2.5 —e—Alg-B ——Alg-D S go- : . - =] N - . .
. . . x (o)) 4 *
-§2-0' * . 8 60- 2 T + £ 10 —— Alg-A —— Alg-C
91-5' . £ 40 s . —— Alg-B —%— Alg-D
£1.0 t * 5 20 5 “ g " .
€05.* , y » =% o , , , 100 .
2 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
k=4 4 4 4 4 k=6 6 6 6 6 k=5 5 5 5 5
(a) Fb.0, 7=0.74 (b) Twitter-407, 7=0.84 (c) out_arenas, 7=0.74
. 1. e
310% - 10 . . . s INF
@ o . . o . . * * *
* *
g g 100 * 3 $ g —— Alg-A —— Alg-C
101 e en —mge| £ I - —— AlgB —— AlgD
c —_— - - c = *
c . Cqn-1. —— Alg-A —— Alg-C c . - *
E * . A'f‘B _:_ A'g"z 3 s —— AlgB —w— AlgD 3 : . . * *
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
k=14 17 17 17 17 k=34 34 34 34 34 k=11 11 11 11 11
(d) Brightkite, 7=0.68 (e) DBLP, 7=0.68 (f) ACM, 7=0.72

Figure 20 Scalability

in Table 7) for the advanced index construction and compare it to the baseline index. We
see from Table 7 that as expected the time to create the KD-Index is more than CD-Index.
The time cost of the KD-Index varies from at least 2-5 times over the time cost of creating
CD-Index.

Space cost of index construction We evaluate the space cost to create the indices for differ-
ent datasets. We also vary the number of diversity values (represented by |T| in Table 7) for
the advanced index construction and compare it to the baseline index. We see from Table 7
that the space cost of KD-Index is more than CD-Index. The space cost of the KD-Index
varies from at least 2 times over the space cost of CD-Index. There is significant decrease
in the index space cost in comparison to the input size graph dataset as presented in Table 6
because we are only making the indices by setting the diversity threshold at 0.5 and not at
0. This is because the user is interested in diversity values greater than at least 0.5. Thus, the
majority of the nodes are not diversed enough in terms of their attributes to be saved in the
index. This reduces the size significantly as shown by the experiments.

Table 7 Space and time cost for

indices created for real world Dataset Space cost (in MB) Time cost (in secs)
datasets
IT| = 1 IT|=5 |T|=1 IT| =5

Facebook O(Fb_0) 0.143 0.154 0.006 0.016
Twitter_407 0.152 0.160 0.008 0.024
out_arenas 0.72 0.79 0.027 0.027
Brightkite 7.31 7.61 0.400 1.526
DBLP 40.73 41.05 2.555 7.381
ACM 41.28 44.49 4.578 9.92

@ Springer

World Wide Web (2022) 25:569-607 603

6.3.2 Effectiveness evaluation

We use the Facebook_0 dataset for the motivating example, where a user is associated with
a language that he/she can speak/understand. Let us consider the scenario from Figure 6,
where we want to promote a product across different Facebook pages in different languages.
In such a case, we need to find a set of users whose attributes are diversified in terms of
the number of languages shared by them. We also need the users to be socially connected
as this makes the marketing in different languages coherent and the users can relay their
ideas more clearly. The community that we retrieve is a diversified community where for
a certain level of diversification we achieve the most socially cohesive diversified group of
users. The level of diversification acts as a diversity threshold.

Following this, we conduct a case study on Facebook_0 dataset. We delete the nodes with
no languages attributes to maintain consistency across. In comparison to a k-core model
which only considers social constraints, our model finds a community which is diversified
in terms of users attributes but also strongly connected socially, i.e., the most cohesive.
Next, for diversity threshold 7=0.5, the community is found for maximal k=6, as shown in
Figure 21a. The community found 10 users and the total languages shared among them-
selves is 10 out of the 14 languages found in the dataset. As we increase t to 0.6, 0.7, 0.8
we get the values of k to be 5, 4, 2 respectively and the total languages shared to be 10, 9,
8 respectively. Also, the number of users decreases to 8, 5, 4 respectively. We can see that
in the most diverse case, i.e., when 7=0.80, the dataset can get a community with at most 8
languages shared across the 4 users of the community.

So we can deduce that all the users within a community share a set of distinct language
set which is guaranteed by the attribute diversity threshold. On the other hand, the users are
also socially connected directly or through their friends, which makes marketing a product
across different languages more coherent as specified in the motivating example.

We tweak the Facebook 0 dataset by assigning a single common language to all the
users to maintain consistency. We found that the maximum 7t existed for 0.74 with optimal
k=2 covering 9 languages out of the total 15 (14 + 1 added to every node). Whereas when
7=0.5, 0.6, 0.7, we found k = 6, 5 and 2 respectively with attributes shared being 11, 10 and
9 respectively. This also shows when users speak at least one common language then the

(a) Maximal k=6 (b) Maximal k=6 with
1 random variable

Figure 21 Result for Facebook_0 when 7=0.5

@ Springer

604 World Wide Web (2022) 25:569-607

Figure 22 Case study on IMDb 23
with maximal k=2 when 7=0.75 ~
N
/"— -
617 ()

N 3949

82()——1)48

maximum language diversity is moderately found for t=0.74. For diversity threshold t=0.5,
the community is found for maximal k=6, as shown in Figure 21b.

We conducted another case study on the IMDb dataset with the same settings as specified
in Section 6.1.2.

The community found by the ADC-MC model contains 6 film personalities and 7 social
relationships between them. The diversity threshold was set at 0.75 to get the maximum
social cohesiveness of 2, i.e., each personality is connected to at least 2 other personalities.
This model finds a diversified community where each member is diverse with every other
member in terms of attributes shared between them, which is quite different as compared to
the k-core model. In Figure 22, the result for the ADC-MC model is depicted for IMDb.

7 Related works

Community search in attributed graph In [30, 31], Li et al. proposed a skyline commu-
nity model for searching communities in attributed graph. Zhang et al. proposed (k, r)-core
community model that considers k-core and pairwise vertices similarity [49, 50]. Fang et.
al. [18], proposed a community model that is sensitive to query attributes. Liu et al. [35]
and Zhang et al. [52], both found a community maximising different attribute score and are
structurally cohesive. Zhu et al. [55] proposed a community model that ensures that both
structure and attribute cohesiveness are guaranteed for a user given query vertex sharing
sharing maximum keyword set. Li et al. [10] proposed a parameter-free contextual commu-
nity model for attributed community search. In [2, 19, 21, 42] different community models
considering spatial closeness were studied. Al-Baghdadi et al. [2] proposed a community
model with high social influence, spatially close, and covering certain keywords. Lou et
al. [36] proposed a model for attribute constrained co-located community search. In [46]
the influence was calculated over propagation probability of an edge above a threshold. Li
et al. [28] investigated the problem of influence spanning maximization in location-aware
social networks. Li et al. [27] proposed a model for personalised influential topic search
that finds influential topics related to a user. Li et al. [27] proposed a model for community
diversified influence maximisation, where diversity is the distinct number of communities
influenced. In [40] community search over multiple query nodes was proposed. Wang et
al. [43] proposed a community model where vertices are closer to a query vertices based
on a closeness score. Recently, Lu et al. [12] proposed a diversified geo-social community
with attribute diversification. Anwar et al. [3] discovered and tracked time-sensitive activity
in dynamic social networks for a user given query topics. Community models considering
influence were studied in [5, 29, 32, 46]. In [5, 13, 32], they use max-min objective func-
tion as well. However, they find that the influential community and the score are defined
on vertices. In our work, we study attribute diversified community problem and the score

@ Springer

World Wide Web (2022) 25:569-607 605

is defined on relationship for the first 2 models and between every pairwise vertices in the
last model.

Community detection in attributed graph Works including [37] considered graph struc-
ture with LDA model to detect attributed communities. Unified distance [54] was also
considered for detecting attributed communities. In [54], attributed communities were
detected by using proposed structural/attribute clustering methods, in which structural dis-
tance was unified by attribute weighted edges. Xu et al. [47] proposed a Bayesian based
model. Ruan et al. [38] proposed an attributed community detection method that links
edges and content, filters some edges that were loosely connected from content perspective,
and partitions the remaining graphs into attributed communities. In [25], Huang et al. pro-
posed a community model considering attributes based on an entropy-based model. Li et
al. [33] proposed a novel embedding approach to search attributed communities by exploit-
ing the inherent community structures through memberships of the underlying community.
Recently, Wu et al. proposed an attributed community model [45] based on an attributed
refined fitness model. Yang et al. [48] proposed a model using probabilistic generative
model. Zhang et al. [51] proposed a model to find structural diversity in edges for an ego-
network. Hsu et al. [24] proposed a diversity model for group formation without considering
structural cohesiveness. They also used average diversity objective function.

To read more about the different community search models presented till date, one can
read [20] survey paper who have conducted a thorough review of existing works. In [22]
extensive literature on other community models can be read further.

8 Conclusion

In this paper, we propose attribute diversified community search. By presenting real world
application scenarios, different attribute diversified community models are introduced
where attribute diversification takes roles of objective and constraint. For each of the com-
munity model, the proposed solutions with optimisations for speeding up the search are
discussed in extensive detail. We conducted extensive experiments for each problem to show
the effectiveness and efficiency of the algorithms proposed.

Acknowledgements The work was supported by Australia Research Council discovery projects
DP170104747 and DP200103700.

References

1. Akbas, E., Zhao, P.: Truss-based community search: a truss-equivalence based indexing approach.
PVLDB 10(11), 1298-1309 (2017)

2. Al-Baghdadi, A., Lian, X.: Topic-based community search over spatial-social networks. Proc VLDB
Endowment 13(12), 2104-2117 (2020)

3. Anwar, M.M,, Liu, C., Li, J.: Discovering and tracking query oriented active online social groups in
dynamic information network. World Wide Web 22(4), 1819-1854 (2019)

4. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. arXiv:0310049
(2003)

5. Bi, F, Chang, L., Lin, X., Zhang, W.: An optimal and progressive approach to online search of top-k
influential communities. PVLDB 11(9), 1056-1068 (2018)

@ Springer

http://arxiv.org/abs/0310049

606 World Wide Web (2022) 25:569-607

6. Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM 16(9),
575-577 (1973)

7. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-approximation for
unconstrained submodular maximization. In: Annual Symposium on Foundations of Computer Science,
pp. 649-658 (2012)

8. Cai, G., Sun, Y.: The minimum augmentation of any graph to a k edge connected graph. Networks 19(1),
151-172 (1989)

9. Chang, L., Yu, J.X,, Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected
components via graph decomposition. In: SIGMOD, pp. 205-216. ACM (2013)

10. Chen, L., Liu, C., Liao, K., Li, J., Zhou, R.: Contextual community search over large social networks.
In: ICDE, pp. 88-99. IEEE (2019)

11. Chen, L., Liu, C., Zhou, R., Li, J., Yang, X., Wang, B.: Maximum co-located community search in large
scale social networks. PVLDB 11(10), 12331246 (2018)

12. Chen, L., Liu, C., Zhou, R., Xu, J., Yu, J.X., Li, J.: Finding effective geo-social group for impromptu
activities with diverse demands. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 698-708 (2020)

13. Chen, S., Wei, R., Popova, D., Thomo, A.: Efficient computation of importance based communities
in web-scale networks using a single machine. In: International on Conference on Information and
Knowledge Management, pp. 1553—-1562. ACM (2016)

14. Chowdhary, A.A., Liu, C., Chen, L., Zhou, R., Yang, Y.: Finding attribute diversified communities in
complex networks. In: DASFAA, vol. 2020 (2020)

15. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical
Report 16 (2008)

16. Eppstein, D., Loffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time.
In: International Symposium on Algorithms and Computation, pp. 403—414. Springer (2010)

17. Eppstein, D., Loffler, M., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. J.
Exp. Algorithmics (JEA) 18, 3-1 (2013)

18. Fang, Y., Cheng, R., Chen, Y., Luo, S., Hu, J.: Effective and efficient attributed community search.
VLDB J. 26(6), 803-828 (2017)

19. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs.
PVLDB 10(6), 709-720 (2017)

20. Fang, Y., Huang, X., Qin, L., Zhang, Y., Zhang, W., Cheng, R., Lin, X.: A survey of community search
over big graphs. The VLDB Journal (2019)

21. Fang, Y., Wang, Z., Cheng, R., Wang, H., Hu, J.: Effective and efficient community search over large
directed graphs. TKDE (2018)

22. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75-174 (2010)

23. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications.
SIAM J. Comput. 18(1), 30-55 (1989)

24. Hsu, B.Y., Shen, C.Y.: On extracting social-aware diversity-optimized groups in social networks. In:
2018 IEEE Global Communications Conference (GLOBECOM), pp. 206-212. IEEE (2018)

25. Huang, X., Cheng, H., Yu, J.X.: Dense community detection in multi-valued attributed networks. Inform.
Sci. 314(C), 77-99 (2015)

26. Koch, I.: Enumerating all connected maximal common subgraphs in two graphs. Theor. Comput. Sci.
250(1-2), 1-30 (2001)

27. Li, J.,, Cai, T., Deng, K., Wang, X., Sellis, T., Xia, F.: Community-diversified influence maximization in
social networks. Inf. Syst. 92, 101522 (2020)

28. Li, J., Sellis, T., Culpepper, J.S., He, Z., Liu, C., Wang, J.: Geo-social influence spanning maximization.
IEEE Trans. Knowl. Data Eng. 29(8), 1653-1666 (2017)

29. Li, J., Wang, X., Deng, K., Yang, X., Sellis, T., Yu, J.X.: Most influential community search over large
social networks. In: ICDE, pp. 871-882. IEEE (2017)

30. Li, R., Qin, L., Ye, F., Wang, G., Yu, J.X., Xiao, X., Xiao, N., Zheng, Z.: Finding skyline communities
in multi-valued networks. VLDB J. 29, 1407-1432 (2020)

31. Li, R.H,, Qin, L., Ye, F,, Yu, J.X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-
valued networks. In: SIGMOD, pp. 457-472. ACM (2018)

32. Li, R.H., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. PVLDB 8§(5),
509-520 (2015)

33. Li, Y., Sha, C., Huang, X., Zhang, Y.: Community detection in attributed graphs: an embedding approach.
In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

34. Liu, C., Chen, L., Zhou, R., Chowdhary, A.A.: Attribute diversified community search. In: Qin, L.,
Zhang, W., Zhang, Y., Peng, Y., Kato, H., Wang, W., Xiao, C. (eds.) Software Foundations for Data

@ Springer

World Wide Web (2022) 25:569-607 607

35.

36.

37.

38.

39.
40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Interoperability and Large Scale Graph Data Analytics, pp. 3—17. Springer International Publishing,
Cham (2020)

Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., Gao, Y.: Vac: Vertex-centric attributed community search.
In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), vol. 937-948. IEEE (2020)
Luo, J., Cao, X., Xie, X., Qu, Q., Xu, Z., Jensen, C.S.: Efficient attribute-constrained co-located commu-
nity search. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1201-1212.
IEEE (2020)

Nallapati, R.M., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models for text and citations.
In: SIGKDD, pp. 542-550. ACM (2008)

Ruan, Y., Fuhry, D., Parthasarathy, S.: Efficient community detection in large networks using content
and links. In: WWW, pp. 1089-1098. ACM (2013)

Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269-287 (1983)

Sun, H., Huang, R., Jia, X., He, L., Sun, M., Wang, P., Sun, Z., Huang, J.: Community search for multiple
nodes on attribute graphs. Knowl. Based Syst. 193, 105393 (2020)

Wang, H.C., Fussell, S.R., Cosley, D.: From diversity to creativity: Stimulating group brainstorming
with cultural differences and conversationally-retrieved pictures. In: Proceedings of the ACM 2011
Conference on Computer Supported Cooperative Work, pp. 265-274 (2011)

Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-bounded k-cores. In:
ICDE, pp. 233-244. IEEE (2018)

Wang, Z., Wang, W., Wang, C., Gu, X., Li, B., Meng, D.: Community focusing: yet another query-
dependent community detection. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 329-337 (2019)

Wen, D., Qin, L., Zhang, Y., Chang, L., Chen, L.: Enumerating k-vertex connected components in large
graphs. In: ICDE, pp. 52-63. IEEE (2019)

Wau, P, Pan, L.: Mining application-aware community organization with expanded feature subspaces
from concerned attributes in social networks. Knowl.Based Syst. 139, 1-12 (2018)

Xu, J., Fu, X., Wu, Y., Luo, M., Xu, M., Zheng, N.: Personalized top-n influential community search
over large social networks. World Wide Web 23(3), 2153-2184 (2020)

Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to attributed graph clustering.
In: SIGMOD, pp. 505-516. ACM (2012)

Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: ICDM,
pp. 1151-1156. IEEE (2013)

Zhang, F,, Lin, X., Zhang, Y., Qin, L., Zhang, W.: Efficient community discovery with user engagement
and similarity. The VLDB Journal 28(6), 987-1012 (2019)

Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: efficient (k,
r)-core computation on social networks. PVLDB 10(10), 998-1009 (2017)

Zhang, Q., Li, R.H., Yang, Q., Wang, G., Qin, L.: Efficient top-k edge structural diversity search. In:
2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 205-216. IEEE (2020)
Zhang, Z., Huang, X., Xu, J., Choi, B., Shang, Z.: Keyword-centric community search. In: 2019 IEEE
35th International Conference on Data Engineering (ICDE), pp. 422-433. IEEE (2019)

Zhou, R., Liu, C., Yu, J.X,, Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs
from a large graph. In: EDBT, pp. 480—-491. ACM (2012)

Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. PVLDB 2(1),
718-729 (2009)

Zhu, Y., He,J., Ye, J., Qin, L., Huang, X., Yu, J.X.: When structure meets keywords: Cohesive attributed
community search. In: Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pp. 1913-1922 (2020)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Finding attribute diversified community over large attributed networks
	Abstract
	Introduction
	Maximising attribute diversification
	Attribute diversification as constraint
	Contributions and road map

	Preliminaries
	Attribute diversified community - max-min problem
	Motivating example
	Problem definition
	Diversity for two vertices
	Minimum based diversity
	Attribute diversified community - max-min

	Baseline approach
	Decision version of max-min problem
	Proof sketch
	Baseline algorithm

	Enhanced approach
	Intuition
	Enhanced algorithm
	Efficient implementation

	Attribute diversified community - max-average problem
	Motivating example
	Problem definition
	Average based diversity
	Attribute diversified community - max-average
	Proof sketch

	Search framework
	Search space reduction

	Optimisation
	Upper bound based pruning
	Upper bound based on core property
	Maximum average diversity in a core
	Approximate maximum average diversity in a core
	Search order
	The advanced algorithm

	Attribute diversified community with maximum cohesiveness
	Motivating example
	Problem definition
	Discussion

	Baseline approach
	Index construction
	Pivot selection
	Using degeneracy order with pivot selection
	Correctness
	Space complexity
	Time complexity

	Advanced KD-index
	Index construction
	Example
	Space complexity

	Advanced solution for finding most cohesive (k,)-core
	Correctness
	Complexity

	Experiments
	Attribute diversified community search - max-min problem
	Implemented algorithms
	Datasets
	Parameter settings

	Efficiency evaluation
	Varying k
	Varying l
	Scalability

	Effectiveness evaluation

	Attribute diversified community search - max-average problem
	Implemented algorithms
	Datasets
	Parameter settings

	Efficiency evaluation
	Varying k
	Scalability
	Pruning effectiveness evaluation

	Effectiveness evaluation

	Attribute diversified community search with maximum cohesiveness
	Implemented algorithms
	Datasets
	Parameter settings

	Efficiency evaluation
	Overall running time of algorithms
	Scalability
	Time cost of index construction
	Space cost of index construction

	Effectiveness evaluation

	Related works
	Community search in attributed graph
	Community detection in attributed graph

	Conclusion
	References

