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Abstract
When characterizing the cohesion of a subgraph, many cohesive subgraph models impose
various constraints on the relationship between the minimum degree of vertices and the
number of vertices in the subgraph. However, the constraints imposed by the clique, quasi-
clique and k-core models are so rigid that they cannot simultaneously characterize cohesive
subgraphs of various scales in a graph. This paper characterizes the flexibility of a cohesive
subgraph model by the constraint it imposes on this relationship and proposes f -constraint
core (f -CC), a new model that can flexibly characterize cohesive subgraphs of different
scales. We formalize the FlexCS problem that finds r representative f -CCs in a graph
that are most diversified. This problem is NP-hard and is even NP-hard to be approxi-
mated within |V |1−ε for any ε > 0. To solve the problem efficiently, a divide-and-conquer
algorithm is proposed together with some effective techniques including f -CC generation,
sub-problem filtering, early termination, and index-based connected component retrieval.
Extensive experiments verify the flexibility of the f -CC model and the effectiveness of the
proposed algorithm.

Keywords Graph data · Cohesive subgraph · Flexibility · Diversity

1 Introduction

Cohesive subgraph mining aims at finding cohesively connected vertices in a massive graph.
It plays important roles in many applications such as community detection, graph com-
pression and graph visualization [8]. So far, a considerable number of cohesive subgraph
models have been proposed in the literature, e.g. clique [12], quasi-clique [13], k-core [17],
k-truss [6], and nucleu [16].
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When characterizing the cohesion of a subgraph, many cohesive subgraph models com-
monly consider two key features, namely the minimum degree of vertices and the number
of vertices in the subgraph. Different models often impose different constraints on the
relationship between these two features. To be more specific, let us first review some well-
known cohesive subgraph models in the literature and take a deeper look at their respective
constraints imposed on the relationship.

Let G = (V ,E) be a graph, where V is the set of vertices, and E is the set of edges.
Two vertices u and v are adjacent if (u, v) ∈ E. The subgraph of G induced by a vertex
subset Q ⊆ V , denoted by G[Q], is (Q,E[Q]), where E[Q] is the set of edges with both
endpoints in Q. Let us consider three classical cohesive subgraph models, namely clique,
quasi-clique and k-core.

– A clique [12] in G is a set of vertices where every two vertices are adjacent to each
other. Each vertex in a clique Q is of degree |Q| − 1 in G[Q].

– A (degree-based) γ -quasi-clique [13] in G is a subset of vertices Q ⊆ V where every
vertex is adjacent to at least �γ · (|Q| − 1)� other vertices, where γ ∈ [0, 1]. Specially,
a clique is a γ -quasi-clique for γ = 1.

– A k-core [17] in G is a subset of vertices Q ⊆ V where every vertex is of degree at
least k in G[Q].

Figure 1 illustrates the relationships between the minimum degree of vertices and the
number of vertices in a cohesive subgraph restricted by these models. For the clique and
quasi-clique models, the minimum degree is required to be linear to the number of vertices,
which is obviously very strict. In practice, it is nearly impossible to find a cohesive subgraph
with hundreds of vertices in a real graph under these two models due to the sparsity of
real graphs. Thus, the clique and quasi-clique models are only suitable for modeling small
cohesive subgraphs. On the contrary, the k-core model imposes a very loose constraint: the
minimum vertex degree is required to be at least k, which is independent of the number of
vertices. In fact, in a real graph, k-cores are generally large and sparsely connected, and
therefore, this model is only suitable for modeling large cohesive subgraphs.

Inspired by these observations, we characterize the flexibility of a cohesive subgraph
model by the constraint it imposes on the relationship between the minimum degree of

Figure 1 Relationships between the minimum degree of vertices and the number of vertices in a cohesive
subgraph under various cohesive subgraph models
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Figure 2 An example graph

vertices and the number of vertices. In fact, the clique/quasi-clique model and the k-core
model stay at two extremes of flexibility. The rigidity of these models prevents them from
simultaneously characterizing cohesive subgraphs varying from small scales to large scales,
so each model is only suitable for a limited scope of applications. Therefore, we focus on
flexible cohesive subgraph models which can be applied to flexibly model cohesive sub-
graphs in a wide range of applications. To the best of our knowledge, no prior work has
been done on this problem in the literature.

This paper proposes f -constraint core (f -CC), a new cohesive subgraph model. Given a
graph G = (V ,E) and a monotonically increasing function f : N → R, a subset of vertices
Q ⊆ V is an f -CC if every vertex in G[Q] is adjacent to at least �f (|Q|)� other vertices.
Rather than a special new model, the f -CC model is a generalization of the clique, quasi-
clique and k-core models. When f (x) = x−1, an f -CC is a clique; When f (x) = γ (x−1)
where γ ∈ [0, 1], an f -CC is a γ -quasi-clique; When f (x) = k where k ∈ N, an f -CC
is a k-core. Section 6.2 shows that by carefully specifying f , the f -CC model attains more
flexibility than other classical models mentioned above. Here, we illustrate the flexibility of
the f -CC model by an example.

Example 1 Consider the graph shown in Figure 2. First, we depict the constraints imposed
by the clique,

√
x-CC and 3-core models in Figure 3. For the

√
x-CC model, as the

number of vertices increases, the required minimum vertex degree increases more and
more slowly, which is consistent with users’ expectations on cohesive subgraphs: When
a cohesive subgraph is small (like a micro-cluster), the constraint on the minimum ver-
tex degree should be strict; when it is large (like a community), this constraint should be
relaxed.

Moreover, we illustrate some cohesive subgraphs characterized by these models, par-
ticularly, the maximum clique, two maximal

√
x-CCs and the maximal 3-core. Obvi-

ously, there are two groups of cohesively connected vertices in the graph, namely
S1 = {c, d, e, f, g, h, i, j, k, l, m} and S2 = {n, o, p, q, r, s, t, u}. The maximum clique
only contains partial vertices in S1 and excludes the vertices i, j, k, l, m that are also
cohesively connected to the maximum clique. The maximal 3-core merges S1 and
S2. This is also not reasonable because S1 and S2 are only linked through the cut
vertex n. The

√
x-CC model circumvents the shortcomings of the clique and k-core

models. Two maximal
√

x-CCs shown in Figure 3 precisely characterize S1 and S2,
respectively.
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Figure 3 Relationships between the minimum degree of vertices and the number of vertices restricted by the
clique model, the

√
x-CC model and the 3-core model, and the cohesive subgraphs characterized by these

models

As with cliques and quasi-cliques, mining all f -CCs on a large graph is often a tough
task due to the following reasons: (1) The number of all f -CCs can be exponential to the
number of vertices in the graph; (2) There always exists huge overlap between f -CCs in the
graph, which will be illustrated by the following example.

Example 2 In the example graph shown in Figure 2, there are a large number of
√

x-CCs,
e.g. {c, d, e, f, g, h, i, j, k, l, m}, {d, e, g, h, j, k, l, n}, {e, f, g, h, j, k, l, n}, and so on. As
illustrated in Figure 4, they are overlapped with each other significantly.

To avoid the huge but uninformative result set of the enumeration paradigm, [9, 19, 21]
provide a way to formalize the problem that extracts not only individually large but also
lowly overlapped cohesive subgraphs. They characterize the quality of the result set by its
diversity, i.e., the number of vertices it covers, and extract r cohesive subgraphs that are
most diversified. Motivated by this, we formalize the flexible cohesive subgraph mining
(FlexCS) problem with respect to our f -CC model: We extract r representative f -CCs that
attain the highest diversity, i.e., these f -CCs can cover the largest number of vertices. We
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show that the FlexCS problem is NP-hard and is even NP-hard to be approximated within
|V |1−ε for any ε > 0.

Due to the extremely high computational complexity of the FlexCS problem, we develop
a heuristic algorithm that extracts a collection of qualified f -CCs in a divide-and-conquer
manner and selects r representative f -CCs on the fly that approximately attain the highest
diversity. To this end, the constraint on the relationship between the minimum vertex degree
and the number of vertices is equivalently translated into a series of simple constraints.
Based on these simple constraints, the FlexCS problem on the input graph G is decomposed
into a series of sub-problems called ConsCS on the connected components of the maximal
k-cores of G. An advanced filtering method is proposed to eliminate a portion of ConsCS
problem instances that are unpromising to produce any informative f -CCs to improve the
diversity of the result set. The remaining ConsCS problem instances are handled in different
ways depending on the size of the input connected component. Problem instances on small
connected components are easy to solve. For problem instances on large connected compo-
nents, we develop a heuristic algorithm to generate qualified f -CCs. This algorithm takes
both greediness and randomness into the f -CC generation process. In addition, we propose
an early termination mechanism and an index-based connected component retrieval method
to speed up the algorithm for the FlexCS problem.

The main contributions of this paper can be summarized as follows:

– We propose the f -CC model that can flexibly characterize cohesive subgraphs of var-
ious scales and formalize the FlexCS problem that extracts r representative f -CCs
attaining the highest diversity.

– We prove the NP-hardness and the inapproximability of the FlexCS problem and
develop a divide-and-conquer approach to solving it efficiently.

– Extensive experiments were conducted to verify that the f -CC model is flexible
in simultaneously characterizing cohesive subgraphs varying from small scales to
large scales, and the proposed algorithm can efficiently discover top-r f -CCs that
approximately have the highest diversity.

The paper is organized as follows. Section 2 defines the f -CC model and formalizes the
FlexCS problem. Section 3 presents the main procedure of our algorithm, followed by the
important subroutines described in Section 4 and the optimization techniques in Section 5.
The experiments are reported in Section 6. The related work is reviewed in Section 7.
Finally, the paper is concluded in Section 8.

Figure 4 The f -CCs {c, d, e, f, g, h, i, j, k, l,m}, {d, e, g, h, j, k, l, n} and {e, f, g, h, j, k, l, n} have sig-
nificant overlaps
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2 Model and problem definition

This section introduces the f -constraint core (f -CC) model and the flexible cohesive sub-
graph mining (FlexCS) problem. In this paper, we only consider simple undirected graphs.
Let G = (V ,E) be a graph. The degree of a vertex v ∈ V in G, denoted by dG(v), is the
number of edges adjacent to v in G. The neighborhood of a vertex v ∈ V in G, denoted by
NG(v), is the set of vertices connected to v by an edge in G. We have dG(v) = |NG(v)|. For
a vertex subset Q ⊆ V , the subgraph of G induced by Q, denoted by G[Q], is (Q,E[Q]),
where E[Q] is the set of edges with both endpoints in Q.

We first define the notion of f -constraint core (f -CC) that can flexibly characterize
cohesive subgraphs of various scales simultaneously in a graph.

Definition 1 (f -constraint core) Given a graph G = (V ,E) and a monotonically increas-
ing function f : N → R, a subset of vertices Q ⊆ V is an f -constraint core (f -CC for
short) if the degree of every vertex in the induced subgraph G[Q] is at least �f (|Q|)�.

Since connectivity is often expected in research and practice, we require that G[Q] is
connected. Note that the notion of f -CC is a generalization of the notions of clique, quasi-
clique and k-core. Specifically,

– For f (x) = x − 1, an f -CC is a clique.
– For f (x) = γ (x − 1) where 0 ≤ γ ≤ 1, an f -CC is a γ -quasi-clique.
– For f (x) = k where k ∈ N, an f -CC is a k-core.

Let Ff (G) be the set of all f -CCs in G. As mentioned in Section 1, |Ff (G)| could be
exponential to the size of G, so we usually cannot expect to retrieve all f -CCs in G. In
addition, f -CCs in G often overlap with each other, so it is not a rational choice to return
all f -CCs in Ff (G) due to the huge redundancy. Therefore, we try to find a small number
of informative f -CCs that are qualified to represent Ff (G) as the existing work [9, 19, 21]
did. Similar to [9, 19, 21], we use the diversity (i.e., the size of the coverage of the result set
defined in Definition 2) to measure the quality of the result set.

Definition 2 (coverage)Given a set of f -CCsR = {Q1,Q2, . . .} in graph G, the coverage
ofR, denoted by cov(R), is the set of vertices in G covered by f -CCs inR, i.e., cov(R) =⋃

Q∈R Q.

Apparently, the smaller |cov(Ff (G)) − cov(R)| is, the better R approximates Ff (G).
Thus, the problem in this paper called the flexible cohesive subgraph mining (FlexCS) can
be formally defined as follows.

Problem Definition 1 Given a graph G = (V ,E), a monotonically increasing function f :
N → R and r ∈ N, the goal of the flexible cohesive subgraph mining (FlexCS) problem is to
find a subsetR ⊆ Ff (G) such that |R| = r and |cov(R)| is maximized (i.e., |cov(Ff (G))−
cov(R)| is minimized).

Example 3 Given the example graph shown in Figure 2, f (x) = √
x and r = 2, two

√
x-

CCs {c, d, e, f, g, h, i, j, k, l, m} and {n, o, p, q, r, s, t, u} shown in Figure 3 are returned
asR, and |cov(R)| = 19, which is maximized.
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Theorem 1 The FlexCS problem is NP-hard and is even NP-hard to be approximated within
|V |1−ε for all ε > 0.

Proof Let η-APPROX-Π denote the approximation version of an optimization problem
Π with approximation ratio η. Since an f -CC is a clique when f (x) = x − 1, the
maximum clique problem (MCP) and the η-APPROX-MCP problem are special cases of
FlexCS and η-APPROX-FlexCS, respectively. Therefore, MCP and η-APPROX-MCP are
polynomial-time many-to-one reducible to FlexCS and η-APPROX-FlexCS, respectively.
Due to the NP-hardness of MCP [10], FlexCS is also NP-hard. In addition, for all ε > 0,
it is NP-hard to approximate MCP within |V |1−ε [23], so does FlexCS. The theorem thus
holds.

3 Ourmethod

This section introduces our method to solve the FlexCS problem. Due to the huge search
space of the enumeration process for enumerating all f -CCs and its exponential-scale out-
put, we cannot extend the clique enumeration paradigm to enumerate all f -CCs in a graphG

and then choose r of them that cover the largest number of vertices. Therefore, we develop
a heuristic algorithm that first finds a set of qualified f -CCs S ⊆ Ff (G) and then chooses
r f -CCs attaining the highest diversity from S. In the rest of this section, we present two
key components of our method, namely the qualified f -CCs generation (Section 3.1) and
the diversified top-r f -CCs selection (Section 3.2).

3.1 Qualified f -CCs generation

The first component of our method is to find a set of f -CCs S ⊆ Ff (G) that is qualified to
represent Ff (G), from which the diversified top-r f -CCs are further selected. To this end,
we adopt a divide-and-conquer approach to generating S. The generation process is decom-
posed into solving a series of sub-problem instances, and a core-based filtering method is
developed to eliminate some useless sub-problem instances that are unpromising to return
informative f -CCs.

3.1.1 Problem decomposition

To begin with, we introduce a generalized inverse function of a monotonically increasing
function F presented in [7] as follows:

F−1(x) = sup{y|F(y) ≤ x} (1)

Based on this generalized inverse function, we have the following theorem:

Theorem 2 Given a graph G = (V ,E) and a monotonically increasing function f : N →
R, let g : N → N be a function such that g(x) = �f (x)�. For a vertex subset Q ⊆ V , the
following conditions are equivalent:

Condition 1. Q is an f -CC;
Condition 2. The minimum degree of vertices in G[Q] is at least g(|Q|);
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Condition 3. |Q| ≤ g−1(k), where k is the minimum degree of vertices in G[Q] and g−1

is the generalized inverse function of g defined by (1).

Proof Condition 1 and Condition 2 are equivalent due to Definition 1. Condition 2
and Condition 3 are equivalent due to (1). According to the transitivity, the theorem
holds.

Based on Theorem 2, the degree constraint imposed on vertices in an f -CC can be
translated into the following pair of constraints parameterized by k:

Ck
1 (Minimum degree constraint): The degree of every vertex in G[Q] is at least k.

Ck
2 (Maximum size constraint): |Q| ≤ g−1(k).

For brevity, we use Ck to represent both Ck
1 and Ck

2. Certainly, an f -CC must satisfy
Ck for some 1 ≤ k ≤ |V | − 1. Hence, we define the following sub-problem called the
constrained cohesive subgraph mining (ConsCS) problem:

Problem Definition 2 Given a graph G = (V ,E), a monotonically increasing function
f : N → R and k ∈ [1, |V | − 1], the goal of the constrained cohesive subgraph mining
(ConsCS) problem is to find the set of f -CCs in G satisfying Ck.

Theorem 3 Given a graphG, for k ∈ [1, |V |−1], let Ff,k(G) be the set of f -CCs satisfying
constraint Ck in G. We have

Ff (G) =
⋃|V |−1

k=1
Ff,k(G). (2)

Proof (1) Obviously, by definition,
⋃|V |−1

k=1 Ff,k(G) ⊆ Ff (G). (2) For each f -CC Q ∈
Ff (G), let k be the minimum degree of vertices in G[Q]. Definitely, 1 ≤ k ≤ |V | − 1.
Based on Theorem 2, Q satisfies Ck. Therefore, Q ∈ Ff,k(G). Thus, we have Ff (G) ⊆
⋃|V |−1

k=1 Ff,k(G). Therefore, the theorem holds.

According to Theorem 3, Ff (G) can be obtained by solving each ConsCS problem
instance 〈G, f, k〉 for k = 1, 2, . . . , |V | − 1. Note that, given a ConsCS instance 〈G, f, k〉,
the number of f -CCs in G satisfying Ck can be exponential to the size of G. It is nearly
impossible to enumerate all such f -CCs in G. Therefore, we cannot merge all exact result
sets of ConsCS instances as the qualified f -CCs set S and further select diversified top-r
f -CCs from it. To tackle this, we develop a heuristic method to approximately extract repre-
sentative f -CCs that attain high diversity (i.e., cover a large number of vertices) for solving
the ConsCS problem, which will be described in Section 4. And then, we merge all these
result sets of ConsCS instances to obtain S.

3.1.2 Elimination of ConsCS problem instances

Next, we present a filtering method to eliminate some ConsCS problem instances that are
unpromising to produce informative f -CCs that have contributions to the diversity of the
final result set. This method is based on the k-core model [17]: a set Q of vertices is a k-
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core of a graph G if every vertex in G[Q] is of degree at least k. A k-core is maximal if
none of its proper supersets is a k-core. A key concept related to the k-core model is shown
in Definition 3.

Definition 3 (core number) The core number of G, denoted by κ(G), is the largest integer
k such that the maximal k-core of G is nonempty. The core number of a vertex v ∈ V in G,
denoted by κG(v), is the largest integer k such that there exists a nonempty maximal k-core
containing v in G. κG(v) can be simplified as κ(v) if G is clear in the context.

The k-core model has two elegant properties:

– Uniqueness: The maximal k-core is unique.
– Hierarchy: The maximal k-core is a subset of the maximal k′-core if k′ ≤ k.

In the following, we use KG
k to denote the maximal k-core of G. When G is clear in the

context, KG
k can be simplified as Kk .

Lemma 1 Any f -CC satisfying the constraint Ck is contained in a connected component
of the maximal k-core Kk of G.

Proof The lemma holds due to the minimum degree constraint Ck
1.

Based on Lemma 1, the ConsCS problem instance 〈G, f, k〉 can be solved on G[Kk]
instead of on G. Moreover, since f -CCs are connected, we can solve the instance
〈G[Kk], f, k〉 on each connected component of G[Kk] independently.

Lemma 2 Let C be a connected component of the maximal k-core Kk of G. Given the
ConsCS problem instance 〈G[C], f, k〉, if |C| ≤ g−1(k), C is an f -CC in the result and is
a superset of any other f -CC in the result.

Proof The lemma holds due to the maximum size constraint Ck
2 and Lemma 1.

Since the goal of our FlexCS problem is to extract representative f -CCs that attain high
diversity and avoid uninformative ones, it is not reasonable to include two f -CCs with
inclusion relationship in the result set. Accordingly, also for speeding up the proceeding
diversified top-r f -CCs selection, it is necessary to keep S succinct, i.e., for two f -CCs
Q1 and Q2 in S, if Q1 ⊆ Q2, Q1 can be removed from S without sacrificing diversity
but making S smaller. According to Lemma 2, if there exists a connected component C in
G[Kk] with |C| ≤ g−1(k), C is certainly an f -CC, and any f -CC in G[C] is a subset of C.
If C is already contained in S, any subset of C can be removed from S. All ConsCS problem
instances 〈G[C′], f, k′〉 for C′ ⊆ C and k ≤ k′ can thus be eliminated. Consequently, we
have the following core-based filtering method:

1. We compute all nonempty maximal k-cores in G for k ≥ 1 by the fast core
decomposition algorithm [3].

2. We deal with each maximal k-core in ascending order of k. For each maximal k-core
Kk with 1 ≤ k ≤ κ(G), we first compute its connected components. Then, for each
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connected component C, if |C| ≤ g−1(k), we add C into S and remove all vertices in
C from the k′-cores for k′ ≥ k.

Now, we only need to solve the ConsCS problem instances on each remaining connected
component of each nonempty maximal k-core after applying the core-based filtering.

Example 4 Consider the example graph shown in Figure 2 and f (x) = √
x. When k = 4,

the maximum size constraint w.r.t. k is |Q| ≤ g−1(k) = 16. Since the only one connected
component of the maximal 4-core is K4 = {c, d, e, f, g, h, i, j, k, l, m} with size 11, K4 is
an f -CC. We add K4 into S and all ConsCS problem instances 〈G[C′], f, k′〉 for C′ ⊆ K4
and k′ ≥ 4 can be eliminated.

3.2 Diversified top-r f -CCs selection

The second component of our method is to choose from S, the set of qualified f -CCs, r

most diversified ones that can cover the largest number of vertices. Because it is extremely
expensive to enumerate all r-combinations of f -CCs in S and then select the most diver-
sified one, we design a method that approximately identifies the best r-combination of
f -CCs. Our algorithm maintains a set R of temporary diversified top-r f -CCs. Initially,
R = ∅. When a new f -CC Q is found, we use Procedure Update (Algorithm 1) to update
R with Q according to the following rules:

R1: If |R| < r , we add Q toR (lines 1–2).
R2: If |R| = r , we replace an f -CC in R by Q if such replacement can signifi-

cantly expand cov(R) (lines 3–6). Specifically, let Q∗ ∈ R be the f -CC that
covers the least number of vertices exclusively by itself among all f -CCs in R.
Replace Q∗ by Q ifR can cover at least |cov(R)|/r more vertices after applying the
replacement.

Theorem 4 Let S = {Q1,Q2, . . . , Qn} be a set of f -CCs and R∗ ⊆ S be the set of r

f -CCs in S that covers the largest number of vertices. Let R be the final set of r f -CCs
updated with Q1,Q2, . . . , Qn in an arbitrary order according to the rules R1 and R2. We
have |cov(R)| ≥ |cov(R∗)|/4.

Proof For the proof of Theorem 4, please refer to [2].
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By implementing the PNP-Index introduced in [21], the space and time complexity of
Update is O(r|V |) and O(|V |), respectively [21].

3.3 Description of algorithm

Our algorithm for solving the FlexCS problem is presented in Algorithm 2. It first ini-
tializes the result set R and the set S of qualified f -CCs to be empty (line 1). For ease
of presentation, let g(x) = �f (x)�. Then, it computes all nonempty maximal k-cores
K1, K2, . . . , Kκ(G) in G by the fast core decomposition algorithm CORE [3] (line 3).
Next, the algorithm carries out the core-based filtering (lines 4–12). The filtering process
stops when all vertices in the maximal k-core Kk have been removed. After applying the
core-based filtering, the algorithm finds qualified f -CCs on the updated maximal k-cores
(lines 13–18) in descending order of k. It first recomputes the connected components in Kk

(line 15). Then, it invokes Procedure ConsCS to solve the ConsCS problem instance on each
connected component of Kk (line 17) and adds the discovered f -CCs to S (line 18). The
details of Procedure ConsCS will be presented in Section 4. After S has been obtained, the
algorithm uses each f -CC in S to updateR (lines 19–20). Finally,R is outputted (line 21).
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The space and time complexity of Algorithm 2 are O(r|V |) and O(|V |3), respectively.
Since the analysis of the space and time complexity of Algorithm 2 requires the procedures
and the results presented in Sections 4 and 5, we give the analysis in Appendix A.

4 Solving the ConsCS problem

In this section, we present our algorithm for solving the ConsCS problem. We only study
the problem instances 〈G[C], f, k〉 for |C| > g−1(k) because the other instances for |C| ≤
g−1(k) have been eliminated by the core-based filtering. In the following, we present how
to generate an f -CC in Section 4.1 and describe the algorithm for solving the ConsCS
problem in Section 4.2.

4.1 f -CC generation

We first introduce how to generate an f -CC in G[C] satisfying the constraint Ck enforced
in Section 3.1. To avoid the huge search space of the enumeration paradigm and the large
overlap between the enumerated f -CCs, we design a heuristic method inspired by [15]
that leverages both greediness and randomness: It first generates a series of vertex sub-
sets by progressively adding vertices starting from a seed vertex and then outputs the most
diversified one.

Algorithm 3 shows the proposed algorithm FccGen to generate an f -CC starting from a
seed vertex s. The selection of seeds will be discussed in Section 4.2. At first, the current
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selected vertex subset Q and the maximum f -CC discovered so far Qmax are initialized
in line 1. To make all vertices in G[Q] have their degrees at least k as early as possi-
ble, we design the following strategy to add a new vertex to Q. Let Qk ⊆ Q be the set
of vertices of degree less than k in G[Q] (line 2). For a vertex v ∈ C − Q, let dQk

(v)

be the number of vertices in Qk that are adjacent to v in G[C]. The larger dQk
(v) is,

the more vertices in Qk can have their degrees increased after adding v to Q. However,
selecting v with the largest dQk

(v) may lead the search to a sub-optimal cohesive sub-
graph. Hence, we select v with dQk

(v) ≥ (1−α)minu∈C−Q dQk
(u)+αmaxu∈C−Q dQk

(u)

uniformly at random, where α ∈ [0, 1] (lines 5–8). Parameter α controls the trade-off
between greediness and randomness: when α = 1, the vertex v with the largest dQk

(v)

is selected; when α = 0, an arbitrary vertex adjacent to a vertex in Qk is chosen
randomly.

When the degree of every vertex in G[Q] becomes at least k, the generation step con-
tinues adding new vertices to Q to form an even larger f -CC. We now have Qk = ∅,
so the heuristic strategy described above is not applicable any more. Alternatively, we
select a vertex v with dQ(v) ≥ (1 − α)minu∈C−Q dQ(u) + αmaxu∈C−Q dQ(u) uniformly
at random, where α ∈ [0, 1] (lines 10–13), since v is expected to be cohesively linked
to Q.

As long as a new vertex v has been selected, we add it to Q (line 14) and recalculate Qk

(line 15). When Qk is empty, Q is the current largest f -CC satisfying the constraint Ck .
We hence copy Q to Qmax (lines 16–17). According to the maximum size constraint Ck

2,
the generation process stops when |Q| = g−1(k) (line 3). Qmax must be a subset of C and
satisfy the constraint Ck , so it is returned as the result (line 18).

We now analyze the space and time complexity of FccGen. Apparently, the proce-
dure only requires O(|C|) space to keep Q, Qmax and candidate vertices in C to be
added to Q. Therefore, the space complexity of FccGen is O(|C|). Then, we consider
its time complexity. In each iteration, the procedure selects a vertex from C − Q to add
to Q, which runs in O(|C|) time. Since the generation process consists of at most |C|
iterations, it therefore takes O(|C|2) time. Overall, the time complexity of FccGen is
O(|C|2).

4.2 Algorithm for the ConsCS problem

As presented in Section 4.1, the f -CC generation procedure FccGen starts from a seed
vertex and generates an f -CC in the proximity of the seed. Since FccGen is fast and ran-
domized, we can repeat it many times starting from different seeds to get more diversified
f -CCs.

To approximately solve a ConsCS problem instance 〈G[C], f, k〉, a trivial method is to
designate each vertex in C as a seed and generate an f -CC starting from the seed. However,
this method often carries out a lot of redundant computation and produces many overlapping
f -CCs. For efficiency consideration, we adopt the following seed selection strategies to
reduce redundancy.

– The vertices in a generated f -CC will not be chosen as seeds any more.
– The vertices in the maximal (k+1)-coreKk+1 ofGwill not be selected as seeds because

these vertices have been considered as seeds when solving the problem instances
〈G[C′], f, k′〉 for k′ ≥ k + 1 and C′ ⊆ C.
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Based on the f -CC generation procedure FccGen presented in Algorithm 3 and the seed
selection strategies described above, we develop an algorithm for approximately solv-
ing the ConsCS problem in Algorithm 4. The procedure is self-explanatory. We now
analyze the space and time complexity of ConsCS. As analyzed in Section 4.1, the
FccGen procedure invoked in line 4 requires O(|C|) space and O(|C|2) time, so the
space complexity of ConsCS is O(|C|). Since the for loop in lines 3–6 is executed at
most |C| times, and each loop runs in O(|C|2) time, the time complexity of ConsCS is
O(|C|3).

Example 5 Consider the example graph shown in Figure 2 and a ConsCS problem
instance 〈G[K3], f (x) = √

x, k = 3〉 on the connected 3-core K3. We consider S =
{n, o, p, q, r, s, t, u} as initial seeds since {c, d, e, f, g, h, i, j, k, l, m} ⊆ K4. First, we
select the vertex n as seed and execute FccGen. Assume that FccGen returns Q1 =
{d, e, g, h, j, k, l, n}, we add Q1 into T and remove n from S. Then, we select the vertex o

as seed and execute FccGen. Assume that FccGen returns Q2 = {n, o, p, q, r, s, t, u}, we
add Q2 into T and remove vertices in Q2 from S. Now, S = ∅, the procedure terminates
and returns T .

5 Optimization techniques

This section introduces some optimization techniques that help speed up the proposed
FlexCS algorithm.

5.1 On-the-fly result set updating

For ease of presentation, in FlexCS (Algorithm 2), we keep the qualified f -CCs in the set
S in memory (lines 9 and 18) and later update the result set R with the f -CCs in S at the
end of the algorithm (lines 19–20). In fact, it is not necessary to keep S in memory. In our
implementation, whenever a new f -CC Q is found in line 9 of FlexCS (Algorithm 2) or in
line 4 of ConsCS (Algorithm 4), we immediately updateR with Q using Procedure Update
(Algorithm 1). The on-the-fly updating ofR is correct because the order in which the f -CCs
in S are used to updateR does not affect the approximation ratio ofR (see Theorem 4). The
on-the-fly updating of R can significantly reduce memory overhead because |S| is usually
very large for a large input graph G.
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5.2 Early terminationmechanism

With the on-the-fly result set updating, the result set R can be filled with r f -CCs at an
early stage of the FlexCS algorithm (Algorithm 2). It enables us to design a mechanism to
early terminate the execution of ConsCS (Algorithm 4) and FlexCS (Algorithm 2) if they
are not possible to generate any useful f -CCs to improve the coverage cov(R) of R. For
ease of notation, let minCov(R) denote the least number of vertices exclusively contained
in an individual f -CC inR, that is, minCov(R) = minQ∈R |cov(R) − cov(R− {Q})|. We
have the following theorem:

Theorem 5 Given an instance 〈G[C], f, k〉 of the ConsCS problem, none of the f -CCs
generated by Procedure ConsCS (Algorithm 4) on G[C] can update the result set R if the
following conditions hold:

{ |R| = r,

minCov(R) + 1
r
|cov(R)| > g−1(k).

(3)

Proof Let Q∗ be the f -CC in R that covers the least number of vertices exclusively by
itself, i.e., |cov(R)−cov(R−{Q∗})| = minCov(R). If the conditions presented in (3) hold,
for each f -CC Q in the result set of the ConsCS problem instance 〈G[C], f, k〉, replacing
Q∗ with Q leads to a new result setR′ such that:

|cov(R′)| = |cov(R − {Q∗}) ∪ {Q}|
≤ |cov(R)| − minCov(R) + g−1(k) // According to Ck

2

<

(

1 + 1

r

)

|cov(R)|.

According to the rule R2 presented in Section 3.2, Q cannot be used to update R. The
theorem thus holds.

Theorem 5 naturally indicates the following early termination mechanism for ConsCS
(Algorithm 4). In Algorithm 4, we check the conditions presented in (3) before executing
FccGen in line 4 and terminate Algorithm 4 if the conditions hold because no more useful
f -CCs can be generated to updateR.

We can further extend this early termination mechanism to FlexCS (Algorithm 2). In
Algorithm 2, we check the conditions presented in (3) before executing line 15 and terminate
Algorithm 2 if the conditions hold. If Algorithm 2 is early terminated for some value of k, it
completely avoids executing ConsCS on the connected components of the maximal k′-cores
for k′ ≤ k because no more useful f -CCs can be generated on any connected component
in these maximal k′-cores to update R. This also explains why k is considered from kmax
downward to 1 in line 14 of Algorithm 2 (just for early termination).

5.3 Index-based connected component retrieval

Note that FlexCS (Algorithm 2) computes the connected components of each maximal k-
core Kk in G twice (line 6 and line 15). In line 6, it computes the connected components
of Kk to realize the core-based filtering (see Section 3.1.2) that removes small connected
components of Kk (in ascending order of k). Since Kk is changed in line 11, we must
re-compute the connected components of Kk in line 15 and execute ConsCS to generate
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qualified f -CCs on each large connected component of Kk (in descending order of k).
Obviously, large amount of redundant computation has to be carried out in line 15.

To reduce such redundant computation, one available alternative is to compute all con-
nected components of Kk in line 6 and save them in memory for future use. However, this
approach requires O(κ(G)|V |) space to keep all large-sized connected components, where
κ(G) is the core number of G (Definition 3). To make a trade-off between time and space,
we design the connected component index (CCIndex for short) to facilitate the retrieval
of the connected components of Kk . The CCIndex only requires O(|V |) space, and with
the help of it, we can avoid the redundant computation caused by re-computing connected
components performed in line 15 of Algorithm 2.

5.3.1 Connected component index (CCIndex)

A CCIndex is composed of two arrays A and CC:

1. The array A holds all vertices in G in a specific order which will be introduced below.
2. The array CC serves as an access path to the information stored in A.

The key to designing the CCIndex is the ordering of vertices in the array A. The central
idea is that all vertices in a connected component C of the maximal k-core Kk are consec-
utively placed in A so that C can be efficiently retrieved by doing a sequential read on A.
To retrieve C, we only need to know the offset sC of the first vertex in C within A and the
size |C| of C because C = {A[i]|sC ≤ i < sC + |C|}. Such ordering of vertices in A can
be realized based on the hierarchical structure described in the following lemma.

Lemma 3 Each connected component of the maximal k-core Kk is a subset of a connected
component of the maximal k′-core Kk′ if k′ ≤ k.

Proof Let C be a connected component of Kk and C′ be a connected component of Kk′
that overlaps with C. Suppose C �⊆ C′. We have that C ∪ C′ is a k′-core and C ∪ C′ is
connected. It contradicts with the fact that C′ is a connected component of Kk′ . Thus, the
lemma holds.

Figure 5 illustrates how we order the vertices in the array A according to the hier-
archical structure described in Lemma 3. By leveraging the hierarchical structure among
connected components, the overlaps between connected components are stored in A only
once. Therefore, the array A can be regarded as a redundancy-free compression of all con-
nected components of all maximal k-cores of G. The details of constructing the array A will
be presented in the next subsection.

After the order of vertices in A has been determined, the information required for retriev-
ing each connected component is kept in the array CC. As mentioned above, for each
connected component C of the maximal k-core Kk , it can be identified by the offset sC of
the first vertex in C within A and the size |C| of C. The pair (sC, |C|) is thus recorded in
the element CC[k]. Since Kk may be composed of several connected components, CC[k]
actually records a list of pairs (sC, |C|) for all connected components C in Kk .

Example 6 Figure 6 shows a CCIndex for the example graph given in Figure 2. The vertices
in the array A are ordered such that all vertices in a connected component of the maximal
k-core Kk are consecutively placed in A. For k = 4, the maximal 4-core in the graph is
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Figure 5 Illustration of the ordering of vertices in the array A in the CCIndex. The maximal 1-core K1
of graph G has two connected components C1,1 and C1,2; The maximal 2-core K2 has three connected
components C2,1, C2,2 and C2,3; The maximal 3-core K3 has three connected components C3,1, C3,2 and
C3,3. The hierarchical structure of these connected components is illustrated by the nested circles. The dotted
lines depict the mapping from a connected component to a sub-array of A

K4 = {c, d, e, f, g, h, i, j, k, l, m}. There is only one connected component in K4, i.e.,
K4 itself. The size of K4 is 11, and the first vertex (m) in K4 within A is placed in A[0].
Therefore, the pair (0, 11) is recorded in the element CC[4]. According to the pair (0, 11),
this connected component can be retrieved as A[0 . . . 10].

Furthermore, to efficiently support the core-based filtering (Section 3.1.2) and the early
termination mechanism (Section 5.2), the pairs (sC, |C|) in CC[k] are sorted in ascending
order of |C|. The core-based filtering can be implemented by examining each pair (sC, |C|)
in CC[k] and removing it from CC[k] if |C| ≤ g−1(k). Procedure ConsCS is then exe-
cuted on each connected component C represented by each remaining pair (sC, |C|) in
CC[k].

Figure 6 A CCIndex for the example graph given in Figure 2
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5.3.2 Construction of CCIndex

The algorithm for constructing a CCIndex is presented in Algorithm 5. The input of the
algorithm includes the graph G = (V ,E), the core number κ(G) of G and the core number
κ(v) of every vertex v ∈ V . The output of the algorithm is a CCIndex of G. The algorithm
works as follows. First, we set up the array A and the array CC in the CCIndex (line 1).
The length of A is |V |, and the length of CC is κ(G). For ease of notion, let A[s : t] denote
the sub-array of A starting from A[s] and ending at A[t], where 1 ≤ s ≤ t ≤ |V |. Then, we
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add all vertices in V to A in an arbitrary order (lines 2–5). The key step of the algorithm is
reordering the vertices in A (line 6) so that they satisfy the criterion of ordering described
in Section 5.3.1.

The reordering of A is realized by the recursive procedure Reorder. The procedure takes
as input a sub-array A[s : t], the array CC and an integer k ∈ [0, κ(G)]. As will be shown
later, this procedure has the following invariant: all vertices in A[s : t] form a connected
component of the maximal k-core Kk of G for k = 1, 2, . . . , κ(G). Therefore, we have
κ(v) ≥ k for all v ∈ A[s : t]. The procedure works as follows. First, the vertices in A[s : t]
form a connected component of Kk , and its size is t − s + 1. To enable fast access to this
connected component, we add the pair (s, t − s + 1) to the element CC[k] of the array CC

(line 8). Then, we move all vertices v ∈ A[s : t] with κ(v) > k to the front of A[s : t]
(lines 9–16). Suppose there are l vertices v ∈ A[s : t] with κ(v) > k.

If l = 0, all vertices in A[s : t] have core number k. According to the invariant of
the procedure, all vertices in A[s : t] form a connected component of Kk . This connected
component is now consecutively placed in A[s : t], which satisfies the criterion of the
ordering described in Section 5.3.1. Since all vertices in A[s : t] have core number k, none
of the connected components of Kk′ with k′ > k is nested in A[s : t]. Therefore, the
reordering of A[s : t] is done, and the procedure returns (line 18).

If l > 0, some of the connected components of Kk′ with k′ > k are nested in A[s :
s + l − 1], so we must recursively reorder the vertices in A[s : s + l − 1]. First, we compute
the connected components of the subgraph of G induced by the vertices in A[s : s + l − 1]
(line 19). LetC1, C2, . . . , Cm be these connected components. Then, we reorder the vertices
in A[s : s + l − 1] so that the vertices in each connected component Ci are consecutively
placed in A. Particularly, we move the vertices in Ci to the sub-array A[si : ti], where
si = s + ∑i−1

j=1|Cj | and ti = si + |Ci | − 1 (lines 20–24). The order of vertices in A[si : ti]
is arbitrary. Next, for i = 1, 2, . . . , m, we recursively reorder the vertices in A[si : ti] by
calling Procedure Reorder with input A[si : ti], CC and k + 1 (lines 25–29).

In line 6 of the CCIndex construction algorithm (Algorithm 5), we call Procedure
Reorder with input A, CC and k = 0 to start reordering all vertices in A. When the pro-
cedure returns, the construction of the CCIndex is completed. The algorithm outputs the
arrays A and CC (line 7).

The correctness of Algorithm 5 is ensured by the invariant of Procedure Reorder stated
in the following theorem.

Theorem 6 All vertices in A[s : t] form a connected component of the maximal k-core Kk

of G for k = 1, 2, . . . , κ(G).

Proof We prove this theorem by induction on k. First, we consider the inductive base for
k = 1. When Procedure Reorder is called at line 6 of Algorithm 5, it moves all vertices
v in A with κ(v) ≥ 1 to A[1 : l] (lines 9–16) and computes the connected components
C1, C2, . . . , Cm of the subgraph of G induced by the vertices in A[1 : l] (line 19). Certainly,
K1 = C1∪C2∪· · ·∪Cm. Therefore,Ci is a connected component ofK1 for 1 ≤ i ≤ m. Each
connected component Ci is consecutively stored in A[si : ti] (lines 20–24), and A[si : ti]
is recursively reordered by calling Procedure Reorder with input A[si : ti] and k = 1
(line 28). Therefore, all vertices in A[si : ti] form a connected component of K1. The base
case holds.

Assume that when Procedure Reorder is called with input A[s : t] and k, all vertices in
A[s : t] form a connected component ofKk . Certainly, we have κ(v) ≥ k for all vertices v in
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A[s : t]. Procedure Reorder moves all vertices v in A[s : t] with κ(v) > k to A[s : s+ l−1]
(lines 9–16) and computes the connected components C1, C2, . . . , Cm of the subgraph of
G induced by the vertices in A[s : s + l − 1] (line 19). We have κ(v) ≥ k + 1 for all
v ∈ Ci . Therefore, Ci is a connected component of Kk+1. Procedure Reorder consecutively
stores Ci in A[si : ti] (lines 20–24) and reorders A[si : ti] by recursively calling Procedure
Reorder with input A[si : ti] and k + 1 (line 28). Thus, all vertices in A[si : ti] form a
connected component of Kk+1. The induction holds.

Given the graph G = (V ,E), Algorithm 5 outputs the arrays A and CC in the CCIndex
of G. The array A stores all vertices in V , so it takes O(|V |) space. The array CC stores
a pair of integers (sC, |C|) for each connected component C of each maximal k-core in G.
As will be shown in the following theorem, there are totally at most |V | such connected
components. Thus, CC requires O(|V |) space. Consequently, it takes O(|V |) space to store
the CCIndex.

Theorem 7 Given the graph G = (V ,E), let nk be the number of connected components
of the maximal k-core Kk of G. We have

∑κ(G)
i=0 nk ≤ |V |.

Proof According to the definition of k-core, a k-core must be composed of at least k + 1
vertices. Therefore, Kκ(G) contains at least (κ(G)+1)nκ(G) vertices. For 0 ≤ k < κ(G), by
Lemma 3, there are at least max{0, (nk − nk+1)} connected components in Kk that do not
contain any connected component inKk+1. Each of these connected components is a k-core,
which contains at least k+1 vertices. Therefore, |Kk−Kk+1| ≥ (k+1)max{0, (nk−nk+1)}.
Hence, we have

|V | = |Kκ(G)| +
κ(G)−1∑

k=0

|Kk − Kk+1|

≥ (κ(G) + 1)nκ(G) +
κ(G)−1∑

k=0

(k + 1)max{0, (nk − nk+1)}

≥ nκ(G) + nκ(G)−1 + · · · + n1 + n0. (4)

The last inequality (4) is derived based on the arguments shown in Appendix B. Thus,
the theorem holds.

We now analyze the space complexity of Algorithm 5. Given as input the sub-array A[s :
t], Procedure Reorder needs O(l) space to compute and keep the connected components
C1, C2, . . . , Cm of the subgraph of G induced by the vertices in A[s : s + l − 1] (line 19).
We have l ≤ t − s + 1 ≤ |V |. This space can be released as soon as C1, C2, . . . , Cm have
been consecutively stored in A[s : s + l − 1] (lines 20–24). In addition to the O(|V |) space
taken by the CCIndex, Algorithm 5 totally requires O(|V |) space.

Next, we analyze the time complexity of Algorithm 5. It takes O(|V |) time to add all
vertices in V to the array A (lines 2–5). The execution time of line 6 is O(κ(G)(|V |+|E|)),
which is analyzed as follows. For 0 ≤ k ≤ κ(G), let Ck

1 , C
k
2 , . . . , C

k
nk

be all connected
components of Kk . We have

∑nk

i=1 |Ck
i | = |Kk|. Suppose Ck

i has been consecutively placed
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in A[sk
i : tki ]. Given A[sk

i : tki ] and k as input, Procedure Reorder takes O(|Ck
i |) time

to move all vertices v in A[sk
i : tki ] with κ(v) > k to the front of A[sk

i : tki ] (lines 9–
16). If Procedure Reorder does not return in line 18, it computes connected components
of Kk+1 nested in Ci (line 19) and places these connected components consecutively in
A[sk

i : tki ] (lines 20–24). For all Ck
1 , C

k
2 , . . . , C

k
nk
, it totally takes O(

∑nk

i=1 |Ck
i | = |Kk|)

time to execute lines 9–16, O(
∑nk+1

i=1 |Ck+1
i | = |Kk+1|) time to execute lines 20–24 and

O(
∑nk+1

i=1 (|Ck+1
i | + |E[Ck+1

i ]|)) = O(|Kk+1| + |E[Kk+1]|) time to execute line 19, where
E[S] represents the set of edges in G with both endpoints in S. By Theorem 7, Algorithm 5
adds at most |V | integer pairs to the array CC (line 8), which totally takes O(|V |) time.
Therefore, line 6 runs in O(|V | + ∑κ(G)

k=0 (|Kk| + |E[Kk]|)) = O(κ(G)(|V | + |E|)) time.
Consequently, the time complexity of Algorithm 5 is O(κ(G)(|V | + |E|)).

6 Experiments

In this section, we evaluate the proposed f -CC model and the FlexCS algorithm. First, we
show the flexibility of the f -CC model compared with the clique model and the k-core
model. Then, we evaluate the practical performance of the algorithm FlexCS with respect
to its parameters. Next, we examine the effects of the optimization techniques proposed in
Section 5. Finally, we verify the effectiveness of the algorithm FlexCS by comparing its
results with a theoretical bound.

6.1 Experiment setting

Algorithms Our FlexCS algorithm is compared with the diversified top-r cliques mining
algorithm EnumKOpt [21] that finds r cliques covering the largest number of vertices and
the core decomposition algorithm CORE [3] that computes all nonempty maximal k-cores.
EnumKOpt uses the Update procedure (Algorithm 1) to maintain a setR of temporary diver-
sified top-r cliques except that replacement only takes place if it makes R cover at least
η|cov(R)|/r more vertices. When η = 1, it is exactly Procedure Update (Algorithm 1). To
be consistent with [21], we set η = 0.3. In addition, since CORE returns all nonempty max-
imal k-cores, we only save top-r largest ones as results for ease of comparison. In the rest
of this section, we use Rf , Rcli and Rcore to represent the outputs of FlexCS, EnumKOpt
and CORE, respectively.

Parameters The FlexCS algorithm has 4 parameters.

r: The number of f -CCs to be found.
α: The parameter used to tune the trade-off between randomization and greediness in

Procedure FccGen (see Section 4.1).
t : The number of threads used to execute Procedure FccGen on each maximal k-core in

parallel.
β: To attain more flexibility, we normally expect that the constraint imposed by function

f is stricter on small subgraphs but looser on large subgraphs. Therefore, we tested
various constraint functions with such trends in the experiments, including exponential
functions in forms of f (x) = x1/β and logarithmic functions in forms of f (x) =
logβ(x), where β ≥ 1. We obtain similar results for all these functions. Therefore, we
only report the results for f (x) = x1/β in the rest of this section, where β ≥ 1.
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The default values of r , α, t and β are set to 60, 0.9, 16 and 2, respectively. To
avoid uninformative small clusters, we ignore cohesive subgraphs consisting of less than 5
vertices.

Datasets Our experiments were performed on 9 real graphs obtained from the SNAP
project (http://snap.stanford.edu). We regard the core number κ(G) of a graph G as an
important feature because our algorithm processes each maximal k-core in G in sequence.
In addition, κ(G) can reflect the density of G to some extent, which has essential impacts
on most cohesive subgraph mining algorithms. Since we only consider simple graphs, we
eliminated self-loops and multiple edges from all these graphs. Table 1 lists the statistics of
these graphs. Note that the graph ca-GrQc is very small, which is only used for purpose of
visualization in Section 6.2.

Experiment setup All the algorithms were implemented in C++ and compiled with the
same optimization level. All experiments were carried out on a server with an Intel Xeon
CPU (2.10GHz and 8 cores) and 220GB of RAM, running 64-bit Ubuntu 18.04. In our
experiments, Procedure FccGen (Section 4.1) was implemented and executed using multi-
threads.

6.2 Flexibility of the f -CCmodel

We first compare the flexibility of the f -CC model, the clique model and the k-core model.
To evaluate the flexibility of these models, we first compare the sizes of cohesive subgraphs
discovered by FlexCS, EnumKOpt and CORE. Then, we take a deeper look at the vertices
covered byRf ,Rcli andRcore.

6.2.1 On the comparison of cohesive subgraph size

We first examine the sizes of cohesive subgraphs discovered by FlexCS, EnumKOpt and
CORE. We remove the maximal 0-core and the maximal 1-core fromRcore because they are
nearly the entire graph. Figure 7 shows the sizes of f -CCs, cliques and k-cores inRf ,Rcli

andRcore in ascending order. We have the following observations: (1) The cliques found by
EnumKOpt are always small, but the sizes of f -CCs discovered by FlexCS are distributed
in a wide range. Both small f -CCs with tens of vertices and large f -CCs with hundreds of

Table 1 Statistics of graphs used in experiments

Graph #Vertices #Edges κ(G)

Com-Amazon 334,863 925,872 6

Gemsec-Deezer (HU) 47,538 222,887 11

Ca-CondMat 23133 93,439 25

Gemsec-Facebook (New Sites) 27,917 205,964 31

Ca-GrQc 5,241 14,484 43

Email-Enron 36,692 183,831 43

Musae-facebook 22,470 170,823 56

Ca-AstroPh 18,771 198,050 56

Com-DBLP 317,080 1,049,866 113
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vertices can be characterized simultaneously. (2) Compared with f -CCs, the k-cores found
by CORE are much larger. Note that the sizes of cohesive subgraphs are shown in log scale
in Figure 7b. Therefore, the k-core model is not suitable for characterizing small clusters.
In conclusion, the f -CC model attains more flexibility than both the clique model and the
k-core model.

6.2.2 On the comparison of cohesive subgraph coverage

In this section, we take a deeper look at the vertices covered by the cohesive subgraphs
discovered under different models. Let cov(Rcli ) and cov(Rcore) be the coverage of Rcli

andRcore, respectively. For ease of comparison, we introduce two measures: precision and

recall. Precision is defined as
|cov(Rf )

⋂
cov(Ro)|

|cov(Rf )| , and recall is defined as
|cov(Rf )

⋂
cov(Ro)|

|cov(Ro)| ,

whereRo ∈ {Rcli ,Rcore}.

Rf v.s.Rcli When comparing the vertices covered by f -CCs found by FlexCS and cliques
discovered by EnumKOpt, we vary β from 1.5 to 2.5. Table 2 shows the results. We can see
that the precision is smaller than 0.5 in most cases. Actually,Rcli only contains a small pro-
portion of vertices covered byRf due to the strong constraint imposed by the clique model.
Nevertheless, the recall is always large for most graphs, i.e., the discovered f -CCs can cover
a large number of vertices in cliques. Especially, on com-DBLP, Rf covers more than 89
percent of vertices in Rcli for all β. However, for com-Amazon and gemsec-Deezer(HU)
whose core numbers are relatively small, they usually contain a large number of small f -
CCs and cliques. Rcli and Rf may cover different parts of the graph, and therefore the
recall is small. Moreover, we can find that as β increases, the precision decreases, but the
recall increases. It is consistent with our expectation that larger β leads to larger f -CCs,
which will further result in a more diversifiedRf that definitely contains more cliques.

Rf v.s.Rcore When comparing vertices covered by f -CCs found by FlexCS and k-cores
discovered by CORE, it is meaningless to compare Rf with some k-core since f -CCs are
extracted from all maximal k-cores. Hence, we calculate the recall of Rf and each k-core
for k ≤ κ(G) and then examine the variation of recall w.r.t. k to reveal the relationships
between f -CCs and k-cores.

The experimental results on gemsec-Deezer (HU) and com-DBLP are shown in Figure 8.
We can see that the recall increases with k, that is,Rf can basically cover k-cores for large
k. Specifically,Rf covers all vertices in the 9-core on gemsec-Deezer (HU) and the 26-core
on com-DBLP. However,Rf covers fewer vertices on k-cores with small k. The observation

Figure 7 Sizes of cohesive subgraphs discovered by FlexCS, EnumKOpt and CORE on com-DBLP. (a) f -
CCs v.s. cliques; (b) f -CCs v.s. cores
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Table 2 Comparison betweenRf and Rcli

Graph |cov(Rcli )| β |cov(Rf )| Precision Recall

1.5 411 0.017 0.019

Com-Amazon 372 2 1059 0.007 0.019

2.5 2216 0.005 0.030

1.5 486 0.272 0.328

Gemsec-Deezer (HU) 402 2 962 0.185 0.443

2.5 1420 0.105 0.371

1.5 1130 0.476 0.684

Ca-CondMat 787 2 2109 0.296 0.794

2.5 2900 0.233 0.860

1.5 1441 0.362 0.638

Gemsec-Facebook (New Sites) 816 2 2749 0.242 0.814

2.5 4035 0.173 0.857

1.5 946 0.325 0.557

Email-Enron 551 2 2005 0.204 0.744

2.5 3437 0.139 0.866

1.5 2138 0.333 0.758

Musae-facebook 941 2 3817 0.207 0.842

2.5 4831 0.174 0.896

1.5 2673 0.591 0.837

Ca-AstroPh 1888 2 3670 0.472 0.917

2.5 4742 0.384 0.965

1.5 2973 0.585 0.892

Com-DBLP 1949 2 4938 0.393 0.996

2.5 6977 0.279 1.000

is consistent with our motivation: f -CCs can cover most vertices in cohesively connected
regions but exclude those in sparse regions.

Visualization To better illustrate the differences between cohesive subgraphs characterized
by these models, we visualize Rf , Rcli and Rcore obtained on the smallest dataset ca-
GrQc in Figure 9. The vertices in cov(Rf )∩ cov(Ro), cov(Rf )− cov(Ro) and cov(Ro)−
cov(Rf ) are colored in red, green and blue, respectively, whereRo = Rcli orRcore. Note
that we eliminate all discovered cohesive subgraphs with size smaller than 6 for sake of
fairness.

Figure 9a shows the vertices covered by Rf and Rcli . We can see that Rf covers a
large portion of vertices in Rcli . Note that the green vertices in cov(Rf ) − cov(Rcli ) are
also cohesively connected to each other and/or to the red vertices in cov(Rf )

⋂
cov(Rcli ),

but they are excluded byRcli . Figure 9b shows the vertices covered byRf andRcore. The
blue vertices in cov(Rcore) − cov(Rf ) are always sparsely connected compared with the
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Figure 8 Recall of Rf and k-core w.r.t. k on graphs gemsec-Deezer(HU) and com-DBLP. (a) Gemsec-
Deezer(HU); (b) Com-DBLP

red vertices in cov(Rf )
⋂

cov(Rcore) and the green vertices in cov(Rf )−cov(Rcore), and
fortunately they are excluded from the f -CCs discovered by FlexCS. The vertices in each
f -CC inRf are guaranteed to be cohesively connected.

6.3 Performance of FlexCS

Next, we evaluate the performance of the proposed FlexCS algorithm. In the experiments,
we use two evaluation metrics: execution time and result coverage size (RCS) |cov(Rf )|.
For ease of presentation, let R denote the temporary result set at some moment of the
execution of FlexCS. In the rest of this section, we only present some representative results
for each experiment to save space. Note that, when evaluating the effects of a parameter, the
other parameters are fixed to their default values.

Execution time andRCSw.r.t. r Parameter r is the number of f -CCs to be found. Figure 10
shows the execution time and the RCS of FlexCS w.r.t. r on gemsec-Facebook and com-
DBLP. Both RCS and execution time increase with r . This is because larger r leads to
more f -CCs in R, and therefore Rf certainly covers more vertices. While, maintaining
R becomes more costly as r increases, and the early termination mechanism proposed in
Section 5.2 becomes more difficult to take effects.

Figure 9 Visualization of Rf , Rcli and Rcore on ca-GrQc. (a) Rf v.s. Rcli ; (b) Rf v.s. Rcore
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(a) (b)

Figure 10 Execution time and RCS w.r.t. r on graphs gemsec-Facebook and com-DBLP. (a) Gemsec-
Facebook; (b) Com-DBLP

Execution time and RCS w.r.t. α Parameter α tunes the trade-off between randomization
and greediness in Procedure FccGen (see Section 4.1). Figure 11 shows the execution time
and the RCS of FlexCS w.r.t. α on gemsec-Deezer (HU) and ca-AstroPh. We have the fol-
lowing observations: (1) In most cases, the RCS increases with α. When α becomes larger,
our algorithm tends to generate an f -CC more greedily, so it is more possible to obtain
f -CCs satisfying the minimum degree constraint Ck

1 to fill R. (2) The execution time
decreases with α. Since larger α increases the chance to find valid f -CCs, R is filled with
f -CCs earlier. Therefore, the early termination mechanism is more likely to take effects
early.

Execution time and RCS w.r.t. t Parameter t is the number of threads used to execute Pro-
cedure FccGen on each maximal k-core in parallel. Figure 12 shows the execution time and
the RCS of FlexCS w.r.t. t on musae-facebook and ca-CondMat. We have the following
observations: (1) The RCS fluctuates slightly with t . It is because FlexCS is a random-
ized algorithm. Indeed, t has no impact on the RCS; (2) The execution time decreases as t

increases, which is consistent with our expectation that executing Procedure FccGen in par-
allel with multiple threads can decrease the execution time to a large extent. Note that, for
graph Ca-CondMat, the execution time slightly increases when using 16 threads compared
with the one using 8 threads. This is becauseR can be updated by only one thread at a time.
Too many threads increase the contention on updatingR.

Execution time and RCS w.r.t. f Recall that the form of constraint function used in the
experiments is f (x) = x1/β , where β ≥ 1. Figure 13 shows the execution time and RCS
w.r.t. β on com-Amazon and email-Enron.We have the following observations: (1) The RCS
increases with β. Apparently, a larger β imposes a looser constraint on f -CCs, which leads to
more diversified and larger f -CCs. (2) The execution time also increases with β. According

Figure 11 Execution time and RCS w.r.t. α on graphs gemsec-Deezer(HU) and ca-AstroPh. (a) Gemsec-
Deezer(HU); (b) Ca-AstroPh

560 World Wide Web (2022) 25:535–567



Figure 12 Execution time and RCS w.r.t. t on graphs musae-facebook and ca-CondMat. (a) Musae-facebook;
(b) Ca-CondMat

to Ck
2, the maximum size of f -CCs w.r.t. each minimum vertex degree increases expo-

nentially as β increases. The number of iterations in FccGen thus increases exponentially
as well, and the execution time increases significantly.

6.4 Effects of optimization techniques

We also evaluate the effects of the optimization techniques proposed in Section 5, partic-
ularly, the early termination mechanism (Section 5.2) and the CCIndex-based connected
component retrieval (Section 5.3).

6.4.1 Effects of early termination mechanism

In this experiment, we evaluate the effects of the early termination mechanism (Section 5.2)
on the performance of FlexCS. Table 3 shows the experimental results. We have the fol-
lowing observations: (1) For graphs com-Amazon and com-DBLP, the early termination
mechanism can significantly decrease the execution time. For graph com-Amazon with
small core number κ(G), there are lots of small f -CCs that are unable to updateR. There-
fore, many ConsCS problem instances and many executions of FccGen can be eliminated.
While, for graph com-DBLP whose core number κ(G) is large, R is filled with large f -
CCs early, which helps filter out ConsCS instances on k-cores with small k. (2) For other
graphs, the effects of the early termination mechanism are not so significant. This is because
the number of vertices covered by R is not very large, so there always exist f -CCs in the
graph that can updateR.

Figure 13 Execution time and RCS w.r.t. β on graphs com-Amazon and email-Enron. (a) Com-Amazon; (b)
Email-Enron
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Table 3 Execution time of FlexCS without/with early termination (abbr. E.T.)

Graph Time (w/o E.T.) (s) Time (w/ E.T.) (s) Ratio

Com-Amazon 19.383 0.162 0.008

Gemsec-Deezer(HU) 0.671 0.629 0.937

Ca-CondMat 0.237 0.168 0.709

Gemsec-Facebook(New Sites) 1.872 1.782 0.952

Email-Enron 1.167 1.028 0.881

Musae-facebook 0.767 0.676 0.881

Ca-AstroPh 1.687 1.627 0.964

Com-DBLP 14.823 1.187 0.080

Ratio represents the ratio between the execution time with early termination and the execution time without
early termination

6.4.2 Effects of CCIndex

In this experiment, we evaluate the effects of the CCIndex (Section 5.3) on the performance
of FlexCS. The experimental results are shown in Tables 4 and 5. We can see from Table 4
that the CCIndex brings a decrease in the execution time of FlexCS for every tested graph.
The performance improvements achieved by the CCIndex seem not significant because
the computation of connected components only takes a small portion of execution time of
FlexCS (about 50% for com-Amazon and up to 10% for other graphs). Let us take a deeper
look at the impacts of the CCIndex on the time of connected component computation and
retrieval in FlexCS. From Table 5, we can see that the CCIndex helps decrease the time
for component computation and retrieval by 15.1–66.7 percent on the tested graphs. These
experimental results verify the effectiveness of the CCIndex.

6.5 Effectiveness of FlexCS

To evaluate the effectiveness of FlexCS, we compare RCS with a theoretical upper bound,
which is derived in the following way: We compute the maximum number of disjoint f -
CCs with size g−1(k) for k = κ(G), . . . , 1 and accumulate their sizes until the top-r f -CCs

Table 4 Execution time of FlexCS without/with the CCIndex

Graph Time (w/o CCIndex) (s) Time (w/ CCIndex) (s) Ratio

Com-Amazon 0.172 0.158 0.919

Gemsec-Deezer (HU) 0.665 0.644 0.968

Ca-CondMat 0.175 0.166 0.949

Gemsec-Facebook (New Sites) 1.823 1.793 0.984

Email-Enron 1.079 1.035 0.959

Musae-facebook 0.765 0.689 0.901

Ca-AstroPh 1.782 1.632 0.916

Com-DBLP 1.391 1.216 0.874

Ratio represents the ratio between the execution time with CCIndex and the execution time without CCIndex
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Table 5 Time of connected component computation and retrieval (CC-time for short) without/with the
CCIndex

Graph CC-time (w/o CCIndex) (s) CC-time (w/ CCIndex) (s) Ratio

Com-Amazon 0.086 0.073 0.849

Gemsec-Deezer (HU) 0.028 0.011 0.393

Ca-CondMat 0.003 0.001 0.333

Gemsec-Facebook (New Sites) 0.019 0.010 0.526

Email-Enron 0.006 0.003 0.500

Musae-facebook 0.011 0.005 0.455

Ca-AstroPh 0.019 0.007 0.368

Com-DBLP 0.118 0.088 0.746

Ratio represents the ratio between the CC-time with CCIndex and the CC-time without CCIndex

have been found. The correctness of such paradigm is guaranteed by Lemma 1 and the
increasing monotonicity of f . Table 6 shows the results. We can see that the RCS is larger
than 25 percent of the upper bound on each tested graph. Note that, the upper bound is the
theoretical maximum regardless of the topological structure and connectivity of the graph,
which is basically unreachable in real-world graphs.

7 Related work

7.1 Cohesive subgraphmodels

Different cohesive subgraph models impose constraints on different aspects of cohesive
subgraphs. The existing models can be mainly categorized into three classes. The density-
based models [11] impose constraints on the density of a subgraph. The distance-based
models [11] impose constraints on the distance between any pair of vertices in a subgraph.
The connectivity-based models [5] impose constraints on the edge/vertex connectivity of
a subgraph. None of these models is flexible in characterizing multi-scale cohesive sub-
graphs simultaneously. We explain this with a specific model in each class. First, as a typical

Table 6 Comparison between RCS and its upper bound

Graph RCS Upper Bound Ratio

Com-Amazon 1064 1622 0.656

Gemsec-Deezer (HU) 971 3865 0.251

Ca-CondMat 2064 4962 0.416

Gemsec-Facebook (New Sites) 2707 9923 0.273

Email-Enron 1944 6983 0.278

Musae-facebook 3625 8657 0.419

Ca-AstroPh 3616 10082 0.359

Com-DBLP 4807 12464 0.386

Ratio represents the ratio of the RCS and its upper bound
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density-based model, a density-based γ -quasi-clique [1] with n vertices must be internally

linked by at least γ

(
n

2

)

edges, where γ ∈ [0, 1]. It is so strict that the model only fits for

characterizing small cohesive subgraphs in a large graph due to the sparsity of real graphs.
Second, the k-club model [14] is a typical distance-based model, in which every pair of ver-
tices is within distance k. The size of a k-club generally grows exponentially as k increases
because of the small-world nature of real graphs [18]. Therefore, the k-club model is not
possible to simultaneously characterize both small and large cohesive subgraphs in a graph.
Third, the k-ECC model [5] is a typical connectivity-based model. It requires that the edge
connectivity of a cohesive subgraph is at least k. This model focuses on topological con-
nectivity and is often applied to the scenarios where the edge/vertex cut size is the key
consideration. Compared with these models, our f -CC model focuses on the flexibility of
characterizing any relationship between the minimum degree and the number of vertices in
a subgraph in various scales.

7.2 Diversified cohesive subgraphmining

Considerable work has been done on mining diversified cohesive subgraphs. An I/O-
efficient approximation algorithm for mining diversified top-r cliques is proposed in [21].
Yang et al. [20] extends the notion of degree-based quasi-clique to temporal graphs and
discovers diversified dense temporal subgraphs by a divide-and-conquer algorithm. Zhu
et al. [22] extends the notion of k-core to multi-layer graphs and finds diversified top-r
k-cores in a multi-layer graph. Recently, [19] devises a local search algorithm for the tradi-
tional diversified top-r cliques mining, which outperforms [21] on large sparse graphs. Fei
et al. [9] proposes a formal concept analysis approach for diversified top-r cliques detec-
tion in Social Internet of Things. Since the models used to characterize cohesive subgraphs
on these various kinds of graphs are the inflexible clique, quasi-clique or k-core models (or
extended from these models), none of these algorithms fits for finding cohesive subgraphs
of various scales simultaneously.

7.3 Redundancy-free cohesive subgraphmining

To discover meaningful (i.e., informative, less overlapping) cohesive subgraphs in a mas-
sive graph, one way is to maximize the diversity of the result set, which is adopted by our
work and the work reviewed in Section 7.2. The other way is to reduce the redundancy of
subgraphs in the result set. Boden et al. [4] defines a redundancy relationship between two
cross-layer quasi-cliques in a multi-layer graph and designs algorithms to mine those cross-
layer quasi-cliques that are redundancy-free and with high quality. This work provides us a
new direction to investigate the problem of mining meaningful flexible cohesive subgraphs
from the perspective of minimizing the redundancy in the result set. We will investigate this
direction in our future work.

8 Conclusions and future work

The f -CC model is flexible in characterizing the relationship between the minimum degree
of vertices and the number of vertices in a cohesive subgraph. The f -CC model is a gener-
alization of the clique, quasi-clique and k-core models. The FlexCS problem is NP-hard and
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is even NP-hard to be approximated within |V |1−ε for all ε > 0. The proposed FlexCS algo-
rithm is efficient in finding r representative f -CCs with high diversity. It outperforms the
diversified top-r cliques mining algorithm and the core decomposition algorithm in discov-
ering multi-scale cohesive subgraphs in one batch. In the future, we plan to investigate how
to define and solve the problem of mining meaningful flexible cohesive subgraphs from the
perspective of minimizing the redundancy of subgraphs in the result set. In addition, the
problem of flexible cohesive subgraph searching given a set of query vertices is also worth
to study as a further work since users often pay more attention to some specific vertices
other than the entire graph in many real world applications.

Appendix A Space and time complexity of Algorithm 2 (FlexCS)

We first analyze the space complexity of Algorithm 2. Given the input graph G = (V ,E),
it takes O(|V |) space to run the fast core decomposition algorithm CORE [3] on G and
keep its results (line 3). By using the CCIndex proposed in Section 5.3, it takes O(|V |)
space to compute and maintain the connected components of each maximal k-core of G

in the CCIndex (lines 6 and 15, see Section 5.3.2). As analyzed in Section 4, Procedure
ConsCS invoked in line 17 takes O(|V |) space. As mentioned in Section 3.2, the space for
maintaining R (lines 19–20) is O(r|V |). By using the on-the-fly updating of the result set
R (Section 5.1), the qualified f -CCs are not necessary to be stored in the main memory.
Consequently, the space complexity of Algorithm 2 is O(r|V |).

Then, we analyze the time complexity of Algorithm 2. The fast core decomposition algo-
rithm CORE [3] runs in O(|V | + |E|) time (line 3). By using the CCIndex proposed in
Section 5.3, it takes O(κ(G)(|V | + |E|)) time to compute the connected components of
each maximal k-core of G for 1 ≤ k ≤ κ(G) (lines 6 and 15). Moreover, the ConsCS pro-
cedure invoked in line 17 discovers an f -CC in O(|V |2) time (see Section 4). As mentioned
in Section 3.2, the Update procedure invoked in line 20 runs in O(|V |) time. According to
the seed selection strategies introduced in Section 4.2, at most |V | f -CCs are generated in
line 9 or by ConsCS in line 17. Thus, the total time for solving all ConsCS instances and
updatingRwith newly generated f -CCs areO(|V |3) andO(|V |2), respectively. Therefore,
the time complexity of FlexCS is O(|V |3).

Appendix B Derivation of inequality (4)

First, let us consider the special case for n0 ≥ n1 ≥ · · · ≥ nκ(G). We have

(κ(G) + 1)nκ(G) +
κ(G)−1∑

k=0

(k + 1)max{0, (nk − nk+1)}

= (κ(G) + 1)nκ(G) +
κ(G)−1∑

k=0

(k + 1)(nk − nk+1)

=
κ(G)∑

k=0

nk .

Then, we consider the cases for n0 ≥ n1 ≥ · · · ≥ ni , ni+1 ≥ ni+2 ≥ · · · ≥ nκ(G) and
ni < ni+1, where 0 ≤ i < κ(G). We have
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(κ(G) + 1)nκ(G) +
κ(G)−1∑

k=0

(k + 1)max{0, (nk − nk+1)}

= (κ(G) + 1)nκ(G) +
i−1∑

k=0

(k + 1)(nk − nk+1) +
κ(G)−1∑

k=i+1

(k + 1)(nk − nk+1)

=
i−1∑

k=0

nk +
κ(G)∑

k=i+2

nk + (i + 2)ni+1 − i · ni

>

κ(G)∑

k=0

nk .

The last inequality holds because (i + 2)ni+1 − i · ni > 2ni+1 > ni+1 + ni .
For the cases where there are m > 1 integers i1, i2, . . . , im ∈ [0, κ(G) − 1] such that

nij < nij +1 for all j = 1, 2, . . . , m, the proof is simply a generalization to the one given
above for m = 1. The proof for the generalized cases is omitted.
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