
https://doi.org/10.1007/s11280-021-00878-3

Binarized graph neural network

Hanchen Wang1 · Defu Lian2 · Ying Zhang1 · Lu Qin1 · Xiangjian He3 ·
Yiguang Lin3 · Xuemin Lin4

Received: 2 May 2020 / Revised: 15 March 2021 / Accepted: 16 March 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Recently, there have been some breakthroughs in graph analysis by applying the graph neu-
ral networks (GNNs) following a neighborhood aggregation scheme, which demonstrate
outstanding performance in many tasks. However, we observe that the parameters of the
network and the embedding of nodes are represented in real-valued matrices in existing
GNN-based graph embedding approaches which may limit the efficiency and scalability
of these models. It is well-known that binary vector is usually much more space and time
efficient than the real-valued vector. This motivates us to develop a binarized graph neural
network to learn the binary representations of the nodes with binary network parameters fol-
lowing the GNN-based paradigm. Our proposed method can be seamlessly integrated into
the existing GNN-based embedding approaches to binarize the model parameters and learn
the compact embedding. Extensive experiments indicate that the proposed binarized graph
neural network, namely BGN, is orders of magnitude more efficient in terms of both time
and space while matching the state-of-the-art performance.

Keywords Graph neural network · Binarized neural network · Classification

1 Introduction

Graph analysis provides powerful insights into how to unlock the value graphs hold. Due
to this power, techniques for analyzing graphs are becoming an increasingly popular topic
of study in both academics and industry. To effectively and efficiently support important
analytic tasks on graph data, such as node/graph classification, node clustering, community
detection, node recommendation, link prediction and graph visualization, a variety of graph
embedding techniques (See [5, 11] for a comprehensive survey) have been developed. Graph
data is mapped into low-dimension data such that the proximity relationship among graph
nodes (i.e., objects) is preserved and the off-the-shelf machine learning methods, which are
designed to handle vector representations, can be immediately applied.

� Defu Lian
liandefu@ustc.edu.cn

Extended author information available on the last page of the article.

Published online: 8 April 2021

World Wide Web (2021) 24:825–848

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00878-3&domain=pdf
http://orcid.org/0000-0003-3158-9586
mailto: liandefu@ustc.edu.cn

The existing graph embedding techniques can be roughly classified into three broad cat-
egories: (1) random walk based embedding (e.g., Deepwalk [26] and Node2vec [9]) ; (2)
node similarity based embedding (e.g., LINE [38] and NetMF [30]); and (3) graph neural
networks (GNN) based embedding (e.g., GCN [15], GraphSage [10], GAT [40] and AS-
GCN [12]). As reported by Leskovec et al. in their tutorial on graph embedding at WWW
20181, the first two categories of embedding techniques are only able to learn a “shallow”
representation of the graph nodes due to the simplicity of the models. It is shown in [10,
15] that the neural network based embedding methods significantly outperform the state-
of-the-art techniques in the first two categories for the node classification task. Therefore,
exploring how to use neural network to create a “deep” representation more efficiently is a
promising direction in graph representation learning. However, most of the existing graph
neural network models suffer from the scalability issue due to the high time and space cost
of the real-valued model.

Recently, there have been some researches on learning binary graph embedding (e.g., [20,
37, 46]), in which each node is represented by a binary vector (code), instead of a real-valued
vector. It has been shown that the binarized graph embedding can achieve much better time
and space efficiency.

Time efficiency. It is well-known that the distance computation of binary vectors (i.e.,
Hamming distance) is much more efficient than that of real-valued vectors (e.g., Euclid-
ian distance). In addition to the specifically tailored search algorithms (e.g., [29]), the
dot product between binary vectors can also enjoy the hardware support (e.g., xnor and
build-in CPU instruction popcount).

As stressed in a recent work [18] from DeepMind, the pairwise dot product of the
vectors has been intensively used by the model for some specific tasks (e.g., graph simi-
larity computation in [1]). Thus, the binary vector has been used in their graph matching
network (GMN) to speedup the computation.

Space Efficiency. The binary embedding can represent the node in a compact way while
well preserving the structure information. As shown in [20], INH-MF can achieve com-
petitive graph node classification performance with 128 bits for each node compared
to the conventional embedding approaches (e.g., DeepWalk) with 128 dimensions (i.e.,
128 × 64 bits) per node. This will be a great advantage when we face a large-scale graph
because the binarized embedding of a graph is more likely to be accommodated in the
main memory.

Motivation and Challenges. The existing GNN-based methods have demonstrated out-
standing performance in various tasks such as classification [10, 12, 15, 40], link
prediction [14, 48], graph similarity match [1, 18] and graph clustering [41, 49]. How-
ever, they may suffer from the limitation of the memory and speed due to the use of
real-valued vectors for node and graph representations and model parameters.

Given the outstanding embedding quality, various applications of the GNN-based
approaches and the space and time efficiency of the binarized representation, one may
wonder if we can design a binarized GNN-based graph embedding approach such that
we can achieve a good trade-off between embedding quality and time/space efficiency in
the GNN-based methods.

We notice that the existing binarized graph embedding methods [20, 37] rely on the
discretization of the matrix factorization following the node-similarity based approaches.

1http://snap.stanford.edu/proj/embeddings-www

826 World Wide Web (2021) 24:825–848

http://snap.stanford.edu/proj/embeddings-www

They cannot be extended to binarize the GNN-based embedding due to the inherently
different natures of two categories of approaches.

As to our best knowledge, the only attempt for the binarization of GNN is from
DeepMind in their recent work [18]. Their binarization method converts each learned d-
dimensional real-valued vector into a d-dimensional ”nearly” binary vector by applying
well-known binarization function tanh to approximate hamming distance for the bina-
rization and optimization. However, the output of tanh is not exact binary value and
cannot be accelerated by the binary logic operations (e.g., xnor and popcount). As an
alternative, one may consider the Binarized Neural Network (BNN) (e.g., [13]) for the
graph embedding so that the representation is naturally binarized. However, BNN is
not designed for graph data, and as to our best knowledge, there is no existing graph
embedding work based on BNN.

These issues motivate us to develop a new binarized graph embedding technique which
can be integrated into existing GNN-based models to binarize the parameters and produce
high-quality binarized graph embeddings. The key challenge is how to generate effec-
tive compact embedding vectors with binary network parameters in an effective way. To
address the challenge, we design a binarized graph neural network framework to learn
the binary parameters and representations efficiently and effectively .

Contributions. Our principle contributions are summarized as follows:

– To the best of our knowledge, this is the first study on binarized graph neural network
(GNN) with binary parameters to generate binary graph representations. The proposed
method, namely BGN, can be seamlessly integrated into the existing GNNs.

– An end-to-end binarized graph neural network framework is proposed with binary
weights and activations. This binarized framework can immediately reduce the mem-
ory consumption for the network; the bit-wise operations between the binary vectors
can substantially speedup the inference time of the model and the gradient estimator
enables our model to effectively process back-propagation through discrete parameters
and activations.

– Extensive experiments on multiple benchmark networks are conducted for node clas-
sification task. The results demonstrate that our proposed method outperforms existing
binarized embedding methods with a big margin. Compare to the real-valued GNNs,
our BGN model can achieve nearly state-of-the-art performance while consuming much
fewer computation resources (up to 1/28 parameter and embedding memory space and
1/20 inference time).

– Binarization approaches are employed on the GNN-based application GMN to show
that, by applying our BGN techniques, GMN model can dramatically reduce the time
and space complexity while keeping the performance competitiveness.

– Experiments further show that our proposed BGN technique allows users to achieve a
trade-off between the space/time and embedding quality in a flexible way by tuning
different level and setting of binarization on the parameters and activations.

2 Related works

Graph Embedding. A key problem in machine learning on graphs is finding a way to
incorporate information about the structure of the graph into the desired machine learn-

827World Wide Web (2021) 24:825–848

ing model. Graph embedding is one of the most promising approaches because it maps
nodes into a low-dimensional space such that the structure of the graph is well preserved.
Once accomplished, an existing machine learning approach (e.g., k-means clustering)
can be used to assimilate and analyse the graph in the embedded low-dimensional space.
Loosely following the seminal graph embedding approach, DeepWalk, three broad cate-
gories of embedding methods have appeared in the literature: (1) node similarity based
embedding methods (e.g., LINE, NetMF), which rely on the proximity of the nodes w.r.t
various similarity metrics. The matrix factorization techniques have been used to learn
the embedding of the nodes. (2) Random walk based embedding methods (e.g., Deep-
walk and node2vec) which encode the nodes by applying the Skip-Gram technique [25]
on the random walks; and (3) graph neural networks (GNN) based embedding methods
(e.g., GCN, GraphSage and GIN) [10, 12, 15, 40, 42, 45] which apply the neural network
techniques on graph to learn the representations of the nodes.

Most of the existing graph embedding studies use the real-valued vector to encode
the graph nodes following the above three computing paradigms. Recently, three unsu-
pervised approaches [20, 37, 46] have been proposed to learn the binary embedding of
the graphs following the node-similarity based embedding methods. Particularly, INH-
MF [20] and DNE [37] are independently developed for binarized graph embedding
based on the discretization of the matrix factorization on proximity graphs. BANE pro-
posed in [46] is a natural extension of DNE by considering both structure and attribute
similarities on the attributed graphs.

Binary Hashing. The binary hashing has been widely used to learn the binary vectors
(codes) of the objects in many applications. The most popular application is the approx-
imate nearest neighbor search in high dimension space where binary hashing methods
encode high-dimensional objects (e.g., documents and images) to binary codes, while
preserving similarity distance in the original space. Many learning to hash approaches
have been proposed including unsupervised methods (e.g., [22, 33]), supervised meth-
ods (e.g., [35]), and deep learning based methods (e.g., [21]). Please refer to [43] for a
comprehensive survey. Recently, three approaches [20, 37, 46] have been proposed to
learn the binary embedding of the graphs following the node-similarity based embed-
ding methods. As to our best knowledge, there is no existing work on the binarized graph
embedding based on GNNs.

Binarized Neural Networks Binarized neural networks (see [27] for comprehensive sur-
vey) was first proposed by BNN [4]. The binarization technique proposed in [4] is
used by most network binarization models. Among them, XNOR-Net [31] and DoReFa-
Net [50] are the most popular ones because of their great performance on the image
classification task.

XNOR-Net was proposed to have high accuracy of classification task on the ImageNet
dataset while XNOR-Net has 58× faster convolutional operations and 32× memory
saving. DoReFa-Net replaces the binarization by quantization which allows the model
to change the bit size for weights, activations and even gradient calculations during
backpropagation.

Recently, more binarized neural networks [3, 17, 23, 24, 28, 36, 47] and low bitwidth
neural networks [8, 51] are proposed to further reduce the time cost of performing the
machine learning model and apply these networks on the devices with low computation
resources.

828 World Wide Web (2021) 24:825–848

However, these methods are all designed for computer vision tasks. Though they per-
form well on the image dataset, they cannot be adapted to the graph representation
learning and graph analysis task directly.

Graph Neural Network Applications There are several applications that are based on
the GNN. Such as Graph Matching Network [18] and SimGNN [1]. These models utilize
GNN and use the similarity (distance) of graph embedding to approximate the graph edit
distance and graph similarity.

The Graph Matching Network (i.e., GMN) is a novel GNN-based framework proposed
by DeepMind to compute the similarity score between input pairs of graphs. Separate MLPs
will first map the input nodes in the graphs into vector space. Then the propagation layer
will aggregate the messages of the edges and cross-graph matching vector by MLP or GRU
with input concatenation of node representations and edge vectors. Matching function is
applied to compute the attention coefficients based on the node information between the
input pair of graphs. The matching function is based on the softmax function over node
vectors which requires the calculation of vector space similarity like Euclidean, cosine sim-
ilarity or dot product between all pairs of node representations. This attention coefficients
calculation across two graphs requires a computation cost of O(| V1 || V2 | d), where
V1 and V2 indicate the number of vertices of input graph 1 and 2 respectively, and d is
the dimension of the node representation. The match vector μj→i is concatenated with the

message vector mj→i and the node representation h(t)
i , then the concatenation is fed into

MLP or a recurrent neural network core to produce the new node representations. Given
the learned node representations of graph, the aggregation module proposed in [19] is used
to obtain the graph representations. The similarity score in vector space such as Euclidean
similarity, cosine similarity and approximate hamming similarity will be computed between
graph representations to approximate the similarity between the input graphs.

3 Background and preliminaries

Recent studies have revealed that graph neural network can perform excellently on label
classification tasks. The existing GNN-based graph embedding approaches share the same
computing paradigm. GNNs take graph nodes’ feature and neighborhood information as
the input. During the training, the representations of nodes (real-valued vectors) at each
layer will be updated by the aggregators and non-linear activation functions. The output
representations will be fed into the task-specific layer to calculate the loss of the model.
Based on that, the model will be optimized by the optimizer through backpropagation. The
main differences among these GNN-based graph embedding approaches are the design of
the aggregator which combines the context representations and the loss function designed
for different graph analytic tasks.

These models have real-valued parameters and learn a real-valued representation for
each node in an end-to-end manner for graph node classification. However, the real-valued
parameters and representations are space-consuming for storage and time-consuming for
multiplication computation, especially for large-scale graphs. To address these issues, in this
paper we devise a novel binarized graph neural network, namely BGN, with binary parame-
ters in the neural network to learn binary embedding representations for node classification
task.

The important notations used throughout the paper are summarized in Table 1.

829World Wide Web (2021) 24:825–848

Table 1 Summary of notations

Notation Definition

G The graph dataset

V, E The set for nodes and edges in the graph.

xv The feature information for node v.

ηv The neighborhood nodes of node v.

(·)b Denotes that the vector or matrix is binary-valued.

hv The hidden representation of node v.

W The weight matrix in the neural network.

B(·) The binarization function which is used to transform the real-
valued vector or matrix into binary-valued vector or matrix.

αij The attention coefficient between node i and node j .

4 Binarized graph neural network

As illustrated in Figure 1, we introduce a new graph neural network with binarized weights
and activations. Our model BGN (Binarized Graph Neural Network) is based on the atten-
tion mechanism and can be easily adapted into other graph neural network frameworks. For
a given graph, BGN takes the nodes and their contexts including feature and neighborhood
structure information as input. Binarization function will transform the weights, activations
and even coefficients into binarized vectors to reduce the time and space complexity, while
the attention mechanism enables the nodes to attend over their neighborhoods’ features. We
also apply the balance function to ensure that +1 and −1 are almost equal with each other
in the binarized vectors. Furthermore, the gradient estimator is used for backpropagation of
gradients through discretization.

The following subsections present the listed key components of our model:

– Section 4.1 introduces the framework of our work.

Graph Structured Data

input L layers

Binary
Weight

ℎ′ ℎ

…
…k a�en�on heads

ℎ

Binary
output

ℎ
−1

Node
Classifier

…

Classifica�on
Result

x
S
+

: XNOR and popcount opera�on between binary-valued tensors.

: Masked summa�on between binary-valued and real-valued tensors.

: Concatena�on of the vectors.

Binary
Weight

ℎ′ ℎℎ
−1

Binary
Weight

Binary
coefficients

ℎ′ ℎ

…
…k a�en�on heads

ℎ

Binary
outputBinary

Weight

ℎ′ ℎ

S

S

S

S

+ +

x

x

Binary
coefficients

Binary
coefficients

Binary
coefficients

S

S

Figure 1 The overall framework of the proposed model BGN. a All input node features are projected into a
unified representation space by binary-valued weights. b Masked summation between binary matrix and real-
valued matrix is employed to speed up the dot product. c Binary attention coefficients are produced based
on the hidden representations. d Output of the layer is calculated via multi-head attention mechanism. e xnor
and popcount are employed to calculate the dot product between binary-valued matrix. f Loss calculation and
end-to-end optimization for the node classification task

830 World Wide Web (2021) 24:825–848

– Section 4.2 introduces the binarization of our model in detail, including the forward
propagation and backpropagation.

– Section 4.3 describes the optimization objective of our model.
– Section 4.4 introduces the techniques we used to reduce the time and space complexity

and improve the performance.
– Section 4.5 introduces the adaptation of our model to other GNN frameworks.

4.1 Framework

Algorithm 1 illustrates the framework of our model. We follow the attention mechanism
introduced in [39, 40] to involve the importance of the node’s neighborhoods into the graph
representation learning process. Given a graph G(V, E), where V and E denote the set of
graph nodes and edges respectively, we use nodes features {xv,∀v ∈ V}, xv ∈ R

m and the
neighborhood information of nodes {ηv,∀v ∈ V} as inputs. Balance(·) denotes the balance
function which is introduced in Section 4.4.3. Our model will first produce the binarized
node representations hb

v ∈ {+1, −1}d for each node within the input graph. After that, the
binarized node embeddings will be fed into the output layer to compute the loss for some
specific tasks like node classification.

Attention Mechanism Our proposed framework is based on the graph attention mecha-
nism. The attention layer is utilized in our model to learn the importance of every node
to other nodes. The key is to get the importance of one node’s feature to other nodes that
is the attention coefficients of the input graph, afterwards, the node’s feature can attend
on other nodes. Inspired by [40], we perform masked attention to the model to keep the
structural information of the input graph. Only the attention coefficients of one node with
its neighborhood nodes i.e., αij , vj ∈ ηi will be computed.

In order to obtain the attention coefficients, we use a shared binarized weight matrix
W ∈ {+1, −1}m×d ′

to apply the linear transformation to each node. Softmax function is

831World Wide Web (2021) 24:825–848

used to normalize the coefficients, but unlike the model proposed in [40], LeakyRelu acti-
vation is not employed in our model while the sign function is used to binarize the attention
coefficients. With the following (1), we will get a binarized attention coefficient matrix
A ∈ {+1, 0, −1}N×N where αij is the element of the matrix A (0 is contained in the matrix
since we only compute the attention coefficients between neighbors such that the matrix is
sparse).

αij = B′(Sof tmaxj (Wxi , Wxj)) (1)

where B′ is the binarization function for attention coefficients which maps 0 to 0, positive
values to +1 and negative values to −1.

Once the attention coefficient matrix is obtained, it will be used to compute the output of
the attention layer. The attention coefficients will multiply the linear transformed node fea-
ture. We employ the multi-head attention mechanism to stabilize the learning process. The
binarization function, which is served as an activation function, is applied to every atten-
tion head to binarize the pre-activations. And concatenation of the output of K independent
attention head is the output of the attention layer. Therefore, the output node representation
will be like following:

hi = ‖K
k=1B(

∑

j∈ηi

αk
ij Wkxj) (2)

Where ‖ means the concatenation of the vectors and hi is the output binarized node
representation where hi ∈ {+1, −1}d .

After several attention layers, the node representation will be fed into the last layer to
calculate the loss for specific task which is classification in this paper. We will introduce
the learning objective in the Section 4.3.

4.2 Binarization

In this section, we introduce how to obtain a graph neural network with binary parameters
that can learn binary representations. Section 4.2.1 introduces the binarization function used
to transform the real-valued parameters and pre-activations into binary space. Section 4.2.2
introduces the gradient estimators that enable the binarized model to be optimized by the
off-the-shelf optimizers such as Adam and SGD.

4.2.1 Forward propagation

Binarization function is important in our model. Specific binarization function will be
chosen in the forward propagation calculation process to binarize the weights and the
activations. In that way the low-bit parameters and activations will help to reduce the
time and space complexity. In our case, various binarization functions will work, and
the most straightforward example is the sign function. As mentioned in [4] and [31],
deterministic and stochastic binarization based sign function are widely applied to the con-
tinuous pre-activations as well as the real-valued weights to obtain binarized activations and
weights.

Bdet (x) =
{ +1 x ≥ 0,

−1 else,
(3)

The above equation is the deterministic binarization function, where x is the real-valued
variable. The stochastic binarization is the sign function with probability:

Bstoch(x) =
{ +1 with probability p = σ(x),

−1 with probability 1 − p,
(4)

832 World Wide Web (2021) 24:825–848

where σ denotes the sigmoid function, that is σ(x) = 1/(1 + exp(−x)). The stochastic
binarization is more appealing but needs the computer to generates random bits while the
deterministic binarization is easier to calculate. Deterministic binarization function(i.e., (3))
is applied for the binarization of weights and activations because the deterministic sign
function provides more stable and reproducible results. Please note that we use a variant of
deterministic sign function which maps 0 to 0 to binarize the attention coefficients.

Other than directly binarize the weights in the graph neural network, we follow the quan-
tization process in [31] to add a scaling factor γ ∈ R+ to estimate a real-valued weights
such that W ≈ γB, thus achieve better performance. We can find the optimal quantizer by
minimizing the quantization error:

minJ (γB) = ‖W − γB‖2 (5)

According to results and analysis in [31], for each real-valued weight W , the optimized
binary matrix B∗ and scaling factor γ ∗ can be obtained by the following constrained
optimization:

B∗ = arg min
B

W T B (6)

γ ∗ = W T B∗

n
= 1

n
‖W‖L1 (7)

where B is constrained to be a binarized matrix, n is the number of elements within the
weight W , if W ∈ Rm×d , then n = m × d.

Furthermore, we also adopt the Libra Parameter Binarization (LPB) introduced in IR-
net [28] to retain the information and minimize the information loss in forward propagation
by jointly considering both quantization error and information loss. LPB also quantify the
real-valued weight W using a scaling factor such that W ≈ γB. Suppose each element in
B can be viewed as a sample of random variable obeying Bernoulli distribution shown in
(4). The entropy of the quantization in the following (8) is also considered as a part of loss
function:

H(γB) = H(B) = −p ln(p) − (1 − p) ln(1 − p) (8)

Together with the quantization loss described in (5), the objective function of LPB is defined
as:

minJ (γB) − λH(γB) (9)

We further apply the standardization and balance described in [28]. As a result, the optimal
quantization can be obtained by solving:

γ ∗B∗
W = Bdet (Ŵ std)
� s∗ (10)

where
� is left or right bit-shift, s∗ and Ŵ std can be calculated by:

s∗ = round(log2(

∥∥Ŵ std

∥∥
L1

n
)) (11)

Ŵ std = Ŵ

σ(Ŵ)
, Ŵ = W − W̄ (12)

where σ(·) denotes the standard deviation and W̄ is a matrix whose elements are all mean
value of weight W . LPB directly binarize the representations using the deterministic bina-
rization function, i.e., Bx = Bdet (x). Hence, the operation between the real-valued weights
and vectors is reformulated as follows:

Wx = (BW � Bx)
� s (13)

where � denotes the XNOR and popcount operation between binary codes.

833World Wide Web (2021) 24:825–848

4.2.2 Backpropagation

In this part, we describe how to backpropagate the gradients through the binarization
function. We adapt the gradient estimator into our model for better optimization.

Propagation gradients through binarization function It is obvious that the binarization
function has zero derivative almost everywhere, which leads to the zero gradients of the loss
function w.r.t the pre-activations and weights. The trainable variables cannot be updated
with zero gradient. Therefore, the model cannot be trained by simple backpropagation,
and the estimation of the gradients should be obtained for optimization. Previous studies
have investigated how to propagate gradients through stochastic discrete functions. Below
we investigate two popular unbiased gradient estimators for binarization function: straight
through estimator and REINFORCE estimator [44].

Straight through estimator The straight-through estimator is proposed a simple unbiased
gradient estimator. It estimates the derivative of binarization function B(h) of pre-activation
or weight h as 1 (a vector or matrix whose elements are all 1). Let hb denote the binarized
representation and h denote the pre-activation before binarization. The straight-through
estimation of the gradient of the loss L w.r.t the pre-activation h is thus:

gh = ∂L

∂h
= ∂L

∂B(h)
· ∂B(h)

∂h
= ∂L

∂hb
1 = ghb 1 (14)

This gradient will then be back-propagated to obtain the gradient of quantities (i.e., pre-
activations or weights) that influence h.

REINFORCE estimator The reinforce estimator is proposed in [2] to estimate the expecta-
tion of the gradient ∂L

∂h of loss L with regard to the pre-activation vector or weight h. When
binarization function B(·) is stochastic with the probability given by sigmoid, it has been
proven that:

E(
∂L

∂h
) = E[(B(h) − σ(h))(L − c)] (15)

where σ is the sigmoid function and c is a constant vector. To minimize the variance of the
estimation, c can be chosen as:

c = E[(B(h) − σ(h))2L]
E[(B(h) − σ(h))2] (16)

The reinforce estimator can work directly on the weights and pre-activations without actual
computation of the gradient. The estimation is obtained by monitoring numerator and
denominator during the training process.

Compared with straight through estimator, reinforce estimator is more advanced with
better performance in many applications. However, we observe that its performance is not
superior than the straight through estimator. On the other hand, straight through estimator
helps the model to obtain the gradient faster than the reinforce estimator due to its simplicity.
The comparison between these two gradient estimators with regards to the performance is
included in Section 5. In practice, we choose straight through estimator for our model in the
experiments.

834 World Wide Web (2021) 24:825–848

4.3 Optimization objectives

Existing GNN-based graph embedding approaches provide an end-to-end model, which
focuses on the node classification task. Therefore, our model is also learned for the node
classification task. Below, we introduce the objective of BGN and the learning process that
optimizes the parameters.

For the node classification learning, we feed the binarized embedding hb
v into the output

layer to predict the class label for the node. The predicting probability of label Ci is written
as:

p(Cvk | hb
v) = Sof tmaxk

ζ (
∑

u∈ηv

αL
uvWLhb

u) (17)

where ζ denotes the number of labels for each node. After obtaining the classification result
in (17), we calculate the cross-entropy as the loss for the node classification task.

Lclass = −
∑

v∈Vlabeled

ζ∑

k=1

CL
vk log(Cvk) (18)

where Vlabeled is the set of nodes that have label information which are used for training
process, CL

vk is the multi-hot encoding for ground truth classification labels.
The gradients will be back propagated via estimator and be applied on the optimization

of parameters by the off-the-shelf optimizer during the training process.

4.4 Techniques to improve the model

Several techniques are used on binarized graph neural network model to reduce the time
and space complexity and improve the performance. Logic operation XNOR between binary
values, build-in CPU instruction popcount and the masked summation are used to replace
the traditional arithmetic operation dot product to reduce time complexity. The Figure 2 is a
toy example that introduces the differences between these operations. The balance function
is used to make +1 and −1 to be balanced in the embedding vectors which can raise the
performance of the GMN. Also, the binary parameters of the neural network and the binary
node representations can reduce the space complexity intuitively.

4.4.1 XNOR and popcount

The logic XNOR and CPU build-in instruction popcount between binary matrices are used
to replace the dot product between them.

As shown in Table 2, XNOR produces binary value with input of +1 and −1. Instruction
popcount is then be employed to count the number of bits that is set to 1. The XNOR can be
more than one order of magnitude faster than the dot product which can dramatically reduce
the time complexity. As mentioned in [4], a 32-bit floating point multiplier costs about 200
Xilinx FPGA slices, whereas a 1-bit XNOR gate costs only 1 slice.

4.4.2 Masked summation

The masked summation is used to replace the dot product between binary matrix and real-
valued matrix. The binary matrix will be transformed into the mask matrix with ”True” and
”False”. During the multiplication, the real-valued vector will be masked by the correspond-
ing mask vector, then the positive and negative masked vector are produced with only the

835World Wide Web (2021) 24:825–848

Dot Product

. × . + − . × − .3
+ . × − . + − . × .1 = − 6.62

Masked Summa�on

. + − .

− . + − . = .

Mask

XNOR and Popcount

XNOR popcount

+1 -1 +1 -1 T F T F

+1 -1 -1 +1

+1 -1 +1 -1

+1 +1 -1 -1

+5.8 -9.3 -4.6 +5.1 +5.8 -9.3 -4.6 +5.1

+5.8 -9.3 -4.6 +1.1

+3.2 -1.3 +7.6 -2.1

Figure 2 The toy examples of (a) dot product (b) Masked summation and (c) XNOR and popcount instruction

elements at the same position as ”True” and ”False” on the mask vector. The model calcu-
lates the summations of the positive and negative masked vector separately. The subtraction
of these two summation results is the result of dot product between the given matrices.

The masked summation can reduce the time complexity of dot product of two matrix.
Usually, the time complexity of naive dot product between two real-value matrices M1 ∈
R

m×n and M2 ∈ R
n×d is O(mnd), while the time complexity of masked summation

between binary matrix M1 ∈ {−1, +1}m×n and real-valued matrix M2 ∈ R
n×d is O(nd).

Theoretically and also in practice, the masked summation can significantly reduce the time
complexity of our proposed binarized graph neural network.

4.4.3 Balance function

The distribution of +1 and −1 is sometimes unbalanced in the representation vectors. For
example, if most pre-activations h have positive elements, the output graph representation
vector of binarization function hb will be formed mainly by +1. Then the dot product of
two vectors will be d which is the dimension of the vectors. This unwanted situation should
be avoid because it dramatically lower the effectiveness of the proposed model, especially
when the BGN is applied to GMN which requires a great number of dot product between

Table 2 XNOR calculation

Input A Input B Output

+1 +1 +1

+1 -1 -1

-1 +1 -1

-1 -1 +1

836 World Wide Web (2021) 24:825–848

representations. As a result, we apply the following balance function to the pre-activations
before binarization in order to balance the distribution of positive and negative elements of
pre-activations:

Balance(h) = h − h (19)

Where the h is the vector whose elements are all mean value of the pre-activation vector
h. The balance function ensures that the pre-activation vectors contain almost half positive
and half negative elements, which leads to the balance distribution of +1 and −1 after
binarization.

4.5 Adapted to Other GNN based models

The proposed binarized graph neural network is a very general framework that can be
adapted to other graph neural network-based model to project the real-valued parameters
and activations into the binary space to reduce the space and time cost. We introduce how
we binarize the state-of-the-art GNN-based model AS-GCN [12] and the graph matching
network.

4.5.1 Binarization of AS-GCN

AS-GCN is a general framework that is designed for fast representation learning based on
graph neural networks such as GCN. Therefore, the binarization of AS-GCN is similar to
our proposed BGN. We use deterministic binary function to binarize the parameters and pre-
activations of AS-GCN. And straight through estimator is employed for back propagation.
The binarized model is denoted as BGN-ASGCN in our experiment.

4.5.2 Binarization of GMN

As mentioned above, the time cost of GMN comes mainly from the pair-wise node similarity
computation. We utilize the deterministic binarization function (3) on the preactivations
and transform the node and graph representations into binary codes such that the XNOR
can be applied to replace the dot product. Straight through estimator (14) is used for the
back propagation. Furthermore, we noticed that the distribution of +1 and −1 is usually
not symmetric which dramatically lower the performance, hence, balance function (19) is
employed on the graph representations.

5 Experiment

We conduct extensive experiments to evaluate the performance of our model for the node
classification task on real-world network datasets. We compare the time and space effi-
ciency thoroughly between the proposed model and other baseline models. The case study
shows the effectiveness and efficiency brought by our framework on the GNN-based
application such as GMN.

5.1 Dataset

To facilitate the comparison between our model and the relevant baselines, we conduct the
classification experiments on three well-known citation network datasets: Cora, Citeseer
and Pubmed [34]. Each dataset contains bag-of-words representations of documents and

837World Wide Web (2021) 24:825–848

citation links between the documents. Graph G is constructed based on the citation links.
In the classification task, we only use 20 labeled instances per class for training. The test
data contains 1000 nodes as in GCN, GAT and AS-GCN. We also include other types of
dataset for extensive comparisons. The experiments are also conducted on two social net-
work datasets: Facebook and wiki-vote [16] and two air-traffic networks [32]: Brazil and
USA. For social networks, we randomly select 10% and 20% of nodes for training and val-
idation respectively, and the rest of nodes are used as test set. For air-traffic networks, we
randomly assign equal number of nodes in training, validation and test sets.

The details of the datasets are summarized in the Table 3.

5.2 Baseline methods

The following GNN-based and binary embedding methods are compared as baselines:

GCN (Graph Convolutional Network) [40] is a semi-supervised neural network method
for node classification.

GAT (Graph Attention Network) [40] is a graph neural network model which first
exploits the attention mechanism to solve the node classification task.

AS-GCN (Adaptive Sampling over GCN) [12] is a state-of-the-art method for node clas-
sification task. AS-GCN aims to increase the scalability of GCN using adaptive sampling.
The experiments demonstrate that the application of BGN can further reduce the time
and space complexity of AS-GCN.

GAT-binary and ASGCN-binary are the models that directly apply sign function on the
node representations learned by the original version of GAT and AS-GCN. The naively
binarized representations will be fed into the task-specific layer to learn the classification
result.

GAT-tanh and ASGCN-tanh are the models that employ the binarization function tanh
used by DeepMind’s work. tanh function is used to binarize the parameters and embed-
ding vectors of GAT and AS-GCN. We clip the value of the parameters and activations
in both models to make sure that tanh can produce ”exact” binary codes.

INH-MF [20] is a MF-based information network hashing algorithm that learns binary
codes as node embedding which can preserve high-order proximity.

BANE(Binarized Attributed Network Embedding) [46] is an extension of DNE [37]
which based on the Weisfeiler-Lehman proximity matrix factorization learning function
to produce binary node representations.

Besides, we also compared the variants of our proposed BGN with the quantization
methods introduced in Section 4.2.1:

Table 3 Citation datasets

Dataset #Nodes #Edges #Classes #Labled Nodes

Cora 2708 5429 7 140

Citeseer 3327 4732 6 120

Pubmed 19717 44338 3 60

Facebook 4039 88234 4 403

wiki-vote 7115 103689 4 711

Brazil 131 1038 4 43

USA 1190 13599 4 396

838 World Wide Web (2021) 24:825–848

BGN-x-GAT and BGN-x-ASGCN are the binarized models of graph attention network
and ASGCN using (6) and (7).

BGN-lpb-GAT and BGN-lpb-ASGCN are the binarized models of graph attention net-
work and ASGCN using Libra Parameter Binarization (LPB).

5.3 Experiment setup

For the performance experiment, we evaluate the models with the same bit-width represen-
tations. For the experiment of inference efficiency, the embedding dimension of our method
and other baseline methods are all set to 64. During training process, the whole graph can be
seen, but only a few nodes are labeled while most nodes have no label information. We put
all nodes information in one training phase due to the need of calculation for graph attention
coefficients.

For this classification task, we report the average accuracy of the evaluated GNN-based
embedding approaches after ten independent runs using the accuracy metric introduced in
[15, 40]. Because INH-MF and BANE only produce the binary embedding vectors but have
no build-in classifier, we employ the one-vs-rest logic regression implemented by Liblinear
[7] to obtain the classification result of the networks, in which 90% nodes are labeled.

All the experiments were conducted on the server which is running RHEL 7.5 and has
2x 2.4GHz Intel Xeon E5-2680 v4 (14 Cores) CPU, 256GB 2400MHz ECC DDR4-RAM
and 2x NIVDIA Quadro P5000 16GB Graphics Card (GPUs) (2560 Cores). The time cost
of our trained binarized model is evaluated on the CPUs using the XNOR and popcount
instructions. The time cost of other baseline GNN-based methods is evaluated on GPUs.

5.4 Classification results

Because our model produces the compact representations for vertices, we compare the
performance between our model and other baselines with the same bit width.

5.4.1 Comparison among binary embedding methods

We compare the classification results between our model and other binary-valued embed-
ding methods.

As shown in the Figure 3, under different embedding dimensions, BGN outperforms all
the other binary-valued embedding methods significantly on all three datasets. With the help
of the graph neural network, our model can make better use of the graph structured data and
feature information and is trained specifically for the node classification task. Therefore, our
model outperforms other MF-based binarized graph embedding models by a significantly
large margin. In comparison with the naively binarized GAT-binary and ASGCN-binary, our
model considers the binary property of parameters and vectors during the training process,
hence our model achieves better accuracy. In terms of GAT-tanh and ASGCN-tanh, because
tanh function has zero gradient when the output is nearly +1 or −1 and has real-value output
when the gradient is not zero. This property determines that tanh function is not suitable for
binarizing the neural network. When the input values are clipped to produce exact binary
parameters and embeddings via tanh function, the gradient will be zero which results in
the insufficient optimization and worse performance than BGN. Furthermore, the models
that are binarized by BGN-x and BGN-lpb achieve better performance than other compared
methods.

839World Wide Web (2021) 24:825–848

Figure 3 Classification results of three citation network dataset among the binary-valued embedding
methods with different embedding dimensions

5.4.2 Comparison among the GNN-based methods

We compare our model with other GNN-based methods (GCN, GAT and AS-GCN). All
baseline methods produce the real-valued embedding vectors each dimension of which is
encoded by at least 32 bits. Compared with these methods, each dimension of the embedding
vectors learned by our model is only encoded by 1 bit. As a result, a real-valued 16 dimen-
sion vector requires at least 256 bits while a binary vector only requires 16 bits. Figure 4
shows the performance of the models with bit width varies for a single embedding vector.

Our model significantly outperforms all the baseline methods with low bit width. When
getting more space for the learned representations, our model can still achieve compet-
itive classification results compared with the state-of-the-art graph neural network-based
methods. In conclusion, the performance gap between our model and baselines with large

840 World Wide Web (2021) 24:825–848

Figure 4 Classification results of three citation network dataset among the GNN-based methods with varied
bit width for embedding vector

bit-width representations is acceptably small while our model’s performance is notably
better with the low bit-width representations.

5.5 Comparison of time and space efficiency

In this section, we report the inference time and space efficiency of our model. The infer-
ence is the process that produces the classification result when we have already trained the
model. Acceleration is brought by the XNOR and popcount operation with just little sacri-
fice on the classification performance. In this experiment, we train the binary parameters
and activations of our model, then replace dot product operation between binarized matri-
ces by XNOR and popcount and also replace the dot product between binary matrix and
real-valued matrix by masked-summation during the inference process.

Tables 4 and 5 report the experiment results. GAT-binary, ASGCN-binary, GAT-tanh and
ASGCN-tanh require the same size of parameters as their real-valued version since these
baslines only binarize the representations of the nodes while keep using the real-valued
parameters in the model. Among these models, GAT-binary and ASGCN-binary can be
accelerated by applying the mask summation during inference process, while GAT-tanh and
ASGCN-tanh have to perform conventional matrix multiplication since these two meth-
ods cannot guarantee to produce exact binarized codes as node representations. Our model
under the binarized framework is more than one order of magnitude faster than the baseline

Table 4 Comparison of performance, inference time and memory space required for the parameters between
the real-valued and binarized models

Dataset GAT AS-GCN GAT-binary ASGCN-binary

Cora Time(s) 1.9 × 10−1 1.0 × 10−1 1.5 × 10−1 8.2 × 10−2

Space(bit) 2.46 × 108 3.04 × 106 2.46 × 108 3.04 × 106

Accuracy 84.0% 87.3% 47.1% 56.1%

Citeseer Time(s) 2.8 × 10−1 2.8 × 10−1 2.4 × 10−1 2.5 × 10−1

Space(bit) 7.60 × 106 7.83 × 106 7.60 × 106 7.83 × 106

Accuracy 72.1% 78.9% 45.3% 55.3%

Pubmed Time(s) 3.8 × 101 4.54 × 100 3.5 × 101 3.97 × 100

Space(bit) 1.03 × 106 1.06 × 106 1.03 × 106 1.06 × 106

Accuracy 78.2% 89.0% 53.4% 60.0%

841World Wide Web (2021) 24:825–848

Table 5 Comparison of performance, inference time and memory space required for the parameters between
the tanh-based and BGN-based models

Dataset GAT-tanh ASGCN-tanh BGN-GAT BGN-ASGCN

Cora Time(s) 1.8 × 10−1 8.2 × 10−2 1.0 × 10−2 8.0 × 10−3

Space(bit) 2.46 × 108 3.04 × 106 1.32 × 107 1.97 × 105

Accuracy 24.2% 52.3% 77.7% 84.1%

Citeseer Time(s) 2.5 × 10−1 2.9 × 10−1 1.4 × 10−2 1.8 × 10−2

Space(bit) 7.60 × 106 7.83 × 106 2.49 × 105 4.86 × 105

Accuracy 34.2% 49.5% 63.7% 77.2%

Pubmed Time(s) 4.1 × 101 4.47 × 100 1.1 × 100 2.1 × 10−1

Space(bit) 1.03 × 106 1.06 × 106 3.85 × 104 7.01 × 104

Accuracy 33.6% 57.9% 75.7% 82.0%

methods GAT and AS-GCN with regards to the inference time. The proposed model can be
up to 29× faster and save up to 28× space compared with the baseline methods.

5.6 Analysis of binarization

In this section, we introduce the effect of the estimator and binarization level with regard to
the space, time and performance. We compare the space, inference time and performance
between BGN-GAT and GAT on the Cora dataset. We fix the dimension of embedding
vector to 64 for both methods and change the setting of BGN to show the space and time
saving compared with the baseline GAT.

Result is shown in Table 6 where BGNw , BGNe, BGNwe and BGNwec mean that the
BGN is with weights binarized, embedding vectors binarized, weights and embedding vec-
tors binarized, weights, embedding vectors and attention coefficients binarized based on the
graph attention mechanism respectively. We can conclude from the Table 6 that (1) when
the weights, activations and attention coefficients are all binarized, the BGN-GAT can save
largest space for parameters and the output vectors while holding acceptable classification
accuracy. (2) Straight through estimator and reinforce estimator have similar accuracy on

Table 6 Trade-off between time/space efficiency and classification accuracy of proposed BGN w.r.t the level
and setting of binarization

Method Estimator Param space Vec space Speed up Accuracy

GAT N/A 1× 1× 1× 84.0%

BGNw STE 1/28 1× 3.7× 80.5%

BGNw Reinforce 1/28 1× 3.8× 80.3%

BGNe STE 1× 1/1.02 1.3× 81.2%

BGNe Reinforce 1× 1/1.02 1.2× 81.3%

BGNwe STE 1/28 1/1.02 5.7× 77.2%

BGNwe Reinforce 1/28 1/1.02 6.1× 77.5%

BGNwec STE 1/28 1/19 18.7× 77.7%

BGNwec Reinforce 1/28 1/19 19.1× 76.9%

842 World Wide Web (2021) 24:825–848

the node classification task. Therefore, we choose the STE for our model in the above exper-
iments because of its simplicity and certainty. (3) Compared with original GAT, BGN-GAT
can save 28× space for model parameters, 19× space for activations and achieve 19× speed
up.

5.7 Case study

In this section, we investigate how binarized graph neural network improve the time effi-
ciency of the GNN-based applications such as GMN. Because GMN needs to compute the
pair-wise dot product between node and graph embedding vectors, the time consumption is
extremely high when the number of nodes in each graph goes up. However, with the binary
representations, we can apply XNOR between binary vectors to replace the dot product,
which will alleviate the time complexity problem significantly. The following experiment
results will introduce the performance and time complexity of GMN with binary node and
graph representations compared with the origin version. The graph similarity will then be
used for the graph matching task.

Experiment Setup We follow the experiment setting of [18] to test the performance of
Binarized GMN. The training data is generated by sampling binomial graphs G1 with n

nodes and edge probability p [6]. Then the positive example G2 is generated by randomly
substituting kp edges from G1 with new edges and negative example G3 is generated by
substituting kn edges from G1, where kp < kn. In the experiment, we set kp = 1, kn = 2
and p = 0.2. We also set the hamming similarity between vectors as loss function, which
is more suitable for the binary-valued vectors as the loss function to train the model. The
model needs to predict a higher similarity score for positive pair (G1,G2) than negative
pair (G1,G3). The evaluation metric remains the same: (1) pair AUC - the area under
the ROC curve for classifying pairs of graphs as similar or not on a fixed set of 1000
pairs and (2) triplet accuracy - the accuracy of correctly assigning higher similarity to the
positive pair in a triplet than the negative pair on a fixed set of 1000 triplets.

Inference time and Graph Matching Performance We report the graph matching
accuracy and inference time of the binarized and original GMN with regards to the num-
ber of nodes in each graph. The default setting in GMN is 20 nodes per graph, which is
quite small for real-world networks. We set the number of nodes in one graph from 20
to 160 and keep other settings the same as described above to evaluate the performance
and inference time. The dimensions of node and graph representations are set to 32 and
64 respectively.

As shown in Figure 5, the inference of BGN-GMN is significantly faster. This is
because of the fact that the similarity computation (pair-wise dot product) between node
representations of two graphs mainly accounts for the time complexity of GMN. Under
the same dimension of node and graph embedding vectors, BGN-GMN is up to 21×
faster than the baseline model in terms of the inference time with the help of the replace-
ment of dot product by fast operations such as XNOR and popcount between binary
vectors.

In terms of graph matching task, the original version of GMN has better performance
when the number of nodes in each graph is small. However, when the number of nodes
gets larger, the pair AUC and triplet accuracy will both decay. When the number of

843World Wide Web (2021) 24:825–848

Figure 5 The performance of graph matching and inference time for GMN and BGN-GMN w.r.t the number
of nodes per graph

nodes is more than 60, the real-valued representations cannot tell the similarity difference
between the graphs. Hence, the model is not able to learn the different similarity scores
for positive and negative pairs of graphs with the hamming similarity metric. However,
with the help of binarization and balance function, the binary representations still hold
an acceptable and more robust performance for the graph matching task. This is due to
the fact that the binarized model produces true binary representations for the calculation
of hamming loss and is designed for the graph matching task specifically on hamming
space.

Parameter Sensitivity Analysis We compare the performance of binarized and original
version GMN to show the effect of dimension for node and graph embedding vectors.
We set the number of nodes in each graph n = 30 for this comparison. We change the
dimension of graph embeddings produced by two models to ensure them to produce the
same bit-width embedding vectors and keep the other settings as the same to compare
the performance of two models.

The result is included in Figure 6a. We can find that the binary graph representations tend
to have better performance when they are low bit-width and have similar accuracy when the
bit-width for the representations getting larger. The binary representations have more robust
performance compared with the baseline model when the dimension of embedding varied.

The node representations’ binarization is more important than the graph representations’
because the dot product operation is mainly conducted between the node representations
which costs plenty of time. The performances of GMN and BGN-GMN are compared under
different bit-width for the node embedding vectors by varying the dimensions.

As shown in Figure 6b, the result for the pair-wise AUC is similar between the binary
and the real-valued node embedding vectors, but BGN-GMN holds a better performance
with low bit-width representations. As for the triplet graph accuracy, the binary embed-
ding vector achieves better performance with short code length and similar accuracy as
real-valued node embedding with long code length. These results indicate that the binary
representations are much better for the comparison between two graphs under low bit-width
circumstances. In line with the result of the binary graph embedding vectors, the binary
node embedding vectors also have more robust performance compared with the real-valued
node representations.

844 World Wide Web (2021) 24:825–848

a

b

Figure 6 The performance comparison of graph matching task between original version of GMN and the
BGN-GMN with a graph representations binarized and b node representations binarized

6 Conclusion

We present a model focused on the challenging problem of seeking binary representations of
network embeddings using a compact neural network structure. We proposed a novel bina-
rized graph embedding method, namely BGN, that has binarized parameters and enables
GNNs to learn discrete embedding. The binarized neural network can reduce the memory
and time cost of the GNN such that increases the scalability of GNNs. BGN can be naturally
integrated into other GNN models to enhance the performance of the model such as graph
matching network in terms of the inference time and space consumption. External experi-
ment also illustrates that BGN can increase the time efficiency while holding competitive
accuracy.

Acknowledgements Defu Lian is supported by grants from the National Natural Science Foundation of
China (No. 61976198 and 62022077). Ying Zhang is supported by ARC FT170100128 and DP180103096.
Lu Qin is supported by ARC FT200100787.

References

1. Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., Wang, W.: Simgnn: a neural network approach to fast graph
similarity computation. In: Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining, WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019, pp. 384–392 (2019)

845World Wide Web (2021) 24:825–848

2. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

3. Chen, G., He, S., Meng, H., Huang, K.: Phonebit: Efficient Gpu-Accelerated binary neural network infer-
ence engine for mobile phones. In: 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 786–791. IEEE (2020)

4. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: Training
deep neural networks with weights and activations constrained to+ 1 or-1. Neural Information Processing
Systems neurIPS (2016)

5. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng.
(TKDE) 31(5), 833–852 (2019)

6. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60
(1960)

7. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: A library for large linear classification.
JMLR 9, 1871–1874 (2008)

8. Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., Yan, J.: Differentiable soft quantization: Bridg-
ing full-precision and low-bit neural networks. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pp. 4852–4861 (2019)

9. Grover, A., Leskovec, J.: Node2vec: Scalable feature learning for networks. In: ACM SIGKDD, pp.
855–864 (2016)

10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Neural
Information Processing Systems NeurIPS, pp. 1024–1034 (2017)

11. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Methods and applications.
IEEE Data Eng. Bull. 40(3), 52–74 (2017)

12. Huang, W., Zhang, T., Rong, Y., Huang, J.: Adaptive sampling towards fast graph representation learning.
In: Neural Information Processing Systems NeurIPS, pp. 4563–4572 (2018)

13. Hubara, I., Courbariaux, M., Soudry, D., El-yaniv, R., Bengio, Y.: Binarized neural networks. In: Neural
Information Processing Systems NeurIPS, pp. 4107–4115 (2016)

14. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Neural
Information Processing Systems NeurIPS, pp. 4289–4300 (2018)

15. Kipf, T.N., Welling, M.: Semi-Supervised classification with graph convolutional networks. In: ICLR
(2017)

16. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection http://snap.stanford.
edu/data (2014)

17. Li, Y., Gong, R., Yu, F., Dong, X., Liu, X.: Dms: Differentiable dimension search for binary neural
networks

18. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity
of graph structured objects. In: Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 3835–3845 (2019)

19. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493 (2015)

20. Lian, D., Zheng, K., Zheng, V.W., Ge, Y., Cao, L., Tsang, I.W., Xie, X.: High-Order proximity preserving
information network hashing. In: ACM SIGKDD, pp. 1744–1753 (2018)

21. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: CVPR, pp.
2064–2072 (2016)

22. Liu, W., Mu, C., Kumar, S., Chang, S.: Discrete graph hashing. In: Neural Information Processing
Systems NeurIPS, pp. 3419–3427 (2014)

23. Liu, Z., Shen, Z., Savvides, M., Cheng, K.: Reactnet: Towards precise binary neural network with gen-
eralized activation functions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J. (eds.) Computer Vision -
ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIV,
Lecture Notes in Computer Science, vol. 12359, pp. 143–159. Springer (2020)

24. Martı́nez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural networks with real-to-binary
convolutions. In: 8Th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. Openreview.Net (2020)

25. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and
phrases and their compositionality. In: Neural Information Processing Systems NeurIPS, pp. 3111–3119
(2013)

26. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: ACM
SIGKDD, pp. 701–710. ACM (2014)

27. Qin, H., Gong, R., Liu, X., Bai, X., Song, J., Sebe, N.: Binary neural networks: A survey. Pattern
Recognition, pp. 107281 (2020)

846 World Wide Web (2021) 24:825–848

http://arxiv.org/abs/1308.3432
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://arxiv.org/abs/1511.05493

28. Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., Song, J.: Forward and backward information reten-
tion for accurate binary neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition CVPR, pp. 2250–2259 (2020)

29. Qin, J., Wang, Y., Xiao, C., Wang, W., Lin, X., Ishikawa, Y.: GPH: Similarity search in hamming space.
In: IEEE ICDE, pp. 29–40 (2018)

30. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization:
Unifying deepwalk, Line, Pte, and Node2vec. In: ACM WSDM, pp. 459–467 (2018)

31. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-Net: Imagenet classification using binary
convolutional neural networks. In: European Conference on Computer Vision, pp. 525–542. Springer
(2016)

32. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: Struc2vec: Learning node representations from structural
identity. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 385–394 (2017)

33. Salakhutdinov, R., Hinton, G.E.: Semantic hashing. Int. J. Approx. Reasoning 50(7), 969–978 (2009)
34. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in

network data. AI Magazine 29(3), 93–93 (2008)
35. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: CVPR, pp. 37–45 (2015)
36. Shen, M., Liu, X., Gong, R., Han, K.: Balanced binary neural networks with gated residual. In: ICASSP

2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
4197–4201. IEEE (2020)

37. Shen, X., Pan, S., Liu, W., Ong, Y., Sun, Q.: Discrete network embedding. In: IJCAI, pp. 3549–3555
(2018)

38. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: Large-scale information network
embedding. In: WWW, pp. 1067–1077 (2015)

39. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.:
Attention is all you need. In: Neural Information Processing Systems NeurIPS, pp. 5998–6008 (2017)

40. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks.
arXiv preprint arXiv:1710.10903 (2017)

41. Wang, C., Pan, S., Hu, R., Long, G., Jiang, J., Zhang, C.: Attributed graph clustering: a deep attentional
embedding approach. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 3670–3676 (2019)

42. Wang, H., Lian, D., Zhang, Y., Qin, L., Lin, X.: Gognn: Graph of graphs neural network for predicting
structured entity interactions. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020, pp. 1317–1323. ijcai.org (2020)

43. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on learning to hash. IEEE Trans. Pattern
Anal. Mach. Intell. TPAMI. 40(4), 769–790 (2018)

44. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Mach. Learn. 8, 229–256 (1992)

45. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How Powerful are Graph Neural Networks?. In: 7Th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019
(2019)

46. Yang, H., Pan, S., Zhang, P., Chen, L., Lian, D., Zhang, C.: Binarized Attributed Network Embedding.
In: IEEE ICDM, pp. 1476–1481 (2018)

47. Zhang, J., Pan, Y., Yao, T., Zhao, H.: Mei, t.: dabnn: a super fast inference framework for binary neural
networks on arm devices. In: Proceedings of the 27th ACM International Conference on Multimedia, pp.
2272–2275 (2019)

48. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Neural Information Processing
Systems NeurIPS, pp. 5171–5181 (2018)

49. Zhang, X., Liu, H., Li, Q., Wu, X.: Attributed graph clustering via adaptive graph convolution. In: Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019, pp. 4327–4333 (2019)

50. Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., Zou, Y.: Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. CoRR arXiv:abs/1606.06160 (2016)

51. Zhu, F., Gong, R., Yu, F., Liu, X., Wang, Y., Li, Z., Yang, X., Yan, J.: Towards unified int8 training for
convolutional neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition CVPR, pp. 1969–1979 (2020)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

847World Wide Web (2021) 24:825–848

http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/abs/1606.06160

Affiliations

Hanchen Wang1 · Defu Lian2 · Ying Zhang1 · Lu Qin1 · Xiangjian He3 ·
Yiguang Lin3 · Xuemin Lin4

Hanchen Wang
hanchenw.au@gmail.com

Ying Zhang
Ying.Zhang@uts.edu.au

Lu Qin
Lu.Qin@uts.edu.au

Xiangjian He
Xiangjian.He@uts.edu.au

Yiguang Lin
Yiguang.Lin@uts.edu.au

Xuemin Lin
lxue@cse.unsw.edu.au

1 CAI, University of Technology Sydney, Sydney, Australia
2 University of Science and Technology of China, Anhui, China
3 University of Technology Sydney, Sydney, Australia
4 University of New South Wales, Sydney, Australia

848 World Wide Web (2021) 24:825–848

http://orcid.org/0000-0003-3158-9586
mailto: hanchenw.au@gmail.com
mailto: Ying.Zhang@uts.edu.au
mailto: Lu.Qin@uts.edu.au
mailto: Xiangjian.He@uts.edu.au
mailto: Yiguang.Lin@uts.edu.au
mailto: lxue@cse.unsw.edu.au

	Binarized graph neural network
	Abstract
	Introduction
	Related works
	Background and preliminaries
	Binarized graph neural network
	Framework
	Binarization
	Forward propagation
	Backpropagation
	Propagation gradients through binarization function
	Straight through estimator
	REINFORCE estimator

	Optimization objectives
	Techniques to improve the model
	XNOR and popcount
	Masked summation
	Balance function

	Adapted to Other GNN based models
	Binarization of AS-GCN
	Binarization of GMN

	Experiment
	Dataset
	Baseline methods
	Experiment setup
	Classification results
	Comparison among binary embedding methods
	Comparison among the GNN-based methods

	Comparison of time and space efficiency
	Analysis of binarization
	Case study

	Conclusion
	References
	Affiliations

