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Abstract
With the rapid development of transportation systems, traffic data have been largely pro-
duced in daily lives. Finding the insights of all these complex data is of great significance
to vehicle dispatching and public safety. In this work, we propose a multitask deep learning
model called Multitask Recurrent Graph Convolutional Network (MRGCN) for accurately
predicting traffic flows in the city. Specifically, we design a multitask framework consisting
of four components: a region-flow encoder for modeling region-flow dynamics, a transition-
flow encoder for exploring transition-flow correlations, a context modeling component for
contextualized fusion of two types of traffic flows and a task-specific decoder for predicting
traffic flows. Particularly, we introduce Dual-attention Graph Convolutional Gated Recur-
rent Units (DGCGRU) to simultaneously capture spatial and temporal dependencies, which
integrate graph convolution and recurrent model as a whole. Extensive experiments are car-
ried out on two real-world datasets and the results demonstrate that our proposed method
outperforms several existing approaches.

Keywords Traffic flow · Deep learning · Graph convolutional networks · Multitask
learning

1 Introduction

In recent years, the concept of smart city has been proposed for delivering a better quality
of life for residents living in the city. Meanwhile, citywide traffic flow prediction plays
an important role in the construction of smart cities [1–3]. As Figure 1 shows, it aims to
predict traffic flows of each region at given time intervals based on historical observations.
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Figure 1 An instance of traffic flow prediction

If we can accurately predict the traffic flows, it will be greatly meaningful to intelligent
transporation, vehicle dispatching and public safety protection [4].

However, accurately predicting traffic flows in a citywide range remains to be challeng-
ing due to complicated spatial-temporal dependencies and various context information (e.g.,
holiday, weekend). Fortunately, deep learning [5] has been introduced as a powerful tool
for analyzing these complex traffic data. Recently, by dividing the whole city into grid-like
regions and employing convolutional neural networks (CNN) for spatial modeling, several
works have achieved impressive progress [6–9]. However, the regions in a city are actually
separated by road networks, which naturally segment urban areas into sub-regions with v arying
sizes and shapes [10–12]. Thus, the graph-based structure is better to depict real-world con-
ditions and reveal hidden semantic meanings. As a result, CNN based models which require
input to be grid-like data are not perfectly applicable in this scenario. To tackle this problem,
graph convolutional networks (GCN) have been proposed by researchers [13, 14].

Although graph convolutional networks have shown powerful capability of modeling
spatial dependencies in graph-based data, there still exist two main limitations for current
GCN models: (1) First, the spatial dependencies among regions are highly dynamic under
different circumstances. For instance, the traffic flows tend to transfer from residential areas
to working areas in the morning while the opposite in the evening. The adjacency matrix
pre-defined in GCN is fixed and thus cannot well respond to temporal dynamics. (2) Second,
existing GCN models mainly utilize the results learned from the largest sub-graph structure
(e.g., k-hop neighbors), ignoring the knowledge obtained in the early-stage, which results
in a significant loss of information.

Furthermore, we find that the traffic flow of a region is strongly correlated to the
transition-flow between different regions. Specifically, the region flow is the sum of its
transition-flows with other regions, while this transition-flow describes the correlation
between individual regions. Most studies merely focus on the region-flow other than the
transition-flow [6–8], which results in incomprehensive prediciton. In addition, although
there exist so many combinations of transitions, some of them may not occur in reality and
some combinations do not happen for many times, which makes the transition-flow highly
sparse and poses a challenge for training deep learning models.

To address the above issues, we propose a multitask deep learning model called MRGCN
for traffic flow prediction. Overall, our idea is specified as the following process. First, we
introduce a novel dual-attention mechanism to improve the performance of original GCN on
spatial modeling. Then, we incorporate the dual-attention graph convolution into the RNN
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structure and thus propose DGCGRU to capture temporal dynamics. Next, we design a mul-
titask architecture to predict two types of traffic flows (region-flow and transition-flow) at
the same time. Particularly, the recent and periodical traffic data will be extracted for pre-
dicting future traffic flows in each task. At last, we aggregate the information learned from
each task and make task-specific predictions. We summarize our contributions as follows:

• We propose dual-attention graph convolution for spatial modeling, which consists of
neighbor-aware attention and hop-aware attention. We further incorporate it into RNN
structure to capture temporal dynamics.

• We propose a multitask framework called MRGCN for spatial-temporal modeling,
which integrates a region-flow encoder, a transition-flow encoder, context modeling
and a task-specific decoder as a whole.

• We conduct extensive experiments on two real-world datasets from Beijing and
Chengdu. The results demonstrate that our proposed method achieves better perfor-
mance compared with several existing approaches.

As an extension of our previous work [15], we further polish our original solution
by improving the components of multitask framework and enriching the experiments.
Specifically, our new contributions are as follows:

• We propose a new RNN structure called Dual-attention Graph Convolutional Gated
Recurrent Units (DGCGRU), which combines the recurrent model with dual-attention
graph convolution as an integration.

• We design a context attention mechanism which takes various context factors (e.g.,
holiday and weekend) into consideration, by which our model can adaptively assign
different weights to different branches of traffic flows.

• We add more experiments including baseline comparisons and ablation study for our
newly proposed approach. The results show the effectiveness of our method. In addi-
tion, we give a more detailed description of our framework so that readers can better
understand and follow our work.

The remaining parts of this paper are organized as follows: First, we review the related
work about traffic flow prediction in Section 2. Then, we give several definitions and for-
mulate the research problem in Section 3. In Section 4, the detailed information about our
proposed multitask framework are discussed. Finally, we show the extensive experimental
results on two real-world datasets in Section 5 and give a brief conclusion in Section 6.

2 Related work

2.1 Traffic flow prediction

Being an important problem in the smart city, traffic flow prediction has been studied for
many years. Classic methods viewed it as a time series forecasting problem, using ARIMA
and H-ARIMA [16] to predict future traffic flows. Some supervised learning models, such
as LR [17], VAR [18] and SVR [19] considered it to be a regression problem. However, they
either required the time series to satisfy the stationarity assumption or ignored the spatial
dependencies in the surrounding areas, thus making inaccurate predictions.

Recently, employing deep neural networks has achieved great advances in traffic flow
prediction. Since LSTM has shown great capability for capturing temporal dynamics in
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sequential modeling, it is widely uesd to improve the performance of traffic state prediction
[20]. Later, noticing that not only temporal dependencies but also spatial correlations are
critical, the information of surrounding areas are also taken into account in traffic flow pre-
diction [21, 22]. From then on, researchers started to use CNN as the major tool for modeling
spatial dependencies. Specifically, ST-ResNet [6] proposed a residual framework to model
long-range spatial dependencies throughout a city. Besides, it also considered external fac-
tors such as weather, holiday and events for a more accurate prediction. DeepSTN+ [8]
proposed a ConvPlus operation in place of ordinary convolution to directly capture long-
range spatial dependencies. In addition, some researchers considered utilizing transition
flow for capturing dynamic spatial-temporal correlations between regions [23, 24]. To be
specific, [25] proposed a multitask learning framework for jointly predicting node flow and
edge flow throught a city. Apart from above CNN based models, the combination of recur-
rent models with CNN such as ConvLSTM [26], LC-RNN [11] and Periodic-CRN [27]
were also proposed, but the training of recurrent models always consumed a lot of time.

Nevertheless, the above methods partition the whole city into regular regions and adopt
CNN based models to process grid-like traffic data. When input becomes to be graph-
structured data, they may not be suitable any more. Specifically, regions in a city are actually
irregular and are of varying shapes and sizes. The above models ignore the road network
distribution in the city and are probably not perfect to be applied to real-world scenarios.

2.2 Graph-based traffic flow prediction

Different from the above regular-regions based traffic flow research, some works were
based on graph-structured data (e.g, road network data and highway sensors), which has
been extensively studied as well. Recently, by employing graph convolution [28–30], several
works achieved impressive results in graph based traffic flow prediction [31–33]. Specif-
ically, STGCN [14] combined gated CNN with graph convolution to respectively model
temporal dependencies and spatial correlations. ASTGCN [13] further proposed spatial
attention and temporal attention to help capture traffic dynamics in these spatial-temporal
data. Graph WaveNet [34] developed a novel self-adaptive adjacency matrix, which enables
the original GCN to discover more hidden spatial dependencies that were not revealed by
the pre-defined adjacency matrix. In addition, it adopted stacked dilated casual convolution
to capture long-term temporal dependencies. DCRNN [35] modeled the dynamics of traffic
flow as a diffusion process and proposed a sequence to sequence architecture for multi-step
traffic flow prediction. Furthermore, MRes-RGNN [36] introduced a novel residual recur-
rent graph neural nwtwork, which integrated gated recurrent units with graph convolution
in a gated residual learning manner.

Based on our observations, most of the existing GCN-based methods only utilize the
results learned from a given neighborhood range (e.g., k-hop), yet ignoring the information
obtained in the early-stage, causing an incomplete utilization of the valuable gained knowl-
edge. Furthermore, we find that the traffic flow of a region is strongly correlated to the
transition-flow between pair-wise regions. Most existing methods overlooked this important
relation, which could potentially increase the prediction accuracy.

3 Preliminaries

In this section, we first give several definitions related to traffic flow prediction and then
formulate the problem. Details are as follows.
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Definition 1 (Urban graph) An urban graph is denoted as G = (V ,E,A), where V rep-
resents the set of regions and E represents the edges between regions (if two regions are
geographically connected, there will be an edge between them). A is a binary unweighted
adjacency matrix. Figure 2a shows an example of urban graph, where V ={R1, R2, R3, R4},
E consists of five edges and the adjacency matrix A can be obtained by V and E.

Definition 2 (Inflow/outflow) In this work, we mainly study two types of region-flows:
inflow and outflow. At a given time interval, inflow is the total number of traffic flows
entering a region while outflow is the total number of traffic flows leaving a region for other
places. At time interval t , we use Xt ∈ RN×C to denote the region-flow of N nodes. In this
paper, C equals to 2. Xt [i, 0] and Xt [i, 1] respectively denote inflow and outflow of node i

at time interval t . Then we can obtain a flow matrix like Figure 2c from b which shows the
traffic flow transitions between different regions. Taking R1 as an example, the transition
from R1 to R2 and that from R1 to R4 constitute the outflow of R1, while the transition from
R2 to R1 and that from R3 to R1 comprise the inflow of R1.

Definition 3 (Transition-flow) We mainly study two types of transition-flows: in-transition
and out-transition. At time interval t , we use Zt ∈ RN×2N to denote the transition-flow of N

nodes. Specifically, Zt [i, k] (k = 0, 1, ..., N−1) denotes the in-transitions from all N nodes
to node i and Zt [i, k] (k = N,N + 1, ..., 2N − 1) denotes the out-transitions to other nodes
from node i. Then we can obtain a transition matrix like Figure 2d from b. Taking R1 as an
example, it has up to 8 possibilities of transition-flows. The in-transition of R1 includes the
transitions from R2 and R3 while the out-transition is composed of the transitions from R1
to R2 and R1 to R4.

3.1 Problem Formulation

Given a graph G = (V,E,A) and historical observations of region-flows and transition-flows
{Xt , Zt | t = 1,...,T}, we aim to predict region-flow X = {Xj | j=T+1,...,T+z} and transition-
flow Z = {Zj | j=T+1,...,T+z}, where z is the number of time intervals to be predicted.

4 Methodology

4.1 Overview

Traditional traffic flow prediction task only predicts the total number of traffic flows enter-
ing or leaving a region (i.e., inflow and ouflow), while we argue that the transition-flow
prediction is equally important based on the following explanations: (1) The transiton-flow
depicts the pair-wise transition patterns among regions, which can be further used to ana-
lyze the correlations between regions. Thus, it is meaningful for both urban development
and regional governance to study the transition-flow between regions. (2) We find that the
sum of transition-flow equals to the region-flow for each region. Hence, these two types
of traffic flows are quite correlated as they can be seen as each other’s auxiliary infor-
mation. (3) Region-flow and transition-flow are different representations of each region’s
traffic attributes, thus they share the knowledge about hidden traffic patterns. Since multi-
task learning [37, 38] aims to leverage useful information contained in multiple tasks to
help improve the generalization performance of those tasks, we consider using multitask
learning to enhance the accuracy of both region-flow and transition-flow prediction.
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Figure 2 Region-flow and transition-flow in different regions

Following the idea of multi-task leanring, we propose our model and Figure 3 presents the
architecture of our proposed MRGCN. It mainly consists of four components: a region-flow
encoder, a transition-flow encoder, context modeling and a task-specific decoder. Overall,
it simultaneously carries out two prediction tasks: region-flow prediction and transition-
flow prediction. These two tasks have similar network structures and the only difference is
that the model of transition-flow prediction has an extra embedding layer to alleviate the
data sparsity problem. In each task, the recent and periodical traffic flows are extracted
for spatial-temporal modeling, followed by a context attention module to adaptively assign
different weights to different branches of traffic data. Finally, we aggregate the information
learned from each task and make task-specific predictions (i.e., region-flow and transition-
flow).

4.2 Region-flow encoder

In our region-flow encoder, we select both recent and periodic time steps for spatial-
temporal modeling by DGCGRU and fully-connected networks.

Figure 3 Architecture of MRGCN. DGCGRU: Dual-attention Graph Convolutional Gated Recurrent
Units; FC: Fully-Connected layer
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4.2.1 Dual-attention Graph Convolutional GRU

Intuitively, the traffic flow of a region is influenced by its recent time intervals. For instance,
once a congestion takes place, it will inevitably affect the traffic flows in the near future.
Thus, we select traffic flows from the recent P time intervals with regard to the current time
step T . Specifically, we denote them as χrec = [XT −P+1, XT −P , ..., XT ]. Then, χrec will be
fed into DGCGRU which consists of dual-attention graph convolution and gated recurrent
units.

Due to the geographical connection among urban areas, the traffic flow of a region is
naturally affected by that of nearby regions. Furthermore, owing to the rapid development of
urban transportation systems, people can reach distant areas just within a short time. Thus,
we need to consider both near and distant correlations in spatial modeling. In this work, we
propose using GCN to model spatial dependencies in graph-based data.

Graph convolution Most recent works employ graph convolutional networks to model spa-
tial dependencies on irregular regions. According to [29], the graph convolution operation
in l-th layer is defined as follows:

H(l+1) = σ(D̂− 1
2 ÂD̂− 1

2 H(l)W(l)) (1)

where H(l+1) and H(l) are respectively output and input of the l-th hidden layer. Â = A + I ,
A ∈ RN×N is the adjacency matrix of graph G and I is an identity matrix. D̂ is the diagonal
node degree matrix of Â and D̂ii = ∑

j Âij . W(l) is the weight matrix and σ(·) is a non-
linear activation function like ReLU. We can find that one graph convolution layer is able
to aggregate information from 1-hop neighbors. By stacking k such layers, we can expand
the receptive field and gain information from k-hop neighbors.

Hop-aware attention During the repetion of Eq. 1, we can find that the result in every
step can only be used to generate the next convolution result. During this process, a large
amount of early-stage information will be lost and only the largest sub-graph structure (e.g.,
k-hop) can be captured by the graph convolution layer. Thus, we intend to make full use of
information from each hop of neighbors by designing a hop-aware attention mechaism.

As is shown in Figure 4, assuming that we stack k graph convolution layers and obtain
node representations in different neighborhood hops, which can be denoted as ψ = [ψ1,
ψ2, ..., ψk], ψ ∈ Rk×N×F . N is the number of nodes and F is the dimension of each
node representation. ψ

j
i ∈ RF denotes the j -th node’s representation in the i-th layer. c

∈ Rd is a neighborhood hop embedding vector which is randomly initialized and learned
in the training process. We impose a transformation matrix Wψ ∈ RF×d to transform the

Figure 4 Hop-attention based graph convolution
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dimension of ψ
j
i : F → d. Then, the attention coefficients can be computed as follows:

s
j
i = a(Wψψ

j
i , c) (2)

γ
j
i = sof tmaxi(s

j
i ) = exp(s

j
i )

∑k
i=1 exp(s

j
i )

(3)

After we obtain the attention coefficients, for j -th node, a linear combination of node
representations from each layer will be applied as follows:

Uj =
k∑

i=1

γ
j
i ψ

j
i (4)

Neighbor-aware attention Traffic conditions change over time, so do the spatial depen-
dencies among different regions. For instance, the traffic flows tend to transfer from
residential areas to working areas in the morning while the opposite in the evening.
However, the adjacency matrix used in graph convolution assigns fixed weights to dif-
ferent neighbours , which can not respond to temporal dynamics. Therefore, we design a
neighbor-aware attention mechanism to adaptively adjust the spatial correlations between
regions.

Supposing that the l-th graph convolution layer transforms input F features into high-
level F ′ features. Here, we take node i and node j as an example, hi ∈ RF and hj ∈ RF

are corresponding feature vectors, then the operations in the attention layer can be written
as follows:

ei,j = a(Whi,Whj ) (5)

αi,j = sof tmaxj (ei,j ) = exp(ei,j )
∑N

j=1 exp(ei,j )
(6)

where W ∈ RF ′×F , a is a single-layer feedforward network which is parameterized by
a 2F ′-dimension weight vector. ei,j denotes the correlation strength between region i and
region j . To make coefficients easily comparable across different nodes, we normalize them
across all j using the softmax function.

After obtaining the attention matrix, we combine it with initial normalized adja-
cency matrix to dynamically adjust correlation strength between regions. Specifically, α�
D̂− 1

2 ÂD̂− 1
2 will replace initial D̂− 1

2 ÂD̂− 1
2 when performing graph convolution, where �

denotes the element-wise multiplication.

DGCGRU Following [35], we combine the proposed dual-attention graph cnvolution with
RNN structure to capture temporal correlations. Specifically, we adopt Gated Recurrent
Units, which is a simply yet powerful variant of RNN. We replace the MLP layer with
our dual-attention graph convolution and introduce a new RNN structure called DGCGRU,
which is formulated as:

zt = σ(f ([Xt,Ht−1], �z)) (7)

rt = σ(f ([Xt,Ht−1],�r)) (8)

ĥt = tanh(f ([Xt, rt � ht−1], �ĥ
)) (9)

ht = zt � ht−1 + (1 − zt ) � ĥt (10)

where f (, ) denotes dual-attention graph convolution and � is the learnable parameter. σ

is sigmoid function and � denotes element-wise multiplication. In particular, our proposed
DGCGRU receives traffic data from recent P time steps as its input and outputs Yr .
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4.2.2 Periodicity learning

Based on our observations, traffic flows of a region usually follow periodical patterns as
daily routines repeat during continuous days and consecutive weeks. In this paper, we
mainly study two types of periodical patterns: daily periodicity and weekly periodicity. It
means the traffic flow at current timestep is correlated with the same timestep of the pre-
vious day or the previous week in the absence of special condition. Therefore, we adopt
a two-layer fully-connected networks to extract periodicity information. We select traffic
flow data from the same timestep of the previous day and previous week as inputs and
output YP . Specifically, we select d daily periods X(d) ∈ Rd×N×C and w weekly periods
X(w) ∈ Rw×N×C . The periodicity learning is formulated as:

Yp = Wx′(Wx(concat (X(d), X(w))) + bx) + bx′ (11)

where Wx, bx,Wx′ , bx′ are all learnable parameters.

4.3 Transition-flow encoder

The region-flow encoder and the transition-flow encoder share the similar network struc-
ture and the only difference is that the latter has an extra embedding layer. According to
our observations, we find that the transition-flow that really occurs between regions only
accounts for a small portion. Hence, the transition-flow of each region becomes highly
sparse. Unfortunately, this data sparsity problem poses a challenge for training deep learn-
ing models. Inspired by the embedding strategy in natural language processing [39], we
design a spatial embedding method to alleviate this problem.

Transition Embedding The embedding operation is aimed to learn a fucntion that maps a
high-dimensional vector (2N , depending on the nodes of the urban graph) to a relatively
low-dimensional vector. Specifically, the embedding process can be written as follows:

ϕt = σ(ZtWz + bz) (12)

where Wz ∈ R2N×k and bm ∈ Rk are learnable parameters, Zt ∈ RN×2N is the transition-
flow matrix at time interval t , σ(·) is a non-linear function (e.g., ReLU). In our experiment,
we adopt a two-layer fully-connected network to implement embedding operation. After
embedding, we obtain a k-dimension feature vector of transition-flow.

4.4 Context modeling

So far, we obtain two outputs respectively from DGCGRU and periodicity learning. Intu-
itively, the degree of the influence of each module is different under different context factors
(e.g., temporal-meta, weekend and holiday). For instance, the traffic congestion is more
related to recent traffic flows while daily routines are more likely to follow periodical pat-
terns. Moreover, traffic flows in the holiday are quite different from those in the normal
day since holidays trigger more crowd flows, increasing the amount of traveling vehicles
on road networks. Hence, we propose a context attention mechaism to study the impact of
context factors on traffic flow changes.

Context attention After DGCGRU and periodicity learning, we obtain two tensors Yr

∈ RN×f ×P and Yp ∈ RN×f ×(d+w), where N is the number of nodes, f is the feature
dimension, P, d,w are respectively length of recent, daily and weekly time intervals. Then,
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we concatenate Yr and Yp on the third dimension and obtain Y ∈ RN×f ×(P+d+w). We
denote Y t

i ∈ Rf as the node i’s representation at time interval t . To achieve a contex-
tualized fusion of different time intervals, we first apply a shared linear transformation
Wa ∈ Rf ×f ′

to every node at each time step. Then, the attention coefficients of each time
interval are measured by computing the similarity between Y t

i Wa and u, where u ∈ Rf ′
is

a one-hot encoding context vector. Finally, the softmax operator is applied to normalize the
coefficients. Specifically, the context attention is formulated as follows:

et
i = (Y t

i Wa)u (13)

at
i = sof tmaxt (e

t
i ) = exp(et

i )
∑P+d+w

t=1 exp(et
i )

(14)

After we gain the normalized attention coefficients, we calculate a linear combination of
representations at each time interval for every node as:

λi =
P+d=w∑

t=1

at
i Y

t
i (15)

Then, we concatenate the obtained node representation and get Xλ and Zλ respectively for
region-flow prediction and transition-flow prediction.

4.5 Task-specific decoder

After region-flow encoder and transition-flow encoder, we obtain two tensors Xλ ∈ RN×f

and Zλ ∈ RN×f , which respectively denote the representations learned from region-flow
modeling and transition-flow modeling. Specifically, we intend to aggregate information
from each task and make task-specific predictions. First, we introduce several aggregation
strategies:

Sum Aggregation The sum aggregation mechanism directly sums up Xλ and Zλ in an
element-wise manner, the output is as follows:

λ̃ = Xλ + Zλ (16)

Concat Aggregation The concatenation aggregation has no constraint that two inputs must
have the same shape. To be specific, it concatenates two inputs in the feature dimension.
The process can be written as:

λ̃[r, : f ] = Xλ[r, : f ] r = 0, 1, ..., N − 1 (17)

λ̃[r, f : 2f ] = Zλ[r, : f ] r = 0, 1, ..., N − 1 (18)

It is obvious that the concatenation aggregation extends the dimension of above feature
vectors from original f to 2f .
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Gating Aggregation We also design a gating aggregation method which adaptively con-
trols the influence of inputs. It can be written as follows:

μ = σ(XλWx + ZλWz + bλ) (19)

λ̃ = μ � Xλ + (1 − μ) � Zλ (20)

where Wx , Wz and bλ are learnable parameters, � represents the element-wise multipli-
cation, σ(·) denotes the sigmoid activation function.

After aggregation, we adopt fully-connected networks to adapt the feature dimension of
the shared representation λ̃ to each prediction task:

X̂T +z = FC(λ̃; �x) (21)

ẐT +z = FC(λ̃; �z) (22)

where �x and �z are learnable parameters in fully-connected networks.

4.6 Multi-task Loss

In this paper, we aim to predict region-flow and transition-flow of each region at the same
time. Let X̂T +z and ẐT +z be the predicted z results of region-flow and transition-flow, XT +z

and ZT +z are corresponding true values. We use mean squared error as our loss function,
which is defined as follows:

L(�) = λregion‖XT +z − X̂T +z‖2
2 + λtrans‖ZT +z − ẐT +z‖2

2 (23)

where � are all learnable parameters in our MTGCN, λregion and λtrans are weight
coefficients of two tasks.

5 Experiments

In this section, we mainly conduct experiments based on taxi trajectories from Beijing and
Chengdu to evaluate the effectiveness of MRGCN.

5.1 Datasets

We use two real-world datasets from Beijing and Chengdu1to evaluate our model. The
details are as follows:

• Beijing: The trajectory data was collected from 1st June to 31st July in 2016. There are
about 2 million trajectories covering the road network every day. In our experiment, we
mainly extracted the area within the fourth ring road of Beijing and got 256 regions.
About 3 important holidays and 16 weekends exist in the dataset. 80% of the data are
used to train our model and the remaining 20% are the test set.

• Chengdu: It is the trajectory data collected from 1st Nov to 30th Nov in 2016, which is
published by Didi. There are more than 20 thousand trajectoris obtained every day and
we got 64 regions within the central area of whole city. About 8 weekends exist in the
dataset. We use the last 6 days as test set and the others are used to train our model.

1https://gaia.didichuxing.com.
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5.2 Pre-processing and settings

Specifically, the traffic data from two real-world datasets are aggregated into every 10-
minute interval from raw data. As for region partition and graph construction, we adopt the
same procedure described in [31]. Besides, for context factors, we employ one-hot encoding
to transform temporal-meta (i.e., the day of the week, the time of the day), holidays and
weekends information into binary vectors. In addition, Z-score normalization is applied to
input data.

We implement our MRGCN model based on PyTorch framework. We train our network
with the following hyper-parameter settings: mini-batch size is 64 and the initial learning
rate is 0.01 with a decay rate of 0.9 after every 15 epochs. The number of DGCGRU layer is
set as 2 with 64 hidden units. The maximum hop k of the dual-attention graph convolution
is set to 3. We use the previous 12 intervals and corresponding intervals of previous 3 days
and 2 weeks to predict future 6 time steps. The multitask coefficients are set as one of {0.01,
0.1, 1} and the optimal combination is obtained by grid search which is λregion = λtrans =
1. Adam optimizer is adopted to optimize the parameters in our network and the number of
epochs is set as 150.

5.3 Baselines

We compare our model with the following baseline approaches:

• HA: Historical Average, which uses the average values of previous timesteps to predict
the future values. We simply use the average values of previous 12 timesteps to predict
future traffic flows.

• ARIMA: Auto-Regressive Integrated Moving Average model, which is implemented
by statsmodel python package and the orders are set as (3,0,1).

• SVR [19]: Support Vector Regression is a great regression method of powerful
generalization ability. We use previous 6 timesteps as input.

• LSTM [40]: As a variant of RNN, LSTM can effectively capture long-range temporal
dependencies among traffic flow data. We use previous 12 timesteps as inputs. The
number of hidden units is set as 64 and the learning rate is set as one of {0.1,0.01,0.001}.

• STGCN [14]: Spatial-Temporal Graph Convolutional Networks, which combines
graph convolution with 1D convolution for spatial-temporal modeling. We set the filter
number of CNN and GCN as 64 and the size of temporal kernel is set as 2. The learning
rate is 0.0002.

• DCRNN [35]: Diffusion Convolutional Recurrent Neural Network, which models the
traffic flow as a diffusion process and predicts traffic flows in a sequence-to-sequence
framework. We set the hidden units as 64, the maximum steps of random walks as 3
and the learning rate as 0.0001.

• MVGCN [31]: Multi-View Graph Convolutional Networks. We design a simplified
version of MVGCN which is composed of 3 graph convolution layers. The inputs are
previous 12 timesteps and learning rate is 0.0001.

• ASTGCN [13]: A Spatio-Temporal Graph Convolutional Network which incorporates
both spatial and temporal attention mechanism into traffic flow prediction. We design
the ASTGCN model which has 2 ST blocks. The number of terms of Chebyshev poly-
nomial K is 3 and we use previous 12 timesteps as inputs. The learning rate is set as
0.0001.
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• MTGCN [15]: A model that integrates transition-flow multitask learning and graph
convolutional networks to support traffic flow prediction on irregular regions. We select
previous 12 timesteps as inputs. The number of graph convolution layer is set to be 3
and the learning rate is 0.0001.

5.4 Evaluation metrics

In this paper, we measure the performance of different approaches by Root Mean-Squared
Error (RMSE) and Mean Absolute Error (MAE). As most existing methods only pre-
dict region-flow, we merely compare the performance of region-flow prediction between
different approaches. RMSE and MAE are computed as follows:

RMSE =
√

1

M

∑

i

(xi − x̂i )2 (24)

MAE = 1

M

∑

i

∣
∣xi − x̂i

∣
∣ (25)

where M is the total number of all predicted values, xi is the true value and x̂i is the predicted
value.

5.5 Performance comparison

Table 1 gives a comprehensive comparison between MRGCN and several baseline models.
The result differences between two datasets are owing to different total traffic flow vol-
umes. Specifically, the average values of traffic flow volume are 270.58 (Beijing) and 23.88
(Chengdu) respectively. Overall, we can observe that our MRGCN achieves the best per-
formance on two datasets. Meanwhile, we can find that the performance of HA method is
not bad on two datasets, which proves that periodical patterns in traffic flows really exist.
Traditional time series methods such as SVR and ARIMA are not greatly better than HA,
this is because the above two methods assume that the change of traffic flow is stable and
linear, which is totally different in real-world conditions. The well-known recurrent model
LSTM is able to effectively capture long-range temporal dependencies, but it ignores the
spatial correlation between regions, thus showing worse performance compared with GCN
based models (Table 1).

Among these GCN based models, the simplified MVGCN and STGCN both take spatio-
temporal dependencies into account, yet ignoring the dynamics in spatial correlation and the
transition-flow which is correlated with region-flow, thus performing worst among them.
ASTGCN proposes a spatio-temporal attention mechanism to model dynamic spatial depen-
dencies, yet neglecting the correlated task of transition-flow prediction and ignoring the
context information. DCRNN shows relatively outstanding performance on two datasets
since it replaces original graph convolution with diffusion convolution, which is more
powerful for modeling spatial dependencies in graph-based traffic data. Compared with
our previous model MTGCN, our newly proposed MRGCN polishes the multitask com-
ponent by adding context modeling and dual-attention graph convolution, showing better
performance than MTGCN.
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Table 1 Performance comparison between different methods

Dataset Beijing Chengdu

Metrics RMSE MAE RMSE MAE

HA 38.83 27.19 14.96 9.47

SVR 35.70 25.85 12.17 7.66

ARIMA 33.20 23.15 10.12 7.97

LSTM 31.58 21.27 10.98 8.73

STGCN 28.76 19.33 5.41 3.72

DCRNN 25.11 16.54 5.03 3.47

MVGCN 29.37 19.79 5.68 3.91

ASTGCN 28.51 19.06 5.34 3.63

MTGCN 25.38 16.91 4.95 3.35

MRGCN (ours) 24.17 15.82 4.59 3.08

5.6 Influence of dual-attention graph convolution

Specifically, our dual-attention graph convolution consists of two types of attention mech-
anisms: neighbor-aware attention and hop-aware attention. To validate the effectiveness
of proposed dual-attention mechanism, we design another three GCN models which are:
MRGCN (V) which removes both neighbor-aware attention and hop-attention, MRGCN (N)
which removes only hop-aware attention and MRGCN (H) which removes the neighbor-
aware attention. We retrain these models and the results are shown in Table 2.

Generally, we can observe that the model removing the dual-attention component per-
forms worst among the above four models. This proves that our proposed dual-attention
meachnism is effective to capture spatial dependencies and thus enhance the generalization
of our proposed model. Furthremore, we find MRGCN (N) performs better than MRGCN
(H) in Chengdu dataset but worse in Beijing dataset. This is mainly due to the difference of
dataset size and the traffic evolution diversity in different cities. Thus, we can conclude that
the degree of improvement that neighbor-aware attention and hop-aware attention can bring
are quite depending on the specific dataset.

5.7 Impact of context information

To evaluate the impact of context information, we design a variant of MRGCN called
MRGCN (PM), which replaces the context modeling with parametric-matrix based fusion.
The comparative results are shown in Table 3.

Overall, the MRGCN with context modeling outperforms MRGCN (PM) on two datasets.
The PM fusin method only assigns weights to different branches of traffic flows by ran-
domly initialized matrices, yet ignoring the effect which context information imposes on

Table 2 RMSE comparison between different GCN models

Dataset MRGCN (V) MRGCN (N) MRGCN (H) MRGCN

Beijing 28.63 27.62 26.89 24.17

Chengdu 5.47 5.28 5.34 4.59
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Table 3 MAE comparison of context modeling component

Dataset MRGCN (PM) MRGCN

Beijing 16.73 15.82

Chengdu 3.21 3.08

traffic flows, thus showing worse performance than MRGCN. Specifically, we consider var-
ious context factors in our proposed multitask framework, inluding time of the day, day
of the week, weekend and holiday information. In our experiments, Beijing dataset has 3
important holidays and 16 weekends, while Chengdu dataset only has 8 weekends and has
no holidays. As a result, the improvement that context modeling component brings in Bei-
jing dataset is more obvious than that in Chengdu, which is up to 5.44% in Beijing dataset
(4.05% in Chengdu) in terms of MAE metric.

5.8 Evaluation on multi-task learning

In this subsection, we mainly evaluate the influence of multi-task learning on our proposed
model. Our MRGCN simultaneously predicts region-flow and transition-flow in a multi-
task manner. Here, we remove the submodel of transition-flow prediction and design a new
single-task model called RGCN. The comparative results of these two models are shown in
Table 4.

As is shown in Table 4, our multitask model MRGCN outperforms the single-task model
RGCN on two datasets by a large margin. This indicates that the prediction of transition-
flow can really help improve the accuracy of region-flow prediction. Moreover, we find
that the improvement of multitask is more significant on Chengdu dataset than that in Bei-
jing dataset, which is about 10.17% (7.85% in Beijing) in terms of RMSE metric. This
is mainly because of the difference on region size and region amount of two datasets.
Since the transition-flow depicts the pair-wise transition correlation among regions, a higher
region size and region amount tend to cause a relatively large combination of inter-region
transition, even the major of them may not occur in the real-world scenario. As a result,
the transition-flow matrix becomes much sparse and makes it more difficult to train and
optimize networks.

5.9 Effect of aggregation strategy

In this work, we propose three methods for aggregating knowledge learned from each task:
sum aggregation, concat aggregation and gating aggregation. The comparative results are
shown below in Table 5. Clearly, we can find that sum aggregation achieves the best per-
formance on two datasets. Besides, gating aggregation performs worst among these three

Table 4 Comparison between single-task and multi-task

Dataset Beijing Chengdu

Metrics RMSE MAE RMSE MAE

RGCN 26.23 17.61 5.11 3.56

MRGCN 24.17 15.82 4.59 3.08
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Table 5 Comparison between different aggregation methods

Dataset Beijing Chengdu

Metrics RMSE MAE RMSE MAE

MRGCN (concat) 24.95 16.52 4.87 3.39

MRGCN (gating) 26.29 17.73 5.28 3.61

MRGCN (sum) 24.17 15.82 4.59 3.08

models. This is mainly caused by extra parameters and sigmoid function in gating strat-
egy, which makes the training of networks more challenging and increases the potential of
overfitting. Moreover, we find that the performance of concat aggregation and sum aggre-
gation are really close. Since these two methods directly operate the learned representaions
from each task and avoids extra parameters, these two methods can be seen as a kind of
knowledge sharing.

5.10 Results on multi-step prediction

In this subsection, we compare our proposed MRGCN with other GCN-based methods on
multi-step prediction. Particularly, the initial time interval is set as 10-minute, we aim to
predict traffic flows in the future 40 minutes.

Figure 5 Comparison of multi-step prediction
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As is shown in Figure 5, with the increase of predicting timesteps, the performance
of all models become worse. Obviously, this is mainly caused by the decrease of corre-
lation between predicting time intervals and current moment. Nevertheless, our proposed
MRGCN always achieves the best performance compared with other methods on Beijing
and Chengdu datasets and shows highly stability regardless of increase of the predicting
timesteps. In addition, since the data of Beijing dataset are more sufficient, the hidden
spatial-temporal dependencies can be more fully explored with the help of large amount of
learnable parameters in these models. Thus, most of the GCN-based methods show better
stability compared with that in Chengdu dataset.

6 Conclusion

In this work, we study the problem of traffic flow prediction in a citywide range, which
is sigficantly beneficial for the construction of smart cities. Specifically, we propose a
multitask framework called MRGCN which can simultaneously predict region-flow and
transition-flow for each region. Overall, it consists of four components: a region-flow
encoder and a transition-flow encoder, which adopt DGCGRU and fully-connected net-
works for spatial-temporal feature learning; a context modeling module which considers
context factors for the contextualized fusion of previous traffic data; a task-specific decoder
for predicting traffic flows. We evaluate our model on two real-world datasets and the results
demonstrate the effectiveness of our proposed method.

Acknowledgements This work was supported by the National Natural Science Foundation of China under
Grant Nos. 61872258, 61772356, 61876117, and 61802273, the Australian Research Council discovery
projects under Grant Nos. DP170104747, DP180100212, A Project Funded by the Priority Academic Pro-
gram Development of Jiangsu Higher Education Institutions (PAPD) and Postgraduate Research & Practice
Innovation Program of Jiangsu Province under Grant No. KYCX20 2714.

References

1. Zhang, J., Wang, F., Wang, K., Lin, W., Xu, X., Chen, C.: Data-driven intelligent transportation systems:
A survey. IEEE Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011)

2. Dai, J., Liu, C., Xu, J., Ding, Z.: On personalized and sequenced route planning. World Wide Web 19(4),
679–705 (2016)

3. Xu, J., Chen, J., Zhou, R., Fang, J., Liu, C.: On workflow aware location-based service composition for
personal trip planning. Fut. Gener. Comp. Syst. 98, 274–285 (2019)

4. Bai, L., Yao, L., Kanhere, S.S., Wang, X., Sheng, Q.Z.: Stg2seq: Spatial-Temporal Graph to Sequence
Model for Multi-Step Passenger Demand Forecasting. In: IJCAI, pp. 1981–1987 (2019)

5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
6. Zhang, J., Zheng, Y., Qi, D.: Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows

Prediction. In: AAAI, pp. 1655–1661 (2017)
7. Peng, S., Shen, Y., Zhu, Y., Chen, Y.: A Frequency-Aware Spatio-Temporal Network for Traffic Flow

Prediction. In: DASFAA, pp. 697–712 (2019)
8. Lin, Z., Feng, J., Lu, Z., Li, Y., Jin, D.: Deepstn+: Context-Aware Spatial-Temporal Neural Network for

Crowd Flow Prediction in Metropolis. In: AAAI, pp. 1020–1027 (2019)
9. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: A deep convolutional

neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)
10. Yuan, J., Zheng, Y., Xie, X.: Discovering Regions of Different Functions in a City Using Human Mobility

and Pois. In: SIGKDD, pp. 186–194 (2012)

821World Wide Web (2021) 24:805–823



11. Lv, Z., Xu, J., Zheng, K., Yin, H., Zhao, P., Zhou, X.: LC-RNN: A Deep Learning Model for Traffic
Speed Prediction. In: IJCAI, pp. 3470–3476 (2018)

12. Zhao, J., Xu, J., Zhou, R., Zhao, P., Liu, C., Zhu, F.: On Prediction of User Destination by Sub-Trajectory
Understanding: A Deep Learning Based Approach. In: CIKM, pp. 1413–1422 (2018)

13. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention Based Spatial-Temporal Graph Convolutional
Networks for Traffic Flow Forecasting. In: AAAI, pp. 922–929 (2019)

14. Yu, B., Yin, H., Zhu, Z.: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework
for Traffic Forecasting. In: IJCAI, pp. 3634–3640 (2018)

15. Wang, F., Xu, J., Liu, C., Zhou, R., Zhao, P.: MTGCN: A Multitask Deep Learning Model for Traffic
Flow Prediction. In: DASFAA, vol. 12112, pp. 435–451 (2020)

16. Pan, B., Demiryurek, U., Shahabi, C.: Utilizing Real-World Transportation Data for Accurate Traffic
Prediction. In: ICDM. IEEE Computer Society, pp. 595–604 (2002)

17. Ristanoski, G., Liu, W., Bailey, J.: Time Series Forecasting Using Distribution Enhanced Linear
Regression. In: PAKDD, pp. 484–495 (2013)

18. Chandra, S.R., Al-Deek, H.: Predictions of freeway traffic speeds and volumes using vector autoregres-
sive models. J. Intell Transp. Syst. 13(2), 53–72 (2009)

19. Wu, C., Ho, J., Lee, D.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp.
Syst. 5(4), 276–281 (2004)

20. Cui, Z., Ke, R., Wang, Y.: Deep bidirectional and unidirectional LSTM recurrent neural network for
network-wide traffic speed prediction. CoRR, arXiv:1801.02143 (2018)

21. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: Dnn-Based Prediction Model for Spatio-Temporal Data. In:
SIGSPATIAL. ACM, pp. 92:1–92:4 (2016)

22. Guo, S., Lin, Y., Li, S., Chen, Z., Wan, H.: Deep spatial-temporal 3d convolutional neural networks for
traffic data forecasting. IEEE, Trans. Intell. Transp. Syst. 20(10), 3913–3926 (2019)

23. Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting Spatial-Temporal Similarity: A Deep Learning
Framework for Traffic Prediction. In: AAAI, pp. 5668–5675 (2019)

24. Feng, J., Lin, Z., Xia, T., Sun, F., Guo, D., Li, Y.: A Sequential Convolution Network for Population
Flow Prediction with Explicitly Correlation Modelling. In: IJCAI, pp. 1331–1337 (2020)

25. Zhang, J., Zheng, Y., Sun, J., Qi, D.: Flow prediction in spatio-temporal networks based on multitask
deep learning. IEEE Trans. Knowl. Data Eng. 32(3), 468–478 (2020)

26. Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., Woo, W.: Convolutional LSTM Network: A Machine
Learning Approach for Precipitation Nowcasting. In: NIPS, pp. 802–810 (2015)

27. Zonoozi, A., Kim, J., Li, X., Cong, G.: Periodic-Crn: A Convolutional Recurrent Model for Crowd
Density Prediction with Recurring Periodic Patterns. In: IJCAI, pp. 3732–3738 (2018)

28. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on
graphs. In: ICLR (2014)

29. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional Networks. In: ICLR
(2017)

30. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering. In: NIPS, pp. 3837–3845 (2016)

31. Sun, J., Zhang, J., Li, Q., Yi, X., Liang, Y., Zheng, Y.: Predicting citywide crowd flows in irregular
regions using multi-view graph convolutional networks. IEEE Transactions on Knowledge and Data
Engineering (2020)

32. Song, C., Lin, Y., Guo, S., Wan, H.: Spatial-Temporal Synchronous Graph Convolutional Networks: A
New Framework for Spatial-Temporal Network Data Forecasting. In: AAAI, pp. 914–921 (2020)

33. Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., Feng, X.: Multi-Range Attentive Bicomponent Graph
Convolutional Network for Traffic Forecasting. In: AAAI, pp. 3529–3536 (2020)

34. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph Wavenet for Deep Spatial-Temporal Graph
Modeling. In: IJCAI, pp. 1907–1913 (2019)

35. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion Convolutional Recurrent Neural Network: Data-Driven
Traffic Forecasting. In: ICLR (2018)

36. Chen, C., Li, K., Teo, S.G., Zou, X., Wang, K., Wang, J., Zeng, Z.: Gated Residual Recurrent Graph
Neural Networks for Traffic Prediction. In: AAAI, pp. 485–492 (2019)

37. Zhang, Y., Wei, Y., Yang, Q.: Learning to multitask. In: NeurIPS, pp. 5776–5787 (2018)
38. Zhao, L., Wang, J., Guo, X.: Distant-Supervision of Heterogeneous Multitask Learning for Social Event

Forecasting with Multilingual Indicators. In: AAAI, pp. 4498–4505 (2018)

822 World Wide Web (2021) 24:805–823

http://arxiv.org/abs/1801.02143


39. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed Representations of Words and
Phrases and Their Compositionality. In: NIPS, pp. 3111–3119 (2013)

40. Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for traffic speed
prediction using remote microwave sensor data. Transp. Res. Part C: Emerg. Technol. 54, 187–197
(2015)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

823World Wide Web (2021) 24:805–823


	On prediction of traffic flows in smart cities
	Abstract
	Introduction
	Related work
	Traffic flow prediction
	Graph-based traffic flow prediction

	Preliminaries
	Problem Formulation

	Methodology
	Overview
	Region-flow encoder
	Dual-attention Graph Convolutional GRU
	Graph convolution
	Hop-aware attention
	Neighbor-aware attention
	DGCGRU

	Periodicity learning

	Transition-flow encoder
	Transition Embedding

	Context modeling
	Context attention

	Task-specific decoder
	Sum Aggregation
	Concat Aggregation
	Gating Aggregation


	Multi-task Loss

	Experiments
	Datasets
	Pre-processing and settings
	Baselines
	Evaluation metrics
	Performance comparison
	Influence of dual-attention graph convolution
	Impact of context information
	Evaluation on multi-task learning
	Effect of aggregation strategy
	Results on multi-step prediction

	Conclusion
	References


