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Abstract
Knowledge Graph Completion (KGC) aims at complementing missing relationships
between entities in a Knowledge Graph (KG). While closed-world KGC approaches uti-
lizing the knowledge within KG could only complement very limited number of missing
relations, more and more approaches tend to get knowledge from open-world resources
such as online encyclopedias and newswire corpus. For instance, a recent proposed open-
world KGC model called ConMask learns embeddings of the entity’s name and parts of
its text-description to connect unseen entities to the KGs. However, this model does not
make full use of the rich feature information in the text descriptions, besides, the proposed
relationship-dependent content masking method may easily miss to find the target-words.
In this paper, we propose to use a Multiple Interaction Attention (MIA) mechanism to
model the interactions between the head entity description, head entity name, the relation-
ship name, and the candidate tail entity descriptions, to form the enriched representations. In
addition, we try to use the additional textual features of head entity descriptions to enhance
the head entity representation and apply the attention mechanism between candidate tail
entities to enhance the representation of them. Besides, we try different scoring functions to
increase the convergence of the model. Our empirical study conducted on three real-world
data collections shows that our approach achieves significant improvements comparing to
state-of-the-art KGC methods.
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1 Introduction

Knowledge Graph (KG) is a kind of large-scale structured semantic network whose nodes
represent entities and edges represent relations between entities [9]. The rise of KGs in the
past years has made great contributions to the success of many applications such as entity
linking [10], recommendation [36] and question answering [25].

As more and more entities involved in a KG, a large portion of relations between entities
might be missing. To deal with the case, the task of Knowledge Graph Completion (KGC)
is proposed, aiming at complementing missing relation between entities in KGs. In the past
years, a lot of attention has been paid on this topic, which can be roughly divided into
closed-world KGC approaches and open-world KGC approaches.

The closed-world KGC approaches tend to utilize the knowledge within KGs. The most
active closed-world KGC methods are based on the knowledge graph embedding models
such as TransE [4] and its variances [14, 21, 38]. By encoding the entities and relations
between entities in KGs into a continuous low-dimensional embedding vectors space, we
could do some inference to identify some hidden relations between entities. However,
closed-world KGC approaches could only complement very limited number of relation,
i.e., usually lead to a low recall. On the other hand, some work tends to get knowledge
from open-world resources such as online encyclopedias and newswire corpus. For instance,
Description-Embodied Knowledge Representation Learning (DKRL) [39] proposes to learn
the representations of entities from not only TransE, but also the description of the entities
in online-encyclopedias. To achieve this, DKRL adopts to do a joint training for graph-
based embeddings and description-based embeddings. They use continuous bag-of-words
and deep convolutional neural network models to encode semantics of entity descriptions.
However, it does not take into account that various relationships focus on different parts of
the entity description, and not all information provided in its entity description is useful to
predict linked entities of a given specific relationship.

A recent proposed open-world KGC model called ConMask [30] learns embeddings of
an entity’s name and parts of its text-description to connect unseen entities to the KGs.
As illustrated in Figure 1, it first uses a so-called relationship-dependent content masking
approach to select the words related to the given relationship in the relevant text descrip-
tion, which could effectively mitigate the presence of noisy text descriptions. Next, it
trains a Fully Convolutional Neural network (FCN) to extract the word-based target entity

Figure 1 Framework of Conmask model, where kd is the length of the entity description, kn is the length of
the relationship name and kemb is the word embedding size
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embeddings from relevant text descriptions. Finally, the extracted word-based target entity
embeddings and other textual features (entity names) are compared with the existing target
candidate entities in the KG to resolve a ranked list of target candidate entities.

However, there are at least two weaknesses with the ConMask model. Firstly, the infor-
mation of entity descriptions is not fully used. Now only the pre-trained word embeddings,
is used for the representation of words in the text descriptions, some potential semantic
and statistic information might be missing. Secondly, the proposed relationship-dependent
content masking model could only find possible target-words that appear in the fixed-size
content masking window after the indicator word, without considering that the situation that
the target-words could also appear in front of the indicator word. Besides, it is difficult to
determine a proper size for the content masking window.

In our previous work [7], we propose a novel open-world KGC approach based on
the same input resources with ConMask, i.e., entity names, relationship names, and entity
descriptions. But different from ConMask which only uses the entity descriptions in a
very simple way, we propose to use attention mechanisms to fully capture the important
information generated from the multiple interactions between entity names, relationship
names and entity descriptions. More specifically, the multiple interactions involved in the
model include: (1) The interaction between the head entity name, the relationship name,
and the head entity description. (2) The interaction between the head entity, the rela-
tionship, and the candidate tail entity. (3) The interaction between the description of the
head entity and the candidate tail entity descriptions In this way, our Multiple Interaction
Attention (MIA) model could not only flexibly select relevant parts of the entity descrip-
tion according to different relationships, but also better aware of the relevant part in the
head entity description and obtain the head-aware representation of the candidate tail entity
description.

In this paper, We introduce the interaction between multiple candidate tail entity descrip-
tions so that our model can explore the hidden relationships among multiple tail entity
descriptions and use such relationships to form the interactions between them and enhance
their representation. In addition, in the final layer of the model, we also design several scor-
ing functions to compare the convergence ability of the model under different functions and
to enhance the effectiveness of our model.

Besides, to make effective use of the rich information in the entity descriptions, our
model encodes the head entity description, head entity name, the relationship name, and
the candidate tail entity descriptions into word representations which are enhanced by addi-
tional Part-Of-Speech (POS) tags, Named-Entity-Recognition (NER) tags and handcrafted
textual features.

To summarize, our contributions in this paper can be summarized as follows:

– We propose to use attention mechanism to simulate the interaction between the head
entity name, the relationship name and the entity descriptions, such that we could
dynamically select the most related information from the head entity description and
the candidate tail entity descriptions according to different relations.

– We use the attention mechanism to align relevant parts between the head entity
description and the candidate tail entity descriptions, such that we could enrich the
representation of the candidate tail entity description.

– We use the attention mechanism to obtain hidden relationships between multiple
candidate tail entities and use them to enhance the representation of them.

– We also propose to make effective use of the rich information in the entity descriptions
with some additional important features.
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Our empirical study conducted on three real-world data collections shows that our
approach achieves significant improvements on open-world KGC compared with state-of-
the-art methods.

The rest of this paper is organized as follows: We cover the related work in Section 2, and
then define our problem and introduce the framework of our approach in Section 3. After
giving details of MIA model in Section 4, we report the empirical study in Section 5. We
finally conclude the paper in Section 6.

2 Related work

Knowledge graph completion (KGC) aims at completing the missing relation between enti-
ties in given KG (or KGs). So far, a lot of attention has been paid on this topic, which can
be roughly divided into closed-world KGC approaches and open-world KGC approaches.

2.1 The closed-world knowledge graph completion

The closed-world KGC approaches tend to utilize the knowledge within KGs. The most
active closed-world KGC methods are based on the knowledge graph embedding models
such as TransE [4] and its variances [1, 14, 16, 21, 23, 34, 38]. By encoding the entities and
relations between entities in the KG into a continuous low-dimensional embedding vectors
space, we could do some inference to identify some hidden relations between entities.

For a given triple (head entity, relationship, tail entity), also denoted as (h, r, t), the
typical embedding-based KGC model TransE [4] assumes the energy function is defined as

E(h, r, t) =‖ h + r − t ‖, (1)

which indicates that the tail embedding t should be the closeness neighbour of h+ r, where
h, r are embeddings of head entity and relationship respectively. There are also many mod-
els that introduce more relationship-dependent parameters. TransR [21], hMr + r = tMr

where Mr is a relationship-dependent entity embedding transformation. TransR [21] mod-
els entities and relations in distinct semantic space (entity space and relation spaces) and
performs translation in relation space when learning embeddings. PTransE [20] maintain
a simple translation function and proposes a multiple-step relation path-based representa-
tion learning model. SimplE [16] and TuckER [1] employ tensor decomposition to train
and obtain representations of head entities, tail entities and relations. RotatE [34] designs
the model for three special relationships: symmetric/antisymmetric, inversion, and compo-
sition. Liu et al. [22, 24] focus on the optimal social trust path selection problem in complex
social networks.

Unlike topology-based models that have been extensively studied, there are several meth-
ods that use textual information for KGC. For instance, the Neural Tensor Networks (NTN)
model [31] initializes the representation of the entity by using the average word embedding
in entity name, and allow sharing of textual information located in similar entity names.
Zhang et al. [42] represents entities with entity names or the average of word embeddings
in descriptions. Jointly [40] first uses the weighted sum combination topology-embeddings
and text-embeddings, and then calculates the Ln distance between the translated head and
tail entities. However, closed-world KGC approaches could only complement very limited
number of relations, i.e., usually lead to a low recall.

422



World Wide Web (202 ) 2 : –419 4391 4

2.2 The open-world knowledge graph completion

More recent work tends to get knowledge from open-world resources such as online ency-
clopedias and newswire corpus. In traditional research, such external knowledge is often
used to explore new relationships in KGs, which is often called relation extraction [26]. The
common applications tend to use neural networks such as CNN [40] or abstract meaning
representations (AMRs) [13]. When it comes to KGC, DKRL [39] uses a joint train-
ing of graph-based embeddings and description-based embeddings. They use continuous
bag-of-words and deep convolutional neural network models to encode semantics of entity
descriptions. It can directly build representations from the description of the novel entities.
A recent work proposes ConMask [30] model, which is a text-focused approach that could
reduce irrelevant and noisy words by selecting words associated with relationships in the
given entity description, and then fuse the relevant text through fully convolutional neural
networks (FCN) to extract the word-based entity embedding and combined with background
representations of other textual features (entity names) to connect unseen entities to the KG.

2.3 Text-focused studies in machine reading comprehension

ConMask is designed to get information from the description text to help with KGC.
The problem of extracting required information from texts for a given question is well
studied in the field of machine reading comprehension [15, 32, 35, 43, 44]. There are
two main research directions of machine reading comprehension: generative reading com-
prehension and multiple-choice reading comprehension. The goal of the former is to
extract the answer of the question from a given text and question where the dominant
trend is a variety of attention-based interactions between text and question. For exam-
ple, Kadlec et al. propose a method called “Attention Sum Reader” [15], which directly
extracts the answer from the text using attention mechanism. Recently, Cui et al. pro-
pose an attention-over-attention(AoA Reader) neural networks for reading comprehension,
which reduces the computational complexity of the model. The performance is improved
further due to the usage of document-level attention. When it comes to multiple-choice
reading comprehension, researchers try to introduce information in candidate answers
into the model. Trischler et al. [35] propose a parallel-hierarchical neural model that
matches the texts, questions and candidate answers from from word level to sentence level.
However the model must be trained with the training wheel [32] to converge. In recent
work, Zhu et al. [44] propose a model which uses hierarchical attention flow to enhance
the interaction between the candidate answers and the text. The experimental results on
their datasets show that their method significantly outperforms various state-of-the-art
systems.

3 Problem definition and the framework

We formally define the Knowledge Graph Completion (KGC) task below:

Definition 1 (Knowledge Graph Completion (KGC)) Given a Knowledge Graph KG
with a set of incomplete relation triples in the form of (h, r, ?), where h denotes the
head entity, r denotes the relation, and the ? is the missing tail entity t , the task of
Knowledge Graph Completion (KGC) is to find t for each incomplete relation triple to
consist a complete one (h, r, t).
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To illustrate how our Multiple Interaction Attention (MIA) model works on open-
world KGC task, several examples are given in Figure 2. For a given partial triple
(Donald T rump, mother, ?), if a human reader were asked to determine from the head
entity description and some candidate tail entity descriptions, “Who is the mother of US
President Donald Trump?”, then human reader will first look for contextual clues such
as mother, parent or family-related information from the description of the head entity
“Donald T rump”. Here, the human reader has located the sentence “His parents were . . .

and Scottish-born housewife Mary Anne MacLeod” in the head entity description. So, the
human reader may infer that Donald Trump’s mother is a Scottish-born housewife Mary
Anne MacLeod. After that, the human reader locates the description of the candidate tail
entity “Mary Anne MacLeod T rump” from the candidate tail entity descriptions. In the
description of “Mary Anne MacLeod T rump”, the human reader will be pleasantly sur-
prised to find “Mary Anne Trump was the mother of Donald Trump, the 45th president of
the United States” and “Born in the Outer Hebrides of Scotland”. Therefore, the human
reader can more accurately reason that “Mary Anne MacLeod T rump” is the correct tail
entity of the partial triple (Donald T rump, mother, ?).

We split the above reasoning process into three steps below:

1. Locating task-related information in the head entity description and the candidate tail
entity descriptions, respectively;

2. Extracting the context information of the related text in the head entity description and
the candidate tail entity descriptions;

3. Matching the head entity description and candidate tail entity descriptions respective
relevant text context information to determine the correct tail entity.

Correspondingly, the MIA model is designed to simulate this process, which is mainly
composed of three components below:

1. Multiple Interaction Attention, which highlights task-related words;

Figure 2 Open-world KGC examples with our MIA model
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2. Text Context Encoder, which encodes context information in the relevant text;
3. Matching Prediction, which chooses a correct tail entity by matching the context infor-

mation in the relevant text to calculate the similarity score between the head entity
description and the candidate tail entity descriptions.

Note that we consider that the head entity, relationship, and tail entity usually appear
in a snippet of the text description at the same time, so we combine the head entity name
with the relationship name into a question as an input to our model to help the model locate
task-related information more effectively.

4 TheMIAmodel

The MIA model first encodes the head entity description, question, and candidate tail entity
descriptions into a word representation and enhances it by appending some other features.
Then, it emphasizes and organizes relevant information by using a word-level attention
mechanism to simulate the interaction between the head entity description, question and
candidate tail entity descriptions. Afterwards, MIA uses Bidirectional Long Short-Term
Memory network (Bi-LSTM) to encoded context information in the relevant text. After
that, it uses a word-level attention mechanism between multiple candidates to enhance the
representation of tail entities. Finally, through a matching prediction, it compares the repre-
sentation extracted to the head entity description with the representation of each candidate
tail entity description to resolve a ranked list of candidate tail entities. The architecture of
MIA model is also illustrated in Figure 3.

In the following of this section, we describe the details of the MIA model component
by component. Throughout this section, we will use Dh for representing the head entity
description, Qr for representation question consisting of the head entity name and the rela-
tionship name, Ct for the candidate tail entity descriptions, and Cti for the description of the
i-th candidate in the candidates set for the same question to be completed. Note that since

Figure 3 Main neural architecture of the Multiple Interaction Attention (MIA) model
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the description of the operations for each candidate tail entity are the same, for the sake of
simplicity, we only take one of the candidate tail entity descriptions for illustration.

4.1 Input word representation

We transform each word in the head entity description, question, and candidate tail entity
description into continuous representations. In this paper, each training example entered
during training contains a head entity description {wDh

i }|Dh|
i=1 , a question {wQr

j }|Qr |
j=1 , a can-

didate tail entity description {wCt
n }|Ct |

n=1 and a label y∗ ∈ {0, 1}, where |Dh|, |Qr |, and |Ct |
are the length of the head entity description, question, and candidate tail entity description.

Here, we take the input representation of the i-th word w
Dh

i in the given head entity
description as an example, which is the concatenation of several components:

– Word Embedding : We use the publicly available pre-trained GloVe [27] embedding
Eword

w
Dh
i

.

– Part-Of-Speech (POS) Embedding : We use spaCy1 for part-of-speech tagging Epos

w
Dh
i

.

Similar to traditional word embeddings, we assign different trainable vectors for each
part-of-speech tag.

– Named-Entity-Recognition (NER) Embedding : Like POS, we use spaCy for named
entity recognition Ener

w
Dh
i

.

– Handcrafted Features Embedding : We use term frequency and co-occurrence fea-
ture as handcrafted features Ef eat

w
Dh
i

. The term frequency is calculated based on English

Wikipedia. In the binary co-occurrence feature, it is true when w
Dh

i appears in the

question {wQr

j }|Qr |
j=1 or candidate tail entity description {wCt

n }|Ct |
n=1.

– BERT Embedding : BERT [6] is a NLP model developed by Google for pre-
training language representations. It leverages an enormous amount of plain text data
publicly available on the web and is trained in an unsupervised manner. We use
BERT-as-service2 to get the word representation Ebert

w
Dh
i

We concatenate five embedding components to form the final input representations for the
word w

Dh

i , namely E
w

Dh
i

.

E
w

Dh
i

=
[
Eword

w
Dh
i

;Epos

w
Dh
i

;Ener

w
Dh
i

;Ef eat

w
Dh
i

;Ebert

w
Dh
i

]
(2)

In the same way, we concatenate Word Embedding Eword

w
Qr
j

, POS Embedding Epos

w
Qr
j

and

BERT Embedding Ebert

w
Qr
j

to get the input word representation E
w

Qr
j

of a word w
Qr

j in a given

question.

E
w

Qr
j

=
[
Eword

w
Qr
j

;Epos

w
Qr
j

;Ebert

w
Qr
j

]
(3)

1https://github.com/explosion/spaCy
2https://github.com/hanxiao/bert-as-service
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The input representation of the w
Cti
n for a given candidate tail entity description Cti

contains Word Embedding Eword

w
Cti
n

and BERT Embedding Ebert

w
Cti
n

.

E
w

Cti
n

=
[
Eword

w
Cti
n

;Ebert

w
Cti
n

]
(4)

4.2 Multiple interaction attention

In our model, we use the interaction between the head entity, the question, and the candidate
tail entity to emphasize and organize relevant information accordingly. We exploit the same
word-level sequence alignment attention mechanism for each interaction. In this section,
we first describe the Word-level Sequence Alignment (WSA) attention mechanism in detail
and then explain various interactions.

Word-level sequence alignment attention mechanism Following [5, 18, 37] and other
recent works, given two inputs X and Y = {Yi}mi=1, let’s define the attention function:

att (X, {Yi}mi=1) =
m∑

i=1

axyi
Yi (5)

axyi
= softmax(α(WX)T α(WYi )) (6)

where the attention score axyi
captures the similarity between X and each words Yi , W is a

matrix, and α(·) is a activation function with ReLU nonlinearity.

Question-aware head entity description WSA attention Note that words in the head
entity description are not equally important, and the importance of them changes in tune
with the different questions. Just like people find relevant answers from a given passage
based on the question, people can always give more attention to the words that are most rel-
evant to the question. Therefore, we can get the question-aware representation Eqr

w
Dh
i

of the

word w
Dh

i in the head entity description according to the question:

Eqr

w
Dh
i

= att (Eword

w
Dh
i

, {Eword

w
Qr
j

}|Qr |
j=1) (7)

Question-aware candidate tail entity description WSA attention In a similar way, we
use question information as the key to extracting important information from candidate tail
entity description. For each candidate tail entity description Cti , we get the question-aware

representation Eqr

w
Cti
n

of the word w
Cti
n in the candidate tail entity description:

Eqr

w
Cti
n

= att (Eword

w
Cti
n

, {Eword

w
Qr
j

}|Qr |
j=1) (8)

Head-aware candidate tail entity descriptionWSAattention We find when those entities
have relationships, they usually mention to each other in each other’s descriptions. In order
to adequately leverage the information in the head entity description, we align the candidate
tail entity description with the head entity descriptions. In details, we embed the information
of the head entity description into the candidate tail entity description representation so that
we can better align and aware the relevant parts of the head entity description. Thereby the

427



World Wide Web (202 ) 2 : –419 4391 4

word w
Cti
n in the candidate tail entity description Cti can obtain the aware representation of

the head entity description with the following equation:

Edh

w
Cti
n

= att

(
Eword

w
Cti
n

,

{
Eword

w
Dh
i

}|Dh|

i=1

)
(9)

4.3 Text context encoder

The third component of the model is the Recurrent Neural Network (RNN) layer which uses
a Bidirectional Long Short-Term Memory network (Bi-LSTM) [8, 29] to model the con-
textual information. In addition, after RNN layer, an attention mechanism between multiple
candidate tail entity descriptions is applied to obtain the enhanced representation of these
descriptions.

In order to learn long-term dependencies [2, 11, 12] in RNN, Long Short-Term Memory
network (LSTM) was proposed by [12]. The Bi-LSTM consists of two independent LSTMs,
the forward LSTM and the backward LSTM. By using three separate Bi-LSTMs, we encode
the head entity description, question and candidate tail entity description as follows:

BDh = Bi-LSTM

({[
E

w
Dh
i

;Eqr

w
Dh
i

]}|Dh|

i=1

)
(10)

BQr = Bi-LSTM

({
E

w
Qr
j

}|Qr |

j=1

)
(11)

B̂Cti = Bi-LSTM

({[
E

w
Cti
n

;Eqr

w
Ct
n

;Edh

w
Cti
n

]}|Cti
|

n=1

)
(12)

Attention between multiple candidate tail entity descriptions The candidate tail entity
representation B̂Cti is generated by the WSA attention which is aware of the question and
the head entity description. However such representation is independent of other candidates
and does not encode the hidden relationship information between the candidates. Inspired
by Zhu et al. [44], there are also hidden relationships between candidate tail entities that
are helpful in finding the right answer. For example, fragments of the correct candidate tail
entity description may appear frequently in the descriptions of other candidate tail entities.
So we design a new attention layer to explore the hidden relationships between candidates

and obtain new candidate tail entity representation ̂̂BCti . We train a matrix Wcc to calculate
the impact factors between the candidates, which are used as weights in the subsequent
aggregation process.

Ai,j = B̂Cti WccB̂
Ctj (13)

wi,j = exp(Ai,j )∑m
k=0 exp(Ai,k)

(14)

where m is the count of candidate tail entities.

̂̂BCti =
m∑

k=0

wi,kB̂
Ctk (15)
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Then, we model the candidate correlations with difference B̂Cti − ̂̂BCti , which is inspired
by Chen et al. [28]. At last, we concatenate the difference to the independent candidate
representation for enhancement.

BCti = [B̂Cti ; B̂Cti − ̂̂BCti ] (16)

4.4 Matching prediction

We use the self-attention [41] to summarize the question sequence representation BQr into
the final question representation RQr . The definition of the self-attention function is as
follows:

attself ({Xi}mi=1) =
m∑

i=1

aiXi (17)

ai = softmax
(
WT

selfXi

)
(18)

where the attention score ai indicates the importance of Xi in {Xi}mi=1.

According to the question representation RQr = attself ({BQr

j }|Qr |
j=1), we can get the head

entity description representation RDh
= att (RQr , {BDh

i }|Dh|
i=1 ), and the i-th candidate tail

entity description representation RCti
= att (RQr , {B

Cti
n }|Cti

|
n=1 ).

Instead of simply multiplying two vectors to get the score, we try a variety of functions
to get the final score, mainly including the following three functions:

Scorelinear (RDh
,RCti

) = (RDh
)T WS1 RCti

(19)

Scorebilinear (RDh
,RCti

) = (RDh
)T WS2 ((RCti

)T WS2)
T (20)

Scoretrilinear (RDh
,RCti

) = WS3 [RDh
;RCti

;RDh
RCti

] (21)

newwhere WS1 , WS2 and WS3 are the transformation matrices that need to be trained. By
score function, each candidate tail entity has its score si and we set the output of model y′
as follows:

si = Score(RDh
,RCti

) (22)

y′ = sof tmax([s1; s2; . . . ; sm]) (23)

where si represents the probability that its corresponding candidate tail entity is correct
and newScore(·) refers to one of them, Scorelinear , Scorebilinear or Scoretrilinear whose
performance is illustrated in experiments.

To train our model, we use softmax cross entropy function as the loss function to
minimize the gap between the prediction and the ground truth.

L = −
m∑

i=1

yi logy′
i (24)

where y is the one-hot encoding of the label of sample. yi and y′
i represent i-th value of y

and y′.
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5 Experiments

5.1 Datasets

We use the following three public-accessed datasets for evaluating the performance of our
approach in open-World knowledge graph completion. (1) FB15k dataset [4], a dataset
extracted from a typical large-scale KG Freebase [3]. The dataset contains about 15,000
entities and 580,000 relational triples between entities and is often used to evaluate the
effectiveness of closed-World knowledge graph completion models. (2) FB20k dataset [39]
, the dataset is built upon the FB15k dataset, it first removed 47 entities from FB15K which
have shorter than 3 words after preprocessed or even have no descriptions, and removed all
triples containing these entities in FB15K, then by adding test triples with unseen entities,
which are selected to have rich descriptions. (3) DBPedia50k dataset [30] for both open-
world and closed-world KGC tasks, a dataset randomly sampled from a large-scale KG
DBPedia [19]. It is worth mentioning that in order to evaluate the effectiveness of our model
in open-World knowledge graph completion, we extract 2000 entities from the entity set
and make sure that these 2000 entities do not appear in the training set when we divide the
FB15k dataset. This represents that the test set and validation set contain 2000 entities not
included in the training set. In addition, FB15k also removes these 47 entities and the triples
that contain them. We denote the processed FB15K as FB15kopen. In addition, for FB20k
and DBpedia50k, Shi et al. also used a similar approach to ensure that the test set and vali-
dation set contain entities not included in the training set [30]. We evaluate our approach on
FB15kopen, FB20k and DBPedia50k. Statistics of datasets are shown in Table 1.

5.2 Experiment setting

Due to the lack of an open-world KGC task validation set on FB20k, we randomly sampled
10% of the test triples as a validation set.

Evaluation protocol We use the tail entity prediction on the test set for performance eval-
uation. For each test triple (h, r, t) with open-world head entity h ∈ E′ ,where E′ is an
entity superset, we rank all known entities t ∈ E by use the KGC model to calculate the
actual ranking score, where E is an entity set. We then use three measures as our evaluation
metrics: (1) Mean Rank (MR): the averaged rank of correct tail entities; (2) HITS@K: the
proportion of correct tail entities ranked in top k; (3) Mean Reciprocal Rank (MRR): mean
reciprocal rank of correct tail entities.

Note that there may be multiple triples in the dataset that have the same head entity and
relationship but different tail entities: (h, r, t1), ..., (h, r, tn). Following [4], when computing
the Mean Reciprocal Rank (MRR), given a triple (h, r, ti ) only the reciprocal rank of ti itself
is evaluated (and not the best out of t1, ..., ti , ..., tn, which would produce better results).

Table 1 Data set statistics

Dataset Entities Rel. Train Validation Test

FB15kopen 14,904 1,341 470,313 48,991 60,377

FB20k 19,923 1,341 472,860 48,991 88,293

DBPedia50k 49,900 654 32,388 399 10,969
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Table 2 Hyper-parameter settings

Symbol Descriptions Size

|Dh| Head entity description max length 512

|Ct | Candidate tail entity description max length 512

k Word embedding size 200

pos POS-tag embedding size 12

ner NRE-tag embedding size 8

h Bi-LSTM hidden size 96

This differs from ConMask’s MRR evaluation method, which is the reason why result in
Table 3 differs from [30] (see the asterisk (*) mark).

Note also that a filtering method called target f iltering is used in ConMask: When
evaluating a test triple (h, r, t), only when a triple of the form (?, r, t ′) exist in the training
set, we treat the tail entity t ′ as a candidate tail entity, otherwise it is skipped. Therefore, we
also use target f iltering when comparing with the Conmask model.

Parameter setting Following ConMask, we set the maximum head entity description
length |Dh| ≤ 512 and the maximum candidate tail entity description length |Ct | ≤ 512.
We apply the spaCy for tokenization, part-of-speech (POS), and named entity recognition
(NER). The main hyper-parameters of our model are listed in Table 2. The word embeddings
are initialized by the publicly available pre-trained 200-dimensional GloVe [27] embed-
dings. We use Adam [17] for parameter optimization, with initial learning rate 0.002. A
mini-batch of 32 samples is used to update the model parameter per step. In order to prevent
overfitting, we apply dropout [33] to input embeddings and Bi-LSTM’s outputs with a drop
rate of 0.4. We use PyTorch 3 to implement our model.

5.3 Open-world tail entity prediction

We compare our model MIA with other open-world KGC models, the experimental results
are shown in Table 3. For a fair comparison, all the results are evaluated using target
filtering.

The results for Target Filtering Baseline, DKRL and ConMask were obtained by the
implementation provided by [30]. The Target Filtering Baseline assigns randomly scores
to all entities that pass the target filtering. DKRL uses a two-layer convolutional neural
network (CNN) over the entity descriptions. ConMask uses relationship-dependent con-
tent masking and fully convolutional neural network (FCN) to extract word-level target
entity embedding from entity descriptions and then combine some other text features (entity
names) are compared with the candidate tail entities to resolve a ranked list of candidate tail
entities. Besides, we test the effect of the model without the attention mechanism between
the candidates tail entities, which is marked as “Baseline” in Table 3.

As can be seen from the Table 3, our MIA model significantly outperforms Conmask in
HITS@K, MR, and MRR by a large margin. At the same time, we also find that the MIA
model performed better on the DBPedia50k dataset than on the FB20k dataset, because the
entity description in the DBPedia50k dataset is more abundant than the entity description

3https://pytorch.org

431

https://pytorch.org


World Wide Web (202 ) 2 : –419 4391 4

Table 3 Open-world Tail Entity prediction results on FB20k and DBPedia50k

Model DBPedia50k

HITS@1 HITS@3 HITS@10 MR MRR

Target Filtering Baseline 0.045 0.097 0.23 104 0.11∗

DKRL (2-layer CNN) - - 0.40 70 0.23

ConMask 0.47 0.65 0.81 16 0.58∗

Baseline 0.65 0.84 0.93 5 0.76

MIA model 0.69 0.89 0.94 5 0.79

FB15kopen

Target Filtering Baseline 0.14 0.29 0.37 112 0.16

DKRL (2-layer CNN) - - - - -

ConMask 0.24 0.45 0.63 71 0.33

Baseline 0.36 0.52 0.69 45 0.47

MIA model 0.41 0.55 0.71 39 0.51

FB20K

Target Filtering Baseline 0.17 0.32 0.41 123 0.27

DKRL (2-layer CNN) - - - - -

ConMask 0.38 0.49 0.63 54 0.46

Baseline 0.46 0.64 0.81 20 0.58

MIA model 0.50 0.69 0.83 19 0.63

Note that we used the same evaluation protocol with target filtering as in ConMask. The asterisk (*) indicates
that the result differs from the one published, because the MRR is calculated differently

in the FB20k dataset, where DBpedia50k dataset has an average entity description length
of 454 words, FB20k dataset of 147 words. Besides, we can see that the performance on
FB15kopen is weaker than other datasets since entities do not exist in the training set, which
exacerbates the data sparsity problem of FB15k. In addition, Table 3 shows that the “Base-
line” is slightly less effective than the full model, demonstrating the effectiveness of the
attention mechanisms between candidate tail entities.

5.4 Closed-world entity prediction

Our model can also work on the closed-world KGC since the open-world KGC adds
additional constraints to the closed-world KGC. The dataset used in this part, denoted
as FB15kclosed, also removes the 47 entities and the triples that contain them. Unlike
FB15kopen, all entities in the test set must exist in the training set for FB15kclosed. As is
shown in Tables 4 and 5, we compare the results of our model on the closed-world KGC
with several models including “TransR” [21], “Jointly” [40], “SimplE” [16], “TuckER ” [1]
and “RotatE” [34]. Latest methods, including SimplE, TuckER, and RetatE, use a a fil-
tering method [4] when calculating HITS: each candidate tail entity filters out the other
correct candidate tail entities when calculating its ranking. Such filtering method will result
in HITS values higher than those without filtering. So, for such latest methods, we contrast
HITS with the filtering method in Table 5. And for traditional methods, including TransR,
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Table 4 Effect comparison of closed-world KGC without the filtering method

Model FB15kclosed

HITS@1 HITS@3 HITS@10

TransR 0.40 0.71 0.77

Jointly 0.48 0.74 0.82

ConMask 0.35 0.69 0.74

Baseline 0.53 0.75 0.86

MIA model 0.58 0.81 0.88

Jointly and ConMask, we contrast HITS without the filtering method in Table 4. We find that
our model outperforms most of these baseline methods given that we enhance the interac-
tions between model inputs with attention mechanism. For HITS@1, our method is weaker
than TuckER and RotatE, probably because they can represent some of the special rela-
tions in FB15K better such as symmetric/antisymmetric relations. In addition, the results of
ConMask and our model are better on FB15kclosed than on FB15kopen as a whole. This is
probably because entities in FB15kclosed are more consistently distributed in the test set and
training set than in FB15kopen.

5.5 Different score functions

In order to better calculate the score corresponding to the representation of the head entity
and the representation of the tail entity, we try a variety of scoring functions to do evalu-
ations in (19)–(21). The experimental results on DBPedia50k are shown in Table 6 where
Scoremultiply represents multiplying vectors directly. We can see that Scorelinear , cal-
culating the score by multiplying two vectors with an intermediate matrix, has the best
performance, given that it can better simulate the interaction between the two represen-
tations. In order to illustrate the performance of these four score functions further, we
demonstrate how the epochs of the training process affect the loss in Figure 4. We can see
that Scoremultiply has the highest final loss, probably because simple vector multiplication
does not yield the hidden interaction between two representations. Besides, Scorebilinear

and Scoretrilinear converge slowly and have higher final loss than Scorelinear due to their
complexity. In contrast, Scorelinear has the best performance, because it can obtain the hid-
den interaction between two representations through a transformation matrix without high
complexity.

Table 5 Effect comparison of closed-world KGC with the filtering method

Model FB15kclosed

HITS@1 HITS@3 HITS@10

SimplE 0.66 0.77 0.84

TuckER 0.74 0.83 0.89

RotatE 0.75 0.83 0.88

Baseline 0.64 0.81 0.88

MIA model 0.68 0.83 0.90
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Table 6 Effect comparison of different score functions

Function HITS@1 HITS@3 HITS@10

Scoremultiply 0.641 0.832 0.926

Scorelinear 0.655 0.838 0.934

Scorebilinear 0.650 0.836 0.932

Scoretrilinear 0.648 0.835 0.930

5.6 Interaction betweenmultiple candidates

To investigate how candidate tail entities interact with each other through the attention
mechanism, we visualize the weight matrix between multiple candidates in a running exam-
ple under different number of epochs. As shown in Figure 5, n cells in the i-th row represent
the weights of n candidates when calculating the hidden representation of the i-th candidate
where the darker color indicates higher weights. The merged attention weights over multi-
ple candidates helps to aggregate the useful information from the current candidate into its
hidden representation. Taking c1 as an example, the five colors in the first row of the three
matrices in Figure 5 represent the weights of c1-c5 when calculating the hidden representa-
tion of c1. We found that as the number of epochs increases, the model gives higher weights
to c1, c2 and c5, probably because they are thought to be more helpful in enhancing the
hidden representation of c1.

It may be difficult to understand the weight matrices if we only focus on these candi-
date descriptions. But when we look at the description of the head entity, we can see that
the model emphasizes the candidate with “music genre”, especially “pop music”, when
aggregating the information of the candidate tail entities. This may benefit from the previ-
ous attention layer generating the representations of candidate tail entity descriptions which
are aware of the head entity description. The comparison with “Baseline” in Table 3 also
demonstrates the effectiveness of the attention between multiple candidate tail entities.

Figure 4 The loss of different score functions during training
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Figure 5 Attention weight matrix visualization between multiple candidates

5.7 Ablation study

We carry out model ablations to further demonstrate the effectiveness of the proposed
model. Firstly, we conduct an ablation analysis on the input word representation, which con-
sists of several components: Part-Of-Speech (POS) Embedding, Named-Entity-Recognition
(NER) Embedding and Handcrafted Features Embedding etc. The experimental results
on DBPedia50k are shown in Table 7, we find all the input word representation com-
ponents contribute to the performance of our MIA model. This suggests that it is useful
to incorporate various feature into the word representation. We also remove our multi-
ple interaction attention in the model. The results in Table 7 show a significant drop
in performance by 1.5%, which indicates that the multiple interaction attention is effec-
tive in extracting the most relevant parts from the entity text description given different
relationships.
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Table 7 Ablations on several
model components Model MRR

MIA model 0.770

w/o POS 0.766 (-0.004)

w/o Handcrafted Features 0.743 (-0.007)

w/o NER 0.762 (-0.008)

w/o Attention 0.755 (-0.015)

6 Conclusions and future work

This paper introduces an open-world KGC model called MIA that uses a word-level atten-
tion mechanism to simulate the interaction between the head entity description, head entity
name, the relationship name and multiple candidate tail entity descriptions. In addition, we
try to use additional textual features of head entity descriptions to enhance the head entity
representation and apply the attention mechanism between candidate tail entities to enhance
the representation of them. Besides, we try different scoring functions to increase the con-
vergence of the model. Experiments on three datasets show that the MIA model has achieved
significant improvement on the open-world KGC task compared to state-of-the-art models.
However, MIA relies heavily on the richness of the entity descriptions, and the tail entity
can be effectively predicted only when the necessary information related to the relationship
is expressed in the entity description. In the future work, we consider to introduce more
external knowledge into MIA to make it more robust.
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