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Abstract
In this work, we study the performance of state-of-the-art access methods to efficiently
store and retrieve trajectories in spatial networks. First, we study how efficiently such
methods can manage trajectory data to support indexing for data demanding applications
where trajectory retrieval must be fast. At the same time, trajectory insertions, deletions and
modifications should also be executed efficiently. Secondly, we compare the performance
of progressive processing of trajectory similarity top-k queries, which is a common query
in spatial applications. Specifically, we examine FNR-trees (Frentzos 2003) and MON-trees
(de Almeida and Gueting, 2005), which have been proposed for trajectory management,
against a novel variation of our proposed Cluster-extended Adjacency Lists (CeAL) (Tiakas
and Rafailidis 2015). In particular: (a) we extend the above access methods to efficiently
handle trajectories of objects that move in large spatial networks, and (b) to enhance their
performance, we create an entirely new implementation framework to generate trajecto-
ries and to test the trajectory management and retrieval for each approach. With respect to
the generation of trajectories, we extend the generator by Brinkhoff (2000) to efficiently
support very large spatial networks. Finally, we conduct extensive experimentation which
demonstrates that the proposed method CeAL prevails in space and time complexity.
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1 Introduction

During the last decade there has been an increased demand for applications in spatial net-
works with moving objects and trajectories; from navigation systems: road/ river/railway
networks, traffic analysis, map destination, shortest routes, location-based services, to
energy-resources networks: oil, electrical power network, natural gas, telephone lines,
water-sewer systems, etc.

Spatial networks are characterized by topological restrictions, since moving objects fol-
low specific routes to reach a destination. Even in aviation, flights respect predefined air
routes. Moving objects may have properties which may affect their status through the net-
work (e.g. speed, congestion tolerance and priorities, obeying certain network restrictions)
or may not (e.g. ID, label, color).

A spatial network can be modeled as a graph with a set of nodes connected with edges.1

The main advantage in graph representations is that usually there is no need for the graph
topology to perfectly match the real geography. Most applications require only the existence
of nodes and weighted edges. Usually a moving object has a starting node and a destination
node, plus it may have to visit some in-between network nodes. The path followed by every
object, respecting the restrictions enforced by the network, is called object trajectory.

Modern spatial applications involve big data; thus sophisticated indexing and process-
ing methods are required for efficient data management. When new trajectories have to be
inserted, or old trajectories have to be modified/deleted the indexes must efficiently support
these operations. Among the spacial access methods, a well honored popular family of such
indexes are the R-tree-based methods.

Another vital requirement in spatial applications is the efficient query processing of tra-
jectories. In particular, a popular query is top-k similarity retrieval of trajectories, i.e. given
a trajectory (or some spatial locations in the network and time restrictions for the transi-
tion between nodes) we want the top-k most similar trajectories to the given one (or passing
close to the spatial locations).

In emergency applications the query response time is crucial. Therefore, another desired
property is the progressive query processing, i.e. the results are provided to the user in a
incremental manner: when a trajectory satisfies the space and time restrictions, it is provided
to the user, while the next results are being prepared.

In the area of trajectory query processing there are some major challenges. A large
number of the proposed approaches require a preprocessing to precompute all-to-all pair-
wise shortest paths in the spatial network, with significant space and time costs, especially
in large networks. To avoid this preprocessing some methods ignore the network restric-
tions by taking the Euclidean node distances to provide preliminary results, which require
subsequent filtering.

Another issue is that real-life applications generate big amounts of data in short time.
For instance, we can consider the number of trajectories generated in the road network of
a medium-sized city during a single day. In such a case, it is crucial to efficiently suggest
trajectories to the moving objects in the network.While the existing spatiotemporal indexing
methods may be quite sufficient in small networks and trajectory datasets, their performance
degrades and becomes quite inefficient in very large networks. Moreover, complex indexes
require even higher processing cost to manage the trajectories. Therefore, the challenge is
to have simple and efficient indexes for big data.

1The terms network and graph will be used alternatively, as well as node and vertex.

52



World Wide Web (202 ) 2 : –51 831 4

The most popular spatial access methods for such settings are either tree-based (R-tree,
M-tree, etc.) or methods that exploit other structures. A distinct category is comprised of
progressive trajectory similarity search methods, which can highly reduce the on-line query
processing time, due to the fact that not all top-k results need to be retrieved, if users find
the already retrieved results satisfactory.

To overcome the weaknesses of existing trajectory similarity search approaches, we pro-
pose an elaborated variation of our method Cluster-extended Adjacency List (CeAL) [32].
CeAL has been used to enhance location-based trajectory similarity top-k queries, where a
user provides the query locations in a spatial network along with time restrictions, and the
top-k similar trajectories to the locations that satisfy the time restrictions are provided to the
user in a progressive manner. Here, the original CeAL method is modified and applied as a
core indexing scheme to support efficient trajectory management and retrieval in very large
spatial networks. This is achieved by facilitating trajectory similarity searching by taking
into account both spatial and temporal restrictions between nodes.

The proposed variation of CeAL inherits the advantages of its original version [32] and,
in addition, it is enhanced with the following characteristics:

(a) User-defined locations and time restrictions have been replaced by recorded spatial
positions and timestamps of moving objects. Automatically calculating and record-
ing locations and time restrictions through the applied moving objects framework
enhances CeAL.

(b) Trajectory similarity calculations have been significantly reduced, by avoiding the
computation of all-to-all shortest path distances as most of the previous methods do,
by limiting the calculation of pairwise node distances from the small set of the selected
spatial locations to the nodes of the spatial graph.

(c) CeAL consumes linear space, since adjacent nodes are connected directly to stored
trajectory data on disk, without building any complex index.

(d) The trajectories can be provided in a personalized manner by means of a proposed
spatio-temporal similarity measure adaptable to the user preferences by tuning the
query to be more spatial- or more temporal-oriented. Additionally, users can set
weights to spatially prioritize the selected spatial locations.

(e) finally, CeAL is established with all necessary theorems and proofs for its properties
and its complexity.

The main contributions of this study are:

– We propose a novel variation of algorithm CeAL for the progressive processing of top-k
trajectory similarity queries in spatial networks. CeAL can operate in on-line environ-
ments, as the on-line query processing cost has been reduced due to its progressive
approach, which enables early termination if adequate results have been reported to the
user.

– We propose a new spatio-temporal similarity measure, which satisfies the generalized
metric properties and can also be used in other related problems, where the metric
properties are applied to efficiently prune the search space.

– We provide an extensive comparison of CeAL against other state-of-the-art methods
with respect to their space and time performance. To this end, we use an enhancement of
the Brinkhoff’s classic generator [4], which takes into account the spatial and temporal
restrictions.
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The structure of the sequel is as follows. The next section provides an overview of the
relevant literature, whereas Section 3 gives basic definitions, notations and assumptions.
Alternative access methods are described in Section 4, whereas Section 5 focuses on the
particular implementations. Section 6 reports the results of an extensive experimentation.
Finally, the last two sections conclude the paper and discuss further extensions.

2 Related research

2.1 Trajectory generation

Generating trajectories of moving objects in spatial networks must be realistically designed.
A classic trajectory generator has been proposed by Brinkhoff [4], which takes into account
the spatial restrictions imposed by the underlying network and the temporal restrictions
due to characteristics of the moving objects. Some important aspects in the process of the
generation are the maximum speed of the moving objects, the influence of the other moving
objects to the speed and the route of an object, the maximum capacity of connections, the
adequate determination of the start and destination of an object, the influence of external
objects and events, and time-scheduled traffic. The generator is written in Java; to enhance
further the generator performance in very large networks, we extended this method in a new
implementation framework (C++, Boost Graph library [5]).

2.2 Trajectory indexing and retrieval

Access methods for trajectory management must be efficient during query processing in
spatial networks. To this end, there are several relevant works proposed in the literature. In
[20, 27] the trajectory of a moving object is represented as a set of graph edges followed by
the object during its lifetime. Also, of interest is the time interval during which the moving
object traverses a specific edge. Additionally, two kinds of transformation techniques are
proposed for network data and for trajectory data. Both techniques store the data in R-trees.
An alternative way to represent the trajectory data is to store the visited nodes along with
the corresponding time instant when the visit takes place [11].

In [37] the notion of multi-attribute trajectories is studied, i.e. standard trajectories with
descriptive attributes. Multi-attribute trajectories are indexed in a 3D R-tree and a composite
structure which can be adapted to work with any R-tree-based or Grid-based index. How-
ever, the article focuses in the problem of continuous k nearest neighbor queries over the
data trajectories and proposes efficient algorithms for query processing.

Several studies model trajectories as time series using transformation techniques, where
trajectory similarity search is performed by using either distance measures or subsequence
matching [1, 7, 8, 14, 21, 25, 29, 35, 38]. However, these works suffer from a high cost of
similarity calculations. Therefore, pruning or approximation methods have been proposed to
decrease the computational cost. Most of the works on similarity search assume Euclidean
spaces, either transformed or not, using R-trees or variants [24]. The works of [9, 16,
22] introduce query processing algorithms for similarity search in trajectory data ignoring,
however, the temporal domain.

The works of [6, 17] retrieve trajectories similar to a query trajectory in both spatial and
temporal domains. In particular, similarity calculations and optimization techniques, such
as pruning and bounding, are performed in Euclidean space, which contradicts the nature
of spatial networks. On the other hand, the works of [33, 34] perform trajectory similarity
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search in spatial networks using M-trees [10], to prune the search space based on metric
functions.

With respect to the storage of trajectories, several methods have been proposed. Frent-
zos et al. use FNR-trees which is a 2-d R-tree storing graph edges, whereas its leaves point
to the roots of 1-d R-trees, which store the visits of each specific edge [15]. In [31], trajec-
tories are considered as sets of points in the Euclidean space and are indexed with R-trees.
The algorithm returns the k most similar trajectories by a set of predefined point locations,
and uses a heap to retrieve candidate trajectories from each individual query point. In the
sequel, the candidate trajectories are refined according to specific bounds. The particular
algorithm is based on the methodology of Fagin’s Threshold Algorithm [13]. The main dis-
tance measure is an aggregation of the distances from the query points to the corresponding
shortest trajectory points. The idea of this aggregation has been also studied in [26].

With respect to similarity measures, mainly the spatial attributes of the trajectories are
taken into consideration, with temporal data becoming relevant only occasionally. A query
processing algorithm returns the most similar trajectories by searching over a set of can-
didate trajectories. Although a variety of trajectory similarity measures has been proposed,
most of them apply specific measures. For instance, some widely used similarity measures
are: Euclidean distance [1], Discrete Fourier Transformation andWavelets [7], Edit Distance
and its variations [8, 9], Longest Common Subsequence [35] and Dynamic Time Warping
[38].

The existing spatiotemporal indexing methods are quite sufficient in small networks and
trajectory datasets, but their performance gradually degrades and becomes inefficient in
very large networks. Moreover, the more complex the index, higher the processing cost to
manage the trajectories. Tiakas et al. alternatively suggest that the network is represented
by a structure based on adjacency lists at a preprocessing step [32]. This is the original
version of CeAL. In each edge formed at preprocessing, a cluster is assigned, which contains
references to all the trajectories that pass from that particular edge. This way a simple and
efficient index is constructed to handle large data.

3 Preliminaries

Here we introduce the basic terminology and assumptions, as well as we present the main
tasks and formulate the main problem.

3.1 Definitions

A spatial network can be represented as a graph G(V,E) consisting of a set of vertices V

and a set of edges E. On a 2-d plane every vertex can also be defined by its coordinates
as (xi, yi) ∈ V . Every edge can be defined as (vi, vj ) ∈ E and represents a connection
between vi and vj . We assume that the network is a static connected undirected graph. For
real data, edges are weighted, i.e. a weight w(vi, vj ) is given to any pair of neighbor nodes
vi, vj , to represent the distance between them or the time spent to travel from one to the
other, and so on.

We also assume that the distance between two non-neighbor nodes vi, vn equals the sum
of the weights of all the edges in the path: w(vi, vj )+w(vj , vk)+ . . .+w(vm, vn). If there
are several paths connecting the two nodes, then of importance is the geodesic path which
is the shortest one with a distance called network distance. We normalize this distance by
dividing with the network diameter (the maximum shortest path distance between any two
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nodes), to have a distance measure in the interval [0, 1]. We will denote this normalized
distance between any two nodes va, vb of the network as d(va, vb).

This distance measure d(·) satisfies the metric properties:

– Non-Negativity: Any transition from vertex va to vertex vb has a non-negative cost.
Therefore, it holds that: d(va, vb) ≥ 0, whereas d(va, vb) = 0 ⇔ va = vb.

– Triangular Inequality: For any three nodes va, vb, vc it holds that: d(va, vb) ≤
d(va, vc) + d(vc, vb).

– Symmetry: Since the network is undirected, the distances from node va to node vb and
vice-versa are equal: d(va, vb) = d(vb, va).

We denote a trajectory as Ti which is part of a trajectory set T : Ti ∈ T . Each trajectory
Ti has its own length ri of spatial points, which is called description length. We assume
that the trajectories have an arbitrary description length, which means that for two different
trajectories Ti, Tj , it may hold that ri �= rj .

We assume that the spatial points of the trajectories lay on the nodes of the spatial net-
work. Otherwise, if the spatial points of the trajectories lie on the edges, then they can be
aligned to the closest nodes using map-matching methods [2, 3, 18, 23, 36]. This matching
does not affect the proposed methods, since it can be performed in a preprocessing step,
while generating the trajectory data.

Therefore we can define a trajectory as an ordered set of ri pairs, which correspond to
nodes vi visited during the network traversal along with the time instances tvi

that the visit
takes place:

Ti = {(vi1, tvi1), (vi2, tvi2), . . . , (viri , tviri
)} (1)

We consider a node visit to be an instantaneous event with zero time elapsed, i.e. we
ignore the time spent by an object in any node. Defining a trajectory requires only the total
time spend by the object when moving from one node to another within the network limits.

Finally, the multiset2 of the spatial points from all trajectories is denoted as R, and the
multiset of all trajectory edges as RE. Both multisets R and RE represent the raw trajectory
data, and it holds that:

|R| =
|T |∑

i=1

ri |RE| =
|T |∑

i=1

(ri − 1) = |R| − |T |

3.2 Indexing andmanaging trajectories data

A focus of this work is to estimate the efficiency of the examined indexing methods to man-
age trajectories. In particular, we study their efficiency in supporting dynamic environments
where new trajectories have to be inserted or old trajectories have to be modified/deleted,
as well as their consumed space to index data. We will use large networks to study their
behavior along with the respective algorithms. We will also conduct experiments in very
large real road networks, which are relatively sparse but with millions of nodes and edges.

3.3 Problem definition for trajectory similarity top-k queries

Let G be the underlying graph of an undirected network and T a trajectories dataset. Let
Q be a set of query locations q1, q2, . . . , qm which are spatial points (nodes of G), that the

2Multiset is a generalization of the notion of set in which members are allowed to appear more than once.
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Figure 1 a Line segment of a corresponding edge encapsulated by an MBR, b Index node representing the
MBR containing the edge

resulted trajectories have to pass as close as possible. Let also qt2, qt3, . . . , qtm be the cor-
responding inter-arrival times which are m − 1 tolerance time intervals, acceptable by users
for travelling between the query locations (qti = ∞ denotes the lack of time restriction for
the transition to location qi). Let w1, w2, . . . , wm be the users’ predefined weights, express-
ing the personal preference of importance to the m query locations, where 0 < wj < 1 for
j = 1, ...,m and

∑m
j=1 wj = 1. Given a similarity function sim(Q, Ti) between the set Q

of query locations and a trajectory Ti ∈ T , the goal is to find the k most similar trajectories
in T with the highest similarity score to Q.

For this study the query locations q1, q2, . . . , qm and the corresponding inter-arrival
times qt2, qt3, . . . , qtm can alternatively be given through a query trajectory Tq , where its
nodes define the query locations and its time instances define the corresponding inter-arrival
times.

4 Indexingmethods and algorithms

The mostly used indexes for trajectories are based on R-trees [19] and their variants
[24]. R-trees group nearby spatial objects in a minimum bounding rectangle, MBR,
which is a key concept in all R-tree-based algorithms. Figure 1 illustrates an example
of MBR, which is a rectangle that encapsulates an edge in such a way that each of
min(x), max(x), min(y), max(y) will be in contact with the respective rectangle side. An
MBR can also encapsulate a trajectory object with all its nodes and edges. Moreover, in
upper R-tree levels there are also MBR’s that enclose lower level MBRs.

In the sequel, we will present three indexing methods for moving objects, two of them
based on R-trees, and one based on adjacency lists. These methods have been previously
tested experimentally in small-scale networks. However, here the efficiency and the per-
formance of these methods will be stressed in networks of large sizes, e.g. in the order of
millions of links/edges.

4.1 Fixed network R-trees

FNR-trees are height balanced structures based on R-trees [15]. The idea is that any network
with n links can be represented as a forest of 1-d R-trees,3 having a single 2-d R-tree on
top. The 2-d R-tree is used to index the graph edges; i.e., every 2-d R-tree leaf represents a
single graph edge and stores a pointer to a 1-d R-tree, which indexes the temporal intervals
during which a moving object traveled through the particular edge represented by that leaf.

31-d R-trees can be viewed as having flat MBRs to store points in 1-d space, i.e. on a line.
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The FNR-tree can support efficient insertion and deletion of trajectories data. For the
insertion process it uses Guttman’s search algorithm on the top-level 2-d R-tree to find
the relevant graph edge encapsulated by the appropriate MBR. This leads to a 1D R-tree
containing the object visits. Since time is increasingly monotonously, time intervals will be
inserted in an increasing order. Thus, we can insert the new element on the bottom-most,
right-most tree node without performing a search. This optimization leads to full 1-d R-tree
leaves, and minimizes the leaf overlap. Without this optimization, space utilization in the
1-d R-trees is around 65%, whereas with this implementation it increases to 96% [15].

To perform a spatio-temporal query against an FNR-tree, a 3-d interval is used that
consists of two spatial points and one temporal point. Thus, the query can be defined as:
((x1, y1), (x2, y2), (t1, t2)). For the search process, Guttman’s search algorithm is executed
on the top level 2-d R-tree, and the edges bound by the spatial interval represented by the
rectangle provided by the user as a query are identified. After recovering the leaf nodes rep-
resenting these edges, the edges are stored in memory. Then Guttman’s search algorithm is
executed in each of the 1-d R-trees which are pointed by the previously recovered leaves,
and the corresponding edges are retrieved. If there are edges that are completely outside the
query spatial window rectangle, they are discarded.

4.2 Moving objects in network trees

MON-trees comprise of a 2-d R-tree with leaves pointing to lower level 2-d R-trees (see
Figure 2), which index the moving objects and their trajectories [11]. At the upper level
of MON-trees, there is a hash structure with entries in the form (polyid, bottreeptr), where
polyid is the unique trajectory ID and acts as key, whereas bottreeptr points to the lower
level R-tree which indexes that current trajectory.

The upper R-tree leaves are of the form (MBR, polypt, treept), whereMBR is the MBR

acting as a box for the trajectory, polypt is a pointer to the trajectory itself, and treept is a

Figure 2 MON-tree overview [11]
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pointer to the lower level R-tree. The internal nodes have the form (MBR, childpt), where
MBR is the MBR enclosing the MBRs of descendant nodes, and childpt is a pointer to the
descendant node.

The lower level R-trees index the object trajectories. This is achieved with two intervals:
the spatial interval (p1, p2) (where 0 ≤ p1, p2 ≤ 1), and the temporal interval (t1, t2). A
combination of the two intervals gives the position of the moving object within the time
interval defined by the two time points t1 and t2.

Searching is based on a spatio-temporal window: wnd = (x1, x2, y1, y2, t1, t2) and can
be interpreted as: retrieve the moving objects within the space bounded by the rectangle
r = (x1, x2, y1, y2), during the time period t = (t1, t2). To this end, the process is split into
its orthogonal parts, the spatial and the temporal one. First, a search is performed on the top
R-tree to retrieve all MBRs which intersect the rectangle defined by the spatial part of wnd .
The result is a set of windows: wnd ′ = {(p11 , p12 , t1, t2), . . . , (pn1 , pn2 , t1, t2)} as shown
in Figure 3, where n is the number of elements, pn the position of the moving object, and
t1, t2 the time interval given as input to the query. After retrieving these network portions,
a search is performed on each of them, based on the time interval. As seen in Figure 3, the
trajectories retrieved by the initial search are examined to determine on which parts they
intersect the time interval provided as part of the spatio-temporal window.

The insertion process takes a trajectory ID as input and uses the hash structure to discover
the lower level R-tree which corresponds to that trajectory. Searching is accomplished by
a spatio-temporal window, which defines the spatial and temporal intervals of interest. The
search algorithm begins from the top level R-tree root, which narrows the search down to
the MBRs of each trajectory. If there is no bottom level R-tree for inserting this trajectory,
then a new R-tree node is created, and the pointer of the trajectory is inserted in the hash
structure.

4.3 Cluster-extended adjacency lists

CeAL uses an adjacency list to model the network on which the trajectories will be mapped.
Trajectory clusters are assigned to each node of the list, storing the trajectories that pass
through it. In our variation of CeAL, query processing can be done in both following
ways: (a) the user can define specific spatial locations and time restrictions as well optional
weights of importance for the locations, (b) the user can input a query trajectory.

Figure 3 MON-tree search by spatio-temporal window [11]
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4.3.1 Creating the CeAL scheme

CeAl has a preprocessing phase to index the trajectories, either during generation, or
extracted from a pre-compiled dataset [32]. This phase indexes the edges with adjacency
lists: for each edge (vi, vj ) a clusterCij is created to store all the trajectories passing through
this edge. If no trajectory passes through a specific edge, then the relevant cluster remains
empty. The created cluster is assigned to the node vj , the ending point of the edge. Thus,
the final structure comprises of V adjacency lists, representing the edges from a specific
network node, extended by the clusters containing all the trajectories passing through the
edge (see Figure 4).

The clusters are implemented as dynamic lists. Therefore, an initial traversal of the tra-
jectory dataset T is required. For each trajectory Ti , its ID is passed as a parameter to a
pre-selected hash function. In particular, we used the simple hash function: ID mod |T | to
get the disk page location of the trajectory. Then, the trajectory Ti is traversed; during this
traversal, we retrieve its edges and store the trajectory’s ID in each of the clusters associated
with it.

Algorithm 1 presents the preprocessing procedure. The time complexity for reading the
trajectory data and the spatial complexity of the preprocessing phase is linear:O(|V |+|E|+
|RE|). Also, the created trajectory clusters are generally smaller in size than the structure
proposed in [28], where clustering is based on network nodes, which leads to larger clusters.
In CeAL, clustering is performed based on the graph edges. Additionally, since hashing is
used to store the trajectories, they can be efficiently retrieved when required by using the
same hash function.

Figure 5 depicts a small-scale example of a spatial network with 14 nodes, 21 edges and
3 trajectories (see Tables 1 and 2). The outcome of Algorithm 1 is the structure of Figure 6.

Figure 4 Extended adjacency list index of node vi with p adjacent nodes and trajectory clusters

60



World Wide Web (202 ) 2 : –51 831 4

Figure 5 An illustrative
small-scale example

4.3.2 Trajectory similarity measures

In the proposed CeAL method, trajectory retrieval is based on the similarity between the
trajectories and the selected spatial positions and timestamps of the moving objects. There-
fore, trajectory retrieval ignites a location-based query with time restrictions. To facilitate
searching within CeAL, two new trajectory similarity metrics,Ds(.) andDt(.), are proposed
for the spatial and the temporal dimension, respectively. The spatial similarity measure is
used to assess how close a trajectory is to the selected spatial positions Q with respect to
the restriction the network imposes on the movement of objects. The spatial distance of
a specific location qi ∈ Q from a trajectory Tj ∈ T , which passes through the nodes
v1, v2, . . . , vn, is defined as the minimum among the distances between the location and
each node of the trajectory. This measure is:

ds(qi, Tj ) = min
(h=1,...,n)

d(qi, vh) = d(qi, vmin) (2)

Proposition 1 ds(·) is a generalized metric function that satisfies the generalized triangular
inequality with values in the range of [0, 1].

Table 1 Edge weights of the graph in Figure 5

w(v1, v3) = 4 w(v2, v3) = 3 w(v3, v5) = 4 w(v3, v6) = 5

w(v4, v6) = 6 w(v5, v7) = 8 w(v5, v8) = 5 w(v5, v9) = 8

w(v6, v9) = 3 w(v6, v12) = 7 w(v6, v10) = 4 w(v7, v8) = 5

w(v7, v11) = 8 w(v8, v9) = 5 w(v8, v11) = 5 w(v9, v11) = 8

w(v9, v12) = 2 w(v10, v12) = 5 w(v11, v13) = 2 w(v12, v13) = 9

w(v13, v14) = 7
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Table 2 Trajectories of the graph in Figure 5

T1 (v1, 0) → (v3, 2) → (v6, 4) → (v12, 7) → (v13, 11) → (v14, 14)

T2 (v2, 0) → (v3, 1) → (v5, 3) → (v8, 5) → (v11, 7) → (v13, 8) → (v14, 11)

T3 (v1, 0) → (v3, 3) → (v5, 6) → (v9, 11) → (v11, 16) → (v13, 17) → (v14, 21)

Proof It is sufficient to prove that the following properties hold for any location qj ∈ Q,
for any node x ∈ V and for any trajectory Ti ∈ T :

1. 0 ≤ ds(qj , Ti) ≤ 1
2. ds(qj , Ti) = 0 ⇔ qj ∈ Ti

3. ds(qj , Ti) ≤ d(qj , x) + ds(x, Ti)

Let vminj be the corresponding node of the trajectory Ti with the minimum distance
from the location qj (see Figure 7). Since ds(qj , Ti) = d(qj , vminj ) and the spatial func-
tion d(·) is in the range of [0, 1], therefore the same holds for the ds(·) function, i.e.
0 ≤ ds(qj , Ti) ≤ 1. Moreover, it holds that: ds(qj , Ti) = 0 ⇔ d(qj , vminj ) = 0 ⇔ qj =
vminj (property of the d(·) function). Therefore, since vminj is a node of Ti we have:
qj ∈ Ti .

For the proof of the generalized triangular inequality, x is a random graph node where
the closest node of trajectory Ti to x is not necessary node vminj (Figure 7). Let vminx

be the corresponding node of the trajectory Ti which has the minimum distance from node
x. Then, we have: ds(qj , Ti) = d(qj , vminj ) and ds(x, Ti) = d(x, vminx). Thus, it is
sufficient to prove:

ds(qj , Ti) ≤ d(qj , x) + ds(x, Ti) ⇔ d(qj , vminj ) ≤ d(qj , x) + d(x, vminx)

Figure 6 Outcome of Algorithm 1 on the structure of Figure 5
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Figure 7 Proof of generalized
triangular inequality

Since vminj is the closest node between the rest of nodes of trajectory Ti to qj (including
vminx), it holds that:

d(qj , vminj ) ≤ d(qj , vminx)

Moreover, since function d(·) satisfies the triangular inequality for node x, it holds that:

d(qj , vminx) ≤ d(qj , x) + d(x, vminx)

By combining the last two inequalities we reach to the generalized triangular inequality:

d(qj , vminj ) ≤ d(qj , x) + d(x, vminx)

Each included location may have a different distance from the trajectory, which means
that this distance will be calculated separately for each location. Our objective is to have
at least j nodes as close to the location qj as possible. Therefore, we calculate the sum
of the distances of all locations from the trajectory, which allows approximating the total
distance of the trajectory from the spatial locations into consideration. Consequently, the
spatial similarity metric is defined as the average distance between all locations and the
trajectory, and can be calculated as:

Ds(Q, Ti) = 1

m

m∑

j=1

ds(qj , Ti) (3)

An alternative approach is when the user can provide the importance on each spatial loca-
tion. In this case, the calculated spatial similarity distances are multiplied by the assigned
weight of importance, which take values in the interval (0,1) and have sum 1, and show the
contribution of each location to the total similarity. The more the weight approaches 0, the
less important it is; on the contrary, the more it approaches 1, the more it contributes to the
final distance calculation. In this case, the metric is:

Ds(Q, Ti) = w1ds(q1, Ti) + . . . + wnds(qn, Ti) (4)
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Thus, if a spatial location is considered more important, then its weight will be close to
1. If the distance of that location is large, it will affect the spatial measure adversely. The
opposite case, where even though the distance is large, the weight is close to 0, will mean
that its effect on the final value of the spatial measure will be less severe, reducing the
impact its distance has to the final trajectory similarity score. It goes without saying that the
opposite is also true.

Proposition 2 Ds(·) is a generalized metric function that satisfies the generalized triangu-
lar inequality in the range [0, 1].

Proof It is sufficient to prove that the following properties hold for any node x ∈ V and for
any trajectory Ti ∈ T :

1. 0 ≤ Ds(Q, Ti) ≤ 1
2. Ds(Q, Ti) = 0 ⇔ qj ∈ Ti,∀j = 1, . . . , m
3. Ds(Q, Ti) ≤ dq(Q, x) + ds(x, Ti), where dq(Q, x) = ∑m

j=1 wj · d(qj , x)

From Proposition 1 we have that: 0 ≤ ds(qj , Ti) ≤ 1, ∀j = 1, . . . , m. Since wj > 0,
∀j = 1, . . . , m, we have that: 0 ≤ wj · ds(qj , Ti) ≤ wj ,∀j = 1, . . . , m. By summing the
above m inequalities we derive:

0 ≤
m∑

j=1

wj · ds(qj , Ti) ≤
m∑

j=1

wj ⇔ 0 ≤ Ds(Q, Ti) ≤ 1

Moreover, Ds(Q, Ti) = 0 ⇔ ∑m
j=1 wj · ds(qj , Ti) = 0, and since ds(qj , Ti) ≥ 0 and

wj > 0,∀j = 1, . . . , m, the sum will be zero in case that all terms become zero, i.e.
ds(qj , Ti) = 0,∀j = 1, . . . , m ⇔ qj ∈ Ti,∀j = 1, . . . , m (Proposition 1).

Finally, if x is a random graph node, according to Proposition 1, we have: ds(qj , Ti) ≤
d(qj , x) + ds(x, Ti),∀j = 1, . . . , m. Thus: wj · ds(qj , Ti) ≤ wj · d(qj , x) + wj ·
ds(x, Ti),∀j = 1, . . . , m. By summing these m inequalities, we get:

m∑

j=1

wj · ds(qj , Ti) ≤
m∑

j=1

wj · d(qj , x) + ds(x, Ti) ·
m∑

j=1

wj

⇔ Ds(Q, Ti) ≤ dq(Q, x) + ds(x, Ti)

An advantage of this methodology is that the proposed similarity measures express the
similarity between a trajectory Ti ∈ T and the selected spatial locations in Q. Therefore,
the proposed measures are functions in the |Q| × |T | space, instead of the |T | × |T | space,
by significantly speeding up computations. Moreover, the computation of all-to-all geodesic
path distances is avoided, by limiting the calculation of pairwise node distances from the
small set of spatial positions Q to the nodes of T . This is in contrast to the majority of
previous methods for trajectory similarity search, which require a computationally intensive
preprocessing step with all-to-all geodesic path distance calculations.

64



World Wide Web (202 ) 2 : –51 831 4

A significant property of the proposed method is that it is not required that all times points
are stored. The reason is that time restrictions set by the recorded timestamps between the
location visits and the resulting delay is what defines the temporal restrictions in an absolute
manner.

To calculate the temporal similarity we obtain the nearest nodes vminj for j = 1, . . . , m
of the trajectory to the spatial locations, as described above. Then, we calculate the inter-
arrival times on each of these nodes. This can be calculated instantly, by summing the arrival
times of these nodes. More specifically, if we set tvminj

for j = 1, . . . , m as the time points,
which correspond to each closest node, we calculate the corresponding inter-arrival times
dt2, dt3, . . . , dtm in the above fashion. We observe three distinct cases:

1. dtj = qtj : The actual temporal distance of the location from the trajectory is equal to
the time tolerance based on the recorded timestamps. The temporal distance is equal
to 0.

2. dtj > qtj : The temporal distance is greater than the time tolerance. Thus, more time is
needed to pass through the trajectory, which means that the temporal difference must
be taken into consideration and is equal to |qtj − dtj |.

3. dtj < qtj : The temporal distance is less than the time tolerance. In this case, the
temporal distance is not taken into consideration, since less time is needed to traverse
the trajectory. This case is treated like the first one, i.e. the temporal distance is 0.

Based on the above, the temporal distance metric is:

Dt(Q, Ti) = 1

m − 1

m∑

j=2

|qtj − dtj |
max2<j<m{qtj , dtj } (5)

Proposition 3 Dt(·) is a generalized metric function that satisfies the generalized triangu-
lar inequality in the range [0, 1].

Proof For j = 2, . . . , m, by considering the values qtj and dtj as m − 1 couples of real
values, the proof is the same as presented in [34].

The two previous similarity metrics are then combined into a spatio-temporal metric
sim(.) as follows:

sim(Q, T ) = 1 − dist (Q, t) (6)

where:

dist (Q, T ) = a ∗ Ds(Q, T ) + (1 − a) ∗ Dt(Q, T ) (7)

Parameter a ∈ [0, 1] expresses the preference to one of these two metrics, depending on
how close its value approaches 0 or 1. Thus, an application can tune which of the two, or
any combination of the two, should be applied. If a = 0, then an absolute preference for the
temporal distance is expressed. Oppositely, a = 1 means that only the spatial distance will
be included in the spatio-temporal similarity measure calculation.
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Algorithm 2 presents the progressive trajectory retrieval process from the spatial loca-
tions. The main strategy is the following: from each location, perform an incremental
Dijkstra expansion step following a round-robin strategy, collect the trajectory IDs that are
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included in the trajectory clusters of the visited edges, compute the spatiotemporal similari-
ties based on the proposed measures and progressively return the top-k retrieved trajectories
when an updated threshold value is satisfied. The threshold and top-k process is similar with
Fagin’s Threshold Algorithm [13].

When the algorithm begins, variables and structures are initialized (lines 1–4). Variable
L keeps the threshold value. The ordered structure H keeps the retrieved trajectory ID’s
ordered by their calculated spatiotemporal distance. Each location qj uses a Fibonacci Heap
HQj , in which the corresponding shortest-path distances from the Dijkstra expansion are
updated. To avoid recalculations of spatiotemporal distances in any step of the algorithm, a
bit-set B with |T | bits in memory is used where the corresponding bit of each calculated tra-
jectory distance is enabled on-the-fly. Therefore, during the query processing, the distances
are calculated only once for each trajectory. The five main steps of the proposed algorithm
are the following:

(S1): From each location qj , in a round-robin manner (initially vQj = qj ), each neigh-
bor node uQj of vQj is retrieved in the Dijkstra expansion step (lines 5–17). The heaps
HQj are updated with the relevant shortest-path distances from the Dijkstra expansion. The
candidate trajectories Th are collected from the corresponding edge clusters C(vQj ,uQj ) of
the extended adjacency list index (line 18).

(S2): The spatiotemporal distances dist between the collected candidate trajectories Th

and the location set Q are calculated (7). In bit-set B the corresponding bits of each cal-
culated trajectory distance are enabled (lines 19–24). The currently calculated trajectory
distances and their corresponding trajectory Ids are preserved and updated in H (ordered by
dist) on-the-fly (line 23).

(S3): The threshold L is updated according to the aggregated network distances between
the locations and the set of vminj nodes: L = a

m

∑m
j=1 d(qj , vminj ), where vminj is the

closest node to location qj in the current Dijkstra expansion level, i.e. vminj has the shortest
path distance to qj among all the detected nodes in the current round from qj . The threshold
L is a lower bound of the final distance function dist and it is used for generating the
results. In each round, L is increased, (when the expansion level is changed), by comparing
the current Lcurr value with the previously calculated one. In particular, if the currently
computed Lcurr value is greater than the previous L value of the last round, then the Lcurr

value of the current round is updated accordingly (lines 28–31). Since the temporal distances
Dt are aggregated with the spatial distances Ds in the final distance function dist (·), L

is a lower bound for both spatial and spatiotemporal distances. Moreover, in case that wj

weights are used (4), then threshold L is calculated as: L = a · ∑m
j=1 wj · d(qj , vminj )

(alternative line 28).
(S4): After the end of each round, the trajectories in the current top-k list in H are

examined based on condition that they have a distance dist lower than L. If the condition is
satisfied for a subset of trajectories inH , then these trajectories are instantly added to the top
results list (lines 32–36). The trajectory extraction proceeds progressively until L reaches
a value greater than the distance of the k-th element in H or in the extreme case that the
spatiotemporal distances of all trajectories in T have been calculated (stopping condition,
line 37).

(S5): If not all top-k results have been retrieved, the algorithm proceeds to the next
expansion round, where the algorithm repeats the loop in lines 5–40.

Correctness: As the threshold L is a lower bound of the distance function dist , all
trajectories that have not been discovered yet will have spatiotemporal distances greater than
or equal to L. This means that the trajectories that have been stored into H will definitely
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have smaller distances to any not discovered yet trajectory in all next expansion levels. Also,
when a trajectory is inserted into H , its calculated spatiotemporal distance is a final distance
and will not be modified (bitset B ensures that will not even be recalculated). Therefore, as
L is increasing and there are some trajectories in the top positions of H that have distances
smaller to L, they can safely returned to the user.

The time complexity of Algorithm 2 is: O(m ∗ (|V | ∗ log |V | + |E|) + |RE|), where
the part O(m ∗ (|V | ∗ log |V | + |E|)) corresponds to the Dijkstra expansion. On the other
hand, the term O(|RE|) represents the number of trajectory edges the algorithm will take
into account; it is at maximum |RE|, since the control bitmap will be storing the IDs of the
trajectories with distances already calculated.

4.3.3 Trajectory retrieval for the illustrative small-scale example

The diameter of the graph in Figure 5 is DG = 27, which is the geodesic distance
between the most distant nodes v1 and v14. The closest nodes of trajectory T1 from loca-
tions q1, q2, q3 are nodes v3, v12, v13, with distances 4,2,2, respectively. Then, the spatial
distance between the set Q of locations and the nodes of trajectory T1 are calculated as:
Ds(Q, T1) = 1

3 · 4+2+2
27 ≈ 0.099 (considering equal weights wj = 1

3 ). The closest nodes
of trajectory T2 from locations q1, q2, q3 are nodes v5, v8, v11, with distances 0,5,0, respec-
tively. Then, Ds(Q, T2) is: Ds(Q, T2) = 1

3 · 0+5+0
27 ≈ 0.062. The closest nodes of trajectory

T3 from locations q1, q2, q3 are nodes v5, v9, v11, which are the nodes that the trajectory
passes through all the locations, resulting thus in Ds(Q, T3) = 0. Therefore, if a = 1, i.e.
only the spatial similarity contributes to the final score of sim(·), the top-3 similarity list is
[T3, T2, T1].

If the time tolerance is 3 time units for the transition from q1 to q2 and 3 time units for
the transition from q2 to q3, i.e. qt2 = qt3 = 3, then the corresponding inter-arrival times
for T1 are dt2 = 5 > 3 (for the transition from v3 to v12), and dt3 = 4 > 3 (for the transition

from v12 to v13). Therefore, Dt(Q, T1) is: Dt(Q, T1) = 1
2 ·

( |3−5|
5 + |3−4|

4

)
= 0.325. The

corresponding inter-arrival times for T2 are dt2 = 2 < 3 (for the transition from v5 to v8),
and dt3 = 2 < 3 (for the transition from v8 to v11). Therefore, we have: Dt(Q, T2) = 0,
since dt values are set equal to qt . The corresponding inter-arrival times for T3 are dt2 =
5 > 3 (for the transition from v5 to v9), and dt3 = 5 > 3 (for the transition from v9 to v11).

Therefore, Dt(Q, T3) is: Dt(Q, T3) = 1
2 ·

( |3−5|
5 + |3−5|

5

)
= 0.4.

If a = 0.5, the final spatio-temporal distances of the trajectories are equal to:
dist (Q, T1) ≈ 0.212, dist (Q, T2) ≈ 0.031, dist (Q, T3) = 0.2. By considering both
temporal and spatial domains, the top-3 similarity list becomes [T2, T3, T1]. In contrast to
trajectory T3 (case a = 1), by considering both spatial and temporal domains (case a = 0.5),
T2 is the top trajectory result which does not pass from all the locations.

5 Unified framework and extensions for the studiedmethods

Here we provide additional information about the unified framework implemented for the
three studied methods, plus more details about the extensions. The studied methods and the
respective algorithms were implemented so that memory manipulation and pointer creation
to objects and values is allowed, instead of copying whole objects across functions and
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methods. This way, the involved classes and structures can communicate with each other
and have access to the needed objects.

Wemodel the graphs with adjacency lists because the tested networks are sparse plus they
are rather stable without any changes to their initial topology. Thus, graph data are stored
with size analogous to that of the network. Especially for CeAL, each edge has an additional
property, corresponding to the cluster containing the IDs of the trajectories passing through
this edge.

We used the Dijkstra algorithm [12] for pairwise shortest path calculations. We provided
the initial node to the Dijkstra algorithm, so that it begins its expansion steps, as well as
an array for the distances assigned to each edge. This results in an efficient derivation of
the shortest paths, even in extremely large networks. The particular implementation of the
Dijkstra algorithm uses the concept of a virtual visitor. We provided a visitor as parameter
to the function call, which evaluates the potential options from the nodes adjacent to the one
it is on, and selects one according to the specific algorithmic restrictions.

Most implementations use the predefined Dijkstra visitor, which will only perform the
default set of actions on each step. The main advantage is that we can replace this prede-
fined visitor with a visitor of our own preference to perform modified tasks on each step.
Therefore, especially for CeAL that uses the Dijkstra algorithm to perform a set of actions
on each expansion step, we implement our own visitor class and override its behavior when
it finishes handling a node. Thus, the Dijkstra expansion step will be overridden and the
trajectories will be discovered as per the function of the algorithm described above. Before
any expansion from each location, we call the Dijkstra algorithm by passing the predefined
visitor as a parameter, and then we pass the resulting distance array to our custom visitor.
This allows to perform the distance calculations based on either the Euclidean distance, or
the actual distance obeying the network constraints as adopted here.

The trajectories collected through query processing are stored in a min-heap. At the end
of the process, the min-heap contains all the discovered trajectories in ascending order. We
then extract the top-k trajectories, where k is user-defined, either in an expanded (all nodes
that comprise a trajectory), or in a compressed form (number of nodes in trajectory), and
the total spatio-temporal cost.

Regarding the R-tree-based methods, we implemented the bottom R-trees aiming at max-
imizing the control and the ability for modifications. Each R-tree node consists of a 1-d array
containing the tree elements. Thus, the nodes are separated from the elements to be stored;
this provides the flexibility to store whatever is necessary. Notably, in our implementation
the edges follow a bidirectional rationale, i.e. the flag for the edge direction is ignored.

Our initial approach was to insert the TopTreeElement elements into each node, for both
internal and leaf nodes. The first tests showed that this approach was not very efficient with
respect to creating and inserting elements in each node. For this reason, the TopTreeElement
elements were removed from the internal nodes, i.e. in our current R-tree implementation,
elements of this type can only be found in the leaves, whereas internal nodes store an 1-
d vector, which can store elements of any type. Thus, we can store either TopTreeElement
elements, or pointers at R-tree lower levels. We use R-trees to store the edges. This provides
a robust implementation with respect to time and storage efficiency. These extensions are
important for enhancing the performance of the two studied R-tree based methods.

The trajectory generator by Brinkhoff [4] was extended to further enhance its perfor-
mance for very large networks. Especially for the generation process of the trajectories, a
class has been implemented to model time with discrete clock ticks, which denote a new
movement cycle for the visitors, where each visitor moves only as far as its speed allows.
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Each time instance is numbered, which allows tying visits to nodes and to edges to a time
instance or a time interval. Thus, it is possible for an object, depending on its speed, to pass
more than one clock ticks on the same edge; however, visiting a node is considered always
instantaneous.

The creation of a visitor is based on a probability, which can be adjusted to model bustling
or deserted networks. This probability is examined on each time instant; in addition to the
visitors already moving in the network, new visitors may also appear. Each visitor knows the
specific trajectory to follow in the network, which is indexed and stored in each particular
studied method. Additionally, each visitor is assigned a specific speed, which determines the
distance traversed on one clock tick. The way used visitors can be modified so that moving
objects can be studied on graphs. In our case, each visitor decides on the trajectory to follow,
and it traces this trajectory with increasing time. The trajectory is stored as a sequence of
nodes, and thus a visitor is used only to trace trajectories on the network.

6 Experimental evaluation

We performed a series of exhaustive experiments on the studied methods. The datasets
retrieved from the 9th DIMACS Challenge webpage [30] (last update in 2010) represent
various specific portions of the US road network (see Table 3). Even though we appreciate
the realistic network topology, which helps in providing the real distances between nodes
instead of calculating them, either during the graph construction in a preprocessing step, or
on the fly during the algorithm execution, our interest primarily lies in the network sizes,
which cover a wide spectrum. By using these datasets, we trust that our conclusions are
realistic.

All methods and the unified framework were implemented in C++. The Boost Graph
library [5] was also used for several primitive structure types and graph algorithms. The
experiments were performed on a personal computer with an Intel Core i7-6700K quad-
core processor clocked at 4.00 GHz with 8 MB Cache, 16 GB (8GBx2) DDR4 main RAM
memory clocked at 2133 MHz, and an SSD drive, with a read speed of 550 MB/s, a write
speed of 520 MB/s, and a capacity of 120 GB. To avoid any throttling on the processor or
any other system part, the computer remained plugged in the power outlet throughout the
whole experimentation.

Table 3 Datasets used for
experimental evaluation Dataset Description Nodes Edges

NY New York City 264346 733846

BAY San Francisco Bay Area 321270 800172

COL Colorado 435666 1057066

FLA Florida 1070376 2712798

NW Northwest USA 1207945 2840208

NE Northeast USA 1524453 3897636

CAL California & Nevada 1890815 4657742

LKS Great Lakes 2758119 6885658

E Eastern USA 3598623 8778114

W Western USA 6262104 15248146

CTR Central USA 14081816 34292496
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Figure 8 Time for constructing the trajectory indexes - 1K trajectories

6.1 Preprocessing - indexing and storing

Here we calculate the required space and time to construct the corresponding indexes of
each method. In each case, we construct the network and store it in the relevant index.
Afterwards, we insert a variable number of trajectories and observe the time and storage
required. The number of trajectories varies from 1K to 10K, 100K and 1M (Figs. 8, 9, 10
and 11). The trajectories are created by our enhanced generator as described in Section 5.

We observe a more or less similar behavior, when bulk trajectory insertions are made in
the networks. The time differences are small in all three methods; however, MON-tree and
CeAL have a distinct advantage when storing an empty network over FNR-tree, as seen in
Table 4.

With respect to the storage space needed while constructing the network, for brevity, we
show results only for the NY network since our experiments indicate that the same behavior
is observed across all datasets. Table 5 shows the increase of memory space required for a
variable number of trajectories. We observe that CeAL displays the best behavior in com-
parison to the other methods. When the number of trajectories is small (e.g. 1000) there is

Figure 9 Time for constructing the trajectory indexes - 10K trajectories
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Figure 10 Time for constructing the trajectory indexes - 100K trajectories

Figure 11 Time for constructing the trajectory indexes - 1M trajectories

Table 4 Time needed to
construct networks for each
index (secs)

Dataset FNR-tree MON-tree CeAL

NY 303.68 22.32 24.21

BAY 330.99 26.65 29.91

COL 436.70 32.52 35.83

FLA 1158.06 84.47 97.94

NW 1246.27 89.66 100.27

NE 1536.19 108.95 118.08

CAL 2018.57 138.20 151.80

LKS 3023.64 203.88 226.88

E 3832.78 275.69 302.58

W 6847.95 446.74 499.31

CTR 15533.41 1041.21 1225.30
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Table 5 Network storage space
for each index (MB) Trajectories FNR-tree MON-tree CeAL

1000 353.10 339.50 355.50

10000 467.80 482.80 376.90

100000 1651.80 1916.80 617.90

1000000 13162.80 17045.80 2646.90

not much difference between the examined methods; however, as the number of trajectories
increases, the performance gap becomes more obvious.

Figure 12 shows the comparison of the time needed to insert a trajectory in each index. It
can be seen that MON-tree and CeAL outperform FNR-tree in all cases. In networks larger
than the Great Lakes network, CeAL increases linearly in time, whereas MON-tree retains
its performance. This is due to the index construction. FNR-tree stores the entire network;
thus, inserting a new trajectory requires a search, which becomes more expensive as the
network increases in size. Similarly, CeAL’s adjacency list grows in size as the network
nodes increase, leading to larger search times for storing the new trajectory in the correct
network edges. On the other hand, MON-tree does not store any part of the network until it
becomes relevant (by being part of a new trajectory, which means that it is less sensitive to
network size increases). Similar results are retrieved for a trajectory deletion.

Next, we examine the time to retrieve a trajectory from each index. In particular, first
we compare the results between FNR-tree and MON-tree, and then between MON-tree and
CeAL. Figure 13 shows that the performance of FNR-tree is inferior of that of MON-tree
in all cases. In particular, its performance degrades seriously as the network size increases.
Therefore, the only meaningful comparison is between MON-tree and CeAL. Figure 14
shows that CeAL outperforms MON-tree in retrieving the trajectory edges. Retrieving a
trajectory from a MON-tree requires a traversal of the generated R-tree, which is sensitive
to the network size, while doing the same in a CeAL index requires the traversal of a single
adjacency list path, which doesn’t require any comparisons and path decisions.

Figure 12 Comparison between FNR-tree, MON-tree and CeAL - trajectory insertion
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Figure 13 Comparison between FNR-tree and MON-tree - trajectory discovery

6.2 Trajectory similarity query processing

Here, we test the performance of the methods under examination during trajectory similarity
query processing. We measure the total time performance (CPU time and I/O cost) as well
as the total number of distance computations / shortest path calculations for searching and
retrieving trajectories stored within each index.

6.2.1 Results for variation of |T |
We check how the examined methods behave with increasing number of stored trajectories
since real-life applications deal with a large number of trajectories, and dynamic data can
lead to increased load. Figs. 15, 16, 17 and 18 show how the algorithms behave across the
different networks.

Figure 14 Comparison between MON-tree and CeAL - trajectory discovery
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Figure 15 FNR-tree, MON-tree and CeAL - 1000 trajectories

As can be seen from these figures, small trajectory numbers favor the two spatial meth-
ods, which exhibit a more or less stable behavior. On the other hand, CeAL scales linearly
with increasing network size, a behavior that is maintained across all cases of trajectory
numbers. A small trajectory number and a smaller network still favors CeAL, since it
performs as well as, and in some cases better, than the spatial methods.

CeAL outperforms the other methods when the number of stored trajectories is in the
order of millions. Figure 18 shows that CeAL outperforms the two spatial methods in small,
medium and large networks. Assuming that a real-life application will have millions of
stored trajectories to provide accurate information to the users, we can conclude that despite
the fact that the initial results don’t favor CeAL across the whole dataset, it performs better
in the crucial tests.

Figure 16 FNR-tree, MON-tree and CeAL - 10000 trajectories
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Figure 17 FNR-tree, MON-tree and CeAL - 100000 trajectories

6.2.2 Results for variation of k

Next, we examine how the methods are affected with varying k. To stress the methods we
use networks with 1000000 trajectories, for reasons mentioned in previous. The results can
be seen in Figure 19. It should be noted that the FNR-tree andMON-tree indexes do not sup-
port a top-k query, but rather work by providing a desired spatiotemporal box and retrieving
all trajectories in it. Nevertheless, we include the relevant measurements for both methods
in the figure, so that a comparison can be made about the relative efficiency between the
algorithms.

6.2.3 Results for variation of q

Next, we examine the effect of increasing the query locations q = 5, 10, 20, 40, 80 when
|T | = 100 K and k = 10. As seen in Figure 20, this has the most significant impact on

Figure 18 FNR-tree, MON-tree and CeAL - 1000000 trajectories
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Figure 19 Comparison between FNR-tree, MON-tree and CeAL - trajectory discovery, number of top-k
trajectories requested

CeAL’s performance, due to the increased number of shortest path calculations that need
to be performed. Again, FNR-tree and MON-tree relevant measurements are included for
comparison purposes.

6.2.4 Results for progressiveness of top-K result discovery

To show CeAL’s progressiveness in fetching the trajectory results, we logged the time when
each trajectory was retrieved during the algorithm’s execution. We ran this experiment with
100K trajectories stored in the data structure, with 20 query points of interest, requesting 10
trajectories. In further experiments, the algorithm’s behavior remains consistent with what
is shown below. Table 6 shows how trajectories are obtained in a progressive manner when

Figure 20 Comparison between FNR-tree, MON-tree and CeAL - trajectory discovery, number of query
locations
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Table 6 Progressive discovery of top-k results (msecs)

Datasets k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

NY 780 1630 2730 3580 4310 5070 5810 6550 7310 10830

BAY 3440 5470 6360 7900 10420 12727 14811 16138 18211 21470

COL 1860 3150 4370 5780 7300 8630 10886 10981 12475 21390

FLA 2950 5920 8880 12120 17718 19434 21329 26069 26936 32990

NW 3500 6880 10525 13665 16624 19570 22654 28340 30458 36280

NE 4210 11569 16554 20852 24701 31242 31341 40189 44571 48390

CAL 6730 13758 18114 23886 27316 33902 42918 43164 53660 61930

LKS 7550 18231 31361 36461 50865 58873 62047 84586 92230 95410

E 9696 17882 27360 39821 51731 61662 70105 85332 83030 110620

W 12844 31548 56940 66848 82191 95167 101184 127592 156489 186080

CTR 13485 54912 97495 149182 196548 227682 299883 361241 401088 474390

performing a top-k query in CeAL. For each dataset, the time when a particular trajectory
was obtained is shown. The above results show that CeAL retrieves its results progressively,
thus being able to provide results in a more efficient manner.

6.2.5 Results for I/O activity

Lastly, we present results on the average number of page accesses (I/O activity) needed
by each method for each network to retrieve a trajectory, as seen in Table 7. Note that for
this comparison, we use the results of MON-tree for 1 million stored trajectories. Also,
for completeness in Table 8 we present the average number of disk accesses of MON-tree,
which depends on the number of inserted trajectories into the structure.

As can be seen from the above results, CeAL’s adjacency list-based structure offers a dis-
tinct advantage as far as disk accesses are concerned, as it is not sensitive to the increase of
the network size. The spatial methods demonstrate different behaviors. FNR-tree constructs

Table 7 Average number of disk
accesses for all methods Datasets FNR-tree MON-tree (T = 1M) CeAL

NY 5.00 7.03 2.00

BAY 5.00 7.78 2.00

COL 6.00 7.29 2.00

FLA 6.00 7.65 2.00

NW 6.00 7.50 2.00

NE 6.00 7.99 2.00

CAL 6.00 7.34 2.00

LKS 6.00 7.38 2.00

E 6.00 7.08 2.00

W 6.00 7.00 2.00

CTR 7.00 7.07 2.00
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Table 8 Average number of disk
accesses for a MON-tree with
varying trajectory number

Datasets 1K 10K 100K 1M

NY 4.45 5.84 6.43 7.03

BAY 4.28 5.04 6.78 7.78

COL 4.93 5.90 6.25 7.29

FLA 4.29 5.40 6.99 7.65

NW 4.21 5.32 6.52 7.50

NE 4.92 5.19 6.00 7.99

CAL 4.65 5.37 6.14 7.34

LKS 4.32 5.77 6.51 7.38

E 4.78 5.83 6.28 7.08

W 4.46 5.06 6.85 7.00

CTR 4.01 5.41 6.43 7.07

the entire network from the beginning; thus, the network size determines how deep the
resulting R-tree’s leaf nodes are stored, and the total number of accesses needed to retrieve
each level. On the other hand, MON-tree constructs only the relevant parts of the network,
i.e. only the parts with existing trajectories. This means that the network size itself doesn’t
affect the number of disk accesses, but the number of trajectories does.

6.2.6 Results for distance calculations

CeAL uses Dijkstra’s Shortest Path algorithm to find the closest trajectories to the points of
interest q. Table 9 shows the number of performed calculations during the query trajectory
processing across all of the network datasets. These results were obtained on a network with
100000 stored trajectories, a query of 20 locations, and requesting 10 top-k trajectories. The
R-tree-based indexes do not use any shortest-path algorithm, since they return trajectories
contained within a provided bounding box.

Table 9 Number of
distance/shortest paths
calculations for CeAL

Datasets Min Max Average

NY 113675.00 323566.00 250235.12

BAY 81091.00 203337.00 195235.04

COL 218356.00 316043.00 238825.64

FLA 477433.00 1113304.00 781027.00

NW 302554.00 596789.00 526012.95

NE 823218.00 1480823.00 1137468.47

CAL 1135749.00 1449519.00 1135748.25

LKS 1908613.00 2225704.00 1908612.55

E 1573461.00 2286826.00 2238569.60

W 2028448.00 5810474.00 4014867.38

CTR 8650571.00 10667951.00 9424987.52
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7 Conclusions

There is an ever increasing need for spatial and temporal data (and their spatio-temporal
synthesis), which a user needs to retrieve efficiently, even in real time. We have exam-
ined three approaches towards the solution of the problem of trajectory storing, indexing
and retrieval in large spatial networks, through the implementation of three different meth-
ods. Any application dealing with multi-dimensional spaces can be based on the methods
using the R-trees family. On the other hand, our approach based on simpler structures and
algorithms, removes the need for intermediate R-trees and leads to better time performance.

FNR-trees displays some issues when compared to its antecedents. The main disadvan-
tage of this method is that it copies the whole network on its top level R-tree at the beginning
of its execution, which increases the construction time and makes its reconstruction
infeasible in case it is ever needed.

MON-trees improves upon the above, by not storing the entire network beforehand.
Instead, edges are stored in the R-tree only when needed, i.e. only when storing a trajectory
with edges that are not yet stored in the R-tree. If the edge has already been stored, then the
temporal data insertion will proceed as usual. As seen in the experimental section, from the
point of view of construction time, MON-trees should be favored. A direct consequence of
this is that each time we insert a new edge or search for an existing one, this is always per-
formed on a top level R-tree of smaller size than the FNR-tree, thereby generally decreasing
the time needed for these operations.

Our CeAL method is an alternative approach which is characterized be the following
advantages:

– Decreased storage space and construction time in comparison to the other two methods.
In particular, this advantage is more significant when compared with FNR-trees.

– By using a generalized metric similarity function, the trajectories are ranked according
to their relevance to the user query. This allows the user to retrieve the best trajectory
according to his needs. This could be achieved by the other two methods by manip-
ulating the query rectangle but this should come along with another set of difficult
problems.

– It returns to the user the desired number of trajectories (k) in a progressive manner,
whereas the other two methods return all the results they reach. This characteristic is
important not only in a real-world setting but performance-wise as well.

– It prevails in retrieving complete trajectories, although the other two methods perform
better at retrieving these parts of a trajectory which pass through a specific part of the
graph.

The effectiveness of all three methods depends on the number of the stored trajectories.
If this number is small, then the results will be poor. In particular, for the first two methods,
the user query might contain a small number of trajectories, or even none at all. On the other
hand, the CeAL method will always return a number of trajectories.

8 Future work

In this paper we focused in the problem of trajectory storing, indexing and retrieval in spa-
tial networks aiming at delivering an efficient and effective solution. Future research could
capitalize on the following ideas.
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The drawbacks of FNR-trees have been faced by MON-trees. Thus, one could invest in
improving further MON-trees instead of FNR-trees. MON-trees could be augmented with a
ranking mechanism to deliver the trajectories according to the user input. Locations of inter-
est could be integrated on this method as well, which could be translated to a representative
trajectory. The trajectories discovered by the method would then be ranked based on spatial
and temporal distances before returned to the user.

Another improvement of this method could be to provide the capability to define the
desired number of the trajectories, ensuring that the user will receive only the most relevant
results. This requires a metric function to rank the trajectories and return only the closest
ones. As seen, the number of requested trajectories does not affect their discovery speed;
e.g. a query requesting k trajectories and one requesting k + 1000 trajectories will need
approximately the same time.

MON-trees could be enhanced with a user-defined or derived threshold. For example, if
the user requests k trajectories, and several trajectories have a distance less than the thresh-
old, then the execution would stop and the trajectories would be delivered to the user as good
enough answers to query. This concept needs testing to come up with reasonable policies as
to what should be the threshold set.

As explained before, all examined methods are based on the existence of a significant
number of pre-stored trajectories to ensure that the results are relevant. If the number of
trajectories is small, then the results, although algorithmically correct, will suffer in terms of
quality and usefulness to the user. For this reason, an abundance of pre-existing trajectories
is required, either real or generated. Using minimum spanning trees could help in separating
the graph in segments, or neighborhoods, which can communicate with each other, and
generating trajectories on each of these segments.

Another alternative could be based on the wide proliferation of social networks and on
using spatio-temporal data gathered and aggregated from them. Proper anonymization tech-
niques could be used to avoid invoking personal information issues. Unfortunately, there is
lack of such datasets extracted from major social networks.
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