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Abstract
Although data analysis and mining technologies can efficiently provide intelligent and per-
sonalized services to us, data owners may not always be willing to share their true data
because of privacy concerns. Recently, differential privacy (DP) technology has achieved
a good trade-off between data utility and privacy guarantee by publishing noisy outputs.
Nonetheless, DP still has a risk of privacy leakage when handling correlated data directly.
Current schemes attempt to extend DP to publish correlated data, but are faced with the
challenge of violating DP or low-level data utility. In this paper, we try to explore the essen-
tial cause of this inapplicability. Specifically, we suppose that this inapplicability is caused
by the different correlations between noise and original data. To verify our supposition, we
propose the notion of Correlation-Distinguishability Attack (CDA) to separate IID (Inde-
pendent and Identically Distributed) noise from correlated data. Furthermore, taking time
series as an example, we design an optimum filter to realize CDA in practical applications.
Experimental results support our supposition and show that, the privacy degree of current
approaches has a degradation under CDA.

Keywords Data publishing · Correlated data · Privacy preserving · Differential privacy ·
Filtering attack

1 Introduction

As a common attribute of data, correlation can reflect the connections among data in
real-world applications. Aggregating and mining the correlation attribute is beneficial to
governments, businesses and individuals in lots of fields, such as travel routes recommen-
dation [12, 18], road traffic dispatching [10], and environmental protection (e.g., air quality
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monitoring) [17, 26]. For example, correlated location data uploaded by the user to the
service provider can be used to provide better navigation service. Moreover, trajectories
aggregated and mined by the third party can support for business hotspots analysis.

As the above examples suggest, correlated data are significantly useful in knowledge dis-
covery and acquisition. Nonetheless, correlated data publishing without special sanitization
may violate individual’s privacy. For example, by observing a user’s historical locations,
an adversary can infer the next position that the user wants to go to based on prediction
techniques. Due to privacy leakage concerns [13, 14, 22], data owners may not be will-
ing to publish their location data. A privacy disclosure instance of location data release is
illustrated in Example 1 and Figure 1.

Example 1 Consider a trajectory publishing scenario, where a trajectory consists of corre-
lated locations, as shown in Figure 1. To obtain better location-based services (LBSs), the
user Amy needs to upload her location data sampled at different timestamps to the service
provider. After collecting and curating Amy’s historical positions, the provider is able to
provide high-quality personalized LBSs for her, such as shopping recommendations and
route planning. However, by analyzing Amy’s historical positions, a malicious provider can
predict her next position based on trajectory prediction algorithms, therefore, violating her
privacy. It can be seen that publishing one’s correlated locations without special sanitization
may pose serious threats to individual location privacy.

The problem of private correlated data publishing has attracted attentions from
researchers spanning multiple disciplines [4, 15]. In the advanced technologies, random
perturbation induces uncertainty (e.g., random noise) about individual values, and the intro-
duction of a small amount of noise can protect user’s privacy while has little impact on data
utility. Therefore, it has become a widely accepted and practical approach for private data
publishing. Among the alternatives, differential privacy [7, 8] is a state-of-the-art standard
privacy notion. By introducing IID (Independent and Identically Distributed) Laplace noise,
which means that the distributions of the noise are the same and the noise are independent
with each other, it provides privacy guarantee that can be mathematically proved. An obvi-
ous advantage of differential privacy is that it guarantees strong security regardless of the
extent of background knowledge an adversary has of the data.

Because of the intrinsic limitation that standard differential privacy assumes that the data
intended to be protected must be independent, it is not suitable for correlated data release.
Literature on the study of this issue has explained this inapplicability using Conditional
Probability Inference (CPI) [29]. They thought that priori knowledge about the correlation
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Figure 1 Privacy disclosure instance of trajectory data release
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may increase the success probability of an attack. Based on this deduction, they established
specific correlation models, e.g., Markov [9], Bayesian [21, 29, 30] and correlation degree
matrix model [24], to describe the correlation of original data. Then they calculated the
correlation coefficients according to these models and regarded them as the weight of sen-
sitivity function. The key idea of this kind of methods is that, increasing the noise size can
offset the negative effect caused by the priori correlation knowledge. The other mechanism
is the transform-based methods, which transformed the correlated data to another indepen-
dent domain (e.g., Discrete Fourier Transform (DFT) [25] and Discrete Wavelet Transform
(DWT) [28]), or extracted a set of independent properties to express the correlation features
of the data (e.g., Principal Component Analysis (PCA) [27]). Then the perturbation was
added into the transformed data or extracted properties. After inverse transformation, they
got the data with perturbed noise.

Despite the improvement in privacy guarantee introduced by these two kinds of cor-
related data publishing schemes, current solutions are still faced with the following two
challenges:

– Low-level Data Utility. By increasing noise size, model-based schemes can offset the
negative effect caused by the correlation to a certain degree. But bigger noise size added
into the outputs means worse data utility. Model-based methods sacrifice data utility to
guarantee privacy.

– Violating DP. Although transform-based methods do not introduce more noise, the
noise distribution after inverse transformation does not obey the Laplace form. There-
fore, the noise form does not conform to the requirement of differential privacy.

These challenges imply that existing two kinds of mechanisms have not fundamen-
tally solved the problem of differentially private publication for correlated data release. In
this paper, we attempt to explore the essential reason of inapplicability of current meth-
ods for correlated data release. In consideration of the correlation, we find that the noise
added into the output results in current methods is IID while the output results are cor-
related. According to the signal processing theory, IID noise can be filtered out from the
correlated data. Thus, we suppose that the essential reason why current methods do not
suit for correlated data release is that the correlation between noise and output results are
different.

Based on this idea, we propose a mechanism, called “correlation distinguishability attack
(CDA)”, to verify our supposition. CDA attempts to separate the IID noise from the cor-
related original outputs, which can validate the effectiveness of state-of-the-art protection
schemes. Specifically, we first give the formal definition of CDA. Then based on this
definition, we deduce the upper bound of privacy distortion in correlated data release. Fur-
thermore, taking time series as an example, we design an optimum filter to conduct CDA
in practice. To the best of our knowledge, it is the first work utilizing a correlation distin-
guishability attack to explore the privacy distortion of current methods for correlated data
release. Our contributions are threefold:

– A notion of correlation distinguishability attack is proposed to explore the essential
cause of privacy distortion. CDA attempts to filter out IID noise from the original cor-
related data utilizing the different correlations of them. Furthermore, an optimum filter
is designed to conduct CDA in practice. Taking time series as an example, we verify
the correctness of our supposition.

– Since existing methods are based on different principles and there is no general criterion
to test the privacy guarantee, performance of them cannot be compared horizontally. As
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a general attack model, CDA can be regarded as benchmark to test the performance of
different methods.

– Theoretical and experimental analysis demonstrate the correctness of our supposition,
which indicates that the reason why current methods can not apply to correlated data
publishing is caused by the different correlation between noise and original data. It will
lay a theoretical foundation for perfect differential privacy scheme design for correlated
data release.

The remainder of this paper is organized as follows. In Section 2, we summarize related
work on attack and differentially private publication methods over correlated data, and
describe the limitations of existing methods. We then briefly introduce the notations and
definitions adopted in this work in Section 3. Our proposal and experiments are described
in Sections 4 and 5, respectively, followed by the conclusions and future work in Section 6.

2 Related work

Current methods demonstrate the incompatibility of differential privacy applied to corre-
lated data from the aspect of Conditional Probability Inference (CPI). To overcome this
limitation, differential privacy preserving methods for correlated data release have been
developed, and can be categorized into model-based and transform-based mechanisms. The
model-based methods establish specific models to describe the correlations of data and
recalculate the noise according to these models. The transform-based mechanisms transform
the correlated data to another independent domain or extract a set of independent properties
to express the correlated ones, then IID noise is added in the independent domain or proper-
ties. In this section, we describe the attack methods first and then introduce these two kinds
of preserving schemes in detail.

2.1 Attackmethods

The pioneer study by Kifer et al. [5], confirmed that if correlated records are ignored, the
released data will have a lower privacy guarantee than expected. They explained this idea
based on examples from social network research as well as tabular data for which determin-
istic statistics have been previously released. The work in [23] used the example provided
in [5] to see how correlation could enhance an adversary’s ability in differentiating two
neighboring databases. Kargupta et al. [16] developed a random matrix-based spectral fil-
tering method to retrieve original data from perturbed distribution. Nevertheless, they do
not focus on the attack method on correlated data publishing. Agrawal et al. [2] utilized
Bayesian based method to infer the original data from perturbation. Their method is similar
with the current attack on DP based methods. Agrawal et al. [1] discussed an Expectation
Maximization (EM) algorithm for distribution reconstruction which is more effective than
the currently available method in terms of the level of information loss. Domingo-Ferrer
et al. [6] have shown that, for noise addition methods used in practice, it is possible for a user
of the masked data to estimate the distribution of the original data. Literature [29] assumed
the tuples are probabilistically correlated, and illustrated that the privacy leakage may not
be bounded for weak adversaries. As an example to show the limitations of differential
privacy under correlated data, a Bayesian attack on differentially private mechanisms pro-
posed by Liu et al. [19] using real-world location datasets leverages the correlation between
location information and social information of users. As the state-of-the-art study on DP’s
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limitations for correlated data release, literature [31] also gave an example to consider the
impact of tuple correlations on DP.

Current methods try to demonstrate DP’s limitations for correlated data release by giving
specific examples taking advantage of CPI. However, these methods do not provide a solid
theoretical foundation and can not clarify the essential cause of this issue. Thus, a method
is needed to give the essential reason of privacy leakage and its upper bound in theory.

2.2 Model-basedmechanisms

In the model-based methods, Cao et al. [3] proposed a correlated Hidden Markov detection
model to deal with the problem that abnormal data may raise the global sensitivity. They
detected and removed the abnormal data by applying the one-step transition probability,
which can decrease the noise level added to the original data. However, this model assumed
that the releasing probability of the current data is only relevant to its former data, leading
to the decline of the detecting results. To increase the accuracy of the detecting results, Yang
et al. [29] proposed a privacy definition called Bayesian differential privacy. They con-
structed a Gaussian correlation model, which assumed that the data to be released conform
to the Gaussian distribution. Except for these probability models, Zhu et al. [24] built a cor-
related degree matrix to measure the whole relationship between records. The coefficients
of the correlated degree matrix were used as weights to rebuild the sensitivity function, in
place of the traditional global sensitivity. Therefore, the correlated sensitivity can be used
to decrease the redundant noise introduced by the global sensitivity.

They can preserve the privacy of correlated data under their assumption. The idea of
these model-based methods is to increase the noise size to offset the privacy leakage caused
by the correlation, but the behavior of increasing noise size will destroy the data utility.

2.3 Transform-basedmechanisms

In the transform-based methods, a typical approach is to transform correlated data into inde-
pendent series in another domain, thus the correlated data can be processed independently.
For example, Rastogi et al. [25] transformed correlated data into independent series in
another domain by applying DFT, and then the noise was added to the Fourier coefficients.
Thus, perturbed data can be obtained by applying the inverse DFT transform. However, DFT
is just a global transformation, which can not describe the local features of the original data
accurately. As an improved algorithm, Xiao et al. [28] expanded the range of applications
by applying DWT, which can preserve more features of the data in comparison with DFT.
In dealing with high dimensionality data, Jiang et al. [27] extracted the features of the data
using the properties of PCA, and then these correlated features were classified into several
groups of independent features by applying Singular Value Decomposition (SVD).

Compared with the model-based methods, the transform-based methods can ensure a
high data utility. However, the noise after inverse transform does not confirm to Laplace
distribution, which will lead to a risk of violating DP.

2.4 Summary

In terms of extending differential privacy technology for correlated data publishing, exist-
ing schemes illustrate the privacy distortion problem using intuitive examples based on
CPI. Unfortunately, they do not give the essential cause of this distortion. Intuitively, cur-
rent methods try to solve this problem by establishing correlation models or transforming
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correlated data to independent ones. However, model-based methods are faced with the
problem of excessive noise while transform-based methods can not preserve differential
privacy. Therefore, in this paper, we aim to address the following issues:

– What is the essential reason of the privacy distortion caused by correlated data
publishing using standard differential privacy technology?

– How much is the upper bound of this privacy distortion in theory?
– Are the current schemes effective for correlated data publishing and how much is the

privacy distortion if they do not achieve the privacy level as they claim?

3 Preliminaries

In this section, we first define the notations associated with our work and then we review the
theory of differential privacy. Next, we demonstrate the problem of privacy distortion using
specific example taking advantage of conditional probability inference. Finally, we explain
the principle of current methods and indicate the shortcomings of them.

3.1 Notations

As differential privacy aims to guarantee the highest level of privacy, and it assumes that
even when an attacker can obtain the entire background information, differential privacy
should still preserve the privacy for the target individual. Thus, we first give the definition
of correlated and sensitive dataset to be protected, as formalized in Definitions 1 and 2.

Definition 1 (Correlated Dataset) A correlated dataset D = {D1, · · · ,Di, · · · , Dn} means
that the value change of a variable Di has an effect on the value change of another variable
Dj , where Di,Dj ∈ D. In this case, we will say Di and Dj are correlated.

Usually, different data types have different correlation representations. For example, time
series usually uses auto-correlation function to represent its correlation, while tuple data
use correlation coefficients. For the sake of clarity, in this paper, we take time series as an
example and analyze the correlation and attack method of time series.

Definition 2 (Sensitive Dataset) A correlated dataset D = {D1, · · · , Di, · · · ,Dn} that the
user wants to protect is defined as a sensitive dataset. Suppose two arbitrary records Di and
Dj are correlated in dataset D, whose correlation relationship is expressed by notation δij .
Then a sensitive dataset D is a set of data with correlation matrix:

Δ=

⎛
⎜⎜⎝

δ11 δ12 · · · δ1n
δ21 δ21 · · · δ2n
· · · · · · · · · · · ·
δn1 δn2 · · · δnn

⎞
⎟⎟⎠ ,

where δ ∈ Δ.

Note that the ways of computing correlation matrix Δ are different in various data
types. In time interval analysis, it can be expressed by an auto-correlation function while in
attribute analysis, Pearson correlation coefficient is an efficient way to express correlated
records.
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Differential privacy preserves user’s privacy by defining a neighboring dataset which dif-
fers the record that the user wants to protect. In Definition 3, we formalize the neighboring
dataset that lacks this record.

Definition 3 (Neighboring Dataset) If a sensitive data Di is removed from the dataset D,
denoted as D−i . Then we called the dataset D−i as the neighboring dataset of D.

The above definitions give the formal definitions of correlated data and the dataset
consisting of sensitive data associated with differential privacy technology. Next, we demon-
strate how differential privacy protects sensitive data using the notion of neighboring
dataset.

3.2 Differential privacy

Differential privacy is a currently recognized preservation model that can guarantee stricter
security. It is essentially a kind of noise perturbed mechanism. By adding noise to the raw
data or statistical results, differential privacy can guarantee that the value changing of a
single record has a minimal effect on the statistical output results. Thus, differential privacy
can not only preserve the privacy of sensitive data, but also support data mining technologies
on statistical results. Its formal definition is shown in Definition 4.

Definition 4 (ε-Differential Privacy [7]) We give the dataset D and its neighboring dataset
D−i , which have the same cardinality but differ in only one record. A random perturbation
mechanism, M , ensures ε-differential privacy if M makes every set of outcomes, S, for any
pair of D and D−i satisfy:

Pr[M(D) ∈ S] ≤ exp(ε) × Pr[M(D−i ) ∈ S], (1)

where S ⊆ Range(M) and Range(M) is the value range of M . Pr[·] and ε denote prob-
ability distribution and privacy budget parameter, respectively. A smaller ε means better
privacy. Figure 2 depicts the output probability distribution of randomized algorithm M

satisfying ε-differential privacy on D and D−i .

Figure 2 Output probability density of random algorithm M on D and D−i
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Table 1 Joint Distribution
(Independent) x1 = 0 x1 = 1

x2 = 0 0.1 0.15

x2 = 1 0.01 0.49

In practical applications,M is generally realized by a Laplace mechanism. By adding IID
noise conformed to Laplace distribution into the correlated data series, Laplace mechanism
achieves the privacy requirement of differential privacy. Its formal definiton is shown in
Definition 5.

Definition 5 (Laplace Mechanism [8]) Assuming that f (·) is the statistical output function,
then a noise sequence Y ∼ Lap(λ), which obeys Laplace distribution, can make random-
ized algorithm M(D) = f (D) +Y satisfy ε-differential privacy. λ is the scale parameter of
the Laplace distribution, and the PDF of the Laplace distribution is

ρ(x) = 1

2λ
exp

(
−|x|

λ

)
. (2)

The scale parameter λ is determined by sensitivity function Δf and privacy preserving
intensity ε:

λ = Δf

ε
, (3)

where Δf is the maximum effect of the statistical output function that a single record has
on:

Δf = max
D,D−i

‖f (D) − f (D−i )‖1 (4)

As an example, consider a dataset whose sensitivity of a query is 1. According to the
differential privacy, the noise added to the true answer, which is distributed according to
Lap(1/ε), suffices to guarantee ε-differential privacy.

3.3 Conditional probability inference

Current methods explain the issue of privacy distortion utilizing CPI and specific examples.
Here we give an example of CPI to demonstrate the principle of their idea.

Suppose the dataset, D = {x1, x2}, (x1, x2 ∈ 0, 1), with the probability shown in Table 1.
Consider a query function, f (x1, x2) = x1 + x2. The Laplacian mechanism, M , adds the
Laplacian noise, Lap(1/ε), to the query result. Since x1 and x2 are independent, we have
Pr(x2|x1) ≡ Pr(x2). For M satisfying ε-DP, we have e−ε ≤ Pr(s|x1=0)

P r(s|x1=1) ≤ eε , s ∈ S, as
shown in Figure 3a.

If x1 and x2 are correlated, for instance, with the probabilities in Table 2, according to
the Bayes’ theorem, Pr(s|x1) = ∑

x2
Pr(r|x1, x2) · Pr(x2|x1). Since x1 = x2 with high

Figure 3 Conditional probability distribution. a Independent data. b Correlated data
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Table 2 Joint Distribution
(Correlated) x1 = 0 x1 = 1

x2 = 0 0.49 0.01

x2 = 1 0.01 0.49

probability, Pr(s|x1 = 0) ≈ Pr(s|x1 = 0, x2 = 0) and Pr(s|x1 = 1) ≈ Pr(s|x1 =
1, x2 = 1). As the curves Pr(s|x1 = 0) and Pr(s|x1 = 1) separate, the distinguishability
is no longer bounded in [e−ε, eε], as shown in Figure 3b, although the mechanism M still
satisfies ε-DP.

3.4 Analysis of current methods

The differential privacy theory itself requires that the data to be protected are independent
of each other. The existing two types of methods are model-based or transform-based, and
the purpose is to meet this requirement. We analyze the existing two types of methods and
try to explore the essential reason of inapplicability for correlated data release.

3.4.1 Analysis of model-basedmechanisms

Model-based mechanisms first use correlation models (such as Markov chain model [3],
Bayesian model [29], correlation coefficient matrix [24], etc.) to describe the correlation
between data. Then they regard the correlation coefficient as the weight of the differential
privacy sensitivity function to recalculate the noise size. In terms of these methods, deleting
a single record Di has an effect on the sensitivity function:

Δfi =
n∑

j=0

∣∣δij

∣∣ (∥∥f
(
Dj

) − f
(
D−j

)∥∥
1

)
(5)

where D−j is the dataset that deleting the j th element from D

Δf = max
i∈n

(Δfi) (6)

Figure 4 is the diagram of model-based methods. Combaning Figure 4 and (6), we can
conclude that model-based approaches essentially compensates for the decline of privacy
degree by increasing the size of the IID noise, but excessive noise leads to a sharp drop in
data availability.

Figure 4 Diagram of Model-based Mechanisms
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3.4.2 Analysis of transform-basedmechanisms

As shown in Figure 5, the transform-based methods first transforms the correlated query
results into independent domains by using transformation methods (e.g., DFT, DWT, etc.):

fT (D) = T (f (D)) (7)

where fT (D) indicates the mutual independent query results after transform and T (·) is
the transform function. Then we add IID Laplace noise into the indenpendent domain and
obtain:

f ′
T (D) = T (f (D)) + Y (8)

where f ′
T (D) is the perturbed results in the independent domain.

Finally, inverse transform is used to generate the perturbed query results:

M(D) = T −1(f ′
T (D)) (9)

where T −1(·) is the inverse transform function.
Although the transform-based methods can guarantee high data availability, the noise

does not conform to Laplace distribution after inverse transformation, so it no longer
satisfies the definition of differential privacy.

4 Methodology

In this section, we first formalize the problem definition. Then we illustrate the diagram-
matic sketch of CDA and give its formal definition. Next, based on our CDA, we derive the
relationship between CPI and CDA. Finally, aiming at verifying our supposition, we design
an optimum filter to implement CDA in time series.

4.1 Problem definition

Section 3.3 demonstrates that standard differential privacy has a privacy distortion in corre-
lated data release. Our goal is to explore the essential reason of this inapplicability. Next we
formalize the problem of privacy distortion and give some necessary definitions associated
with the problem.

Definition 6 (Noisy Dataset) Suppose that the data curator wants to know the true values of
elements in D, i.e., if f (·) indicates the query function, then f (D) = D. The noisy dataset
D′ can be explained as an original sensitive dataset D plus a corresponding noise series, i.e.,

D′ := D + Y, (10)

Figure 5 Diagram of Transform-based Mechanisms
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In the differential privacy protection technology concerned in this paper, Y obeys the
Laplace distribution with a scale parameter λ.

Example in Section 3.3 shows that data correlation can be regarded as an auxiliary
information to infer the true data value. Here, we consider the inferring procedure as a pos-
terior estimate processing. It means that the attacker wants to know the true data values on
the condition of the perturbed publishing data and correlation. The estimate processing is
formalized in Definition 7.

Definition 7 (Posterior Estimate) The dataset after inferring can be regarded as a series that
contains the posterior estimate of the sensitive data. The posterior estimate, denoted by D̂,
can be given by the following conditional estimate:

D̂ := ES(D|D′, Δ), (11)

where D′ is the noisy dataset and denotes the set of observations obtained by the data
collector, and ES(·) is the estimate function.

Actually, no matter what kind of attack, the essence of CPI and our proposed CDA is a
process of estimation, which can be expressed by Definition 7.

4.2 CDA

In this section, we first illustrate the diagrammatic sketch of CDA to demonstrate the prin-
ciple of our solution. Then we give the formal definition of CDA. Finally, we analyze the
relationship of CPI and CDA in theory.

4.2.1 Diagrammatic sketch of CDA

Figure 6 illustrates the diagrammatic sketch of our solution CDA. As shown in Figure 6,
to preserve differential privacy of the sensitive dataset D, mechanism M adds an IID noise
sequence Y to D and obtains a perturbed dataset D′. ε-differential privacy makes the dif-

Figure 6 Illustration of CDA for correlated data release
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ference of the probability distribution of the outputs between the perturbed dataset D′ and
its neighboring dataset D′−i be bounded by [e−ε, eε], as shown in Figure 6b(1). However,
the original sensitive data in D are correlated but the noise introduced by mechanism M is
an IID series. Intuitively, the IID noise series Y can be sanitized from the perturbed sensi-
tive dataset D′ by applying CDA (e.g., a filter) and the adversary obtains a estimate dataset
D̂, as shown in Figure 6a(2). Compared with the probability distribution of M

(
D′−i

)
, the

probability distribution of M(D̂−i ) is closer to M (D), which means that the probability
distribution of estimate dataset D̂ is closer to that of D, as shown in Figure 6b(2). As a
result, the privacy parameter ε′ in Figure 6b(2) is larger than ε in Figure 6b(1), indicating a
reduction in privacy degree.

4.2.2 Correlation-distinguishability attack

Because of the correlation of data, there is an inherent disadvantage when using IID noise to
preserve differential privacy. Although differential privacy has achieved complete privacy
within its defined strength, and large quantities of methods claim that they can effec-
tively protect the privacy of correlated data, IID noise can still be sanitized to a certain
extent and these schemes still have the potential risk of a privacy distortion as illustrated
in Section 4.2.1. Inspired by this observation, we propose a notion called “Correlation-
Distinguishability Attack (CDA)”. Based on this notion, we also explore the relationship
between CPI and CDA. The formal definition of CDA is as follows:

Definition 8 (CDA) Correlation-Distinguishability Attack is defined as a mechanism F to
obtain the posterior estimates of the true data values in D based on the noisy dataset D′ and
the correlation matrix Δ:

F(D̂,D) := ES(D̂ � D|D′, Δ), (12)

where � means the process of the posterior estimate.

In practice, a mechanism satisfies CDA can be realized under the least mean square error
criterion, which makes the probability distribution of D and D̂ minimum, i.e.,

F(D̂,D)

s.t . min{E[D̂ − D]2} (13)

4.2.3 CDA VS CPI

From the example of CPI given in Section 3.3, we can see that CPI is indeed a estimation
process under the posteriori maximum probability condition. While CDA is also a estima-
tion process under the least mean square error condition. Theorem 1 proof the equivalence
of these two attack methods.

Theorem 1 If the noise added into the original dataset obeys Laplace distribution, then the
CPI and CDA is equal to the attacker.

Proof According to the related knowledge of signal processing, if the following condition
can be met, maximum posterior probability estimation and minimum mean square error are
equal to the attacker:
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If the cost function is a symmetric convex U function, and the posterior probability
density function ρ(D|D′) is symmetric with the posterior mean value, i.e.,

– C(D̂) = C(−D̂), where C(·) is the cost function.
– C(bD̂1 + (1 + b)D̂2) ≤ bC(D̂1) + (1 − b)C(D̂2) (Convexity), where 0 ≤ b ≤ 1.

– ρ(ϕ|D′) = ρ(−ϕ|D′) (Symmetry), where ϕ
def= D − D̂MMSE = D − E(D|D′).

In this paper, we use the square error as the cost function. Obviously, it is easy to meet the
first two conditions above. Next, we prove that the third condition is satisfied.

According to the knowledge of estimate theory, Bayes criterion transforms to MMSE as
the square error is the cost function. Then the estimate under Bayes criterion is equal to that
under MMSE’s, i.e.,

Risk(D̂MMSE |D′) =
∫ +∞

−∞
(D − D̂)2f (D|D′)dD,

where Risk(·) is the average risk function, indicating the expected value of square error.
Obtain the first order partial derivative of D̂MMSE , and make the formula to 0, then we

have

dRisk(D̂MMSE |D′)
dD̂MMSE

=
∫ +∞

−∞
2(D̂MMSE − D)f (D|D′)dD = 0.

Then

D̂MMSE =
∫ +∞
−∞ Df (D|D′)dD∫ +∞
−∞ f (D|D′)dD

.

Since ∫ +∞

−∞
f (D|D′)dD = 1,

Then we have

D̂MMSE =
∫ +∞

−∞
Df (D|D′)dD = E(D|D′),

i.e.,

ϕ = D − D̂MMSE = D − E(D|D′).

In addition, ϕ obeys the Laplace distribution with mean value μ = 0, then the probability
density function is symmetric when μ = 0. Therefore, the symmetry in condition 3 is
proved.

Theorem 1 has proved the equivalence of CPI and CDA. Thus, CDA can be regarded as
a benchmark to test the performance of current protect methods. Next, we give the upper
bound of privacy distortion under CDA.

Although differential privacy uses a mathematical tool ε to represent the privacy degree,
the noise must strictly obey a Laplace distribution. However, this is a rigorous restriction
and the noise after sanitizing may not obey this specific distribution. Thus, we need a new
privacy metric to measure the retained privacy strength. Since entropy can reflect the uncer-
tainty of the true data values for an adversary regardless of the form of noise [20], in this
paper, we use the notion of entropy to quantify the privacy distortion. A privacy distortion
based on entropy is intuitively defined as Definition 9.
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Definition 9 (Privacy Distortion) Given the perturbed and estimate dataset D′ and D̂, the
privacy distortion PD(·) is given by the following formula:

PD(D̂,D′) := −
n∑

i=1

Pr(D′
i − D̂i) lnPr(D′

i − D̂i), (14)

where Pr(D′
i − D̂i) denotes the probability of the difference value between D′

i and D̂i .

In our work, we define privacy distortion using a general index. Then the attack mecha-
nisms including CPI and CDA can be analyzed compared with a unified index. Theorem 2
gives the upper bound of privacy distortion after CDA.

Theorem 2 The upper bound of privacy distortion after CDA, PDCDA(D̂, D′), is

max[PDCDA(D̂,D′)] = ln(2λ) + 1, (15)

where λ is the scale parameter of the noise introduced by Laplace mechanism.

Proof

PDCDA(D̂, D′) : = PD(F(D̂, D),D′)
= PD(ES(D̂ � D|D′,Δ),D′).

If the correlation of original data is strong enough or the designed CDA mechanism is
optimal, the IID noise Y can be sanitized completely from the perturbed dataset D′. Then
we have

PD(ES(D̂ � D|D′,Δ),D′) ≤ PD(D, D′)

= −
n∑

i=1

Pr(D′
i − Di) lnPr(D′

i − Di)

= −
n∑

i=1

Pr(Yi) lnPr(Yi)

=
n∑

i=1

[ln(2λ) + |x|
λ

] 1

2λ
exp−|x|/λ dx

= ln(2λ) + E(Y )/λ

= ln(2λ) + 1.

Since ln(·) is a monotone increasing function and σ ′2 < σ 2 always holds, we have

Dis
D̂,D′(D̂, D′) < 1. In addition, σ ′2 and σ 2 are usually bigger than

√
1

2πe
, leading to

Dis
D̂,D′(D̂, D′) > 0. Thus, Theorem 2 demonstrates the existence of privacy distortion

after filtering.

4.3 Optimum filtering against time series

Section 4.2 gives the proposed attack model CDA in this paper, and theoretically proves
that the existing CPI attack is equivalent to CDA. In this section, taking time series as an
example, the optimal filter is designed to implement CDA, and our supposition is verified
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by experiments, which lays a foundation for correlated data publishing using differential
privacy technology.

4.3.1 Principle of filtering attack

As shown in Figure 7, taking time series as an example, we present a filtering attack model
for correlated time series release via differential privacy. Since the noise added by DP is
small, the correlation of time series before and after filtering does not change much. It is
assumed that the correlation of the original time series is public, since the added noise is
an IID Laplace sequence, and the associated time series can be regarded as a short-term
stationary process.

In Figure 7, X = {X (1, t1) , . . . , X (k, tk) , . . . , X (n, tn)} is the original time series
contains timestamps. RXX (τ) is the auto-correlation function of X, with a range of
(−∞,+∞). τ is the time interval. RY (τ) is the auto-correlation function of Laplace noise
Y . Since Y is IID in standard DP, it can be considered as a white noise series. Then the
auto-correlation of Y is:

RY (τ) = (N0/2) ∗ δ (τ ) , (16)

where N0/2 is the power spectrum of Y , δ (τ ) is impulse response and δ (τ ) = 0, τ �= 0.
Then RY (τ) has a value only when τ �= 0. The filter can use the different correlation
characteristics of the original data and noise to filter out the noise, leading the increase of
probability of successful attack.

4.3.2 Design of optimum filter

From the knowledge of signal processing, the optimum estimate of the stationary time series
can be obtained by Wiener filtering under the minimum mean square error criterion. As
shown in Figure 7, the perturbed sequence X′ is obtained by adding Laplace noise series Y

to the original time series X, i.e.,
X′ = X + Y . (17)

If X′ passes through a filter with an impulse response h (τ), the series X̂ after filtering is

X̂ (k) =
∞∑

k=−∞
h (k)x′ (j − k) , (18)

where x′ (j) ∈ X′. Thus, the noise series filtered is

y′ (k) = x′ (k) −
∞∑

k=−∞
h (k)x′ (j − k) . (19)

Since the Wiener filter is optimum to filter out IID noise from stationary time series, we
use the Wiener filter to conduct the filtering process. The solution process of the impulse
response h (τ) is described below.

Figure 7 Illustration of Filtering Attack
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According to the Wiener-Hoff equation, the formula to solve the impulse response of the
Wiener filter is

P T = hT R, (20)

where R is the auto-correlation function of X′, P is the cross-correlation function of X and
X′. Then h (τ) should be

h (τ) = R−1P . (21)

Since Y is a white noise series, its auto-correlation function is

RY (τ) = (N0/2) ∗ δ (τ ) . (22)

In addition, the auto-correlation of perturbed series X′, R, and the cross-correlation
function of X and X′, P , can be calculated by

R = E
[
x′ (k) x′T (k)

]
,

P = E
[
x (k) x′ (k)

]
.

(23)

Since the noise added by DP is small, the correlation of the time series before and after
filtering does not change much, and the formula of P can be equivalent to

P = E
[
x′ (k) x′ (k)

]
, (24)

Substitute formula (24) and (23) into formula (21), we will obtain the impulse response
h (τ) of Wiener filter.

After the impulse response of the Wiener filter is obtained, a filtering attack can be
initiated. The implementation steps of the filtering attack are as shown in Algorithm 1.

5 Experimental evaluation

In this section, we evaluate the performance of current schemes under our proposed attack
model to verify our supposition. Specifically, we first analyze the influence of correlation
on privacy protection strength, and explore whether our solution is effective. Then the resis-
tance performance of current schemes are evaluated on four real-world datasets. Finally, we
evaluate the performance of current schemes in terms of data utility.

5.1 Datasets and configuration

The experiments were performed on an Intel Core 2 Quad 3.06-Hz Windows 7 machine
equipped with 16 GB main memory. Each experiment was run 1000 times. In order to
evaluate the effectiveness of attack model and the existing methods, we select four real-
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world datasets from four areas, including traffic, medical, network and finance. Datasets are
described as follows:

Trajectory : Owing to the Geolife project [32], this dataset contains 17,621 trajectories
with a total distance of 1,292,951 km and a total duration of 50,176 h. These trajectory
datasets were collected by Microsoft Research Asia from 182 users over five years (from
April 2007 to August 2012). A trajectory in this dataset contains the latitude, longitude,
altitude coordinates and timestamp.

Netrace [11] : The dataset contains forwarding records of IP layer in a university , which
records the timestamps and the number of external devices accessing a device on the intra
net. The dataset contains a total of 65,536 records from 1,423 connections.

Flu :1 Flu is the weekly surveillance data of Influenza-like illness provided by the Influenza
Division of the Centers for Disease Control and Prevention4. We collected the weekly out-
patient count of the age group [5-24] from 2006 to 2010. This time-series consists of 209
data points.

Unemployment :2 Unemployment is the monthly unemployment level of African Amer-
ican women of age group [16-19] from ST. Louis Federal Reserve Bank6. This data set
contains observations from January 1972 to October 2011 with 478 data points.

In the four datasets, the data in the Traffic dataset have the strongest correlations since
the cars can only travel on the road, i.e., the direction and velocity vary slowly. On the
contrary, the data in Netrace have the weakest correlations. This paper mainly tests the pro-
posed filtering attack model from four aspects, including the impact of correlation, practical,
effective privacy degree and privacy degree before and after filtering.

5.2 Impact of correlation

In order to evaluate the impact of correlation knowledge possessed by the attacker on the
privacy protection intensity, it is assumed that the attacker has all and no correlation back-
ground knowledge. We use the attack model proposed in this paper to attack the four
time series protected by ε-differential privacy. According to calculation method of pri-
vacy degree, the effective privacy protection strength ε′′ before and after attack is obtained
respectively. The experimental results are shown in Figure 8.

As shown in Figure 8, on the four datasets, attacks with correlation knowledge filter
out more noise than attacks without background knowledge. That is to say, correlation
knowledge can be used as auxiliary information for attackers to get original data values
more easily. The experimental results in Figure 8 show that, a malicious attack with cor-
relation knowledge on the four time series protected by ε-differential privacy, achieves a
lower privacy degree ε′′ than that without correlation knowledge. For example, attacking
the Trajectory sequence using our attack model, when ε = 0.7, the attacker with correlation
knowledge gets a privacy degree ε′′ = 1.380, while the privacy degree without background
knowledge is 1.044.

1http://www.cdc.gov/flu/
2http://research.stlouisfed.org/
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Figure 8 Comparison results of impact of correlation on privacy degree. a Trajectory. b Netrace. c Flu. d
Unemployment

The experimental results show that, the attacker with correlation knowledge using the
optimal filter designed by this paper has higher probability of successful attack than that
without correlation background knowledge, which proves the effectiveness of the filtering
attack method.

5.3 Practical privacy degree

In this section, the four time series and their neighboring series with ε-differential privacy
are queried to calculate the practical privacy degree of current methods, which is denoted
by ε′.

As shown in Figure 9, the practical privacy preserving strength of each method is differ-
ent when protecting the same dataset: For Trajectory, when ε = 0.5, the practical privacy
degree of the MCMC method is 0.573, while that of DWT is 0.952. The results on the other
three datasets have the same trend. For example, for Unemployment, when ε = 0.5, the
practical privacy degree of Bayesian is 0.579 while that of CIM is 0.621. At the same time,
we observe that the practical privacy degrees on four datasets are different even if we use
the same method: when ε = 0.1, for Trajectory, the practical privacy degree ε′ of Bayesian
is 0.165, while that of Unemployment is 0.135.

In addition, it can be observed that, the practical privacy degrees of MCMC, Bayesian,
and CIM are lower than that of DWT and FPA on the same time series. It indicates that the
model-based approaches (MCMC, Bayesian, and CIM) have higher privacy degree than the
transform-based approaches (DWT and FPA).
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Figure 9 Comparison results of practical privacy degree of current methods. a Trajectory. b Netrace. c Flu.
d Unemployment

5.4 Effective privacy degree

This section calculates the effective privacy protection strength ε′′ of each method under
our attack model. Experimental comparison results are shown in Figure 10.

Compared with Figure 9, the privacy degrees of current methods in Figure 10 are all
higher than that in Figure 9. For Trajectory, when ε = 0.5, the effective privacy degree ε′′ of
CIM is 1.647, while the practical privacy degree ε′ is 0.742. Similarly, for Unemployment,
when ε = 0.3, the privacy degree reduces from 0.964 to 0.357. It can be inferred from the
experimental results that, the privacy protection strength of each method under the attack
model is reduced, indicating that the filtering attack does filter out part of the noise.

5.5 Privacy degree before and after filtering

In order to make the impact on the privacy degree more intuitive, this section verifies the
change of privacy protection intensity of each method before and after filtering attack when
ε = 0.7.

The experimental results in Figure 11 are comparisons of the practical and effective pri-
vacy degree of current methods under the attack model proposed in this paper. For example,
for Trajectory, the practical privacy degree of the CIM method is 1.169, while the effec-
tive privacy degree is 2.151. Similarly, for Unemployment, the practical privacy protection
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Figure 10 Comparison results of effective privacy degree of current methods. a Trajectory. b Netrace. c Flu.
d Unemployment

strength of FPA is 1.457, while the effective privacy degree is 2.039. The experimental
results show that, under our attack model, less privacy budget is needed.

In summary, the above evaluation demonstrates the following aspects:

– The attacker with correlation knowledge has a higher probability of successful attack
than that without correlation knowledge, and the stronger the correlation is, the bigger
the privacy distortion will be;

– The effective privacy degrees of existing methods under our attack model are lower
than the practical ones, indicating that current approaches do not achieve the desired
privacy degree;

– Model-based methods have a less degree of privacy distortion than that of transform-
based methods, while transform-based methods have a higher data utility than that of
the other.

6 Discussion

We have demonstrate the decline of privacy degree when differential privacy handles corre-
lated data using our proposed CDA model. Furthermore, we have proved the equivalence of
CDA and current attack model CPI. The purpose of CDA is to provide a simple and conve-
nient benchmark instead of CPI, which is hard to imply in practice, to test the resistance of
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Figure 11 Comparison results of privacy degree of before and after filtering. a Trajectory. b Netrace. c Flu.
d Unemployment

current protect methods. In fact, considering the opposite of CDA provides an inspiration
for us to design differential privacy protection methods for related data release. In our prior
work, we have propose a differential privacy release mechanism called “CTS-DP [13]” to
address correlated time series. CTS-DP uses auto-correlation function to express the depen-
dence of data and makes the correlation of noise and original data be the same. In addition,
except for time series, other correlated data type (e.g., tuple) can also be handled based on
the supposition in this paper.

7 Conclusions and future work

In this paper, we explore the essential cause of the inapplicability of current DP schemes
for correlated data release. We suppose that the inapplicability is caused by the difference
of correlations between noise and data. To verify our supposition, we propose a notion
called correlation-distinguishability attack (CDA), which can separate the IID noise used by
current schemes from the correlated data. We prove that the privacy distortion after CDA is
equal to that of current CPI, and give the upper bound of the privacy distortion. Compared
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with CPI, CDA is simple and convenient to conduct in practice. Furthermore, taking time
series as an example, we design a optimum filter to conduct CDA in practice. As far as we
know, this is the first work that attempts to explore the inapplicability of current schemes
taking advantage of the different correlations between noise and correlated data. Extensive
experiments on real-life datasets support our supposition. CDA can significantly reduce the
privacy strength of state-of-the-art approaches, and provide a benchmark for researchers to
design more effective privacy preserving methods for correlated data release.

Future work includes investigating more robust differentially private correlated data
publishing mechanisms that can resist the attack model proposed in this paper.
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