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Abstract
Recommending yet-unvisited points of interest (POIs) which may be of interest to users
is one of the fundamental applications in location-based social networks. It mainly replies
on the understanding of users, POIs, and their interactions. Previous studies either develop
matrix factorization-based approaches or utilize deep learning frameworks to learn better
representation of users and POIs in order to estimate users’ latent preference. However, most
of existing methods still confront the challenges like in traditional recommender systems,
such as data sparsity and cold-start. In particular, they have difficulties in fully utilizing
rich semantic information, such as social influence, geographical constraints and interac-
tions between users and POIs. To fill this research gap, we propose a new recommendation
framework – Hybrid Graph convolutional networks with Multi-head Attention for POI rec-
ommendation (HGMAP). HGMAP constructs a spatial graph based on the geographical
distance between pairs of POIs and leverages Graph Convolutional Networks (GCNs) to
express the high-order connectivity among POIs, which not only incorporates the spatial
constraints but also provides an effective way to alleviate the sparse check-in problem. In
addition, HGMAP exploits the user social relationship with another GCN and differenti-
ates user preference over different aspects of POIs with a multi-head attention mechanism.
We conducted extensive experiments on three public datasets and the results demonstrate
that HGMAP significantly improves the recommendation performance over several state-
of-the-art models, for example, up to approximately 4.8% and 7% for Precision@10 and
Recall@10, respectively.

Keywords Location recommendation · Graph convolutional networks ·
Multi-head attention · Collaborative filtering · Social influence

1 Introduction

With the rapid development of mobile internet technology and the widespread use of GPS-
enabled devices, Location-Based Social Networks (LBSNs) such as Foursquare and Yelp,
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become ubiquitous and gain great popularity for users to leave their footprints and share
their experience. Accordingly, this results in large amounts of user−location interaction
data that contain various kinds of Point-of-Interests (POIs), such as restaurant, museums,
shopping malls, parks, and many others. These user-generated content are usually asso-
ciated with geo-tags. Analyzing such rich data can be beneficial for many downstream
applications, for example, building personalized POI recommender systems. The POI rec-
ommendation has spurred a significant research interest in both industry and academic
communities [1, 13, 31, 46, 54], as it can provide various value-added services, for exam-
ple, recommending tourists’ vacation rentals (e.g., Airbnb), advertising scenic areas (e.g.,
TripAdvisor), and promoting experiences (e.g., Mafengwo).

One of the objectives in POI recommendation is to discover the yet-unvisited places of
potential interest to users. Unlike typical recommendation tasks (e.g., movie, music and
e-commerce item recommendation), POI recommendation exhibits several special charac-
teristics, such as strong spatial-temporal dependence among POIs and the geographical
constraints on users. For example, the recommendation of restaurants to users should take
into account the geographical location of both users and restaurants. Prior studies have
shown that there is a spatial clustering phenomenon in user check-ins, i.e., people prefer to
visit POIs close to their home locations. Individual visited POIs tend to cluster together. In
addition, the social relationship and visiting time also play important roles in personalized
POI recommendation. People prefer to visit places where their friends visited / recom-
mended. People are more likely to visit recreation parks on weekends while go to tech /
financial firms often in weekdays. How to incorporate these features into POI recommender
systems to better understand the relations among users and POIs has become a trending
research topic. Of course, POI recommender systems also confront several challenges com-
monly rooted in traditional recommender systems, such as data sparsity, where an user
usually visits a very small number of locations among millions of POIs in a LBSN. As an
example, the density of the user-POI check-in count matrix is about 0.1% [31]; cold start
where some users have no visiting history or some (new) POIs have never been visited by
any users.

Researchers have proposed various methods to improve the POI recommendation per-
formance by mainly focusing on exploiting different implicit context features embedded in
user check-ins. For example, Collaborative Filtering (CF)-like techniques such as Matrix
Factorization (MF) [16, 19] are used to predict user rating on POIs through explicit/implicit
feedback while taking into consideration various constraints such as social influence [53,
61], temporal features [56, 57], sequential dependence [33, 63], and geographical con-
straints [15, 22, 26, 28]. All of these methods follow a similar procedure where they first
extract latent features underlying interactions between users and POIs, and then predict
users’ preference based on the inner product of latent factors. However, they may not
fully discover the complicated user-POI interaction from the data, since the inner product
combines latent features linearly and limits the expressiveness of the methods [31, 34].

Recent advances in deep learning have inspired efforts on applying various neural net-
works for discovering non-linear and non-trivial relationships between users and POIs. For
example, word2vec [38] has been used for transforming users and POIs to vectorized rep-
resentations [52], while recurrent neural networks (RNN) are used for learning sequential
behavior of user check-ins [10, 37, 66]. To distinguish users’ preference over different POIs,
an attention-based model has been proposed in [34] where the denoising autoencoder is
employed to capture the geographical influence. Another recent work [71] borrows the idea
of adversarial learning from deep generative adversarial neural networks [12] and attempts
to improve the POI recommendation performance by exploiting the social influence and
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geographical information in a reinforcement learning manner. Although existing efforts
have shown promising performance improvement and are able to handle non-linear inter-
actions between users and POIs, most of them just integrate the auxiliary information
(e.g., POI context, social influence and spatial-temporal characteristics) by transforming
from pre-existing features with historical data, and thus fail to encode the high-order struc-
ture information and capture users’ potential long-distance interest. All the while, the data
sparsity and cold-start problems are still major challenges for existing solutions.

In this work, we propose Hybrid Graph convolutional networks with Multi-head Atten-
tion for POI recommendation (called HGMAP), a general and flexible framework that
captures user-POI interactions effectively by mining the social influence and geographical
attributes with graph-based neural networks. Inspired by the success of graph neural net-
works (GNNs) [6, 18, 51], we use two independent Graph Convolutional Networks (GCNs)
to explicitly incorporate the spatial and social influence aspects of the auxiliary information
into our POI recommender system. However, unlike the existing GNN-based recommen-
dation models [9, 39, 43, 47–49, 55] that directly employ convolutional layers to exploit
interactions between users and items, we alternatively use two independent GCNs to learn
the geographical relationship and social influence, respectively. Specifically, we build a
POI graph based on the pairwise distance of corresponding POIs with Radius Basis Func-
tion (RBF), and learn the geographical relationship and the implicit relations among POIs
using a graph neural network. We also model the social networks of users and aggregate
feature information of connected users from local neighborhood using another GCN. By
recursively propagating the embedding of geographical and social information, HGMAP
can conceptually capture the high-order connectivity in an efficient, explicit, and end-to-end
manner. In addition, we leverage a multi-head attentive encoder to capture non-linear user-
POI interactions while learning the importance of each POI during information retrieval
for personalized recommendation. The proposed model has the ability to learn good user
and POI representation, and recommend users in an efficient manner due to its inductive
learning capability.

Overall, the main contributions of this paper are four-fold:

– First, we present a novel POI recommender system using hybrid graph neural net-
works to learn both users’ and POIs’ latent representations, which effectively encode:
(1) the social influence and geographical constraints – the most important features in
POI recommendation [31]; and (2) the underlying relationship between users and POIs.
Moreover, the cold-start problem at both user and POI sides can be largely alleviated
by aggregating features from two heterogeneous graphs.

– Second, we provide a new perspective of incorporating geographical locations into POI
recommendation by constructing a POI adjacency graph and learning complex POI
relations beyond the Euclidean distance via layered graph convolutions. By doing so,
our model can sample neighboring POIs from the graph to augment data for each user
while, to an extent, overcoming the data sparsity issue.

– Third, we introduce a multi-head attention encoder to adaptively compute a preference
score for each check-in and obtain user latent preference representation over unvisited
POIs. User preference representation and user social representation are used to model
the user influence on POI recommendation. In addition, we leverage this preference
score combined with POIs’ location representation to learn the influence of checked-
in POIs on unvisited POIs. This enables our model to capture non-linear user-POI
interactions and nuances between different POIs while bounding the user preference
with geographical regularization.
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– Last, we conducted extensive experiments on several large-scale benchmark datasets,
i.e., Gowalla, Foursquare and Yelp, demonstrating that HGMAP can significantly
improve recommendation performance as compared to state-of-the-art POI recommen-
dation baselines.

The remainder of this paper is organized as follows. We review the relevant works in
Section 2. The details of our HGMAP model are presented in Section 3. Experimental eval-
uations demonstrating the superiority of our model are discussed in Section 4, followed by
conclusion and direction for future work in Section 5.

2 Related work

In this section, we review the relevant studies in POI recommendation, the graph learning-
based recommender systems, as well as the attention-based recommendation models, and
position our work in that context.

2.1 Personalized POI recommendation

POI recommendation (a.k.a. location recommendation or venue recommendation) helps
users to discover new POIs of their interest, which can be beneficial to both users and
businesses [31]. Collaborative Filtering (CF)-like techniques such as Matrix Factorization
(MF) [19], Bayesian probabilistic matrix factorization [42], and Bayesian Personalized
Ranking (BPR) [41] are widely used in modern recommendation systems. Previous works
on POI recommendation have shown that the contextual information associated with users
(e.g., visiting time and social connections) and POIs (e.g., geographical locations) play
important roles in enhancing the effectiveness of POI recommendation [22, 24, 26, 28, 53,
56–58, 61, 72]. These methods assume that users who have the same check-ins share sim-
ilar preferences, so they are inclined to visit similar locations in the future, and therefore
leveraging these learned latent features of users and POIs to predict user preference to unvis-
ited locations may improve performance. In addition, some studies [24, 26] have shown
that check-ins can be treated as implicit feedback, which can be incorporated into MF-
based models to improve POI recommendation accuracy, while other research works [30]
leverage Probabilistic Factor Models (PFM) [14] to consider auxiliary factors such as geo-
graphical influence. A comprehensive survey [31] compared representative CF-based POI
recommendation models and summarized that (i) geographical information and social influ-
ence are the two most effective factors for capturing user preference; (ii) GeoMF [26]
and RankGeoFM [22] exhibit superior performance on POI recommendation over other
CF-based methods.

However, the performance of the CF-based recommendation methods often drops signif-
icantly when user-POI interactions are extremely sparse. Meanwhile, they cannot be directly
used for recommending new POIs that have not been visited by any users or making rec-
ommendations to new users who have no visiting records, which is a well-known cold-start
problem. More importantly, these latent factor models are inherently linear, which lim-
its their modeling capacity to capture non-linear user-POI interactions. To overcome these
issues, a growing body of recent works have applied deep neural networks to the collab-
orative filtering setting for POI recommendation [13, 32, 34, 37, 40, 52, 56, 64, 71]. For
example, recent efforts [37, 52, 56, 64] use POI embedding and recurrent neural networks to
capture the check-in context and user sequential visiting behavior. A translation-based POI
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recommendation framework is proposed [40] to model the relations among users, POIs, and
spatial-temporal context, where knowledge graph embedding techniques are used to encode
users and POIs in a latent space. Similarly, a denoising autoencoder has been adopted [34] to
capture spatial-temporal context and interactions among users and POIs. Adversarial learn-
ing [12] has also been employed to learn underlying user preference distribution in [32, 71],
unifying the reinforcement learning and matrix factorization methods into an adversarial
learning framework for POI recommendation.

Despite their effectiveness and some inspiring results, existing methods are not able to
yield optimal recommendation performance, in part due to the data sparsity and cold-start
issues in POI recommendation. In addition, the aforementioned methods mainly focus on
exploiting deep learning techniques to enhance the interaction function, so as to capture the
nonlinear relations between users and POIs, which, however, neither explicitly captures the
transitivity property of both users and POIs, nor guarantees the closeness of similar users
and POIs in the embedded space.

2.2 GNNs in recommender systems

Graph Neural Networks (GNNs) [6, 18, 45, 51] which aggregate node features from
the locally connected neighbors of nodes using deep neural networks, have attracted a
considerable attention in recent years due to their effectiveness and remarkable success
in various tasks such as graph classification, semi-supervised node classification, traffic
forecasting [74], meta-graph learning [67], information cascade prediction [4], network
alignment [68] and image segmentation [35]. The main idea of GNNs is to generate graph
convolutional layers based on graph spectral theory, and adaptively transform node feature
vectors with different neighborhood aggregation and graph-level pooling schemes. Most
recently, several works leverage GNN architectures for building recommender systems [9,
39, 43, 47–49, 55]. GC-MC [43] first applies the Graph Convolution Networks (GCNs) [18]
on the user-item interaction graph. PinSage is an industrial solution that combines ran-
dom walks and GCNs to generate nodes’ embeddings for a bipartite graph in Pinterest.
NGCF [50] exploits the user-item graph by expressively modeling high-order connectiv-
ity in user-item interactions with GCNs, which can inject collaborative signals into the
procedure of propagating embedding on the graph. Another category of works [47–49]
try to apply GNNs on knowledge graphs in order to provide additional guidance for rec-
ommendations, which relies heavily on external knowledge graphs and manual design of
meta-paths/meta-graphs, and thus are hard to implement in practice.

Existing GNN-based recommendation models mainly focus on exploiting the CF signals
from user-item interaction graphs. Although the CF effect between users and items can
be efficiently captured, they cannot be directly applied to POI recommendation due to the
extremely sparse user-POI interactions [8, 31]. In this spirit, our approach is different from
existing works in that we sidestep the graph convolutions on a sparse user-POI interaction
graph but alternatively capture the implicit user social relationship and POI connections,
which not only provides useful information for cold-start users/POIs, but also alleviates the
sparsity problem with the constructed geographically adjacent POI graphs.

2.3 Attentionmechanism for recommendation

Recently, attention mechanism allows us to learn the importance of specific positions of
the input. It, combined with various neural network architectures, has been proven to be
effective in many tasks, such as machine translation [2], human mobility learning [11, 72],
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image retrieval [62], object detection [59], as well as recommender systems [3, 34, 37, 49,
65, 69, 73]. Earlier works [3, 37] utilize vanilla attention vectors to dynamically model
the influence of items and learn the interactions between users and items. However, these
recommendation models rely on standard attention mechanism and can only capture single
aspect of the item importance and linear interactions among items. Nervelessness, users’
preference is too complex to be captured by a single importance vector, while high-order
item feature interactions are essential for improving recommendation performance [30].

Multi-head self-attention mechanism [44] is a natural language processing (NLP) model
fully relying on self-attention module to learn structures of sentences and complex word
representations. It has achieved state-of-the-art performance on a wide range of NLP tasks
(e.g., translation, word-embedding, etc.) and inspired a variety of excellent models such
as BERT [7] and ALBERT [20]. In this work, we utilize multi-head self-attention to learn
users’ multiple-aspects preference over POIs. By projecting POI embedding into multi-
ple subspaces, different interactions between different subspaces can be retrieved to reflect
users’ various aspects of preference over POIs. In addition, it helps us better differentiate
users that have similar preference while making more personalized recommendations.

3 HGMAP recommendation framework: model andmethodology

We now proceed with details of our model HGMAP for POI recommendation. First we
define some basic terminology used throughout this paper and formally introduce the POI
recommendation problem. Subsequently, we discuss the basic aspects of HGMAP, which
consists of four components: two graph convolutional networks, a multi-head attentive
encoder and a prediction module (cf. Figure 1). Specifically, we utilize GCNlocation to
learn POIs’ location representation from a POI location network constructed based on POI
geographic coordinates. In order to get users’ social representation and incorporate social
influence and check-in similarity information, GCNsocial is employed on user social net-
work and user-POI interactions. Then we implement a multi-head attentive encoder to learn
users’ preference representation and a preference score for every check-in from user-POI
interactions. Users’ social representation and users’ preference representation are combined
to learn SIP (Social Influence on user Preference) ratings on POIs. Meanwhile, we utilize
POIs’ location representation with the preference score to learn GIP (Geographical Influ-
ence on user Preference) ratings. Finally, we make predictions based on the learned SIP
ratings and GIP ratings. In this section, we also present three loss functions regarding how
to optimize the proposed model HGMAP.

3.1 Preliminaries

Definition 1 POI recommendation: Let U = {u1, · · · , um} denote a set of users, P =
{p1, · · · , pn} be a set of POIs and D = {d1, · · · , dn} be a set of corresponding geographical
coordinates (latitude and longitude) of POIs. Let ci = [c1, · · · , cn] be the POIs that user
ui checked in. Given historical check-in information for all m users C = {c1, · · · , cm},
POI recommendation is to recommend a list of POIs for each user that the user might be
interested in but never visited.

POI recommendation is commonly studied using an user-POI check-in frequency matrix
G ∈ R

m×n constructed from interaction between m users and n locations. Each element
gi,j ∈ G represents the number of times that user ui has been to location pj . In this work,
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Figure 1 Overview of our proposed HGMAP model

we make the user-POI check-in binary matrix B ∈ R
m×n, where each element bi,j ∈ {0, 1}

represents whether user ui has been to location pj . All notations used throughout the paper
are listed in Table 1.

3.2 Learning POI and User Representation via Hybrid GNNs

We now describe how to leverage a variant of GNNs (i.e., GCNs) to learn POI and user
representation. We have a connectivity network each for users and POIs used for capturing

Table 1 List of notations
Notation Description

Y/Ŷ The ground-truth value and predicted value

E/F Users’ rating matrix and locations’ rating matrix

W(∗) The weight matrix

B User-POI check-in binary matrix

G Users’ check-in frequency matrix

Q The confidence matrix

V Users’ preference representation

U Users’ social representation

P POIs’ geographical location representation

m/n/h The number of users / POIs / attention heads

C/D Users’ check-in set / POIs’ geographical coordinates set

U/P User / POI set

K The number of layers in GCNs

D The latent dimension of hidden layer

L The latent dimension of POIs and users

R The latent dimension of preference vectors

3131



World Wide Web (2020) 23: –3125 3151

similarities among users and POIs, respectively. Figure 2 is toy example to show the
connectivity for a POI p1 and a user u1.

3.2.1 Modeling POI location representation

To learn POI representation, we leverage GCNlocation to capture local and global structural
information in a network, especially the geographic relations among POIs (e.g., distant or
close POIs). Thus, we first construct a POI geographic location network G = (P,A), where
P = {p1, · · · , pn} represents a set of POIs and A ∈ R

n×n is a sparse adjacency matrix and
ai,j denotes the location similarity for a pair of POIs pi and pj . In this study, we choose a
Gaussian Radial Basis Function (RBF) kernel to measure the location similarity ai,j ∈ [0, 1]
for POI pi and POI pj , as follows:

ai,j = exp(−η ‖ di − dj ‖2), (1)

where di and dj are the geographic coordinates of two POIs pi and pj , and η > 0 is a hyper-
parameter to control the level of geographical relevance between two given POIs. A larger
value of ai,j indicates two POIs’ geo-locations are closer. For the purpose of simplicity, we
set ai,j = 0 if it is less than a threshold value λ (i.e., λ = 0.125).

For GCNlocation with K layers, we take the location similarity matrix A as an input to the
first layer:

H(0) = A, (2)

The multi-layer GCNlocation follow the layer-wise propagation rule. Let S denote the
normalized adjacency matrix:

S = D̃− 1
2 ÃD̃− 1

2 , (3)

where Ã = A + I is the adjecency matrix of the graph G with added self-connections, I is the
identity matrix and D̃ is the degree matrix of Ã. The representation update of all location
nodes becomes a simple sparse matrix multiplication:

H
(k) ← SH(k−1), (4)

Figure 2 A toy example showing the connectivity of POI p1 and user u1
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We adopt ReLU, which is a non-linear activation function, to optimize each layer. The
updating rule of the k-th layer is as follows:

H(k) ← ReLU
(
H

(k)
�(k)

)
(5)

Following [51], our GCNlocation module is a 2-layer simple graph convolution (SGC),
which is a variant of GCNs and can compute more efficiently with significantly fewer
parameters than traditional GCNs. The Kth layer output H(K) is considered as the final
location representation P = [p1, · · · , pn]� ∈ R

n×L and L is the latent dimension of POI
location representation.

3.2.2 Modeling user social representation

To learn user representation, we take a user social network and social similarity as input of
GCNsocial with multiple layers. The user social network is defined as G∗ = (U ,A∗), where
U represents a set of users {u1, ..., um}, A∗ ∈ R

m×m is a sparse adjacency matrix, and a∗
i,j

is the edge weight between users ui and uj , representing how close two users are.
Based on the idea of collaborative filtering, user preference can be discovered by aggre-

gating the behavior from similar users [53], which cannot be fully achieved by traditional
GCNs where the edge weight is binary a∗

i,j ∈ {0, 1}. In order to understand the relationship
among users, we make weights continuous a∗

i,j ∈ [0, 1] and compute them by incorporating
two semantic information: check-in and friendship. Let F and R denote users’ friend set
and users’ check-in set in a LBSN. Then the edge weight a∗

i,j between user ui and user uj

is calculated as follows if they are not friends:

a∗
i,j =

∣∣Ri ∩ Rj

∣∣
∣∣Ri ∪ Rj

∣∣ (6)

If user ui and uj are friends, a∗
i,j is:

a∗
i,j = β ·

∣∣Fi ∩ Fj

∣∣
∣∣Fi ∪ Fj

∣∣ + (1 − β) ·
∣∣Ri ∩ Rj

∣∣
∣∣Ri ∪ Rj

∣∣ (7)

where β > 0 is a tunable hyper-parameter with a range of [0, 1] that is used to balance the
relative weight of friend circle similarity and user visiting similarity. We denote the output
of GCNsocial U = [u1, · · · ,um]� ∈ R

m×L as social representation for all m users. L is the
dimension of the representation. Note that there is no social relationship for the Foursquare
data where we only incorporate the check-in information.

3.3 User preference learning withmulti-head attention

We now have obtained user representation and POI representation. Since our goal is to
efficiently and comprehensively learn user preference over different POIs, it is requisite to
measure the relevance between users and POIs while capturing the joint effect on user-POI
interactions. Recently, attention mechanism has been widely used for recommender sys-
tems [3, 34, 37, 49]. For example, SAE-NAD [34] exploited the self-attentive autoencoders
to learn complex user preference for POIs. However, the standard attention mechanism usu-
ally assigns a single importance value to a POI, which makes the model focus on only one
(latent) aspect of POIs. This is not sufficient to reflect the sophisticated human sentiment
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on POIs [30]. Particularly, some important (latent) aspects of POIs that might directly or
indirectly influence user preference are missed.

The above-mentioned evidence inspires us to learn various aspects of user preference,
which, through assigning multiple scores to each POI that user has visited, allow us to model
the dependencies and importance of long-short term POI interactions. Towards this goal, we
adopt multi-head self-attention [44] to effectively capture high-order interactions between
POIs and retrieve the multi-aspect preference of users over POIs.

Technically, we first obtain a POI embedding matrix denoted by W(1) ∈ R
L×n. It is

also the weight matrix of the embedding layer. Then, we utilize the multi-head attention
mechanism with h attention heads to learn the preference over visited POIs for each user.
The h attention matrices are:

T = [t1, · · · , th]� (8)

where T ∈ R
R×L and t1 ∈ R

[R/h]×L represents the 1st attention head that learns user
preference on POIs on some dimensions, i.e., traffic, food and scenery. t2 ∈ R

[R/h]×L learns
preference on different dimensions, and so on. R is the latent dimension of preferences.

ci = [c1, · · · , cn] is a binary vector representing the set of check-in POIs for user ui ,
where cj (1 ≤ j ≤ n) is 1 if user ui has visited POI pj and 0 otherwise. We utilize ci and
W(1) to get check-in POI representation of user ui .

ôi =
[
c1W

(1)
(∗,1), · · · , cnW

(1)
(∗,n)

]
(9)

where W(1)
(∗,n) is the nth column of W(1) and is the representation of the nth POI. Note that

ôi ∈ R
L×n might have some zero columns. We delete them and get oi ∈ R

L×ni , where ni is
the number of check-in POIs of user ui and is the same as the number of non-zero columns
in ôi . The set of check-in POI representaion is denoted as O = {o1, · · · , om}.

Then, we learn the user ui preference using h attention heads T and check-in POI
representation O:

{
sr = softmax(tanh(tr · oi )), r = 1, · · · , h

Score = [s1, · · · , sh]� (10)

where Score ∈ R
R×ni is the user preference score matrix. Lastly, the preference of user ui

over check-in POIs can be computed as follows:

vi = Score · oi
� (11)

where vi ∈ R
R×L denotes a preference representation of user ui . We use V =

[v1, · · · , vm]� ∈ R
m×R×L to denote the preference representation of all m users.

3.4 Predictionmodule

POI recommendation in LBSNs is different from other recommendation tasks [34] in that
there exist physical distances between users and POIs, and such an unique property spurs a
well-known geographical clustering phenomenon – users usually appear in several specific
areas and prefer to visit unvisited POIs that are around their checked-in POIs. Incorporating
such a property is likely to improve the POI recommendation performance [23, 26, 34].
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According to this clustering phenomenon, we speculate that check-in POIs of each user may
affect other unvisited POIs with respect to geographic locations. Different from most of the
previous studies that mainly exploit geographical influence from the perspective of POIs,
our model combines user preference and geographical influence from both users and POIs.
Specifically, we construct two ratings: (1) GIP (Geographical Influence on user Preference)
rating with location influence and preference influence included; (2) SIP (Social Influence
on user Preference) rating with social relationship and user preference considered.

(1) From the perspective of POI geographic location, we first get check-in POI represen-
tation of user ui from ci = [c1, · · · , cn] and POI location representation P.

ĵi = [c1P(∗,1), · · · , cnP(∗,n)] (12)

where P(∗,n) is the nth column of P and represents the nth POI location representation.
Note that ĵi ∈ R

L×n might have some zero columns. We also delete thems in ĵi and
get ji ∈ R

L×ni . ni , the number of check-in POIs of user ui , is the same as the number
of non-zero columns in ĵi . We leverage check-in POI representation ji to compute
the influence of check-in POI on unvisited POIs and incorporate the influence of user
preference into the geographical influence as follows:

fi = sum(Score · (ji� · W(4))) (13)

where sum is an addition function that adds elements by row. Score ∈ R
R×ni denotes

the user preference matrix, ji� ∈ R
ni×L and W(4) ∈ R

L×n is the parameter matrix in
the MLP. Each fi ∈ R

1×n denotes GIP rating vector of user ui and F = [f1, · · · , fm]�
∈ R

m×n denotes the all users’ GIP ratings.
(2) From the perspective of the user, we leverage user preference representation vi ∈

R
R×L of user-POI interactions, combined with user social representation ui ∈ R

1×L,
to compute a rating vector of users on POIs as follows:

{
zi = wa · Concat(vi ,ui )

ei = MLP(zi )
(14)

where wa ∈ R
(R+1) is the parameter vector of the aggregation layer. We use zi as

the input of MLP to get a SIP rating vector ei ∈ R
1×n of user ui for all POIs. W(2)

∈ R
L×D , W(3) ∈ R

D×L and W(4) ∈ R
L×n are the parameter matrices of the MLP.

D is the latent dimension of hidden layer. Z = [z1, · · · , zm]� ∈ R
m×L and E =

[e1, · · · , em]� ∈ R
m×n denotes all users’ SIP ratings for POIs.

(3) Finally, we combine the GIP rating fi and the SIP rating ei to get a final rating ŷi ,
which is used to recommend a list of POIs for user ui .

ŷi = sigmoid(fi + ei ) (15)

where ei captures user ui’s preference from user-POI interactions and social influence,
and fi models the influence of geographic location and preference influence. sigmoid
is a activation function and Ŷ = [ŷ1, · · · , ŷm]� ∈ R

m×n denotes the predicted ratings
for all m users.
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3.5 Optimization

We now turn towards optimizing three components: two GCNs and HGMAP. To do so, we
first need to define the objective loss function of each and the overall. The training processes
are summarized in algorithm 1 and algorithm 2.

(1) For the GCNs learning POI location representation (denoted by GCNlocation), we
utilize the Cross Entropy loss to capture both POIs’ location similarity and POIs’
geographic location representation.

{
X1 = P · P�

LGCNlocation = ∑n
i=1 − [

A log(X1) + (1 − A) log(1 − X1)
] (16)

where A ∈ R
n×n is the location similarity matrix and P ∈ R

n×L is the location
representation.

(2) For the GCNs learning user social representation (denoted by GCNsocial), we incorpo-
rate users’ social similarity and users’ social representation into the loss function.

{
X2 = U · U�

LGCNsocial = ∑m
i=1 − [

A∗ log(X2) + (1 − A∗) log(1 − X2)
] (17)

where A∗ ∈ R
m×m is the social similarity matrix and U ∈ R

m×L is the social repre-
sentation. During the GCNs training process, we take 5,000 POI locations (or 5,000
users) in each batch to calculate their corresponding representation.

(3) Following prior work [34], the Mean Square Error (MSE) loss is commonly used to
optimize MLP. In this study, we leverage a general weighting scheme [16] to dis-
tinguish visited and unvisited POIs, where we provide a confidence level for each
POI [34] to tackle the One Class Collaborative Filtering (OCCF) problem. Q ∈ R

m×n

denotes the confidence matrix and is computed using the observed check-in frequency
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matrix G ∈ R
m×n. This can calculate loss values more accurately and optimize our

model better.

qi,j =
{

log
(
1 + gi,j /ξ

)
if gi,j > 0

1 otherwise
(18)

where ξ is a hyper-parameter. The objective function LHGMAP for optimizing MLP is
to measure the discrepancy between predicted value Ŷ and ground-truth value Y.

LHGMAP =
m∑

i=1

n∑
j=1

∥∥qi,j

(
yi,j − ŷi,j

)∥∥2
2 + γ (‖W(∗)‖2

F + ‖wa‖2
2)

= ‖Q ⊗ (Y − Ŷ)‖2
F + γ (‖W(∗)‖2

F + ‖wa‖2
2) (19)

where ⊗ is the element-wise multiplication and ‖ · ‖F is the Frobenius Norm. γ is the reg-
ularization parameter and W(∗) includes W(1), W(2), W(3) and W(4). W(1) is the parameter
matrix of the embedding layer and wa is the learned parameter vector in the aggregation
layer. W(2), W(3) and W(4) are the parameter matrices of the MLP. We leverage Adam [17]
to automatically adjust the learning rate during learning.

4 Experiments

In this section, we report observations from experiments conducted on three real-world
datasets to quantitatively address the following questions:

– Q1. How does HGMAP perform compared with the state-of-the-art POI recommenda-
tion models?

– Q2. How do the hybrid GCNs in HGMAP affect the recommendation performance?
– Q3. How do the key hyper-parameters affect HGMAP’s performance?
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Table 2 Descriptive statistics of three datasets

Dataset #Users #POIs #Check-ins Density

Yelp 30,887 18,995 860,888 0.1399%

Gowalla 43,074 46,234 1,720,082 0.0500%

Foursquare 24,941 28,593 1,196,248 0.1006%

– Q4. Can HGMAP provide reasonable interpretability regarding user preference towards
POIs?

4.1 Dataset and EvaluationMetric

To evaluate the effectiveness of HGMAP, we conducted experiments on three benchmark
LBSN datasets, including:

– Yelp dataset. It is obtained from the Yelp challenge.1 This dataset does not provide the
exact check-in times but coarse check-in dates.

– Gowalla dataset. It is a widely used for POI recommendation and was collected
between February 2009 and October 2010.

– Foursquare dataset. It is collected between April 2012 to September 2013 within the
mainland of United States. Note that this data does not have social information, thus we
do not model the social influence for this data.

Following the settings in [31, 34], we filter out those users with fewer than 20 check-in
POIs and those POIs with fewer than 20 visitors for the Gowalla dataset. For Foursquare
and Yelp datasets, we discard those users with fewer than 10 check-in POIs and those POIs
with fewer than 10 visitors. We also partition each dataset into training set and test set. For
example, for each user, we randomly select the 80% check-ins into the training, and treat
the remaining as the testing. The descriptive statistics of three datasets after pre-processing
are described in Table 2, from which we can see that they are all extremely sparse, i.e., the
frequency of most POIs being visited is about 0.1%.

Similar to previous works [31, 34] , we use three standard metrics, i.e., precision (P@k),
recall (R@k) and mean average precision(M@k), to evaluate models. P@k is the per-
centage of locations that are visited by user in the top-k recommended locations. R@k

indicates the ratio of recovered POIs to visited locations and M@k considers the rank of
recommendations by assigning higher score to hits at higher positions.

4.2 Baselines

We conduct extensive comparisons to the following 12 state-of-the-art POI recommendation
models:

– MGMMF [5] is a multi-center Gaussian model fused with matrix factorization, taking
into account social influence and incorporating multi-center geographical influence into
the fused framework. The main idea is based on the observation that a user tends to
check-in around several geographical centers.

1https://www.yelp.com/dataset/challenge
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– BPRMF [41] is a Bayesian personalized ranking with matrix factorization method. It
adopts a generic optimization criterion and models the implicit feedback to recommend
top-N items. Note that BPRMF only focuses on user preference modeling, without
utilizing any context information.

– WRMF [16] is a weighted regularized matrix factorization model. It couples the esti-
mate of user preference to items with a confidence level based on matrix factorization
while minimizing the square mean error. It assigns both observed and unobserved
check-ins with different confidence values.

– IRenMF [29] is based on weighted matrix factorization and incorporates the geograph-
ical characteristics of neighboring POIs in both individual level (i.e., user has similar
preference on neighboring POIs) and region level (i.e., POIs that are geographically
close may share similar user preference) into the model.

– GeoMF [26] is a state-of-the-art MF-based POI recommendation model based on
weighted matrix factorization. It considers check-ins as an implicit feedback and incor-
porates geographical influence by fitting nonzero check-ins with large weights and zero
check-ins with smaller weights.

– RankGeoFM [22] is a ranking based geographical factorization method that incorpo-
rates the geographical influence of neighboring POIs to learn user preference rankings
for POIs. It uses another latent matrix to represent user geographical preference, in
addition to user preference matrix.

– PACE [52] is a deep neural architecture based on user preference and context
embedding with representation methods [38]. It is a general semi-supervised learning
framework that jointly models social influence and user trajectory behavior to predict
both user preference over POIs and various context associated with users and POIs.

– SAE-NAD [34] is an attention-based POI recommendation model consisting of a self-
attentive encoder and a neighbor-aware decoder. It uses a self-attentive encoder to
differentiate the user preference, and adopts the neighbor-aware decoder to model the
geographical influence of POIs.

– STGN [64] is a Spatio-Temporal Gated Network towards enhancing long-short term
memory of the sequential visiting behavior learning. It uses coupled gates, i.e., time
gate and distance gate, to capture the spatial-temporal relationship among successive
check-ins.

– APOIR [71] is the first adversarial learning-based POI recommendation model. It
consists of two parts, a recommender and a discriminator, which are jointly trained
for learning user preference by playing a minimax game considering geographical
influence and social relation as rewards in a reinforcement learning manner.

– Geo-ALM [32] is a geographical information based adversarial learning model which
is very similar to APOIR, except that Geo-ALM directly fuses geographical features
(both POI features and region features) and uses generative adversarial networks [12]
without explicitly considering the social influence.

– NGCF [50], Neural Graph Collaborative Filtering, is the most recent item-based rec-
ommendation model built upon graph convolutional networks. NGCF only focuses
on convolutional operations on user-item interactions while HGMAP learns additional
information from both the user side and the POI side.

4.3 Parameter setting

We implement our HGMAP with Pytorch on a machine with NVIDIA GeForce GTX
1080Ti. In our experiments, the latent dimension L of both users’ social representation and
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POIs’ location representation is set to 200. For two GCNs, the minimum value λ regarding
user similarity and location similarity are both set to 0.125 unless otherwise specified. The
geographical relevance level η is set to 60 in GCNlocation and the parameter β used for bal-
ances the importance of friend circle similarity and user visiting similarity is set to 0.3. The
latent dimension R of the user preference vector and the number of attention heads are set
to 36 and 6. The batch size of HGMAP is set to 256. The learning rate and regularization
parameter γ are set to 0.001 and 0.001 respectively. We set the architecture of two-layer
GCNsocial as [m, 3000, 200]. GCNlocation with two-layer has architecture as [n, 3000, 200].
m and n are the number of users and POIs in the input layer, respectively. For three datasets,
we use an embedding layer and a 3-layer MLP as [200, n] and [200, 50, 200, n].

4.4 Performance comparison (Q1)

Tables 3, 4 and 5 illustrate the performance of HGMAP in comparison to the existing
state-of-the-art POI recommendation models for top-K POI recommendation on Gowalla,
Foursquare and Yelp, respectively. A pair t − test is performed and the results are sta-
tistically significant (p < 0.005). By scrutinizing the results, we can make the following
observations:

(O1): General MF-based models, such as WRMF and BPRMF, achieve poor performance
on three datasets, because they ignore the context information, e.g., social influence
and geographical constraints. Meanwhile, simply incorporating geographical clus-
tering phenomena of check-ins (e.g., MGMMF) does not perform well, since it fails
to overlook the fine-grained POI-level context. In contrast, geographical MF-based
implicit ranking methods, such as IRenMF, GeoMF and RankGeoFM, perform rel-
atively well, which indicates that modeling user check-ins as implicit feedback is
more appropriate in POI recommendation and that geographical influence is the
most important factor for POI recommendation.x

Table 3 Performance comparison between HGMAP and baselines on the Gowalla dataset

Method Gowalla

P@5 P@10 P@20 R@5 R@10 R@20 M@5 M@10 M@20

MGMMF 0.0437 0.0336 0.0261 0.0653 0.0991 0.1480 0.0459 0.0480 0.0517

BPRMF 0.0663 0.0495 0.0402 0.0895 0.1272 0.1740 0.0611 0.0621 0.0668

WRMF 0.0635 0.0483 0.0360 0.0753 0.1111 0.1617 0.0567 0.0555 0.0583

IRenMF 0.0817 0.0621 0.0489 0.1006 0.1547 0.2264 0.0767 0.0752 0.0776

GeoMF 0.0902 0.0675 0.0496 0.1042 0.1576 0.2286 0.0789 0.0796 0.0821

RankGeoFM 0.0898 0.0687 0.0505 0.1079 0.1613 0.2312 0.0815 0.0812 0.0856

PACE 0.0918 0.0697 0.0515 0.1129 0.1713 0.2412 0.0835 0.0832 0.0876

SAE-NAD 0.0976 0.0748 0.0549 0.1227 0.1822 0.2593 0.0924 0.0930 0.0986

STGN 0.0920 0.0701 0.0517 0.1131 0.1715 0.2415 0.0837 0.0834 0.0878

APOIR 0.0983 0.0763 0.0565 0.1243 0.1844 0.2605 0.0939 0.0948 0.0995

Geo-ALM 0.0922 0.0703 0.0519 0.1134 0.1718 0.2419 0.0839 0.0837 0.0881

NGCF 0.0978 0.0750 0.0551 0.1229 0.1825 0.2596 0.0927 0.0933 0.0990

HGMAP 0.1037 0.0798 0.0583 0.1316 0.1976 0.2814 0.0981 0.0993 0.1052
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Table 4 Performance comparison between HGMAP and baselines on the foursquare dataset

Method Fourquare

P@5 P@10 P@20 R@5 R@10 R@20 M@5 M@10 M@20

MGMMF 0.0415 0.0317 0.0240 0.0408 0.0616 0.0934 0.0300 0.0287 0.0310

BPRMF 0.0734 0.0552 0.0410 0.0716 0.1062 0.1550 0.0556 0.0529 0.0569

WRMF 0.0749 0.0560 0.0411 0.0727 0.1083 0.1550 0.0577 0.0546 0.0569

IRenMF 0.0814 0.0594 0.0422 0.0761 0.1101 0.1545 0.0605 0.0560 0.0619

GeoMF 0.0818 0.0632 0.0466 0.0776 0.1164 0.1697 0.0603 0.0573 0.0592

RankGeoFM 0.0829 0.0644 0.0478 0.0781 0.1190 0.1747 0.0594 0.0571 0.0619

PACE 0.0825 0.0654 0.0488 0.0791 0.1204 0.1807 0.0614 0.0581 0.0629

SAE-NAD 0.0912 0.0698 0.0518 0.0873 0.1317 0.1927 0.0666 0.0641 0.0698

STGN 0.0828 0.0658 0.0490 0.0794 0.1207 0.1809 0.0617 0.0584 0.0632

APOIR 0.0921 0.0710 0.0527 0.0881 0.1324 0.1937 0.0672 0.0650 0.0705

Geo-ALM 0.0832 0.0663 0.0493 0.0797 0.1210 0.1813 0.0621 0.0587 0.0635

NGCF 0.0913 0.0700 0.0521 0.0875 0.1320 0.1923 0.0669 0.0643 0.0701

HGMAP 0.0943 0.0729 0.0537 0.0899 0.1374 0.1996 0.0675 0.0654 0.0711

(O2): Compared to MF-based models, neural networks-based methods, including
HGMAP, exhibit better performance. This demonstrates the importance of non-
linear feature interactions between users and POI embeddings. In other words,
the inner product in MF-based methods is insufficient to capture the complex
interactions between users and POIs.

(O3): Among the deep recommendation models, PACE does exhibit the performance as
expected, because it only learns the shallow embedding of users and POIs, while
the collaborative filtering signals are not fully exploited. Similarly, STGN, mainly

Table 5 Performance comparison between HGMAP and baselines on the Yelp dataset

Method Yelp

P@5 P@10 P@20 R@5 R@10 R@20 M@5 M@10 M@20

MGMMF 0.0210 0.0178 0.0146 0.0225 0.0381 0.0621 0.0142 0.0147 0.0163

BPRMF 0.0417 0.0351 0.0287 0.0408 0.0684 0.1112 0.0283 0.0286 0.0311

WRMF 0.0431 0.0374 0.0309 0.0445 0.0719 0.1189 0.0310 0.0315 0.0334

IRenMF 0.0487 0.0397 0.0319 0.0481 0.0771 0.1230 0.0352 0.0349 0.0376

GeoMF 0.0498 0.0410 0.0324 0.0478 0.0783 0.1233 0.0353 0.0350 0.0375

RankGeoFM 0.0503 0.0418 0.0330 0.0482 0.0791 0.1237 0.0355 0.0352 0.0376

PACE 0.0501 0.0411 0.0328 0.0481 0.0790 0.1207 0.0350 0.0350 0.0370

SAE-NAD 0.0517 0.0424 0.0334 0.0514 0.0829 0.1287 0.0373 0.0373 0.0401

STGN 0.0502 0.0413 0.0330 0.0484 0.0796 0.1215 0.0352 0.0351 0.0372

APOIR 0.0532 0.0436 0.0348 0.0526 0.0843 0.1312 0.0382 0.0391 0.0421

Geo-ALM 0.0506 0.0416 0.0332 0.0492 0.0801 0.1222 0.0354 0.0355 0.0375

NGCF 0.0515 0.0431 0.0330 0.0518 0.0831 0.1293 0.0376 0.0377 0.0403

HGMAP 0.0564 0.0467 0.0368 0.0568 0.0927 0.1434 0.0406 0.0410 0.0441
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focusing on sequential check-in behavior of users, does not show expected perfor-
mance. The possible reason is that STGN fails to explicitly explore the important
interactions between users and POIs, as well as other user and POI contexts, e.g.,
social influence and POI-level neighboring information.

(O4): Furthermore, SAE-NAD shows good performance on POI recommendation, mainly
because it captures the non-linear interactions between users and POIs with deep
autoencoder and attention mechanism. However, it ignores the social influence, as
well as the high-order connectivity among POIs. In addition, two adversarial POI
recommendation models, APOIR and Geo-ALM, generally achieve better perfor-
mance than SAE-NAD, due to their high-quality negative sampling and capability of
general user preference learning. The slight improvement of APOIR over Geo-ALM
indicates the effectiveness of social influence modeling in APOIR.

(O5): Our HGMAP consistently yields the best performance across all datasets. For exam-
ple, HGMAP improves over the second best baseline w.r.t. R@10 by 7.2%, 3.8%
and 10% on Gowalla, Foursquare and Yelp datasets, respectively. Compared to
APOIR and SAE-NAD – two representative non-linear interaction learning methods
– HGMAP explicitly models the POI adjacent graph by propagating the connectivity
over the graph. Note that although SAE-NAD considers the POI distance, it neither
learns high-order connectivity among POIs, nor does it incorporate the social influ-
ence. This result also demonstrates the effectiveness of our graph convolutions on
both social graph and POI graph.

(O6): Lastly, we note that NGCF does not perform well on POI recommendation, although
it adopts the graph convolution for non-linear user-POI interaction learning. The
performance gain of HGMAP over NGCF demonstrates the effectiveness of social
influence learning in HGMAP. Moreover, our method does not learn the collabora-
tive interactions via graph neural networks – which is the case of NGCF, but instead
applies graph learning on social relationship and POI neighboring connection. This
result also provides another perspective of incorporating graph neural networks into
recommender systems. Due to the extremely sparse check-ins, the collaborative
signal, arguably, cannot be effectively captured only by graph neural networks.

4.5 Ablation study (Q2)

To investigate the impact of social influence and geographical constraints, we conducted
an ablation study by comparing to three variants of HGMAP. In particular: the first variant
HGMAP-I is formed by disabling the graph convolutional networks modeling social influ-
ence – note that there are no social relationship in the Foursquare data; the second variant
HGMAP-II replaces the POI adjacent graph neural networks with a simple distance matrix,
as used in [34]; the third variant HGMAP-III replaces the multi-head attention module in
HGMAP with another GCN, which propagates the user interest over POIs in the user-POI
interaction graph, similar to the GCN used in NGCF [50]. We summarize the experimental
results in Table 6, from which we have the following findings:

(F1): The discrepancy between HGMAP and HGMAP-I implies the effectiveness of social
influence, which makes sense since social relationship plays an important role in
(POI) recommendation [31, 60], especially for those cold-start users who have less
and even no check-in records. This result also explains that why those deep recom-
mendation methods, such as PACE, STGN, Geo-ALM and NGCF, do not perform
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Table 6 Ablation study of
HGMAP Method Yelp

P@10 R@10 M@10

HGMAP-I 0.0421 0.0883 0.0382

HGMAP-II 0.0432 0.0895 0.0390

HGMAP-III 0.0450 0.0912 0.0401

HGMAP 0.0467 0.0927 0.0410

Method Gowalla

HGMAP-I 0.0756 0.1913 0.0948

HGMAP-II 0.0770 0.1937 0.0961

HGMAP-III 0.0782 0.1953 0.0975

HGMAP 0.0798 0.1976 0.0993

Method Fourquare

HGMAP-II 0.0690 0.1327 0.0618

HGMAP-III 0.0705 0.1345 0.0637

HGMAP 0.0723 0.1365 0.0655
Note that there is no social
relationship in the Foursquare
data

well. Note that there exist many social graph learning models such as DeepWalk and
node2vec that explore the local connectivity among nodes. However, these meth-
ods mainly focus on preserving the local structure, therefore ignoring high-order
connectivity among nodes.

(F2): Compared to HGMAP-II, HGMAP yields remarkable improvements, which demon-
strates the effectiveness of the proposed POI graph neural networks in HGMAP. It
is commonly acknowledged that geographical influence is one of the most impor-
tant factors in POI recommendation [22, 26, 31]. However, existing methods vary
significantly from each other on how to incorporate this constraint. While earlier
efforts have incorporated the geographical information into MF which are limited by
the non-linear interactions of inner product, the recent deep learning-based methods
either simply compute the POI distance [34] or model it as a reward function [71] –
both of which are not sufficient to capture the implicit connections and possible pat-
terns among POIs. In contrast, HGMAP explicitly learns the relationship from the
POI graph, which not only captures meaningful but non-existing check-in behavior
of users, but also provides a way of augmenting the sampling data by propagating
the information on the POI graph. In this vein, it can be considered as a LBSN data
augmentation to alleviate the sparse check-in problem [70].

(F3): Moreover, HGMAP-III does not show comparable performance even with another
graph convolution on user-POI interactions. This result proves our conjecture that
the sparse check-in problem in LBSN dataset renders the graph collaborative filter-
ing method inapplicable for capturing user-POI interactions. The reason behind this
phenomena can be understood intuitively. That is, aggregating the embeddings of
the interactions between users and POIs would be largely hindered for users with
few check-ins or POIs with few visitors. Therefore, the collaborative signals would
be easily “blocked” for cold-start users and/or POIs when embedding propagation,
which could be further aggravated by stacking multiple layers of graph convolutions
for sparse check-in data.
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Figure 3 Impact of number of heads h

4.6 Sensitivity of parameters (Q3)

Now we investigate several important parameters of HGMAP, i.e., the number of attention
heads h and the parameter λ which is the threshold value of user and POI similarity in
GCNs.

Effect of h : HGMAP adapts a multi-head self-attention mechanism to capture the multi-
aspects of user-POI interactions. Figure 3a, b and c plot the influence of the number of
heads, where we can observe that 4 or 6 heads are enough for our model to achieve good
performance.

Effect of λ : Parameter λ specifies the lower bound value of identifying similar users and
POIs, below which the similarity between two users (or POIs) is to 0, i.e., the lower the
value, the more non-zero similarity scores, and therefore more computation required in the
model. Figure 4a, b and c show the effect of λ, which indicates that HGMAP attains the best
performance when λ = 0.125. Note that it is better to distinguish this hyper-parameter for
users and POIs. However, we found that the difference is very nuance in our experiments.

Effect of η : Parameter η is used to control the geographical relevance level between POIs
in GCNlocation, which can be used to jointly capture both POIs’ location similarity and POIs’
geographic location representation. Figure 5a, b and c show the impact of η on three
datasets, which indicates that HGMAP attains the best performance when η is within the
range of [60-80].

Figure 4 Impact of similarity lower bound value λ
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Figure 5 Impact of geographical relevance level control value η

Effect of β : Parameter β balances the relative weight of friend circle similarity and user
visiting similarity in GCNsocial. Figure 6a and b reveal the influence of β on model per-
formance. Clearly, HGMAP achieves the best performance when β=0.3. This demonstrates
that visiting similarity of users has a higher influence score than friend circle similarity for
modeling user presentation. Note that foursquare dataset has no user social information.

Convergence : Another merit of HGMAP is the high computational efficiency. HGMAP
consists of three main components, i.e., two GCNs for social influence and geographical
influence learning, and one multi-head attention encoder for user-POI interaction learning.
For the two GCNs, they only have 2-layer convolutions without non-linear transformation
in the first layer – which yields improvements in computational efficiency. In addition,
HGMAP also consists of 3-layer MLPs, which also has a fast converge rate. Figure 7 illus-
trates the training of HGMAP, which indicates that our model can fast converge to optimal
performance. For example, it achieves the best performance on Precision and MAP with
around 40 epochs.

4.7 Interpretability (Q4)

To better understand HGMAP, we visualize the user and POI embeddings learned from
HGMAP using t-SNE [36]. Figure 8 plots the 2D visualization of the representation derived
from the training of Yelp, Foursquare, and Gowalla. Obviously, the closeness of users and
POIs are well reflected in the learned representation space, and users (POIs) of the same
type are usually mapped to close positions in two-dimensional space. Each point denotes a
user in Fig. 8a, c and e; and a POI in Fig. 8b, d and f, respectively. Figure 8a, c and e show
that the embeddings of users are well clustered, meaning that our model can distinguish

Figure 6 Impact of relative weight value β between user social similarity and visiting similarity
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Figure 7 Convergence of HGMAP

users. Additionally, each color represents a type of users who have a similar circle of friends
and visiting record. In other words, users do exhibit certain discernible patterns in their POI
check-ins which our HGMAP aims to capture. Similarly, we observe that the proximity of
POI embeddings corresponds well with the similarity of user check-ins. In the same fashion,
each color denotes a type of POIs that have a similar geographical position in Fig 8b, d
and f. It means that a given POI presented to a user was relevant enough for that user to
check-in this POI, so that HGMAP can retrieve it later, i.e., it is beneficial for the accurate
recommendation of HGMAP.

(a) User representation (Yelp). (b) POI representation (Yelp).

(c) User representation (Foursquare). (d) POI representation (Foursquare).

(e) User representation (Gowalla). (f) POI representation (Gowalla).

Figure 8 Visualization of the learned user and POI representation on the Yelp, Foursquare and Gowalla
datasets
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5 Conclusion

In this study, we present a novel hybrid graph-based model HGMAP for POI recommen-
dation, which consists of two graph neural networks and one multi-head attention encoder.
Instead of only modeling user-item (POI) interactions as previous works do, we exploit the
graph neural networks for capturing auxiliary information including social influence and
geographical constraints. A POI adjacent graph is constructed to capture the implicit user
mobility patterns by propagating the check-in embeddings on the POI graph. The exper-
imental results based on three real-world datasets demonstrate that the proposed model
outperforms the state-of-the-art baselines, and the latent space learned from both user and
POI embedding propagation can well reflect discernible clustering patterns. This, in turn,
indicates a promising direction that training and optimizing recommendation tasks with
graph-based auxiliary information learning, especially for sparse data and cold-start users
(items).

One of our immediate future works is to incorporate other auxiliary information for better
POI recommendation, such as temporal features, POI categories and sequential check-in
behavior. An important question that we plan to tackle is the shallow issue of graph neural
networks due to the vanishing gradient problem in stacking multiple layers. We also plan to
investigate methods against the sparse user-POI interactions by leveraging deep generative
models [21, 25, 27] to discover underlying non-linear user-POI interactions while improving
the recommendation performance.
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