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Abstract

In recent years, early classification on time series has become increasingly important in
time-sensitive applications. Existing shapelet based methods still cannot work well on this
problem. First, the effectiveness of traditional shapelet based methods would be influenced
by the number of shapelet candidates. Second, it is difficult for previous methods to obtain
diverse shapelets in shapelet selection. In this paper, we propose an Improved Early Distinc-
tive Shapelet Classification method named IEDSC. We first present a new method to more
precisely measure the similarity between time series, which takes into account of the rela-
tive trend of time series. Second, in shapelet extraction, we propose a pruning technique to
reduce the number of shapelets by predicting the starting positions of shapelets with good
quality. In addition, a new shapelet selection method is also proposed to remove the simi-
lar shapelets, so as to maintain the diversity of shapelets. Finally, the experimental results
on 16 benchmark datasets show that the proposed method outperforms state-of-the-art for
early classification on time series.

Keywords Time series - Early classification - Shapelet

1 Introduction

Time series is a sequence of data changing with time order, so it is high-dimensional, con-
secutive and infinitely increasing. In recent years, time series classification has attracted rising
research interest, and has been widely used in many application domains, such as medical
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diagnosis [19, 27, 31], disaster prediction [38], industrial production control [39], financial
market [32] and community discovery [7]. At present, time series classification has many
new extensions, of which early classification on time series data is becoming increasingly
important. Early classification on time series can be used in many time-sensitive fields,
including but not limited to video surveillance, intrusion detection, earthquake warning,
early diagnosis, and action recognition [23, 28]. For example, in the early diagnosis of heart
disease, abnormal ECG signals may indicate a specific heart disease that needs immediate
treatment. Early diagnosis is critical in applications such as intensive care. If a classifica-
tion model that can make early diagnosis as soon as early of ECG time series is available,
the patient with the heart disease can get early treatment.

The goal of early classification on time series is to make prediction as early as possi-
ble provided that the accuracy is comparable to the full length. Therefore, there are two
requirements in early classification on time series. First, the algorithm should confirm at the
earliest time of reliable classification, and thus the predictions could be used for next steps.
Second, the classification accuracy of the classifier trained on partial data should achieve
comparable performance to that of the classifier trained on the entire data.

It is challenging for early classification on time series to construct an effective classifier.
For time series classification with complete data, it is feasible to extract the required features
from the whole data for constructing an accurate classifier. However, this does not work for
the early classification task as many features are unavailable due to the very limited observed
time series data. Xing et al. [34, 35] proposed Early Classification on Time Series (ECTS)
model to tackle the problem that conventional classifiers lack earliness. ECTS is a nearest
neighbor based classifier, and uses minimum prediction length (MPL) to find a stable prefix
subspace to make prediction, but the prediction result lacks interpretability. In [37], Ye et al
proposed a new data mining primitive, called time series shapelets. Shapelets are time series
subsequences which are in some extent maximally representative of a class. Shapelets could
make the classification more accurate, interpretable, and efficient. Following this work,
several works also tried to use shapelets for time series classification [11, 20, 22]. Xing et al.
[36] constructed an early classifier by extracting the shapelets and the classification result
of their method is more accurate and interpretable.

There are mainly two types of works that use shapelets for time series classification. One
is to first extract all the shapelets and then select useful shapelets by certain feature selection
strategy [36], while the other is to generate shapelets by optimization methods [11]. In this
paper, we focus on improving the first type of work. A major limitation of exsting works is
that they will produce a large number of redundant shapelets, and thus lead to low efficiency.
Another issue of current works is that they do not consider the diversity of shapelets. If we
keep the diversity of shapelets, we will make the shapelets more distinguishable and achieve
more accurate classification.

In this paper, we propose an Improved Early Distinctive Shapelet Classification method
named IEDSC for more accurate early classification on time series. Specifically, we first
present a new trend-based Euclidean distance to measure the similarity between two time
series. Next we propose to prune the shapelets based on the estimated starting positions.
Because shapelet is a subsequence of time series, it has a starting position and end position.
If we could obtain starting positions of high quality shapelets and extract shapelets near
these starting positions, the number of shapelet candidates can be reduced greatly. Further,
we define an extended self-similarity and propose a diverse shapelet selection method to
make the extracted shapelets more diverse. To more clearly show the novelty of IEDSC
method, we compare it with four candidate methods under five characteristics as shown in
Table 1.
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Table 1 Comparison of five

classification methods Method description ECTS EDSC ECDIRE RelClass IEDSC
Early Classification v v v v v
Shapelet as Feature X v X X v
Similarity with Trend X X X X v
Shapelet Pruning X X X X v
Diverse Shapelet Selection x x x X v

The main contributions of this paper are summarized as follows:

- A new similarity measure for time series is proposed by taking the relative trends of
two time series into consideration.

- A shapelet pruning technique is proposed to effectively prune shapelet candidates. It
first estimates the starting positions of the shapelets and then extracts shapelets from
these starting positions, such that only the shapelets near the estimated starting position
are extracted. Thus the number of shapelet candidates can be significantly reduced.

- A new shapelet selection method is proposed to effectively remove the similar shapelets
so as to make the selected shapelets more diverse.

- Extensively experiments on a bunch of real datasets verify the effectiveness and
efficiency of our proposal.

The rest of this paper is organized as follows. In Section 2, we review the related work.
We introduce some definitions and preliminaries in Section 3. In Section 4, we describe
the feature extraction method. We introduce the feature selection and early classification
method in Section 5. We demonstrate our experimental results in Section 6. Finally, we
conclude the paper in Section 7.

2 Related work

In recent years, early classification on time series has received increasing research attention
in the community of machine learning [15, 26, 33]. However, early classification has its
own uniqueness, such as the temporal correlation in the data [24, 30]. Xing et al. [34,
35] for the first time formulated early classification problem explicitly. They proposed the
concept of minimum prediction length (MPL), and then presented an early classification
algorithm called ECTS. During model training, ECTS needs to calculate the MPL for each
sequence in the training set. To predict the class label of an unlabeled time series, at each
time stamp ECTS searchs its current nearest neighbor under the condition that the MPL of
nearest neighbor cannot be larger than the current time stamp. If the nearest neighbor meets
the condition, the prediction can be made in advance, otherwise, it should wait for more
incoming data.

Some early classification methods simply train a classification model with the time series
data at the early stage, and design criteria to judge whether the prediction result is reliable.
Lin et al. [21] proposed an early classification method that utilized the hidden markov mod-
els (HMM) to classify the time series. It was evaluated at each time stamp and could get
the best results when the complete time series was obtained. This approach lacks flexibility,
because the prediction is always done at time stamp which is consistent with the length of
training time series, and thus limits the application of the model [9]. Ghalwash et al. [10]
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proposed a specially designed hybrid model, which integrated HMM and support vector
model (SVM). Although this model can make more reliable prediction by setting threshold
value, its limitation is that plenty of samples are required for training.

Mori et al. [25] proposed an algorithm Early Classification of Time Series based on
Discriminating Classes Over Time (ECDIRE). In the training phase, ECDIRE analyzes the
discrimination of each class at each time stamp, and selects some certain time stamps that
the classification accuracy of each class should exceed a predefined threshold. In the predic-
tion phase, the prediction should be made at or after these time stamps. Ando and Suzuki [1]
proposed an optimization-based learning method for timely prediction, which could directly
minimize an empirical risk function and response time to achieve the minimal prediction
risk without a user-defined trade-off between accuracy and earliness. Parrish et al. [26] pro-
posed optimal and practical decision rules for classifying incomplete data. In [26], the class
label of unclassified data is obtained only if the reliability threshold is met. The reliability
threshold is used to ensure that the predicted class label of incomplete data would be the
same as the label assigned for the complete data.

For early classification, the classification model should achieve a good trade-off between
earliness and accuracy. Mori et al. [24] presented an approach for early classification of
time series based on combining a set of probabilistic classifiers together with a stopping
rule. The rule could decide when to make a prediction or when to wait for more data, which
ensures the prediction accuracy and reliability. Romain et al. [27] proposed an early classi-
fication algorithm which can optimize classification accuracy and decision delay cost, and
can point out the best time to make early classification. Hartvigsen et al. [12] proposed an
early classification model, called EARLIEST. The model consists of the novel pairing of
a recurrent discriminator network with a stochastic policy network, with the latter learning
halting-policy as a reinforcement learning task. Schifer and Leser [29] presented TEASER
that modeled eTSC as a two-tier classification problem. The first tier periodically computes
class probabilities and the second tier decides reliability of the predicted label. Once the
reliability attains a threshold, the prediction is made.

Some early classification algorithms achieve good classification accuracy, but the draw-
back is the lack of interpretability. Ye et al. [37] proposed a new primitive, called time
series shapelet. Shapelet can make classification faster, more accurate and interpretable.
Therefore, there are some works that use shapelet for time series classification. Xing et al.
[36] proposed the early distinctive shapelet classification (EDSC) algorithm. EDSC used
shapelet with earliness to classify new time series, but its performance is undesirable when
applied on larger dataset. Karlsson et al. [16] proposed a random forest algorithm based on
shapelet for early classification, which can obtain high accuracy and earliness. As EDSC
did not estimate the confidence of the prediction result, Ghalwash et al. [9] presented the
modified EDSC with an uncertainty estimates (MEDSC-U) algorithm, which estimated
the temporal uncertainty associated with the prediction. Wang et al. [32] proposed a new
end-to-end deep learning framework Earliness-Aware Deep Convolutional Networks(EA-
ConvNets) for early classification on time series. This framework can jointly perform
feature learning and a dynamic truncation model learning to help deep feature learning
architecture focusing on the early parts of each time series.

There are many researches on early classification for multivariate time series, Galwash et
al. [8] proposed an early classification method called multivariate shapelets detection(MSD)
for multivariate time series. MSD extracts shapelets from all dimensions of the multivariate
time series. The shapelet in each dimension starts from the same position and has the same
length. Furthermore, MSD uses weighted information gain based utility score to evaluate the
effectiveness of shapelets, which indicates the precision and earliness of shapelets. MSD is

@ Springer



World Wide Web (2020) 23:3055-3081 3059

developed based on an assumption that all the multivariate shapelets have the same starting
position and the same length, making many shapelet candidates lost. He et al. [13] proposed
an early classification method on multivariate time series, called Mining Core Feature for
Early Classification (MCFEC). In MCFEC, a new shapelet quality assessment method was
proposed, so as to ensure the accuracy and the earliness. Furthermore, MCFEC designs
two methods for building an early prediction of the class of unknown multivariate time
series object. Further, He et al. [14] proposed an adaptive classification ensemble method to
deal with early classification on inter-class and intra-class imbalanced MTS data. They first
design an adaptive ensemble framework to learn an early classification model. Second, they
introduce a cluster-based shapelet selection method to obtain optimal shapelets. Finally,
they design an associate-pattern mining approach to learn base classifiers.

3 Definition and preliminaries
In this section, we will give some terminology definitions and the preliminaries.
3.1 Definition

Definition 1 Univariate Time Series. Univariate time series T = {t1,#,13,..., 1L} is an
ordered set of L real-valued variables. Data points ty,t5,t3, ..., t;, are typically arranged by
temporal order, and t; is the value at time stamp i.

Definition 2 Subsequence of time series. Given a time series 7 of length L, a subsequence
s of T is a sampling from /(! < L) continuous positions of T. Thatis, s = {t,, ..., tp41-1},
1 <p<L-I1+1.

Definition 3 Distance between the time series. Given two time series T and R with the same
length L, the distance between T and R can be denoted by Dist(T,R). By using Euclidean
distance as measure, Dist(T,R) is calculated as follows.

Dist(T,R) = (D

Definition 4 Shapelet. Shapelet is a time series subsequence which is in some sense max-
imally representative of a class, and can be represented by a triple f = (s, §, ¢), where s is
a time series subsequence, § is a distance threshold, and c is the class label.

Definition 5 Best Match Distance (BMD). The best match distance between shapelet f =
(s, 8, ¢) and time series T is defined as:

BMD(f, T) = min(Dist(s',5)), s € s} )

where, slTsl is a collection of subsequence with length |s| in T.

Given a shapelet f = (s, 8, ¢) and a time series T, if BMD(f, T) < 8, T is classified to
class c.

Definition 6 BMD-list. Given a shapelet f and a training dataset D, which contains » time
series, BMD-list is a list of the BMDs between f and the time series in D, sorted in a
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non-descending order, as shown in Eq. 3:
Vi ={(d1, 1), (d2,c1),...,(dr, c2)} 3)

where d; = BMD(f,T;),T; € D ,d; <djfori < j,and c; is the class label of time series
T;.

Definition 7 Earliest Match Length (EML). Given a shapelet f = (s, §, ¢) and a time series
T, EML is defined as the minimal identifiable length of T. It means f could classify the
time series T using its prefix from the beginning to the position EML(f,T).

EML(f, T)= min (Dist(T[i —len(s) +1,i],s) <9) “4)
len(s)<i<len(T)

EML measures the earliness of f in correctly classifying T. If f cannot classify the time
series T, we have EML(f,T) = oo .

Definition 8 Weight Recall (WRecall). WRecall is defined to measure the earliness of
shapelet f on a training dataset D.

1 1
WRecall(f) =
callD = o X GERTGT

®)

where « is used to control the importance of earliness, and || Dz|| represents the number of
non-target time series.

Definition 9 Precision. Given a shapelet f = (s, 8, ¢) and a training set D’, precision is
defined as the proportion of time series in D’ that f can classify correctly.

Precision(f) = \BMPUD =0 A CM) =cll . (6)
IBMD(f,T) <4

Definition 10 Utility. Utility is defined as the quality score of shapelet f = (s,§,c¢). A
higher utility means a better quality of the shapelet.

o _ 2 x Precision(f) x Wrecall(f)
Utility(f) = Precision(f) 4+ Wrecall(f) M

3.2 Preliminaries

The concept of shapelet was first proposed in 2009 by Ye and Keogh [37]. Shapelet is a
time series subsequence, which is in some sense maximally representative of a class. Ye and
Keogh proposed a brute force search method, which can be used to find the optimal shapelet.
However, early classification on time series needs to find multiple effective shapelets. Most
shapelet based early classification algorithms first extract and estimate all the shapelets,
and then select some good shapelets through a selection strategy. In shapelet extraction
phase, two parameters minL and max L need to be set first, and then extract all the possible
shapelets from the training set whose lengths are between min L and max L. The procedure
of generating the shapelet candidates is shown in Algorithm 1.
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Algorithm 1 GenerateShapeletLibrary.

Input: training set : D, minL, maxL

Output: a set of shapelet candidates : shapelet Library
1: shapeletLibrary <— &
2: for each time series T in D do
3 for [ = minL to maxL do

4 fori = 1tolength(T) —1+ 1do

5 b {ti tigrs oo tigi—1}

6: candidates < GenerateShapelet(s{, l,i, D)
7 if candidate satisfies conditions then

8 shapeletLibrary.add(candidate)

9: else

10: eliminate(candidate)

11: end if

12: end for

13: end for

14: end for
15: return shapeletLibrary

Given a training dataset D, Algorithm 1 extracts all the shapelet candidates (lines
2-14). In line 6, the distance threshold and utility of each candidate are obtained by
Generateshapelet () (shown in Algorithm 2). In lines 7-11, we remove part of shapelet can-
didates according to a precision threshold. At last, Algorithm 1 returns a shapelet candidates
set (line 15).

Algorithm 2 GenerateShapelet.

Input: subsequence : sf, length of subsequence : 1, start position : i, training set :
D

Output: a shapelet candidate : shapelet

1: bmdlist < @

2: for each time series T in D do

3 bmd < BMD(s!,T)

4 bmdlist.add(bmd)

5: end for

6: delta < computeDelta(bmdlist)

7. precision <— computePrecision(bmdlist,delta)

8: wRecall < computeWrecall(sf, D, delta)

9: utility <— 2 x precision x wRecall/(precision + wRecall)

10: return shapelet(sil, l,i,delta, precesion, utility)

Algorithm 2 describes how to generate shapelet. It first computes the bmdlist of
each shapelet (lines 1-6), and obtains delta according to bmdlist. Then, the precision
and wRecall are computed by compute Precision() and computeWrecall() (lines 7-8).
Finally, the utility of each shapelet is obtained, which indicates the quality of shapelet (line
9).
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4 Feature extraction

The workflow of IEDSC is shown as Figure 1. First, we generate shapelets from time series
training data, by using the generation methods as shown in Algorithms 1 and 2 in Section 3.
Algorithm 1 returns a shapelet candidates set, while Algorithm 2 describes how to generate
shapelet. Second, we make feature extraction from the generated shapelets candidates which
is presented in Section 4. Concretely, we propose the Trend-based Euclidean distance and
shapelet pruning technique. Third, we select features from the extracted features and pro-
pose the diverse shapelet selection method in Section 5. Finally, we use the selected feature
to make early classification on testing time series data.

In the feature extraction phase, in order to evaluate each shapelet, we need to compute
the similarity between a shapelet and a time series. Most algorithms use Euclidean distance
to measure the similarity. However, Euclidean distance simply calculates the point-to-point
distance, without considering the trend of time series. In order to more precisely mea-
sure time series similarity we propose a trend-based Euclidean distance. In addition, some
shapelet extraction methods extract all the shapelets directly, which can be time consum-
ing. If the dataset is large, the shapelet candidate space will become extremely large. To
solve this problem, we propose a shapelet pruning method, which can effectively reduce the
number of shapelet candidates.

In this section, we first present the trend-based Euclidean distance, and then introduce the
distance threshold calculation method. Finally, we introduce the shapelet pruning technique
based on the prediction on the starting position.

4.1 The trend-based Euclidean distance

To measure the similarity of time series, we need compute the distance between two time
series, which usually presents some trend changing over time. To take the changing trend
of the time series data into consideration, we propose a trend-based Euclidean distance
computation method. The idea is that if two time series present similar trend and the distance
between them is small, we consider that the two time series are similar. The similarity can
be calculated by:

) 1
TDist(T, Ry = | 2 | D @ =) + ) (1 —rj)? % ®)
iels jelz

Section 3 Section 4 Section 5
Time
series Shapelets Featute Feature Early

Training Generation Extraction Selection Classification
set

Figure 1 Workflow of the proposed algorithm IEDSC
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where T and R are two time series with the same length L. #;, r;, t;, and r; represent the
value of time series at time stamp i or j. All the time stamps in /i indicate that the size
relationship between 7 and R at time stamp i are the same as the last time stamp. [ is the
opposite of ;.

Algorithm 3 distWithTrend.

Input: series length : L, user defined coefficient : X, two series : s,t
Output: dist

1: dist < (s1 — 11)?

2: flag <—sgn(s; —t1)

3: fori =2 — Ldo
4 if sgn(s; —t;) == flag then
5: dist < dist + (s; — 1;)?
6
7
8
9

else
dist < dist+ (s — ;)% % A
end if
flag = sgn(s; —t;)
10: end for
11: dist < sqrt(dist/L)
12: return dist

The specific steps of trend-based Euclidean distance computation algorithm are shown as
Algorithm 3. Given two time series, we first calculate the distance between the data points
of the two sequences at the first time stamp and set it as the initial value of dist, and then
calculate the size relationship between them (lines 1-2). We use sgn() to represent the size
relationship. sgn() is a symbolic function that returns the positive or minus of a parameter.
When calculating the distance between two points of two sequences at time stamp i , it
is necessary to consider the size relationship between the two points at the previous time
stamp i — 1. If the size relationship between two points at time stamp i of two sequences
is the same as that at time stamp i — 1, the distance between points of the two sequences
at time stamp i is added to dist directly; otherwise the distance should be punished with
the parameter & € [1, 2], and then added to dist (lines 3-9). The distance between two
sequences will increase with the increase of A, so the distance between two shapelets with
similar trend will be small. Therefore, the similarity measure is more accurate. If the two
sequences have similar trend, which means that the size relationship between two points at
each time stamp of two sequences could be the same. If two points at any time stamp do
not satisfy this condition, the extent of similarity is diminished. So we amplify the distance
between the two points. Finally, the algorithm returns the final distance (line 12).

Example 1 Suppose there are 5 time series with length 10, A = {0.5,0.9, 2,2.5,4.5,
39,1.2,-05,-03,0.6}, B={1,1.1,2.4,2.8,55,44,1.6,0,0.2,2.1} , C = {0,
0.7,1.6,2.2,3.5,3.4,0.8, -0.8, -0.8,0.2}, D = {0, 0.5,2.4,2.8,5.5,4.4,0.8, 0.2,
0.2,0.8},E ={0.1,1.4,2.3,2.9,4.3,4.2,0.7,0.5, 0.1, 0.1}.The trend relationship between
A and the others is shown in Figure 2.

In Figure 2, if the Euclidean distance is used to calculate the distance between sequence

A and the others, the distances are the same as the +/0.245. But from Figure 2 one can
see that the two curves in Figure 2 (1)(2) are closer than that in Figure 2 (3)(4). If we use
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Figure 2 Trend relations between A and other four time series

Algorithm 3 to compute the trend-based Euclidean distance between the sequences, their
distances are different. The largest distance is the distance between curves A and E, which
is 4/0.247. The distance between curves A and B is the same as the distance between curves
A and C, which is +/0.245. The distance between curves A and D is +/0.246. This example
shows that our proposed trend-based Euclidean distance can better measure the similarity
between time series compared with Euclidean distance.

4.2 Compute the distance threshold

The distance threshold is a very important attribute for shapelet, which is used to classify
time series. Before calculating the distance threshold, we first get the BMD-list of shapelet,
and then choose the best threshold according to the evaluation strategy.

Ye et al. [37] used information gain to evaluate the quality of the threshold, which divided
the training dataset into two subsets. A higher purity of the two subsets leads to a higher
information gain, indicating that the quality of this threshold is better. However, the limi-
tation of this method is that it is prone to overfitting. Xing et al. [36] used kernel density
estimation [6] and Chebyshev inequality to compute the distance threshold. Given a shapelet
f = (s,8,c) and a time series T, if BMD(f, T) < §, the kernel density estimation can
guarantee the probability of time series 7 belonging to the target class is higher than a
user-defined threshold. The Chebyshev inequality can guarantee the probability of the time
series belonging to non-target class is lower than a user-defined threshold. He et al. [13]
considered the accuracy and recall simultaneously, and obtained the best threshold when the
harmonic mean of accuracy and recall was maximized. We use kernel density estimation
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to calculate the distance threshold of shapelet, because the distance threshold obtained by
kernel density estimation is more accurate.

Given a sample y = {x1, x2, ..., x,}, the kernal density estimation of f(X = x) can be
calculated as follows:

1 & X — Xj
X = = — K 9
X =x)=— ; ( - ) ©)
K (x - x") = (10)

= e
h 21

h = 1.068n"3 (11)

where K is a Gaussian kernel function, / is a smoothing factor, and § is the standard
deviation of the sample.

If the training set contains m classes , ¢ € {1, ..., m}, for a threshold x, we can get the
probability of x belonging to class i as follows.

pi fi(x)

Pricy =il X =x) = 721(,”:1 o)

12)
where py is a prior probability of class k .

Given a shapelet f = (s, ?, ¢) and the BMD-list of f, we can use kernel density esti-
mation to obtain a distance threshold § , satisfying that if BMD(f,T) < § , we have
Pr(cy = c|X = x) > B. Here, T is the time series in training set and S is a user-defined
probability threshold.

4.3 Shapelet pruning based on the estimated starting position

In the conventional method of shapelet extraction, the number of shapelet candidates is
extremely huge, and it discovers optimal shapelet by estimating the whole shapelet candi-
dates. As it is time consuming to scan all the candidates, we argue that we do not need to
estimate some shapelets with bad quality, and pruning them can significantly reduce the
computational complexity. In this paper, we propose a shapelet pruning algorithm based
on the prediction on the starting position. The basic idea is to estimate the starting posi-
tions of shapelets with good quality and then extract shapelets from the starting positions.
Here we preset a user-defined parameter, step Size, which is used to change the length
of shapelets in shapelet extraction. In our method, we estimate the start positions accord-
ing to part of shapelets, and the lengths of shapelets vary. In order to make the number of
extracted shapelets appropriate, we extract part of shapelets with different lengths accord-
ing to stepSize. The pruning process is as follows. First, we extract all the shapelets with
length minL, and then extract all the shapelet candidates with length minL + stepSize.
Next time we add step Size to the previous shapelet length until max L. Second, we evaluate
the extracted shapelets candidates and then select the better shapelets from these shapelet
candidates. We take one of the extracted shapelets candidates as a feature denoted by fi.
All training examples covered by f; are marked. We consider the remaining unmarked
shapelet candidates that can cover some training examples as covered, and iteratively select
the shapelets candidates as features. The iteration continues until all the training examples
are covered to obtain better shapelets. Finally, we extract the starting positions of these
shapelets, and only keep the shapelets with lengths between minL and max L from these
starting positions. Note that these lengths do not include the length that has been previously
extracted. Thereby we achieve the pruning of shapelets. The pruning method is described
as Algorithm 4.
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Algorithm 4 GenerateShapeletLibraryWithPruning.

Input: training set : D, minL, maxL, stepSize
Output: a set of shapelet candidates : shapeletLibrary
: shapeletLibrary <— @
: lenArr < &
: lenArr.add(minlL)
x < minL + stepSize
while x < maxL do
lenArr.add(x)
x <— minL + stepSize
: end while
: lenArr.add(maxL)
10: valShapelets < First ExtractShapelets(D,lenArr)
11: topShapelets < SelectionShapelet (valShapelets)
12: startArr <— GetStart Pos(topShapelets)
13: shapeletCandidates <— ExtractShaplets(D, minL, maxL,lenArr, start Arr)
14: shapeletLibrary < valShapelets U shapeletCandidates
15: return shapelet Library

Given a training set, we first calculate the length array len Arr of the shapelet according
to the parameter stepSize(lines 3-9). The function First Extract Shapelets() only returns
the shapelets with lengths in the length array len Arr (line 10). SelectionShapelet () and
GetStart Pos() are used to select the better shapelets and obtain the starting positions of
these better shapelets(lines 10-12). After that, according to the starting positions, we extract
all the lengths of the shapelets, but those extracted shapelets are no longer extracted (line
13). Finally, lines 14-15 merge the two sets valShapelets and shapeletCandidates , and
return the final shapelet candidates .

Given a time series with length 80 as shown in Figure 3, suppose minL = 5, maxL =
L/2, where L is the length of the complete time series. According to Algorithm 4, assuming
stepSize is 8, we first compute the length array [5,13,21,29,37,40]. We extract shapelets
with lengths in the length array and evaluate these shapelets. Then we select the better
shapelets (the red sequence in Figure 3) and obtain their starting positions (the red dots in
Figure 3). Finally, we start to extract shapelets from these positions, for reducing the number
of shapelets.

In the feature extraction step, we assume all the shapelet of length between minL
and maxL. Suppose we have N time series with length L, and a parameter stepSize
which is used to obtain lenArr. For a shapelet with length k, the computation cost
is O(kN(L — k + 1)). We need extract shapelets twice, the cost of first extraction is
O(X rcionarr KN*(L — k + 1)2). Supposing we obtain M starting positions from the first
step, the cost of the second extraction is O (M Y {“*L  kN?(L — k + 1)). The total cost of

extraction is O (Y g cjonarr KN2(L —k 4+ 12+ M Y74 kN2 (L —k+1)) = O(N2L*).
5 Feature selection and early classification based on shapelet

Feature selection is one of the key steps of IEDSC, and the quality of shapelets determines
the accuracy of classification. For early classification, good features should be frequent,
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Figure 3 An illustration of the starting position estimation of shapelets

discriminative and of good earliness, and the selected features should be diverse. To this
end, we propose a new feature selection method.

Xing et al. [36] uses a greedy method to select shapelets, and the steps are as follows.
First, sort all the shapelets in non-ascending order according to the quality score. Second,
select the shapelet f = (s, §, ¢) with the highest score, and mark all the samples covered by
f in the training set. Here, the covering means BMD(f, T) < § A ¢(T) = c. Third, select
the shapelet f' = (s, §’, ¢/) with the second highest quality score, and repeat the covering
operation on training examples that are not marked. The above steps are repeated until all
training examples are marked.

Although the greedy method is simple, it has some disadvantages. The shapelets
extracted by this method may be highly similar, and it might ignore some useful shapelets,
leading to undesirable classification accuracy. In order to tackle this problem, we design a
selection method according to the concept of non-self match [18] and trivial match [2, 3].

Definition 11 Non-Self Match. Given a time series 7', containing a subsequence C of
length n beginning at position p and a matching subsequence M beginning at ¢, we say that
M is a non-self match to C at distance of Dist(M, C) if |p — ¢q| > n.

Definition 12 Trivial Match. Given a time series 7, which contains a subsequence C with
a beginning position p and a matching subsequence M with a beginning position ¢, we say
that M is a trivial match to C if either p = ¢ or there does not exist a subsequence M’
beginning at ¢’ such that D(C, M’) > R, and eitherqg < ¢’ < porp < ¢’ <gq.

For two shapelets, if they derive from the same time series and their starting positions
are nearby, they should be similar. The similarity between shapelets is shown in Figure 4. In
Figure 4, there are five subsequences with the same length and different starting positions.
The starting positions of subsequences a, b, c, d, e are 19, 20, 21, 22, 23 respectively. From
Figure 4, we can see that two shapelets are very similar if their starting positions are 1 or 2
apart.
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5.1 Diverse shapelet selection

In order to remove similar shapelets and keep diverse shapelets, we define extended self-
similarity below.

Definition 13 Extended Self-Similarity. Given two shapelets fi = (s1,81,¢1) and f, =
(52, 82, c2). We add three attributes Id, staPos and len to shapelets. Id represents the time
series ID that we extract the shapelet from. staPos is the starting position in time series and
len is the length of shapelet. We say f1 and f2 have extended self-similarity if the following
conditions are satisfied.

1. Idy = 1d;
2. |staPosy — staPosy| < y;
3. |leny —leny| <.

where, y and n are user-defined threshold, y denotes the allowed distance between the
starting positions of two shapelets, and n represents the allowed difference of two shapelet
lengths.

We illustrate extended self-similarity by the examples shown in Figure 5, assuming y =
1 and n = 1. In Figure 5 (1), the starting position of c is the same as c1 and ¢2, but their
lengths are different. ¢ and cl , ¢ and c2 both have a length difference of 1. Therefore,
according to Definition 13, ¢ and c1 , ¢ and ¢2 have extended self-similarity. In Figure 5
(2), the starting positions of ¢, ¢3, and c4 are different, and the starting position distance
between ¢ and c3, ¢ and ¢4 is 1, but their lengths are identical. So from Definition 13 we
know ¢ and ¢3, ¢ and ¢4 have extended self-similarity. In Figure 5 (3), ¢, ¢5 and c6 have
different starting positions and lengths, but they satisfy the conditions in Definition 13. Thus
¢ and ¢35, ¢ and ¢6 have extended self-similarity. In Figure 5 (4), ¢, ¢7 and ¢8 also have
various starting positions and lengths. ¢ and ¢7 have a starting position distance of 1 and
length difference of 2, and ¢ and ¢8 are the same. Therefore, ¢ and ¢7, ¢ and ¢8 do not have
extended self-similarity.
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Figure 5 An Example of Extended Self-Similarity

The traditional feature selection algorithm does not consider the similarity between fea-
tures, and the results might contain some similar features. In order to avoid this problem,
we propose a new feature selection algorithm that selects features with larger diversity. The
main idea is that when selecting a new feature, we first judge whether there is extended self-
similarity between the current feature and the extracted features. If there exists, we omit it,
otherwise, we use it to cover the samples.

The steps of the new feature selection algorithm are as follows:

1. Sort all the shapelets in non-ascending order according to the utility.

Take the shapelet f = (s, §, ¢) with the highest utility, and then mark all the samples
covered by f in the training set. The cover means BMD(f, T) <é A c(T) =c.

3. Take the shapelet f/ = (s, §', ¢) with second highest utility, judge whether the current
shapelet has extended self-similarity to the extracted shapelets. If there exists, omit
this shapelet and select the next shapelet to repeat this step; if not, cover the unlabeled
sample in the dataset, and then mark the samples covered by f’ until most samples are
marked.

5.2 Early classification method

The proposed early classification method is shown as Algorithm 5.
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Algorithm 5 PredictClassLabel.

Input: time series : T, shapelets

Output: the prediction class of T : ¢
1: shortlen <— shortestLengthInShapelets(shapelets)
2: for i = shortlen — length(T) do
3: for f in shapelets do

4 if BMD(f,T) < then
5: return c

6 end if

7 end for

8: end for

9: return noclass

Given a sample in testing set D', classifier first obtains the minimum length of the
extracted shapelets (line 1), and then tries to match the time series with each shapelet in
the shapelets. If there is a match, return the class label, otherwise get more data and repeat
this operation (lines 2-8). If it is not possible to classify at the last time stamp, the sample is
unclassified.

Given the selected m shapelets with length &, the number of the samples to be classified
is | D’| with length L, the online classification complexity is (L — k + 1) * k  m * | D’|.

6 Experimental evaluation
6.1 Experimental settings

We compare IEDSC with five baselines, INN-DTW(learned-w) [17], ECTS [35], EDSC
[36], ECDIRE [25] and RelClass [26]. INN is a nearest neighbor based classification algo-
rithm with complete time series, and we use Dynamic Time Warping(DTW) to measure
the similarity of time series due to its good performance, where the warping windows
are obtained after learning the best constraint from the training set. ECTS is the first
early classification method, which uses partial time series for classification. EDSC is an
early classification algorithm based on shapelet, which achieves good accuracy and inter-
pretablity. ECDIRE uses probabilistic classifier to classify time series at time stamps that are
discovered in learning phase. RelClass treats data as a random variable and makes decision
depending on a reliability threshold.

The UCR time series data library [4] collects a number of standard time series datasets
that are widely used in time series classification, each containing a training set and a test
set. We select the following 16 datasets which are the representative datasets of different
types from the UCR time series data library for evaluation and show the parameter setting
of each dataset in Table 2.

We use accuracy and earliness as the performance evaluation metrics. The accuracy rep-
resents the proportion of samples that the classifier can correctly classify in the testing

set.
NUM
Accuracy(EC) = ——— (13)
|D’|
where, EC is the early classifier, D’ is a testing dataset, | D’| is the number of samples in
the testing dataset, and N U M represents the number of samples that classifier EC correctly

classifies.
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Table 2 Datasets description

Dataset information Parameter setting
Dataset Training Testing Class Length A

CBF 30 900 3 128 1.0319
Coffee 28 28 2 286 1.1
ECG200 100 100 2 96 1.0319
ECGfivedays 23 861 2 136 1.1
Facefour 24 88 4 350 1.1
FacesUCR 200 2050 14 131 1.3
Gun_Point 50 150 2 150 1.4
Motestrain 20 1252 2 84 1.2
Oliveoil 30 30 4 570 1.0319
SonyAIBOrobotsurfacel 20 601 2 70 1.1
SonyAIBOrobotsurface2 27 953 2 65 1.1
Symbols 25 995 6 398 1.4
Synthetic_control 300 300 6 60 1.1
TwoleadECG 23 1139 2 82 1.0319
Two_Patterns 1000 4000 4 128 1.0319
Wafer 1000 6164 2 152 1.0319

Earliness is defined as the average minimum prediction length on time series set in which
the time series are classified.

1
Earli = — il 14
arliness N;L (14)

where N represents the number of samples that could be classified, /; is obtained by the
EML(Eq. 4), which indicates the minimal indentifiable length of ith time series, and L
represents the length of the complete it/ sequence.

All the experimental results are obtained on the computer with Intel (R) Core (TM)
15-7400 , 3.0 GHZ and memory 8G. The algorithms are implemented by Java.

6.2 Performance comparison over accuracy and earliness

In the experiments, we set minL = 5, maxL = L/2, where L is the length of the complete
time series. The two length parameters are set empirically, and all the datasets in experiment
have the same minL and max L. In the distance calculation, we use the training set of each
dataset to make cross validation and obtain the value of A. The search space of A is in [1,2]
and we make 5-fold cross validation on the training set of each dataset to find the optimal
value of A shown in Table 2. When we evaluate the shapelets, we remove some shapelets
whose precision obtained by a distance threshold is lower than 0.8. This is also an empirical
value and is fixed for all datasets. When calculating the distance threshold, we set @ = 3,
B = 0.95. The values of two parameters are obtained from EDSC [36], which could achieve
higher accuracy. In feature extraction, the step Size is fixed to 8. In feature selection, we set
y = 2, the value of y is fixed. The value n € [5, 6, 7, 8], we search the solution space and
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find there is no significant difference on the results with different » values, and thus we set
n=>5.

We compare the proposed algorithm IEDSC with INN-DTW(learned-w), ECTS, EDSC
, ECDIRE and RelClass, and the experimental results of accuracy and earliness are shown
in Tables 3 and 5 respectively.

From Table 3, we can observe that INN-DTW obtains the best accuracy in 7 datasets
and has the highest average rank. It is because INN-DTW uses the full time series data
to make classification. EDSC is based on shapelet, but it only obtains the best result in
Gun Point.The reason is that EDSC selects shapelet through a simple cover method, and
thus the shapelets do not have enough diversity. The ECTS beats all the other methods in
2 datasets. ECTS is based on 1NN method, so the decision time stamp would affect the
accuracy. The earlier decision time stamp usually leads to a lower accuracy, while the later
decision time stamp leads to a higher accuracy. For ECDIRE, due to the unreliability of
class label, some series could remain unclassified. RelClass obtains the best accuracy in
two datasets. IEDSC obtains the best results in 5 datasets and achieves the second accuracy
average rank, only worse than the full time series method, INN-DTW, which does not pro-
vide early detection. IEDSC classifies time series by shapelets, and the quality of shapelets
decides the accuracy. IEDSC eliminates parts of shapelet candidates in the extraction pro-
cess, selects more diverse shapelets, and thus it achieves a higher accuracy. Moreover,
Figure 6 shows a critical difference diagram for Nemenyi test [S] over the accuracy aver-
age ranks of six classifiers. In the critical difference diagram, « is set to 0.05. The critical
difference (CD) length is shown above the graph. From Figure 6, we can see that DTW is
the best-performing classifier as it is based on full length time series, and IEDSC is ranked
the second. There is no significant difference among DTW, IEDSC, RelClass, ECTS and
ECDIRE because they form a clique of classifiers.

Table 3 Accuracy

Dataset INN-DTW  ECTS EDSC ECDIRE  RelClass  IEDSC
CBF 11) 0.85(4) 0.84(5) 0.89(3) 0.64(6) 0.92(2)
Coffee 11) 075(55) 0.75(5.5)  0.96(2) 0.89(4) 0.93(3)
ECG200 0.88(4) 0.89(25)  0.85(5) 0.91(1) 0.89(2.5)  0.84(6)
ECGfivedays 0.8(2) 0.62(4) 0.74(3) 0.6(5) 0.52(6) 0.97(1)
FaceFour 0.89(2) 0.82(4) 0.75(5) 0.61(6) 0.83(3) 0.92(1)
FacesUCR 0.91(1) 0.71(5) 0.63(6) 0.74(4) 0.77(2) 0.76(3)
GunPoint 0.91(3.5) 0.87(55) 0.94(1.5) 087(5.5) 091(3.5) 0.94(L5)
Motestrain 0.87(2) 0.88(1) 0.78(4) 0.8(3) 0.58(6) 0.76(5)
Oliveoil 0.87(2) 0.9(1) 0.6(5) 0.4(6) 077(35)  0.77(3.5)
SonyAIBOrobotsurfacel  0.7(5) 0.69(6) 0.8(3) 0.83(2) 0.79(4) 0.84(1)
SonyAIBOrobotsurface2  0.86(2) 0.85(3) 0.81(5) 0.74(6) 0.88(1) 0.82(4)
Symbols 0.94(1) 0.81(25)  0.51(6) 0.81(2.5  0.71(4) 0.59(5)
SyntheticControl 0.98(1.5) 0.88(6) 0.89(5) 0.96(3) 0.98(1.5)  0.92(4)
TwoLeadECG 0.87(3) 0.73(5) 0.88(2) 0.81(4) 0.72(6) 0.95(1)
TwoPatterns 11) 0.86(5) 0.8(6) 0.87(4) 0.93(2) 0.93)
Wafer 11) 0.99(3) 0.99(3) 0.97(5) 0.99(3) 0.9(6)
Average rank 2.0625 3.9375 4375 3.875 3.625 3.125
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Figure 6 Critical difference diagram of accuracy for six classifiers

In order to further investigate whether the five early classification methods present sim-
ilar performance, we conduct Wilcoxon rank sum test to evaluate the significance level of
ranks on accuracy and earliness. Table 4 shows the results of rank sum test of significance
level of the ranks on accuracy, wherein, o is the significance level which is set to 0.05
for test. The p-value is the significant probability that the pairwise is consistent. The last
column % denotes the test result. If £ is equal to 1, it indicates the pairwise has signifi-
cance difference. From Table 4, one can observe that the pairwise EDSC vs. IEDSC are
significantly different, while the others do not present significant difference.

Table 5 shows the result for earliness. It shows that IEDSC obtains the lowest values in 5
datasets out of 16, followed by EDSC, which obtains the best results in 4 datasets. ECDIRE
and RelClass obtain the best resluts in only 3 datasets. ECTS does not obtain the best result
in any dataset. Table 6 shows the results of rank sum test of significance level of the ranks on
earliness. One can see that ECTS vs. IEDSC has significance difference, and the pairwise
RelClass vs. IEDSC also has significance difference.

From the above analysis, we can conclude that IEDSC could not only make prediction as
early as possible, but also use partial data to achieve comparable accuracy with the classifier
using complete time series.

6.3 Method effectiveness analysis

IEDSC contains three key designed features, trend-based Euclidean distance, shapelet prun-
ing, and diverse shapelet selection. In order to evaluate how these three parts affect the
classification performance, we conduct the experiments by changing one of these three parts
and keeping the others unchanging.

We conduct the experiments on four datasets, i.e., EC G200 , SonyAIBORobotSurface?2,
ECGfivedays and FaceFour. We set A = 1.1 for ECG200 and SonyAIBORobotSur-
face2 datasets, and A = 1.2 for ECG fivedays and FaceF our datasets.

Figure 7 shows the accuracy of four datasets with Euclidean distance and Trend-based
Euclidean distance. We can observe that, the accuracy of EC G200 and SonyAIBORobot-
Surface2 datasets has improved, while the accuracy of ECGfivedays and FaceF our
datasets does not change much.

Table 4 Wilcoxon Rank Sum -
Test of Significance Level of No. Hypothesis o p-value h
Average Ranks on Accuracy

1 ECTS vs IEDSC 0.05 0.2161 0
2 EDSC vs IEDSC 0.05 0.0468 1
3 ECDIRE vs IEDSC 0.05 0.2379 0
4 RelClass vs IEDSC 0.05 0.4025 0
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Table 5 Earlinesss

Dataset ECTS EDSC ECDIRE RelClass IEDSC
CBF 71.5(5) 31.85(4) 28.55(3) 23.08(1) 27.41(2)
Coffee 83.94(5) 54.23(3) 82.14(4) 38.44(2) 35.67(1)
ECG200 60.11(3) 23.24(1) 90.1(5) 68.81(4) 26.91(2)
ECGfivedays 63.82(5) 53.6(3) 21.07(2) 15.84(1) 61.96(4)
Facefour 72.26(5) 47.98(4) 22.31(1) 34.22(2) 38.14(3)
FacesUCR 87.21(4) 51.58(1) 59.15(2) 92.71(5) 63.55(3)
GunPoint 46.92(4) 45.58(2) 32.37(1) 71.33(5) 46.56(3)
Motestrain 79.06(4) 38.08(2) 12.1(1) 90.94(5) 43.83(3)
Oliveoil 87.34(5) 38.82(4) 30(2) 18.76(1) 36.3(3)
SonyAIBOrobotsurfacel 68.49(5) 47.03(2) 62.26(4) 57.7(3) 26.87(1)
SonyAIBOrobotsurface2 54.54(4) 35.51(3) 17.66(1) 70.86(5) 34.83(2)
Symbols 51.3(4) 60.25(5) 45.33(2) 45.82(3) 31.27(1)
SyntheticControl 87.88(5) 50.81(2) 61.92(3) 71.54(4) 46.8(1)
TwoleadECG 64.43(3) 46.85(1) 69.38(4) 83.63(5) 52.01(2)
TwoPatterns 86.52(3) 64.04(1) 98.76(5) 91.82(4) 67.8(2)
Wafer 44.38(5) 27.99(3) 10.87(2) 30.75(4) 10.8(1)
Average rank 4.313 2.563 2.625 3.375 2.125

Figure 8 shows the accuracy of four datasets without and with pruning methods. The
accuracy of EC G200 increased by 5%. For the SonyAI BO Robot Sur face?2, the accuracy
increases from 0.81 to 0.82. The accuracy of ECG fivedays and FaceFour datasets with
pruning also increases. Figure 9 shows the extraction time and the number of shapelet can-
didates without and with pruning method for four datasets. From Figure 9 (1)(2)(3)(4), we
can observe that the extraction time reduces significantly after pruning, and the number of
shapelet candidates is also signficantly reduced.

Figure 10 clearly shows that the proposed shapelet selection method improves the
classification accuracy. The accuracy of ECG?200 rises to 0.83, and the accuracy of
SonyAIBO RobotSurface2 increases by 6% with diverse shapelet selection method.
The accuracy of ECGfivedays and FaceFour with diverse selection method also
has improvement. The reason is that diverse selection method removes some of similar
shapelets, and thus makes the shapelets more diverse and makes classifier more robust.

Table 6 Wilcoxon Rank Sum ]
Test of Significance Level of No. Hypothesis o p-value h
Average Ranks on Earliness

1 ECTS vs IEDSC 0.05 0.0101 1
2 EDSC vs IEDSC 0.05 0.3488 0
3 ECDIRE vs IEDSC 0.05 0.3806 0
4 RelClass vs IEDSC 0.05 0.0188 1
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Figure 7 Accuracy with different distance methods

6.4 Interpretability of features

In this section, we use £C G200 as an example to demonstrate the selected shapelets by our
feature selection method. EC G200 dataset consists of the two classes of time series, and
the lengh of each time series is 96, as shown in Figure 11. The class 1 represents a normal
heartbeat, and the class -1 is an abnormal class which represents a myocardial infarction.
In a normal human ECG, there are five waves in a heartbeat cycle, including the PQRST
waves shown as Figure 12(1). If a person has a myocardial infarction, it is usually observed
from the ECG that the ST wave is changed and elevated.

From Figure 12 (2), one can observe that the shapelet shown as red line is corresponding
to the ST wave, and it has a gentle trend which indicates a normal heartbeat. The shapelet
shown as blue line in Figure 12 (3) also contains the ST wave, and the elevated ST wave
indicates that a person has a myocardial infarction.

Using INN-DTW on this dataset with complete data, the accuracy is 0.88. However,
IEDSC uses only 26.91% data to obtain a comparable accuracy 0.84. From the above analy-
sis, one can see the selected shapelets could represent the difference between two class time
series and achieve a good accuracy.

6.5 Case study: Early classification of CBF
The CBF dataset is one of the most commonly used datasets in time series classification. In

order to show the performance of IEDSC, we select the CBF dataset as a case study, and in
the training phase we use standard-divided training sets to train the classifier.
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Figure 8 Accuracy of without pruning and with pruning methods
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CBF contains three classes of time series, and we draw the contours of the time series for
these three classes in Figure 13. The accuracy of EDSC on CBF is 84% and the earliness is
31.85%, while the accuracy of IEDSC on CBF is 92% and the earliness is 27.41%. Obvi-
ously, our algorithm achieves higher accuracy than EDSC, and also gets the result more
earlier. In feature selection phase, EDSC only gets three shapelets from CBF dataset, and in
this paper we obtain 19 shapelets, which are displayed and marked out in red in Figures 14,
15 and 16 respectively.

IEDSC selects 10 shapelets from four different time series belonging to class 1 shown
as Figure 14 . Shapelets from the same time series have partial differences, but shapelets
from disparate time series are distinct. For class 2, there are only one shapelet selected in

083 T T 09 T T
[original selection| 08l [original selection
082 |Ipiverse selection q 81" [Epiverse selection
081 | 07t
06
> .
g 08 3
osf
Sore 1 £
Qo Boal
Qo 1 8™
<0 Toal
077 R 02k
076 E 01
075 . L 0 L
ECG200 SonyAIBORobotSurface2 ECGFiveDays FaceFour

Figure 10 Accuracy of different selection methods
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(1) Class 1 (2) Class -1

Figure 11 ECG time series

R 4 4
3 3
2 2
T 1 1
P 0 0
Q . 4 4
2620 40 60 80 100 20 20 40 60 80 100
(1)A heartbeat wave (2)Shapelet of class 1 (3)Shapelet of class -1

Figure 12 Interpretability of shapelets for classification

(3)Class 3

Figure 13 CBEF time series
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Figure 14 Shapelet of class 1

Figure 15 . Moreover, IEDSC extracts 8 shapelets from class 3, and from Figure 16 (1)(2)
one can see that the shapelets from the same time series are diverse. The feature selection
results show that, [IEDSC can get more diverse shapelets, which may be the reason that the
accuracy increases.

Figure 15 Shapelet of class 2
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Figure 16 Shapelet of class 3

7 Conclusions

In this paper, we propose a new algorithm extracting diverse-shapelet for early classification
on time series, called IEDSC. First, the IEDSC algorithm uses a new trend-based Euclidean
distance to compute the similarity of time series, which can better measure the similarity of
time series. Second, in order to reduce the shapelet candidates space, the IEDSC algorithm
presents a shapelet pruning method based on the predictive starting positions to reduce the
number of candidates. Third, in the shapelet selection phase, IEDSC makes the selected
shapelets more diverse by a new feature selection method. Finally, we conduct the exper-
iments on the real datasets. The experimental results demonstrate that IEDSC can make
prediction earlier, obtain the comparable classification accuracy with that using full time
series, and provide more interpretable results. In future work, we plan to improve the effi-
ciency and effectiveness of similarity measure and feature selection, and also further study
how to apply IEDSC to multivariate time series.

Acknowledgment The authors would like to thank Prof. Eamonn Keogh and all the people who have
contributed to the UCR time series classification archive for their selfless work. We also thank the anonymous
reviewers for their valuable advice.

The work is supported by the National Natural Science Foundation of China (No. 61702468), Open
Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing (no. KLIGIP-
2018B03) and the Zhejiang Provincial Natural Science Foundation of China (No. LZ18F020001).

@ Springer



3080 World Wide Web (2020) 23:3055-3081

References
1. Ando, S., Suzuki, E.: Minimizing response time in time series classification. Knowl. Inf. Syst. 46(2),
449-476 (2016)
2. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In: 8th Acm-Siam

10.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

symposium on discrete algorithms, pp. 360-369 (1997)

. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proc.acm Sigkdd

int.conf.on knowledge discovery & data mining, pp. 493—498 (2003)

. Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., Yan-

ping, H.B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The ucr time series classification archive.
https://www.cs.ucr.edu/eamonn/time _series_data_2018/ (2018)

. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan),

1-30 (2006)

. Di Marzio, M., Taylor, C.C.: Kernel density classification and boosting: an 12 analysis. Stat. Comput.

15(2), 113-123 (2005)

. Fulcher, B.D.: Feature-based time-series analysis. arXiv:1709.08055 (2017)
. Ghalwash, M.E, Obradovic, Z.. Early classification of multivariate temporal observa-

tions by extraction of interpretable shapelets. BMC Bioinforma. 13(1), 195 (2012).
https://doi.org/10.1186/1471-2105-13-195

. Ghalwash, M.E., Radosavljevic, V., Obradovic, Z.: Utilizing temporal patterns for estimating uncertainty

in interpretable early decision making. In: Proceedings of the ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 402411 (2014)

Ghalwash, M.F., Ramljak, D., Obradovic, Z.: Early classification of multivariate time series using a
hybrid hmm/svm model. In: Proceedings of the 2012 IEEE international conference on bioinformatics
and biomedicine (BIBM), pp. 1-6 (2012)

. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: Pro-

ceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 14, pp. 392-401 (2014)

Hartvigsen, T., Sen, C., Kong, X., Rundensteiner, E.: Adaptive-halting policy network for early clas-
sification. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp.
101-110 (2019)

He, G., Duan, Y., Peng, R., Jing, X., Qian, T., Wang, L.: Early classification on multivariate time series.
Neurocomputing 149, 777-787 (2015)

He, G., Zhao, W., Xia, X., Peng, R., Wu, X.: An ensemble of shapelet-based classifiers on inter-class
and intra-class imbalanced multivariate time series at the early stage. Soft Computing (2018)

Jiang, L., Li, C., Cai, Z.: Learning decision tree for ranking. Knowl. Inf. Syst. 20(1), 123-135 (2009)
Karlsson, I., Papapetrou, P., Bostrom, H.: Early random shapelet forest. In: Calders, T., Ceci, M.,
Malerba, D. (eds.) Discovery science, pp. 261-276. Springer International Publishing, Cham (2016)
Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man
Cybern. 4, 580-585 (1985)

Keogh, E., Jessica, L., Ada, F.: Hot sax: Finding the most unusual time series subsequence: Algorithms
and applications. In: International conference on data mining, pp. 1-27 (2008)

Li, G., Briysy, O., Jiang, L., Wu, Z., Wang, Y.: Finding time series discord based on bit representation
clustering. Knowl.-Based Syst. 54, 243-254 (2013)

Li, G., Yan, W., Wu, Z.: Discovering shapelets with key points in time series classification. Expert Syst.
Appl. 132, 76-86 (2019)

Lin, T.H., Kaminski, N., Bar-Joseph, Z.: Alignment and classification of time series gene expression in
clinical studies. Bioinformatics 24(13), 147-155 (2008)

Lines, J., Davis, L.M., Hills, J., Bagnall, A.: A shapelet transform for time series classification. In: Pro-
ceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining,
KDD ’12, pp. 289-297. ACM (2012)

Ma, C., Weng, X., Shan, Z.: Early classification of multivariate time series based on piecewise aggregate
approximation. In: Health information science, pp. 81-88 (2017)

Mori, U., Mendiburu, A., Dasgupta, S., Lozano, J.A.: Early classification of time series by simulta-
neously optimizing the accuracy and earliness. IEEE Transactions on Neural Networks and Learning
Systems (2017)

Mori, U., Mendiburu, A., Keogh, E., Lozano, J.A.: Reliable early classification of time series based on
discriminating the classes over time. Data Min. Knowl. Disc. 31(1), 233-263 (2017)

@ Springer


https://www.cs.ucr.edu/ eamonn/time_series_data_2018/
http://arxiv.org/abs/1709.08055
https://doi.org/10.1186/1471-2105-13-195

World Wide Web (2020) 23:3055-3081 3081

26.
27.
28.
29.
. Song, W., Wang, L., Xiang, Y., Zomaya, A.Y.: Geographic spatiotemporal big data correlation analysis
31
32.
33.
34.
35.
36.
37.

38.

39.

Parrish, N., Anderson, H.S., Gupta, M.R., Hsiao, D.Y.: Classifying with confidence from incomplete
information. J. Mach. Learn. Res. 14(1), 3561-3589 (2013)

Romain, T., Simon, M.: Cost-aware early classification of time series. In: Machine learning and
knowledge discovery in databases, pp. 632-647 (2016)

Sangnier, M., Gauthier, J., Rakotomamonjy, A.: Early and reliable event detection using proximity
space representation. In: Proceedings of the 33rd international conference on international conference
on machine learning - vol. 48, ICML’16, pp. 2310-2319 (2016)

Schifer, P., Leser, U.: Teaser: Early and accurate time series classification. arXiv:1908.03405 (2019)

via the hilbert-huang transformation. J. Comput. Syst. Sci. 89, 130-141 (2017)

Wang, S., Cao, J., Yu, P.S.: Deep learning for spatio-temporal data mining: A survey. arXiv:1906.04928
(2019)

Wang, W., Chen, C., Wang, W., Rai, P., Carin, L.: Earliness-aware deep convolutional networks for early
time series classification. arXiv:1611.04578 (2016)

Wu, J., Pan, S., Zhu, X., Cai, Z.: Boosting for multi-graph classification. IEEE Trans. Cybern. 45(3),
430-443 (2015)

Xing, Z., Pei, J., Yu, P.S.: Early prediction on time series: A nearest neighbor approach. In: International
jont conference on artifical intelligence, pp. 1297-1302 (2009)

Xing, Z., Pei, J., Yu, P.S.: Early classification on time series. Knowl. Inf. Syst. 31(1), 105-127 (2012)
Xing, Z., Pei, J., Yu, P.S., Wang, K.: Extracting interpretable features for early classification on time
series. In: 11th Siam international conference on data mining, SDM 2011, April 28-30, 2011, Mesa,
Arizona, USA, pp. 247-258 (2011)

Ye, L., Keogh, E.: Time series shapelets:a new primitive for data mining. In: ACM SIGKDD international
conference on knowledge discovery and data mining, Paris, France, June 28 - July, pp. 947-956 (2009)
Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Zimmerman, Z., Silva, D.F., Mueen,
A., Keogh, E.: Time series joins, motifs, discords and shapelets: A unifying view that exploits the matrix
profile. Data Mining & Knowledge Discovery 32(1), 83123 (2018)

Zalewski, W., Silva, F., Maletzke, A.G., Ferrero, C.A.: Exploring shapelet transformation for time series
classification in decision trees. Knowl.-Based Syst. 112, 80-91 (2016)

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1908.03405
http://arxiv.org/abs/1906.04928
http://arxiv.org/abs/1611.04578

	Extracting diverse-shapelets for early classification on time series
	Abstract
	Introduction
	Related work
	Definition and preliminaries
	Definition
	Preliminaries

	Feature extraction
	The trend-based Euclidean distance
	Compute the distance threshold
	Shapelet pruning based on the estimated starting position

	Feature selection and early classification based on shapelet
	Diverse shapelet selection
	Early classification method

	Experimental evaluation
	Experimental settings
	Performance comparison over accuracy and earliness
	Method effectiveness analysis
	Interpretability of features
	Case study: Early classification of CBF

	Conclusions
	References




