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Abstract

In many natural language processing tasks, e.g., text classification or information extrac-

tion, the weighted bag-of-words model is widely used to represent the semantics of text,

where the importance of each word is quantified by its weight. However, it is still difficult

for machines to understand a weighted bag of words (WBoW) without explicit explana-

tions, which seriously limits its application in downstream tasks. To make a machine better

understand a WBoW, we introduce the task of conceptual labeling, which aims at generating

the minimum number of concepts as labels to explicitly represent and explain the seman-

tics of a WBoW. Specifically, we first propose three principles for label generation and then

model each principle as an objective function. To satisfy the three principles simultane-

ously, a multi-objective optimization problem is solved. In our framework, a taxonomy (i.e.,

Microsoft Concept Graph) is used to provide high-quality candidate concepts, and a cor-

responding search algorithm is proposed to derive the optimal solution (i.e., a small set of

proper concepts as labels). Furthermore, two pruning strategies are also proposed to reduce

the search space and improve the performance. Our experiments and results prove that the

proposed method is capable of generating proper labels for WBoWs. Besides, we also apply

the generated labels to the task of text classification and observe an increase in performance,

which further justifies the effectiveness of our conceptual labeling framework.

* Yanghua Xiao

shawyh@fudan.edu.cn

Haiyun Jiang

jianghy16@fudan.edu.cn

Deqing Yang

yangdeqing@fudan.edu.cn

Wei Wang

weiwang1@fudan.edu.cn

1 Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University,

Shanghai, China

2 School of Data Science, Fudan University, Shanghai, China

World Wide Web (2020) 23:2429–2447

Published online: 1 2020April4

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-020-00806-x&domain=pdf
mailto: shawyh@fudan.edu.cn
mailto: jianghy16@fudan.edu.cn
mailto: yangdeqing@fudan.edu.cn
mailto: weiwang1@fudan.edu.cn


Keywords Conceptual labeling · Microsoft concept graph · Weighted bag of words ·

Multi-objective optimization · Concept pruning

1 Introduction

The weighted bag-of-word (WBoW) model1 [8, 21] is an extension of the bag-of-words

model [45], where the importance of each word in a WBoW is quantified by a weight. In

general, the bag-of-words model can be considered as a special case of the weighted bag-

of-word model where all the words are associated with a uniform weight. Intuitively, a

WBoW is more informative than a bag of words (BoW) because the weight associated with

each word can precisely quantify the importance of each word in characterizing the seman-

tics of the original text. There are lots of mature technologies to construct WBoWs from

texts, including (1) the keywords extraction-based methods: TextRank [29], RAKE [33] and

TAKE [28], as well as some other extractors [1, 3, 30, 36]; (2) topic model-based methods:

LDA [4], hierarchical topic models [20] and structural topic models [32].

Although a WBoW contains the most important and representative words of text, it is

difficult for machines to understand the semantics of a WBoW without explicit explanation.

As a result, the text cannot be well understood by machines. For example, in topic modeling,

a topic found by LDA [4] is usually represented by a distribution over some words (i.e., a

WBoW). However, it is still unclear what the words of each topic mean and further what

the topic is about. Therefore, explicitly explaining WBoWs for machines becomes one of

the critical issues to use WBoWs.

Concepts are strong evidence for the explanation of a WBoW, because humans usually

understand the world by classifying objects into concepts [41]. Psychologist Gregory Mur-

phy acclaimed that “Concepts are the glue that holds our mental world together. Without

concepts, there would be no mental world in the first place” [5, 27]. Based on this point,

the task of conceptual labeling, i.e., generating concepts as labels, is proposed to explicitly

explain a bag of words (BoW) [34, 35, 37]. However, to the best of our knowledge, most

of the existing work does not consider the prior weight of a word in a BoW. In this paper,

we focus on conceptual labeling for a WBoW, that is, generating the minimum number of

concepts about the words in the WBoW to represent and explain the semantics of this WBoW.

We illustrate this task with two toy examples:

– basketball(4.78), soccer(3.18), tennis (2.83), swimming(1.76)

→ sport

– rosewood(1.44), poplar(2.48), cherry (6.7), tulip(2.66),

carnation (1.83), marigold(1.53) → tree, flower

For human beings, the labels on the right are the concepts that come to our mind given the

words and phrases on the left. That is, we can unconsciously generate proper concepts in

our mind as an explanation to understand a WBoW.

But how to generate a suitable set of conceptual labels for a WBoW? In other words, how

do the prior weights affect the conceptualization? Intuitively, the label generation is sup-

ported to bias toward conceptualizing the words with a large weight. In contrast, a word with

a smaller weight should be secondarily considered. Thus, the naive solution is to filter out

1In this paper, we only consider the case that all the words in a bag are entity mentions, e.g., Obama,

notebook, rose, etc. Because entities are core components in most text analysis tasks.
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the words with smaller weights and then conceptualize the rest of the words. However, this

solution will lose some useful information from words with smaller weights. We illustrate

how weights affect the conceptualization results:

– watermelon(1.21), apple(1.8), banana (0.7), pear(0.99),

China(0.01) → fruit

– watermelon(1.21), apple(1.8), banana (0.7), pear(0.99),

China(0.01), Japan (0.18) → fruit, Asian country

In the first example, the weight of China is very small and it is difficult to merge China

with other words. So China is likely to be a noise word and discarding it does not affect the

semantic understanding of the original text. For the rest words, fruit is a good label. Thus,

the proper label for this WBoW can be fruit. In contrast, in the second example, Japan

is a core keyword and China is semantically related to Japan, so China is unlikely to

be a noise word and the proper labels for this WBoW could be fruit, Asian country. How-

ever, the naive solution will delete China from the WBoW because of its small weight,

which loses useful information from China. Therefore, it is necessary to model the complex

dependencies between the word set and the weight distribution.

1.1 Our solution

The solution to our task mainly contains two steps: conceptual labeling modeling and opti-

mal label generation (searching). In particular, we also provide two pruning strategies to

accelerate the label searching process. In this paper, we take a large-scale knowledge base:

Microsoft Concept Graph (MCG)2 to provide candidate concepts.

To model the conceptual labeling, we propose three principles to guide the optimal label

generation, i.e., (1) the least number of conceptual labels, (2) the strongest conceptualiza-

tion ability and (3) the maximum coverage of words. In particular, principle 2 incorporates

the words weights into the conceptual labeling. As a result, the label generation prob-

lem is formalized as a multi-objective discrete optimization problem, where each objective

function corresponds to one principle.

To obtain the optimal conceptual labels, the multi-objective optimization problem is

required to be solved. That is, we need to search a small set of concepts from MCG by

optimizing the multiple objective problem. In this paper, we propose a simple but effective

hybrid approach for the optimization.

We have to point out that there are more than 5.4 million concepts in MCG, which makes

the search complexity unacceptable, especially for large-scale WBoWs. To overcome this

challenge, we propose two strategies to prune the candidate concepts during the concept

search process, which is motivated by the observation that a large number of candidate

concepts are too vague to be labels or they can be replaced by other concepts in semantic

characterization. The pruning operations significantly improve both the effectiveness of

conceptualization and efficiency.

1.2 Applications

Conceptual labeling for a WBoW is very useful for many real applications. For example:

2https://concept.research.microsoft.com/
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– Text classification. Given a text, we can construct the corresponding WBoW and then

generate a set of conceptual labels. These labels are used as additional features to

enhance the existing text classification models [15]. For example, a text containing

the keywords “Donald Trump”, “Xi Jinping” and “Hillary” is very likely to describe

politics, which is is strongly implied by the generated concept “politician”, although

“politician” is unlikely to appear in the text. Compared with the traditional text classi-

fication [15], conceptual labels are very useful background knowledge for improving

this task.

– Explaining the results of topic modeling. In topic modeling, a latent topic is represented

by a distribution over words, i.e., a WBoW. The previous work [20, 25] explains the

latent topics by conceptualizing their topic words with conceptual labels. But in these

methods, all the topic words are viewed as equally important, which discards the impor-

tant weight information and it is hard to achieve the desired performance. In contrast,

conceptual labeling with prior weights makes the explanation of topics more precise.

– Understanding user intent. In the item recommendation systems [7], a popular method

is to mine the historical queries to understand the user intent. Conceptual labeling

is very effective to assist it by explaining the bag of queries, where the weights can

be defined as the click frequencies. For example, if a user queried “IPhone X” and

“HUAWEI P30”, then we infer that the user is interested in high-end smartphones by

generating a conceptual label “High-end Phone” for the two queries. As a result, the

system could recommend some other high-end smartphones for the user.

1.3 Contributions

The main contributions of this paper are summarized as follows. (1) To the best of our

knowledge, this is the first work to generate conceptual labels for a WBoW. (2) We propose

three principles for this task and also propose a simple hybrid approach for optimization. (3)

We present two strategies to prune the candidate concepts, which significantly accelerates

the label generation process.

The rest of the paper is organized as follows. Section 2 introduces the proposed princi-

ples and formalizes conceptual labeling as a multi-objective discrete optimization problem.

Section 3 discusses the solution to the problem as well as the pruning strategies. Section 4

conducts the experiments and presents the analysis. Besides, the related work is presented

in Section 5. Finally, the simple conclusion and the several issues for future work are given

in Section 6.

2 Principles andmodeling of conceptual labeling

In this section, we first briefly introduce the MCG knowledge used in our framework and

then present the principles as well as the corresponding objective functions for conceptual

labeling.

2.1 UsingMCG knowledge

The candidate concepts are required in our framework, which can be obtained from existing

knowledge bases. In this paper, we use MCG [43] as the concept source that contains more

than 5.4 million concepts. MCG contains more than 87 million concept-instance pairs with

isA relations that are extracted from text corpora.
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For example, MCG contains the pair <flower, rose> that is extracted from the sentence

“the rose is a kind of flower”, where flower is a concept and rose is one of its instance.

The typicality score is defined to measure how likely we think of a concept given an

instance.3 Typicality is defined as:

p (c |x ) =
n (c, x)

∑

ci∈MCG n (ci, x)
(1)

Where x is an instance, c and ci denote concepts, and n (c, x) is the frequency provided

by MCG that quantifies the confidence of the isA pair <c,x>. Intuitively, a large p(c|x)

indicates that people are more likely to think of the concept c compared with other concepts

ci given the instance x. For example, p (flower |rose ) > p (plant |rose ). The typicality

score allows us to choose flower instead of plant to better conceptualize rose.

2.2 Problemmodeling

Notations We denote a WBoW as X = {〈x1, w1〉, 〈x2, w2〉, · · · , 〈xM , wM〉}, where xi is

the i-th instance and wi is the normalized weight of xi , i.e.,
∑M

i=1 wi = 1. The concept set of

the instance xi can be queried from MCG and we denote it as Ci . Then C = ∪M
i=1Ci (where

N = |C|) is queried as the candidate concept set, from which the label set will be selected.

We also define a typicality matrix T ∈ R
M×N , where Tij = p(cj |xi) is the typicality score

about concept cj and instance xi . Notice that p(cj |xi) is usually very small, we normalize

T by updating p(cj |xi) = p(cj |xi)/max(T), where max(T) is the maximum element in T.

In our framework, the conceptual label set for X will be selected from C under the

guidance of the proposed principles. Since each column in T is related to a distinct concept,

we transform the label set selection into a column subset selection problem [6, 10]. That is,

selecting a “best” column subset T0 from T by optimizing a multi-objective function, where

each objective function corresponds to a distinct principle.

Multi-objective function. Based on the relationship between concept and column, our task

is formalized as the following multi-objective optimization problem:

T0 = arg max
T′⊂T

{f1(T
′), f2(T

′), f3(T
′)} (2)

where T′ denotes a column subset of T and its corresponding concept set is C ′. That is,

we need to select an optimal column subset from T that maximizes all the three objective

functions fi(·) as much as possible, where fi(·) is derived from the i-th principle (i ∈

{1, 2, 3}). In this way, the three principles will be satisfied as much as possible by optimizing

(2). We denote the optimal solution as T0 and the corresponding concept subset as C0,

which is the optimal conceptual label set for X.

2.3 Principles

In this section, we propose three principles to guide the conceptual label set generation for

a WBoW. The principles can be expressed as: (1) the least number of conceptual labels, (2)

the strongest conceptualization ability and (3) the maximum coverage of words. For each

principle, we elaborate how to formalize it as an objective function.

3For simplicity, the words in WBoWs are also known as instances.
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Principle 1: the least number of conceptual labels In general, we hope to conceptualize

a WBoW using as few labels as possible, so that machines can understand the WBoW as

well as the corresponding text more easily. Since the size of a concept set C ′ is also equal to

the number of columns of T′ (noted as |T′|), principle 1 is expressed as max f1(T
′), where

f1(T
′) = −|T′|.

Principle 2: the strongest conceptualization ability Principle 2 means the selected labels

should strongly conceptualize a WBoW, that is, the labels can strongly represent the seman-

tics of the WBoW. We formalize the conceptualization ability of a concept set to a WBoW

as follows.

Given an isA pair (cj , xi), the conceptualization ability of cj with respect to xi is quanti-

fied by the typicality score p(cj |xi) [41]. In particular, p(cj |xi) = 0 means (cj , xi) has no

isA relationship, so xi cannot be conceptualized by cj . In general, a concept can only con-

ceptualize a subset of X. For example, let X ={Microsoft(0.30), Google(0.449),

banana(0.201)}, the concept company can only conceptualize the first two instances

well. We denote the subset that can be conceptualized by cj as Xcj
⊆ X , i.e., p(cj |xi) > 0

(∀xi ∈ Xcj
).

The possibility of selecting cj as a label is influenced by three aspects: (1) the size of

Xcj
, (2) the typicality scores p(cj |xi) (xi ∈ Xcj

), (3) the weight of the instances in Xcj
.

The conceptualization ability of cj to Xcj
is measured by considering the three aspects

simultaneously. Specifically, the ability γ is defined as

γ =
∑

xi∈Xcj

[p(cj |xi)wi]
2 (3)

where wi is the normalized weight of xi . Intuitively, a concept cj with a large γ tends to be

selected as one of the conceptual labels. Furthermore, the conceptualization ability of the

candidate concept set C ′ with respect to X is measured by

γ ′ =
∑

cj ∈C ′

∑

xi∈Xcj

[p(cj |xi)wi]
2 (4)

We define the weight matrix of X as W = diag(w1, ..., wM). Since p(cj |xi) = 0 for

xi /∈ Xcj
, (4) can be rewritten as γ ′ = ||WT′||2F . Thus, principle 2 can be expressed as

max f2(T
′), where f2(T

′) = γ ′.

Principle 3: the maximum coverage of words. In general, we hope the selected label set

could conceptualize all the words in a WBoW. However, (1) it is not easy to be satisfied

as the size of the label set is required to be small (i.e., Principle 1). (2) it is unnecessary in

cases where some words are noise. We define coverage to measure the number of words

conceptualized by the label set.

Definition 1 (Coverage) Given a word xi in X and a concept set C ′, if there exists a concept

cj ∈ C ′ that makes p(cj |xi) > 0, then xi can be semantically covered by the concept set

C ′. Thus, the coverage is defined as the ratio of the number of words covered by C ′ to the

size of X.

Since we have introduced the typicality matrix T, the number of words covered by C ′ in

X is equal to the number of non-zero rows in T′, i.e., ||T′1||0, where 1 = [1, ..., 1]T ∈ R
n
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and T′1 denotes the vector where T′ is summed by column. || · ||0 is the zero norm. The

coverage is computed by

f3(T
′) = ||sumT′1||0/M (5)

So principle 3 is expressed as max f3(T
′).

3 Solution and pruning

In this section, we discuss how to generate the conceptual label set, i.e., the solution to

(2). Besides, we also describe how to prune the candidate concepts to accelerate the label

generation process.

3.1 Generating conceptual label set

We denote the solution to (2) as T0 whose corresponding concept set C0 is the gener-

ated label set. There are two challenges in optimizing (2): (1) the maximization of f1(T
′)

conflicts with the maximization of f2(T
′) and f3(T

′), (2) the existing algorithms usually

provide mature solutions for the continuous optimization problems, while our problem is

discrete. Therefore, we propose a simple but effective hybrid approach to select the best T0

from T. The basic idea is to enumerate the size of the label set iterating from 1, and derive

the best concept set under each size. Then we explore the proper size, thus obtaining the

proper label set. Specifically, our approach contains the following two steps.

(1) Selecting the best T0,k given a label size k. When f1(T
′) = k is fixed, the

optimization problem in (2) is simplified as

T0,k = arg max
T′⊂T

f1(T′)=k

[f2(T
′), f3(T

′)]T (6)

The optimization in (6) can be achieved using the linear weighting method [9], that is,

T0,k = arg max
T′⊂T

f1(T′)=k

λf2(T
′) + (1 − λ)f3(T

′) (7)

Where λ denotes the importance weight between principles 2 and 3. The direct solution to

(7) can be obtained by the exhaustive search.

(2) Selecting the proper k0. Let

f (k) = arg max
T′⊂T

f1(T′)=k

λf2(T
′) + (1 − λ)f3(T

′) (8)

in (7). Intuitively, f (k) is monotonically increasing with k, implying that at least one of the

principles 2 and 3 will be more satisfied when k increases. However, a large k will violate

the principle 1. To balance principles 1 and 2,3, we require that f (k) increases largely

enough when k increases by 1. This is measured by an incremental threshold δ.

That is, we enumerate k starting at 1 and stop the enumeration when f (k0+1)−f(k0) <

δ. Then k0 is the proper size. Further, T0 = T0,k0
and C0 are the selected column set and

the generated conceptual label set, respectively.

The proposed approach is very easy to be parallelized. For example, the search space in

(7) can be divided into g groups. We first get the local optimal solution in each group and

then obtain T0,k among these local optimal solutions.
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3.2 Pruning

In our approach, the label set generation is conducted by exhaustive search, where the com-

plexity is directly determined by the number of candidate concepts. In this section, we

significantly reduce the search space by two kinds of pruning.

3.2.1 Pruning based on substitutability

In fact, most candidate concepts in C can never be selected as conceptual labels for X. We

present the following theorem with a simple proof.

Theorem 1 If two concepts cj and cj ′ in C satisfy p(cj |xi) ≥ p(cj ′ |xi) for all the words

xi in X, then cj ′ can never be selected as a label.

Proof p(cj |xi) ≥ p(cj ′ |xi) (∀xi ∈ X) indicates that (1) the conceptualization ability of cj ′

is less than cj for all the words, (2) the contribution of cj ′ to the coverage is also less than

cj . Therefore, cj ′ is less important than cj to conceptualize X according to the proposed

principles, and the selection of cj ′ can be replaced by cj without performance loss. We call

this property as substitutability. To reduce the search space, we pre-delete the concept cj ′

from C as well as the j ′-th column from T.

Statistically, our experiments show that this pruning operation can delete up to 90% of

the candidate concepts from T in average, which greatly reduces the search complexity

without losing the optimal concepts.

3.2.2 Pruning based on vagueness

MCG was created by data-driven approaches, thus containing many vague concepts, such as

simple element, proper name, everyone and so on. These concepts should not be selected as

conceptual labels for their poor conceptualization ability for most instances. We pre-delete

these vague concepts from C, thus improving both the efficiency and the conceptualization

performance.

Our statistical analysis in MCG shows that a vague concept cj has the following two char-

acteristics simultaneously. (1) cj covers a large number of instances in MCG, i.e., |Icj
| = L

is very large, where Icj
is the instance set in MCG covered by cj . (2) the corresponding

frequencies are very small, i.e., n(cj , x) is very small for all x ∈ Icj
.

We present a simple method to delete the vague concepts from C. Specifically, we set

two thresholds L̄ and N̄ , then any concept cj satisfying L > L̄ and maxx∈Icj
n(cj , x) < N̄

will be deleted from C. In our experiments, we set L̄ = 300 and N̄ = 15.

In general, the two pruning strategies significantly reduce the search space, which makes

the conceptualization for very large WBoWs possible.

4 Experiments

We evaluate the effectiveness of our conceptual labeling scheme from three aspects: (1)

generating labels for BoWs, (2) for WBoWs and (3) the application of labels in text clas-

sification. The first two aspects aim to directly evaluate the generated labels, where we
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construct three datasets for evaluation, i.e., one synthetic dataset and two real datasets

(including WikipediaData data and FlickrData). Besides, we also consider a downstream

task, i.e., text classification, to indirectly prove the effectiveness of the conceptual labeling

scheme. The hyperparameters λ = 0.5 and δ = 0.2 are used in all experiments and they will

be further discussed in Section 4.4.

4.1 Experiments on BoWs

In this section, we conduct experiments on BoWs, a special kind of WBoWs.

Dataset We take two real datasets [37], i.e., FlickrData and WikipediaData, to evaluate the

performance on BoWs.

– FlickrData was collected from manually labeled tags in Flickr [22], where each BoW

consists of the instance tags in an image. Image tags in Flickr are generally redundant

and contain some noise. Conceptual labels can refine the tags and help machines to

understand the images more deeply.

– Each BoW in WikipediaData4 contains the topic words of an English Wikipedia

page, which is obtained by LDA [2, 4]. Conceptual labeling provides rich background

knowledge for machines to understand the latent topics as well as the documents.

Baselines We compare our model with two strong baselines.

– Clustering-then-conceptualization (CC). CC is an extension of the model proposed

by [34]. In CC, we first cluster the words in a BoW by K-means [12] according to the

semantic similarity. Then we generate the best single concept for each individual cluster

using a naive Bayes model [34].

– MDL-based model [37]. This model proposes two criteria for conceptual labeling of a

BoW, i.e., semantic coverage and minimality. To balance the semantic coverage of a

BoW and the minimality of the output labels, the minimum description length (MDL)

principle [31] is used to select the best label set.

Evaluation criteria It is difficult to provide the ground-truth label set for a BoW. Some

BoWs can be well conceptualized by several label sets. For example, either European

country or developed country are acceptable for the BoW {French,UK,Germany}.

Therefore, we consider a manual scoring-based evaluation. Specifically, we divide the

quality of the generated labels into the following four levels:

– Perfect (4). A label set is scored with 4 if it appropriately represents the

semantics of the input BoW. For example, given a BoW {volleyball,

basketball,football}, we can easily think of ball game, which is an appropriate

label with a score of 4.

– Minor loss in conceptualization ability (3). If a candidate label set has minor loss

in conceptualization ability, then it is scored with 3. For another example, given

{French,UK,Germany,Italy}, the label country loses minor conceptualization

ability compared with European country, thus getting a score of 3.

– Minor loss in coverage (2). If a candidate label set has minor coverage,

then it is scored with 2. For example, the label meal gets a score of 2 for

4https://dumps.wikipedia.org/
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{meal,dinner,food,breakfast,ceremony,wedding} because it only con-

ceptualizes the first four words, which loses minor coverage.

– Much loss in conceptualization ability or coverage (1). If the label set loses

much conceptualization ability or coverage, its score is 1. For example, given

{poplar,pine,cherry,rose}, the label tree loses much coverage, since 50%

of the words, i.e., cherry and rose, can not be semantically represented by

tree. In fact, a suitable label set can be {tree, flower}. For another example, given

{puppy,kitten,piggy}, the label creature loses more conceptualization ability

compared with pet or animal because these two labels are more specific in explaining

the BoW. So the label creature is only scored with 1.

– Unrelated (0). A conceptual label set that is not related to the BoW will be scored with

1. For example, given {walkway,swimming pool,vehicle}, the label activity

has a score of 0.

In addition to the scoring criteria above, we also provide a large number of samples to

volunteers so that they have a deeper understanding of the scoring criteria.

Metric We randomly select 300 BoWs from each dataset (i.e., FlickrData or Wikipedi-

aData) and take all the models to generate conceptual label sets for them. We recruit seven

volunteers to evaluate the labeling results according to the evaluation criteria above. All the

seven volunteers are in the field of natural language processing or data mining. Supposing

the i-th volunteer’s score for the generated label set of the j -th BoW is si,j , then the average

score on each dataset is computed as:

S =
1

IJ

I
∑

i=1

J
∑

j=1

si,j (9)

Where J = 300 is the number of BoWs and I = 5 is the number of volunteers. Obviously,

the full score S = 4 when all the label sets are scored with 4.

Results Generating conceptual labels for a BoW is just a special case of our conceptual

labeling scheme. To deal with BoWs, we simply replace the weighted matrix W in prin-

ciple 2 with the identity matrix. The results are presented in Table 1. We conclude that,

(1) our proposed model can effectively conceptualize BoWs. (2) Our model is superior to

CC and MDL in performance. In CC, the number of clusters is difficult to be determined

in advance, and the error caused by clustering will mislead the label generation. In MDL,

only the criteria of coverage and label size are considered. In our model, the principle of

conceptualization ability is also considered, which further improves the quality of the gen-

erated labels. (3) The score on FlickrData is lower than that on WikipediaData for all the

models. An important reason is that the former is redundant and contains more noise, which

inevitably affects the results of all the models.

Table 1 Evaluation scores on

FlickrData and WikipediaData

for different models

Model FlickrData WikipediaData

CC 2.34 2.40

MDL 2.52 2.61

Proposed Model 2.64 2.73
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Table 2 The effect of ni on

performance (nc=5, nn=5) ni=2 ni=4 ni =6 ni =8 ni=10

Precision 0.81 0.86 0.90 0.92 0.94

Recall 0.74 0.80 0.88 0.91 0.93

F-score 0.77 0.83 0.89 0.91 0.93

4.2 Experiments onWBoWs

In this section, we evaluate the performance on WBoWs from two perspectives: We first

evaluate on a synthetic dataset based on MCG, where the ground-truth label sets of WBoWs

are available. Then we conduct experiments on the real dataset, where the human evaluation

is adopted.

4.2.1 Evaluation on synthetic dataset

Dataset Similar to [37], we use MCG to generate synthetic WBoWs that have ground-truth

label sets for automatic evaluation. The first two steps for dataset construction are the same

as those in [37].

Step 1 We first randomly select nc concepts from MCG. Then ni instances of each

selected concept are randomly sampled.

Step 2 We also randomly select nn instances of other concepts as noise. Then the selected

instance set constitutes a BoW of size ncni + nn.

Step 3 We assign a random weight distribution to the BoW, thus getting a synthetic

WBoW.5 The ground-truth labels for this WBoW are the selected nc concepts in Step 1.

We construct the synthetic WBoWs with different parameter settings. Specifically, (1)

nc = 5, nn = 5, and ni ∈ {2, 4, 6, 8, 10}, (2) ni = 4, nn = 5, and nc ∈ {2, 3, 4, 5, 6}. The

former (latter) setting makes us to analyze the effect of ni (nc) on performance. For each

parameter setting, we construct 500 WBoWs.

Metrics We introduce three metrics: precision (P ), recall (R) and F -score (F ) as follows:

P =

∑J
j=1 qj

∑J
j=1 pj

R =

∑J
j=1 qj

Jnc

F =
2PR

P + R
(10)

Where J = 500 is the number of WBoWs. For the j -th WBoW, our model generates pj

conceptual labels and qj of them are in the ground-truth label set.

Results We present the results in Tables 2 and 3 and conduct the analysis as follows.

– In Table 2, the performance of the results becomes better as ni increases. Particularly,

the three metrics exceed 93% when ni = 10, which means more instances of a concept

will help to generate this concept. As a result, the task of conceptual labeling is very

suitable to help understand the topics of long documents, where many semantically

related words expressing the same topic can be extracted into a WBoW.

5Note that the noise instances are required to have smaller weights than the non-noise.

World Wide Web (2020) 23:2429–2447 2439



Table 3 The effect of nc on

performance (ni=4, nn=5) nc=2 nc=3 nc=4 nc=5 nc=6

Precision 0.95 0.91 0.88 0.86 0.82

Recall 0.96 0.89 0.85 0.80 0.76

F-score 0.95 0.90 0.86 0.83 0.79

– In Table 3, the conceptualization performance is very high for small nc (e.g., nc = 2),

and begins to decline as nc increases. Intuitively, the average semantic distance between

two instances of different concepts becomes smaller when nc increases. Thus a WBoW

derived from more concepts is harder to be conceptualized with the ground-true labels.

This can also be explained from the perspective of topic discovery of a document. That

is, if we view the true labels of a WBoW from a document as the latent topics, then a

document containing more topics will make machines difficult to find all these topics.

4.2.2 Evaluation on real dataset

Besides the synthetic dataset, we also conduct the experiments on the real dataset.

Dataset We also consider the datasets: FlickrData and WikipediaData that have been used

in the experiments on BoWs (see Section 4.1). For FlickrData, the weight of an instance is

defined as the occurrence frequency of this instance in the image. For WikipediaData, the

unnormalized weight for each topic word is defined as p(w|t)p(t), where p(x|t) denote the

conditional probability of word w given its topic t . p(t) denotes the probability of topic t .

For both the datasets, the weights will be normalized over the words in a WBoW.

Baselines To the best of our knowledge, there is no previous work dealing with the labeling

for WBoWs, so we construct three strong baselines for comparison.

– Improved MDL-based model (IMDL). In the original MDL model [37], the prior weight

p(xi) is equal for all the instances in a BoW. To deal with WBoWs, we simply modify

p(xi) = wi , thus incorporating the weight information into the MDL-based model and

generating labels for WBoWs.

– Maximal clique segmentation-based model (MCS). In this model, we first construct a

semantic graph for a WBoW, where the nodes correspond to instances and the weight

of an edge reflects the similarity between two instances as well as their weights. Then

we take the operation of maximal clique segmentation [35, 38] to divide the graph into

several subgraphs and the instances in each subgraph is conceptualized by one concept.

– Clustering-based model (Cluster). In this model, we take a regularized K-means-based

method [17] to cluster a WBoW X into several clusters according to the semantic simi-

larity, where the feature vector of an instance comes from the result of Word2Vec [26].

The clusters containing only one instance will be deleted if the corresponding instance

weight is smaller than 1/2|X|, where |X| is the size of X. This is reasonable because

the small-weight words that cannot be clustered with other words are very likely to be

noise. Finally, we generate one concept for each cluster, thus obtaining the label set.

Evaluation criteria Similar to the evaluation for BoWs, we still take a manual scoring

approach to evaluate the generated labels of WBoWs. Generally, a good conceptual label

set should strongly conceptualize all the words with a large weight in a WBoW. To simplify
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Table 4 Average scores on

FlickrData and WikiData for

different models

Dataset IMDL MCS Cluster Ours

FlickrData 2.13 1.99 1.72 2.21

WikipediaData 2.16 2.02 1.83 2.37

the evaluation, the “large” weight is defined as ≥ 1/2|X| for X, i.e., the half of the aver-

age weight. The evaluation criteria are roughly the same as those for BoWs (see evaluation

criteria in Section 4.1), except that the conceptualization ability and coverage are judged on

the words in X with a “large” weight.

Results and analysis According to the criteria, we invite the previous seven volunteers to

evaluate the candidate label set by scoring. We define the average score as

S =
1

IJ

I
∑

i=1

J
∑

j=1

si,j (11)

where I = 5 is the number of volunteers and J = 300 is the number of sampled WBoWs.

si,j is the i-th volunteer’s score for the j -th WBoW. The full score S = 4 if and only if all

the label sets are scored with 4.

The results are presented in Table 4. We conclude that the proposed model outperforms

the other three baselines on conceptual labeling for real WBoWs. In our case study, we

find that some WBoWs get lower scores for all the models, which are mainly caused by

two reasons. (1) There are many polysemous words in English language. For example, the

instance “apple” denotes both the “Apple company” and “apple (fruit)” without distinction,

so there are both facts “apple is a company” and “apple is a fruit” in MCG. As a result,

“apple (fruit)” may be wrongly conceptualized as “company” with some other company

instances. (2) The missing or wrong facts in MCG. For example, there is a wrong fact

“software is a world”, which may mislead the conceptualization for WBoWs containing

“software”.

4.3 Experiments on text classification with conceptualization

In Sections 4.1 and 4.2, our conceptualization framework has been directly evaluated by

scoring the generated labels. In this section, we further evaluate the framework by consid-

ering a downstream task: text classification [16, 19, 44]. We generate conceptual labels for

texts and evaluate whether the text classification performance can be improved with the help

of the conceptual labels.

Dataset Two standard text classification datasets are chosen in our experiments: AG’s

News [44] and 20NG.6 AG’s corpus is obtained from news article on the web.7 It contains

496,835 news articles from more than 2000 news sources. There are 4 classes in AG’s News

and each of them contains 30,000 training samples and 1900 testing ones, respectively.

The 20NG dataset is construed based on 20 Newsgroups and it contains 11,314 training

documents and 7,532 test documents.

6http://qwone.com/∼jason/20Newsgroups/
7http://www.di.unipi.it/∼gulli/AG corpus of news articles.html
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WBoW construction for texts. Given a text s to be classified, we obtain the corresponding

WBoW Xs as follows. We take Microsoft Entity Linking8 to identify all the entities in s and

denote them as {x1, ..., xM}. The weight w for entity x is computed with TF-IDF, i.e.,

w = log(1 + fes) log
|S|

ne

(12)

where S is the set of training texts in the dataset. fes denotes the raw frequency (i.e., the

number of occurrences) of entity x in text s. ne is the number of texts containing entity x. All

the weights of the entities are normalized. For each WBoW Xs , we generate the conceptual

labels using our conceptualization framework. We have to point out that the conceptual-

ization for text classification is slightly different from that in Section 4.2. Specifically, we

change the conceptualization criterion 1 as selecting k0 concepts. As a result, we selected

k0 concepts for Xs based on (8). In this paper, we set k0 = 30. The motivation is that our

experiments find more informative concepts will help text understanding. We denote the

selected concepts as Cs .

Text classification models Text classification has been extensively studied in recent years

and many outstanding models were proposed [16, 19, 44]. As an example, we consider

two representative solutions: Char-CNN [44] and BERT. For both the two models, the

inputs are texts and the outputs are the class distribution scores. Specifically, Char-CNN [44]

is under the setting of supervised deep learning and it takes character-level convolutional

networks to learn text representations for text classification. BERT first takes the state-of-

the-art pre-training model BERT [11] to encode a text into its distributional representation.

Then a text classifier is trained on the specific text classification dataset, where the input is

the distributional representation of a text.

Improved text classification models with conceptualization As we described in Appli-

cations (see Section 1.1), entities are very important elements for text understanding. The

context-aware labels of entities provide abundant background knowledge for understanding

entities as well as the text. Thus, the text classification performance can be further improved

by incorporating conceptual labels as additional inputs.

In this paper, we propose a feature fusion-based solution to incorporate conceptual labels

into the text classification models. The overview of the structure is shown in Figure 1 and

the key modules are formalized as follows.

– Inputs. Given a label set Cs , we map each label cj ∈ Cs to a low-dimension vector

cj ∈ R
d2 , i.e., initialized embedding. We resort to word embeddings in Word2Vec.9

Since a conceptual label usually contains several words, we merge these embeddings by

element-wise addition and take it as the initialized embedding of the conceptual label.

We denote the inputs as C = [c1, ..., cN1
] ∈ R

d2×N1 , where N1 is the label size.

– Self-attention. The self-attention mechanism [39] is used to model the interaction

between different labels in Cs . The output of the self-attention module is denoted as

c ∈ R
d2 , which is computed by

c = σ
(

sum
(

WT
1 C′

)

+ b1

)

, (13)

8https://docs.microsoft.com/en-us/azure/cognitive-services/entitylinking/home
9https://code.google.com/archive/p/word2vec/
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Figure 1 The overview of the feature fusion-based solution. On the left, Char-CNN or BERT encode a text

s into a low-dimensional representation s ∈ R
d1 . On the left, we take the self-attention mechanism [39]

to encode the conceptual label set Cs into the representation c ∈ R
d2 . Then a feed forward network with

a residual connection [13] is used to output the unified representation s′ ∈ R
d1 based on a text and its

conceptual label set. Finally, the representation s′ will be input to the Softmax layer for classification

where W1 ∈ R
d2×d2 and b1 ∈ R

d2 are parameters to be learned. σ = tanh(·) is the

activation function. sum(·) denotes the operation that sums over all the elements in each

row in WT
1 C′, thus transforming the matrix WT

1 C′ to the vector “sum
(

WT
1 C′

)

” with

dimension d2. The matrix C′ ∈ R
d2×N1 is the result of the self-attention operation with

the embeddings C as inputs. The i-th column in C′ (denoted as c′
i ) is computed by

c′
i =

N1
∑

j=1

αij cj , (14)

where αij is the normalized weight of α′
ij , i.e.,

[αi1, αi2, ..., αiN1
] = Softmax[α′

i1, α′
i2, ..., α′

iN1
]. (15)

α′
ij denotes the attention weight of ci to cj , which is computed by

α′
ij = cT

i cj (16)

– Concatenation/Feed Forward. We take a feed-forward network with a residual con-

nection [13] to integrate the representations of the text s and the label set Cs . In this

way, we obtain a new mixed representation s′ ∈ R
d1 , i.e.,

s′ = σ(W2Concat(s, c) + b2) + s (17)
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where Concat(s, c) ∈ R
d1+d2 is the concatenation of s and c. s ∈ R

d1 is the representa-

tion of the text s and c ∈ R
d2 is the representation of the label set Cs (the output of the

self-attention module). W2 ∈ R
d2×(d1+d2), b2 ∈ R

d2 are the parameters.

Training and testing details For the convenience of implementation, the label size N1 is

truncate or padded to N1 = 5. The truncation is conducted by randomly deleting the labels

in Cs and the padding is realized by adding zero vectors as the initialized embedding. The

dimension of the text representation d1 is set as 1024 for Char-CNN, respectively. The

dimension of the conceptual label representation d2 is set as 512 for both the two models. We

ran our model on a computer with GPU of GTX 1080, 8G memory and operating system of

ubuntu 16.04.5. We implement our framework using TensorFlow with mini-batch gradient

descent. The batch size is 64 and the learning rate is 0.001.

Results and analysis We report the accuracy [44] in Table 5. We conclude that, with the

conceptual labels as the additional inputs, the performance of both the models is improved.

The results prove that the task of conceptualization with prior weights can effectively guide

the task of text classification. In turn, the performance improvement indicates the gener-

ated conceptual labels are capable of capturing the semantics of the weighted bag of words.

Besides, we also observe that the performance improvement on AG’s News is more signifi-

cant compared with 20NG for Char-CNN and BERT. This is because the text in AG’s News

contains more entities than that in 20NG. As a result, the generated labels for AG’s News

contains more background knowledge to understand the texts.

4.4 Hyperparameter settings

In our experiments, we set λ = 0.5. This parameter can also be heuristically re-selected

according to the real applications. To select δ, we take additional 50 WBoWs from

WikipediaData to calculate the average scores for different δ under λ = 0.5 and gets the

highest score 2.53 when δ = 0.2. Our hyperparameter settings may not guarantee the

optimality on all WBoWs, but produce a good performance in general.

5 Related work

We mainly investigate the previous works on conceptualization as well as the applications

in the topic modeling.

Table 5 The accuracy of different models on AG’s News and 20NG datasets

Model AG’s News 20NG

Char-CNN 0.893 0.721

Char-CNN(Conceptualization) 0.912 0.743

BERT 0.930 0.839

BERT(Conceptualization) 0.943 0.851

xFor Char-CNN, we use the results from the source code released by the authors. For BERT, we train the text

classifier based on the outputs of BERT
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5.1 Conceptualization

Conceptualization is an important task for natural language understanding (NLU), and it

maps a text to several concepts that are pre-defined in a certain taxonomy or knowledge

base [14, 18, 34, 37, 42]. Wang [41] proposed a Bayesian model using typicality and PMI

to label one instance with a basic-level concept. Hua [14] leveraged co-occurrence network

for concept inference. Song [34] used a Bayesian model as well as clustering to generate

multiple labels for a short text. Sun used the minimum description length (MDL) principle

to generate a set of conceptual labels [37] for a bag of words. These solutions aimed at

generating conceptual labels for short texts, instance or unweighted bag of words.

However, none of them focus on conceptual labeling of a WBoW, a widely used text

representation framework. Moreover, extending the existing solutions to conceptualize

WBoWs is nontrivial in general, because (1) the influence of weights on the conceptual

labels is complicated, (2) the existing solutions have their own specific solution framework,

and are not general enough to be adjusted for our problem settings.

5.2 Conceptualization in topic modeling

Conceptualization is also widely combined with topic modeling, which aims at generat-

ing conceptual labels to explain the topics represented by a distribution over words. The

early effort relies on humans to find meaningful labels [23, 24]. However, manual labeling

requires a great human effort and is prone to subjectivity [40]. To alleviate it, probabilis-

tic approaches were proposed to interpret the multinomial topic models automatically and

objectively [25]. This approach achieved the automatic interpretation of topics, but the

candidate labels available were limited to phrases inside documents. To overcome this lim-

itation, Lau et al [20] proposed an automatic topic label generation method which obtains

candidate labels from Wikipedia articles containing the top-ranking topic terms, top-ranked

document titles, and sub-phrases.

The conceptualization above was conducted without supervision. To improve the

labeling accuracy, supervised labeling was proposed, such as supervised latent Dirichlet

allocation (sLDA) [3], labeled LDA (LLDA) [30], etc.

6 Conclusion and future work

In this paper, we introduce the task of conceptual labeling of a WBoW. We propose three

conceptualization principles for this task and model it as a multi-objective optimization

problem. The solution is given by a simple hybrid approach. Our extensive experiments

show the high performance in generating conceptual labels for BoWs and WBoWs. Besides,

we also apply the generated labels for the task of text classification and observe performance

improvement.

Conceptual labeling has extensive applications. In addition to text classification and

interpretation for the topic model, other tasks involving text understanding, e.g., text

summarization and reading comprehension, will also benefit from the conceptual labels.

Therefore, our future work focuses on how to properly incorporate conceptual labels into

some NLP tasks.
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