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Abstract
Node similarity is utilized as the most popular guidance for network embedding: nodes
more similar in a network should still be more similar when mapping node information
from a high-dimensional vector space to a low-dimensional vector space. Most existing
methods preserve a single node similarity in the network embedding, which can merely
preserve one-side network structural information. Though some works try to utilize
several node similarities to preserve more network information, they fail to consider the
interrelationships between the latent spaces preserving different node similarities. This
causes both network information insufficiency and network information redundancy. To
solve the problems of existing works, we propose a novel multi-view network embedding
model with node similarity ensemble. Node similarities are first selected to maximize the
represented network information while minimizing the information redundancy. For each
combination of the selected node similarities, a latent space is generated as a view of the
network. A Canonical Correlation Analysis based approach is then used to extract the
common structure of the latent spaces alignment, and a neural network based approach is
used to extract the view-specific latent structure by measuring the asymmetric KL
divergence of nodes’ Gaussian distribution. The common structure and the view-
specific structure of multiple views are merged to perverse the overall network informa-
tion. Experiments held on the real-world networks verified the superiority of the proposed
method to existing works.
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1 Introduction

Learning vector representations for nodes in large networks has been proved extremely useful
in various complex network analysis tasks [7, 9]. The main idea of network representation
learning is to use dimensionality techniques to map the high-dimensional information about a
node’s neighbors or other inherent properties into a low dimensional space [7, 9, 12, 22]. Since
machine learning techniques cannot be implemented on the network directly, the learnednode
representation is essential to machine learning based graph mining tasks such as node
classification, link prediction or community detection [5, 7, 9].

Real world networks can be classified into three categories based on the structure: naive
networks, attributes networks and multi-layer networks. The naive network only has the basic
elements of a network, namely nodes and edges [7, 18]. The attributed network consists of
nodes and edges along with node attributes and edge attributes [7, 12, 21]. The multi-layer
network, also called heterogeneous network, is the most complex one [22]. The nodes and
edges of a multi-layer network are of different types, each type of node defines a layer, and the
interactions between nodes can be either intra- or inter-layers [5, 19, 22]. Although the
embedding of attributed and multi-layer networks have received increasing interests, it is not
always possible to obtain additional information of network in the real applications. Thus
embedding naive networks is a more general problem and this work focuses on the network
embedding of naive networks.

Measuring the similarity of nodes is the most straightforward method to provide evidence
for network embedding [15]. Nodes which are more similar in a network should still be more
similar when mapping the network from a high-dimensional space to alow-dimensional space
[16]. However, different similarity measurements have their own strengths and weaknesses
[15]. For example, common neighbor based methods can easily capture the local topology
similarity, but it would do nothing for the nodes who are similar with each other but have few
common neighbors in the network. On the other hand, some global similarity measurements
have advantages in measuring the similarity in global structure, but the precision of local
similarity calculation cannot be guaranteed.

The majority of existing network embedding models merely use one kind of node similarity
measurements. For example, LINE [23] captures the 1st and 2nd order relationship between
nodes, but it fails to reflect 3rd or higher order relationships. Random walk based methods
such as DeepWalk [17] and Node2vec [8] get the similarity information by the co-occurrence
probability of nodes. Theoretically, random walk [18] methods can only get partial structural
similarities. What’s worse, due to the link sparseness problem existing extensively in the
networks, it is difficult get global similarities in the whole graph level.

Since no single similarity measurement can capture all the structural information of
network, it is natural to utilize multiple similarity measurements and combine them together
in the embedding procedure. Though some works [16, 23] try to utilize several node
similarities to preserve more network information, they fail to consider the interrelationships
between the latent spaces preserving different node similarities. This causes both network
information insufficiency and network information redundancy.

To solve the problems of existing works, we propose a novel multi-view network embed-
ding model to capture the structural information derived from different node similarity
measurements. Latent spaces are firstly generated to preserve different node similarity sets.
These latent spaces are regarded as the views for multi-view network embedding. Multiple
views are fused to generate an overall latent space to represent the network structural
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information. The overall latent space merges the common representation of multiple views and
view-specific representation of each view, in which common representation is learned via a
Canonical Correlation Analysis [1, 11] based method and view-specific representation [2] is
learned via a neural network based method. Experiments held on real-world datasets with node
classification task verify that: the proposed model contributes to better node classification
performances compared with network embedding models preserving single node similarity or
simple combination of node similarities. In addition, since the proposed model preserves node
similarity ensemble, it can describe the overall network structure with limited number of
training samples. This contributes to its superior performances with very low ratio of training
sets.

2 Problem formulation

Node similarity is the most popular measure to represent the network structural information
[15, 25]:

Definition 1 (Node Similarity) For a given network G = (V, E), where V is the node set
and E is the edge set. The node similarity function maps the node pair into a real space,
which is denoted as S : V × V→ℝ. S(vi, vj) denotes the node similarity between node vi
and vj.

Network embedding maps the high-dimensional network information into a low-dimensional
latent space [7, 9]. Node similarity is always used to guide the network embedding [26], i.e.,
node similarity information should be preserved in network embedding. Network embedding
preserves a single set of node similarities is defined as single-view network embedding:

Definition 2 (Single-view network embedding) For a network G = (V, E), using m
similarity measures S ¼ S1; S2;…; Smf g, single-view network embedding maps each
vertex v ∈ V into a low dimensional vector space ℝd by preserving a non-empty subset of
S. The mapping function ofthe single-view network embedding is represented as f : V→
ℝd.

Each node similarity represents the network structural information from one-side point of
view. None of them can describe the whole network. For example, common neighbor based
node similarities represent the local information of network, measuring relationships with
nodes who are directly connected to the active node or the nodes who are within 2 hops away
from the active node [10, 15]. They cannot measure global network structural information.
Random walk based node similarities represent the global information of network, measuring
relationships with nodes who are randomly selected in the network [10, 15, 18]. They cannot
measure local network structural information [15].

As shown in Definition 2, single-view network embedding preserves a set of node
similarities. However, it is still not enough to represent the overall network structural infor-
mation. Instead of preserving a single set of node similarities, a combination of node similarity
sets should be preserved to represent the overall network structural information.

Preserving a set of node similarities by single-view network embedding, the generated
latent space is defined as a view of the latent space preserving the overall network structural
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information. Multiple views are fused as the low-dimensional latent representation of the
overall network. This is defined as multi-view network embedding:

Definition 3 (Multi-view Network Embedding) Multi-view network embedding maps
multiple latent vector spaces, which are generated by multiple single-view network
embedding preserving different node similarity sets, into a single low dimensional latent
space to represent the network. For a given network G = (V, E), the latent space candidates
which are used for multi-view network embedding are represented as
M ¼ f 1 Vð Þ; f 2 Vð Þ;…; f n Vð Þf g, where fi(V), i = 1, 2,…, n, is the latent space generated
by single-view network embedding. Multi-view network embedding is a mapping

F : M→V∈ℝd , where V is the multi-view latent space of G.

3 The proposed method

The proposed model generates low-dimensional latent spaces for high-dimensional network
information via multi-view network embedding. Multiple latent spaces are firstly generated by
single-view network embedding, preserving various node similarity ensembles. Common
representation and view-specific representations are learned from these multiple latent spaces.
The learned representations are merged as the latent space of multi-view network embedding
to represent the network. The details of the proposed method are as follows.

3.1 Single-view network embedding

Single-view network embedding preserves node similarities of a non-empty set of
S ¼ S1; S2;…; Smf g, where Si is the similarity matrix between node of V with the ith node
similarity measurement, and m is the total number of node similarities.

To preserve network information from node similarity point of view, single-view network
embedding should minimize the difference between node similarities of the original network

Si and node similarities of the latent network space S
0

i. Sigmoid function [18] is used in this
work to measure the node similarity of the latent representation space:

s
0
vi; v j
� �

¼ 1

1þ e−v
T
i v j

ð1Þ

where vi and vj denote the representation vector of node vi and vj in the representation vector
space. The similarity matrix in the representation space is denoted as S′, where S′[i, j] = s′(vi, vj).

This work focuses on the directed network, and the representation of each node preserves
two kinds of similarities: the similarities with nodes in which the active node acts as the source
nodes of links, and the similarities with nodes in which the active node acts as the target node
of links. For a node vi, let the source node representation Xi and the target node representation
Yi be the representation preserving these two kinds of node similarities. The similarity matrix
in representation space is:

S
0

i ¼ Sigmoid Xi � YT
i

� �
ð2Þ

where S
0

i j; k½ � ¼ 1= 1þ e−x
T
j yk

� �
.
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The similarity difference function is defined based on KL Divergence [2, 3]:

L ¼ ∑
S j∈Si

∑
Vj j

k¼1
∑
Vj j

l¼1
S j k; l½ �log S j k; l½ �

S
0
i k; l½ �

: ð3Þ

Since log S j k;l½ �
Si k;l½ � may be less than 0, log 1þ S j k;l½ �

Si k;l½ �

� �
is used to substitute log S j k;l½ �

Si k;l½ � in (3). Let X
*
i

and Y*
i be the optimal representation of Xi and Yi. X

*
i and Y*

i can be calculated as:

X *
i ; Y

*
i

� �
¼ min

X*
i ;Y

*
i

∑
S j∈Si

∑
Vj j

k¼1
∑
Vj j

l¼1
S j k; l½ �log 1þ S j k; l½ �

S
0
i k; l½ �

 !
: ð4Þ

For a node vi, its latent vector representation with single-view embedding is denoted as fi(V), in
which fi(.) is the embedding mapping function by preserving the ith node similarity set. fi(V) is
the combination of X *

i and Y*
i :

f i Vð Þ ¼ X *
i þ Y*

i

2
; ð5Þ

where X*
i and Y*

i are calculated by (4).

3.2 Common representation with latent space alignment

By preserving network structural information of n node similarity sets with single-
view network embedding, the candidates of multi-view network embedding are
achieved: M ¼ f f 1 Vð Þ,f2(V), ⋯, fn(V)}, where fi(V), i = 1, 2, ..., n, is the latent space
by preserving the node similarity information of the ith node similarity set with single-
view network embedding. To merge these n latent spaces, their common representa-
tion is firstly extracted.

Let V be an underlying space which is observable by the latent spaces of M. A mapping

function Hi : V→ℝd
0
(i = 1, 2, .., n) is used to represent the projection from V to the latent

spaces. For a node vi ∈ V, let vi∈V be its representation in V, and f1(vi), f2(vi), ..., fn(vi) are its
latent vector representations generated by single-view network embedding,H j við Þ ¼ f j við Þ,
j = 1, 2, .., n [27]. Then we can get:

vi ¼ H−1
1 f 1 við Þð Þ ¼ ::: ¼ H−1

n f n við Þð Þ: ð6Þ

H−1
j (j = 1, 2, .., n) should satisfy (6) to achieve the optimal solution. However, since 6 cannot

be solved directly, motivated by the Canonical Correlation Analysis (CCA) [1, 11, 20], a series

of mapping functionsH−1
j (j = 1, 2, .., n), which maximize the correlation of two vector spaces’

projections, are used as the approximate solution of (6). Therefore, (6) is relaxed to the
following optimal problem:

H−1*
1 ;H−1*

2 ; :::;H−1*
n

� �
¼

max
H−1

1 ;H−1
2 ;:::;H−1

n

∑
n

i¼1
∑
n

j¼iþ1
ρ H−1

i f i Vð Þð Þ;H−1
j f j Vð Þ
� �� � ð7Þ
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where ρ H−1
i f i Vð Þð Þ;H−1

j f j Vð Þ
� �� �

is the correlation of two latent vector spaces’ projections

H−1
i f i Vð Þð Þ and H−1

j f j Vð Þ
� �

.

To simplify the calculation of (7), linear transformation Wi∈ℝd�d
0
is used to approximate

H−1
i [1], and (7) is rewritten as:

W*
1;W

*
2; :::;W

*
n

� �
¼

max
W1;W1;:::;Wn

∑
n

i¼1
∑
n

j¼iþ1
ρ WT

i � f i Vð Þ;WT
j � f j Vð Þ

� � ð8Þ

SinceW1,W1, ...,Wn are mutually constrained, it is difficult to solve the optimization problem
in (8) [20]. We therefore design a CCA based common representation learning model to
fuse all candidate latent spaces. Two latent spaces of the multi-view network embed-
ding candidates are combined to generate a new latent space, and this new latent
space is added to the multi-view network embedding candidates to substitute the
original two latent spaces. This process is iteratively executed until there is only
one latent space left in the multi-view network embedding candidate set. This latent
space is the common representation of the latent space alignment. The details of CCA
based common representation learning model is given in Algorithm 1. M0 is the
latent space candidate set that need to be transformed, and M1 denotes the trans-
formed latent space set. In each iteration, two latent spaces V1 and V2 of M0 are
fused to generate a new latent space V*, which is the average of the projection of V1

and the projection of V2. V* is added to M1 for thenext iteration of latent space
fusing, and this process terminates until the size of M0 is one. The final latent space
of M0 is the common representation of M ¼ f 1 Vð Þ; f 2 Vð Þ; :::; f n Vð Þf g, which is

represented as Vcommon ∈ℝ Vj j�d
0
.

3.3 View-specific representation learning

For multiple views generated by single-view network embedding, view-specific representation
are extracted for view fusion. This is achieved by representing nodes’ characteristics as
Gaussian distributions [2]: each node’s characteristic is described as a full distribution rather
than a single vector, by measuring the Gaussian distributions of nodes when preserving node
similarities, view-specific representation is learned.

For a network G = (V, E), its generated latent spaces by single-view network embedding is
M ¼ f 1 Vð Þ; f 2 Vð Þ; :::; f n Vð Þf g. To simplify the illustration, we denote the concatenation of
M as M = [f1(V), f2(V), ..., fn(V)] ∈ℝ|V| × (nd). In this part, we aim to find a lower-dimensional

Gaussian distribution embedding vispecific ¼ N μi;Σið Þ, μi∈ℝ
d
0
, Σiinℝd

0 �d
0
for every node vi

[2].
For a node vi ∈ V, we define k-hop neighborhood [25] which is the set of nodes who are k

hops away from node vi: Nik = {vj ∈ V| vi ≠ vj, sp(vi, vj) = k}, where sp(vi, vj) is the length of the
shortest path from vi to node vj. Nodes in different neighborhood should satisfy [2]:

d N i;N j
� �

< d N i;N j0

� �
;∀vi∈V ; v j∈Nik ; v j0∈Nik

0 ; k < k
0
; ð9Þ
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where N i, N j and N j0 are the corresponding Gaussian distribution of node vi, vj and v j0

respectively, and Nik, Nik
0 are the k-hop and k'-hop neighborhoods of vi. To solve (9),

asymmetric KL divergence is used to measure the difference between two normal distributions
[2, 3]. Given the latent Gaussian distribution representation of two nodes vi and vj we define:

d N i;N j
� �

¼ DKL N j‖N i

� �
¼

1

2
tr Σ−1

i Σ j
� �

þ μi−μ j

�
TΣ−1

i μi−μ j

� �
−d

0
−log

� det Σ j
� �

det Σið Þ

� �� 	 ; ð10Þ

where μi and Σi are the parameters of normal distribution of N i, μj and Σj are the parameters
of normal distribution of N j, d' is the dimension of Gaussian distribution N i and N j, tr(.)
denotes the trace of a matrix, and det(.) denotes the determinant value of a matrix.

A neural network with two hidden layer is then used to calculate the parameters of the
Gaussian distribution by learning the Gaussian distribution from the concatenationM = [f1(V),
f2(V), ⋯, fn(V)] ∈ ℝ|V| × (nd) [2]. The first layer of the neural network is defined as:

h1 mið Þ ¼ Relu Θ1 �mi þ b1ð Þ; ð11Þ

where mi is the representation of node vi in M, Θ1 and b1 are the weight and bias of the first
layer, and Relu(.) is the activation function [6]. The diagonal covariance matrices are used to
represent the covariance of the Gaussian distribution [2]. the parameters of node vi’s Gaussian
distribution are defined as:

μi ¼ Relu Θμ � h1 mið Þ þ bμ
� �

; ð12Þ

Σi ¼ Relu ΘΣ � h1 mið Þ þ bΣð Þ; ð13Þ
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where Θμ and bμ are the weight and bias of the output layer calculating μ, and ΘΣ and bΣ are
the weight and bias of the output layer calculating Σ.

To satisfy the constraints of (9) with (10), (11), (12) and (13), an objective
function is defined to penalize the ranking errors according to the energy of pairs.

KL divergence between a pair of nodes vi and vj is defined as their energy: Eij ¼ DKL

N j‖N i
� �

[2]. The loss function is therefore defined as:

L ¼ ∑
vi∈V

∑
k< k

0
∑

v j∈Nik ;v j0 ∈Nik
0

E2
ij þ exp−Ei j0

� �

¼ ∑
vi;v j;v j0

� �
∈T

E2
ij þ exp−Ei j0

� �
;

ð14Þ

where T ¼ vi; v j; v j0
� �

jsp vi; v j
� �

< sp vi; v j0
� �n o

is the set of all valid triplets. Eij is

the set of positive examples whose energy is lower than the set of the negative
examples Ei j0 . For agiven target node vi, the energy Eij should be the lowest for nodes

vj in its 1-hop neighborhood, followed by a higher energy for nodes in its 2-hop
neighborhood and so on [2].

The optimal solution of (14) is the view-specific representation for the candidate latent
space of M ¼ f f 1 Vð Þ; f 2 Vð Þ; :::; fn(V)}.

View-specific representation is extracted via Gaussian distribution vispecific ¼ N μi;Σið Þ. μi

∈ℝd
0
is a vector, while Σi∈ℝd

0 �d
0
is a diagonal matrix. μi and the diagonal element of Σi are

concatenated to a 2d' dimension vector. vispecific ¼ μi;Σ
0

i


 �
is used to denote the view-specific

representation node vi, where Σ
0

i is the the diagonal element of Σi. Vspecific is used to denote the
view-specific embedding space of the candidate latent spaces.

3.4 Joint representation with common and view-specific representations

With the latent spaces generated by single-view network embedding, common repre-
sentation are extracted with the latent space alignment, and view-specific representa-
tions are extracted to reveal the characteristics of the latent spaces. The latent vector
representation of multi-view network embedding is the joint representation of the
common representation and view-specific representations. The output of multi-view
network embedding is V = [Vcommon,Vspecific].

4 Model optimization

4.1 Node Similarity Ensemble Strategy

Single-view network embedding generates a single view of latent network represen-
tation by preserving a set of node similarities. Suppose there are m node similarities,
i.e., S ¼ S1; S2; :::; Smf g, the number of possible node similarity sets is 2m − 1. If
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latent spaces are generated for all possible node similarity sets by single-view network
embedding, there are 2m − 1 views need to be fused for the final latent representation
of the multi-view network embedding. If m is large, the computational complexity of
merging these views is high. In addition, it is not necessary to generate views for all
possible node similarity sets. Since some subsets belong to other subsets of S, there is
great information redundancy in the 2m − 1 non-empty subsets of S.

To reduce the computational complexity and the information redundancy, the most
valuable node similarity sets should be selected for single-view network embedding.
The latent spaces preserving the most valuable node similarity sets maximize the
preserved network structural information while minimize the information redundancy.
These views are then merged as the latent representation of the proposed multi-view
network embedding model.

Node similarity ensemble strategy is defined as follows: for node similarity set
S ¼ S1; S2; :::;Smf g, its optimal node similarity ensemble set Scandidate should satisfy the
following constraints:

(1) ∀Si∈Scandidate, then Si⊆S and Si≠Φ;
(2) ∀Si;S j∈Scandidate, then Si∉S j and S j∉Si;
(3) Scandidate should be as large as possible.

Node similarity ensemble strategy is a k-combination problem of S. If k ¼ m
2

� 
, where ⌊.⌋

is the rounding down function, Scandidate satisfies the above constraints. The optimal node
similarity ensemble set is therefore represented as: Scandidate ¼ Si Si⊆S;j jSij ¼ m

2

� � �
4.2 Triplet Sampling Strategy

For a large scale network G, it is hard to compute the complete loss in (14) since the
amount of triplets in T is extremely large. A naive approach to address this problem
is to sample triplets from T uniformly [2], i.e. replace ∑

vi;v j;v j
0

� �
∈T

with E
vi;v j;v j

0

� �
∼T

in (14). However, using this naive sampling approach, low-degree nodes are less
likely to be sampled in the triplets compared with high-degree nodes. The represen-
tations of low-degree nodes are therefore hard to be updated. Since the degree
distribution of complex networks follows the power-law [24], majority of nodes have
low degree. The naive approach is not effective for most nodes of the network.

Triplet sampling strategy used in this work is defined as follows [2]: for a node vi,
one node is randomly sampled from each of vi’s neighborhoods (Ni1, Ni2, etc.), and
triplets are then generated from these randomly sampled nodes. The constraints of vi
is Ei1 < Ei2, Ei1 < Ei3, ⋯, Ei1 < EiK , Ei2 < Ei3, Ei3 < Ei4, ⋯, Ei2 < EiK , ⋯,
EiK−1 < EiK , where K is the radius of the network.

Using triplet sampling strategy, the parameters of view-specific representation
learning can be optimized. Parameters (Θ1, b1,Θμ, b , ΘΣ, b ) of neural network
model are optimized such that the loss L (in (14)) is minimized and the sampled
triplets set T satisfies the constrains. The parameters are optimized using Adam [13]
with a fixed learning rate 0.001.
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5 Experimental results

5.1 Experiment Setup

Datasets Experiments are held on 3 real-world datasets1 to evaluate the performances of the
proposed model. These datasets are Citeseer, Cora and Pubmed-Diabetes. The detail informa-
tion of these datasets is given in Table 1: nodes of Citeseer and Cora have 6 labels, and nodes
of Pubmed-Diabetes have 3 labels. Compared with Cora (average degree 4.01) and Pubmed-
Diabetes (average degree 4.50), Citeseer (average degree 2.86) is more sparse. These three
datasets are pre-processed to be connected networks. Since the scale of Pubmed-Diabetes
(19,717 nodes) is much larger than the other two datasets, we sample it into a small network
with around 2, 000 nodes and the average degree is around 4.5.

Node similarity measurements Eleven node similarity measurements are used in this work to
represent the network structural information. The detailed information of the node similarities
is given in Table 2. The common neighbors method(CN) [25] is a typical local similarity-based
approach which measures two nodes’ similarity by the number of their one-hop common
neighbors. The Adamic-Adar index(AA) [25], the resource allocation index(PA) [15] and
resource allocation based on common neighbor interactions (RA-CNI) [15] improve CN by
differentiating the influences the node’s on-hop neighbors. The Jaccard index method [25] (JC)
improves CN by measuring the ratio of two nodes’ one-hop common neighbors over their
complete one-hop neighbor set. The Salton index method(SA) [15], also known as the cosine
similarity, and the Sorensen index method(SO) [15] improve JC by using different measure-
ments of each node’s one-hop complete neighbor set. In practical, the node similarity measured
by SA is approximately twice the value of JC. SO is less sensitive to outliers compared with
JC. The hub promoted index method(HPI) [15] measures the node similarity by the ratio of
two nodes’ one-hop common neighbors over the minimum of one node’s one-hop neighbors,
while the hub depressed index method(HDI) [15] measures the node similarity by the ratio of
two nodes’ one-hop common neighbors over the maximum of one node’s one-hop neighbors.
HPI discourages link formation between hub nodes and encourage link formation between
low-degree nodes and hub nodes. This is opposite to HDI. The local Leicht-Holme-Newman
index(LLHN) [15] is defined as the ratio of actual paths of length two between two nodes and
a value proportional to the expected number of paths of length two between them. The
preferential attachment index(PA) [15] is based on the phenomena that many real network
node degrees follow a power law distribution. So if the degree of two nodes is large, they are
more likely to form a link.

1 https://linqs.soe.ucsc.edu/data

Table 1 Statistics of the real-world networks

Cora Citeseer Pubmed-Diabetes

|V| 2708 3312 19,717
|E| 5429 4732 44,338
Avg. degree 4.01 2.86 4.50
# labels 6 6 3
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Baseline methods Four of the most popular network embedding models are used as the
baselines of this work:

& DeepWalk: DeepWalk [17, 18] uses random walk to get the node sequence and then Skip-
Gram algorithm is used to learn the node representation vectors.

& Node2Vec: Node2Vec [8, 18] uses improved random walk step to get the node sequence
and then uses the skip-Gram algorithm to learn the node representation vectors.

& LINE: LINE [18, 23] is a popular network embedding methods which considers the first
and second order proximities information.

& GraRep: GraRep [4, 18] carries out matrix factorization based on different sized random
walk.

Parameter settings The dimension of the latent representation is set to be 16 for all datasets,
i.e., d = 16. The parameters of the baseline methods use default settings.2 For the proposed
model, the dimension of each single view is 16, the dimension of common representation is 16

2 ,

Table 2 Node similarity measurements used in this work

# Name Definition

1 JC SJC vi; v j
� �

¼ Γ við Þ∩Γ v jð Þj j
Γ við Þ∪Γ v jð Þj j

2 PA SPA(vi, vj) = |Γ(vi)||Γ(vj)|
3 SA SSA vi; v j

� �
¼ Γ við Þ∩Γ v jð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ við Þj j Γ v jð Þj j
p

4 CN SCN(vi, vj) = |Γ(vi)∩Γ(vj)|
5 SO SSO vi; v j

� �
¼ 2 Γ við Þ∩Γ v jð Þj j

Γ við Þj jþ Γ v jð Þj j
6 LLHN SLLHN vi; v j

� �
¼ Γ við Þ∩Γ v jð Þj j

Γ við Þj j Γ v jð Þj j
7 HPI SHPI vi; v j

� �
¼ Γ við Þ∩Γ v jð Þj j

min Γ við Þj j; Γ v jð Þj jð Þ
8 HDI SHDI vi; v j

� �
¼ Γ við Þ∩Γ v jð Þj j

max Γ við Þj j; Γ v jð Þj jð Þ
9 RA

SRA vi; v j
� �

¼ ∑
v∈Γ við Þ∩Γ v jð Þ

1

Γ vð Þj j
10 AA

SAA vi; v j
� �

¼ ∑
v∈Γ við Þ∩Γ v jð Þ

1

log Γ vð Þj j
11 RA-CNI

SRACNI vi; v j
� �

¼ ∑
v∈Γ við Þ∩Γ v jð Þ

1

Γ vð Þj j þ ∑
vk ;vlð Þ∈E; Γ vkð Þj j< Γ vlð Þj j;vk∈Γ við Þ;vl∈Γ v jð Þ

1

Γ vkð Þj j−
1

Γ vkð Þj j

� �

*v denotes node

*E is the edge set

*min (·) is the minimal function

*log (·) is the log function

*max (·) is the maximal function

*Γ(·) is the neighborhood set of node

2 https://github.com/thunlp/openne
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and the dimension of the Gaussian distribution in view-specific representation is 16
4 . In view-

specific representation, we use a two hidden layer {3000, 600} neural network.

5.2 Performance Evaluation

The network embedding performances are verified on node classification task, in which
Support Vector Machine [14] is used to classify nodes. Macro-F1 score and Micro-F1 score
are used to evaluate the node classification performances. For each dataset, different ratio of
the labelled nodes are randomly selected as the training data, and the rest of nodes are used as
the test data. The results are averaged over 50 different runs by sampling different training
data.

Let MvNR represent the proposed multi-view network embedding model, node classifica-
tion performances with MvNR is given in Figure 1. It is shown that: (1) Node classification
performances with MvNR are superior to node classification performances with baseline
methods. Both Micro-F1 score and Macro-F1 score by using MvNR are higher than using
baseline methods on all three experimental datasets. (2) If the ratio of training set is low, node
classification performances with MvNR are significantly higher than node classification
performances with baseline methods. For example, when the training ratio is 0.1, compared
with the best Micro-F1 score and Macro-F1 score achieved by baseline methods, Micro-F1
score and Macro-F1 score by using MvNR are about 15% and 25% higher on Citeseer dataset,
about 30% and 40% higher on Cora dataset, and about 30% and 40% higher on Pubmed-
Diabetes dataset. (3) Node classification performances are less sensitive to the ratio of training
set by using MvNR. Baseline methods, especially random walk based methods Deepwalk and
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Figure 1 Node classification performances with the proposed multi-view network embedding model
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Node2Vec, are sensitive to the ratio of training set: node classification performances decrease
significantly with the decrease of training sample ratio. Using MvNR, there is only slightly
change on node classification performances with the decrease of training sample ratio.

Deepwalk and Node2Vec preserve global node similarities between the active node and the
nodes selected with co-occurrence probability when randomly walked in the network. LINE and
GraRep preserve local node similarities, in which LINE measures the node similarity between the
active node and the nodes with the first and the second order proximity, while GraRepmeasures the
node similarity between the active node and the nodes with high order proximity. If the ratio of the
training sample is low, it is hard describe the overall network structure by node similarities used in
the baseline methods. This leads to their limited node classification performances. Since MvNR
preserves network information with node similarity ensemble, the involved nodes similarities reflect
the network structural information from different aspects of view. It can describe the overall network
structure with limited number of training samples. This contributes to its superior node classification
performances with low ratio of training set.

Figure 2 illustrates the comparison of node classification performances with MvNR and the
average node classification performances preserving each node similarity listed in Table 2. It is
shown that node classification performances with MvNR are significantly better than node
classification performances preserving single node similarity. Micro-F1 score and Macro-F1
score by using MvNR are about 6% and 10% higher on Citeseer dataset, about 8% and 12%
higher on Cora dataset, and about 4% and 8% higher on Pubmed-Diabetes dataset. Table 3
gives the detail information of node classification performances preserving each single node
similarity respectively on Pubmed-Diabetes dataset. By preserving single node similarity, the
highest Micro-F1 score and Macro-F1 score are 0.765 and 0.716 respectively, while the lowest
Micro-F1 score and Macro-F1 score are 0.607 and 0.469 respectively. The selected node
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Figure 2 Comparison of node classification performances with the proposed model and the average node
classification performances preserving all possible single node similarity
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similarities contribute to reasonable node classification performances compared with baseline
methods shown in Figure 1. By preserving node similarity ensemble with common latent space
and view-specific latent spaces, MvNR contributes to better node classification performances
compared with preserving any single node similarity, and better node classification perfor-
mances compared the average performances of preserving all possible node similarities.

To sum up, by preserving node similarity ensemble, the proposed multi-view network
embedding model contributes to better node classification performances compared with net-
work embedding models preserving single node similarity or simple combination of node
similarities. It is only slightly influenced by the ratio of training set, and it contributes to
valuable node classification performances with very low ratio of training set.

6 Conclusions

This work proposes a novel multi-view network embedding model with node similarity
ensemble. Instead of preserving single node similarity in the network embedding, the proposed
method generates multiple views of latent spaces, preserving various node similarity sets. To
maximize the involved network information while minimize the information redundancy,
common representation is extracted from multiple views to merge with multiple view-
specific representations. The common representation of multiple views is extracted with a

Table 3 Node classification performances preserving single node similarity and node similarity ensemble on
Pubmed-Diabetes dataset

Metric Node similarity Training Ratio

10% 20% 30% 40% 50%

Micro-F1 AA 0.727 0.740 0.751 0.758 0.765
CN 0.721 0.741 0.749 0.754 0.762
HDI 0.721 0.737 0.743 0.747 0.750
HPI 0.717 0.733 0.739 0.753 0.755
JC 0.708 0.725 0.734 0.741 0.742
LLHN 0.682 0.713 0.728 ,0.738 0.745
PA 0.607 0.630 0.640 0.648 0.652
RA 0.733 0.744 0.753 0.759 0.765
RA-CNI 0.693 0.716 0.728 0.740 0.744
SA 0.702 0.725 0.736 0.748 0.751
SO 0.690 0.706 0.718 0.726 0.731
Average 0.700 0.719 0.729 0.737 0.742
MvNR 0.741 0.765 0.776 0.780 0.783

Macro-F1 AA 0.651 0.676 0.693 0.706 0.716
CN 0.645 0.680 0.692 0.700 0.710
HDI 0.649 0.678 0.687 0.693 0.697
HPI 0.649 0.671 0.682 0.700 0.705
JC 0.636 0.664 0.679 0.689 0.692
LLHN 0.619 0.668 0.686 0.696 ,0.705
PA 0.469 0.510 0.530 0.543 0.549
RA 0.655 0.674 0.688 0.699 0.711
RA-CNI 0.597 0.641 0.660 0.675 0.683
SA 0.609 0.652 0.672 0.688 0.692
SO 0.606 0.635 0.652 0.666 0.674
Average 0.617 0.650 0.666 0.678 0.685
MvNR 0.700 0.727 0.742 0.746 0.749
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CCA based model, and view-specific representations are extracted with a neural network based
model analyzing Gaussian distributions of nodes. Node classification performances with the
proposed method are superior to node classification performances with existing network
embedding models, especially when there is only very limited number of training samples.
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