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Abstract
Address matching is a crucial task in various location-based businesses like take-out
services and express delivery, which aims at identifying addresses referring to the same
location in address databases. It is a challenging one due to various possible ways to
express the address of a location, especially in Chinese. Traditional address matching
approaches relying on string similarities and learning matching rules to identify addresses
referring to the same location, could hardly solve the cases with redundant, incomplete or
unusual expression of addresses. In this paper, to learn the geographical semantic
representations for address strings, we novelly propose to get rich contexts for addresses
from the Web through Web search engines, which could strongly enrich the semantic
meaning of addresses that could be learned. Apart from that, we propose a two-stage
geographical address representation learning model for address matching. In the first
stage, we propose to use an encode-decoder architecture to learn the semantic vector
representation for each address string where an up-sampling and sub-sampling strategy is
applied to solve the problem of address redundancy and incompleteness. The attention
mechanism is also applied to the model to highlight important features of addresses in
their semantic representations. And in the second stage, we construct a single large graph
from the corpus, which contains address elements and addresses as nodes, and the edges
between nodes are built by word co-occurrence information to learn embedding repre-
sentations for all the nodes on the graph. Our empirical study conducted on two real-
world address datasets demonstrates that our approach greatly improves both precision
(up to 8%) and recall (up to 12%) of the state-of-the-art existing methods.
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1 Introduction

Nowadays, address localization becomes a core function in various location-based businesses
like take-out services and express delivery. However, due to various address expression
standards as well as typing errors in human inputs, address parsing and understanding becomes
a big obstacle in address localization. The problem becomes more serious for addresses in
Chinese, given more complex and diverse expression such as the examples listed in Table 1.

For better address parsing and understanding, address matching task has been studied [7],
aiming at identifying addresses referring to the same location across different address data-
bases. Traditional methods for address matching or standardization rely on approximate string
matching metrics such as edit distance, which are not robust to deal with various kinds of
expressions. A more widely-used way for address matching is to build a decision tree
consisting of learned matching rules, where each rule corresponds to a path from the root
node to a leaf node on the tree. Based on this so-called address matching tree, the similarities
between two addresses could be computed. To deal with the fuzzy expressions of the
addresses, some work proposes to use the forward maximum matching algorithm to segment
the address to match entries in a standard address dictionary, referring to the learned matching
rules [4]. Some other work also combines edit distance with space vector model to calculate
the similarity between strings [16]. They measure the dissimilarity caused by the differences in
the characters of address strings using edit distance, and calculate the dissimilarity caused by
differences in the address terms using TF-IDF term weighting. The final result is obtained by
weighting the two dissimilarities.

However, the existing methods relying on string similarities and rule matching can be easily
influenced by the diverse expressions including redundant, incomplete or unusual expression
of addresses. For example in Table 1, where all the five addresses refer to the same location.
Assume we have a matching rule that CITY+STREET+STREET_NO. + POI_NAME →
ADDRESS, which means, addresses having the same city name, street name, street No., and
POI name should refer to the same POI location. Based on this rule, we may identify that
addr1 and addr2 refer to the same location, but we could hardly judge that addr3, addr4 and
addr5 also refer to the same location with addr1, given that addr3 is represented by the
orientation information of the adjacent address, addr4 lacks the information of poi, and addr5
uses the road intersection to describe the address.

Table 1 Five different address expressions for the same location
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To address the weaknesses of the existing approaches, we turn to encode addresses into
semantic space and find alignment according to its embedding similarities. It is well-known
that deep learning techniques have achieved great success on word embedding [21], entity
embedding [11] and sentence embedding [14, 26] in recent year. But the task of address
embedding is untouched. Different from the general representation learning models which are
for general domains, address representation is for a specific domain. Take the addresses in
Table 1 for example, the general sentence representation models would not support that all the
five addresses are close in semantic. But as a domain representation model, our deep semantic
representation model should learn that “Chuangfu Building” and “RT-MART”, “Danling road”
and “Caihefang Road” are semantically close to each other in geography.

To learn the geographical semantic representations for address strings, we first need to
collect a large corpus of the address localization domain for model learning. In this paper, we
propose to collect the address corpus from the Web with the help of Web search engines, given
the assumption that all the addresses should be mentioned, wholely or partially, at somewhere
on the Web. Therefore, we may learn contexts for all these addresses and then learn deep
semantic representations for them from the contexts. Based on the collected address corpus
from the Web, we propose a two-stage geographical address representation learning model for
address matching. In the first stage, we propose to use an encode-decoder architecture with two
Long Short Term Memory (LSTM) networks [10], where one is regarded as encoder and the
other as decoder, to learn the semantic vector representation for each address string.

Due to the problems of address redundancy and addresses incomplete, we up-sample and
sub-sample the address during the training process, then take the sampled address as the input of
the encoder and use the original address as the output of the decoder to improve the robustness
of the model. We also apply an attention layer between encoder and decoder to enable the
semantic vectors to represent richer semantic information by assigning higher weights to more
important features. In the second stage, we construct a single large graph from the corpus, which
contains address elements and addresses as nodes, and the edges between nodes are built by
word co-occurrence information. We then model the graph with GCN [27] to learn represen-
tations for all the nodes on the graph. Based on the graph embedding results, the address
matching results could be greatly improved even with a small proportion of labeled data.

We summarize our contributions in this paper as follows:

– We novelly propose to measure the semantic similarity between addresses for address
matching based on deep semantic address representation.

– We novelly propose to get rich contexts for addresses from the Web through Web search
engines, which could strongly enrich the semantic meaning of addresses that could be
learned.

– Based on the collected address corpus from the Web, we propose a two-step geographical
address representation learning model for address matching.

We perform experiments on two real-world datasets, and the empirical results demonstrate that
our proposed model works much better than the state-of-the-art methods on both precision (up
to 8%) and recall (up to 12%). Roadmap. The rest of the paper is organized as follows: we give
a formal definition to address matching problem in in Sec. 2. After presenting a compound
framework for address matching in Sec. 3, we then present our geographical address repre-
sentation learning model in Sec. 4. After reporting our experiments in Sec. 5, we cover the
related work in Sec. 6. We conclude in Sec. 7.



2 Problem definition

Address localization is a core task in various location-based businesses. Depending on whether
there is a standard address database, address localization can be divided into address stan-
dardization task and address matching task. In this paper, we study on the case without a
standard address database, i.e., address matching task, which is formally defined below:

Definition (Address Matching.) Given a set of addresses ={add1, add2, …, addn}, the
goal of address matching is to find every address pair (addi, addj) satisfying addi ≐ addj,
where addi ∈D, addj ∈D, i ≠ j and ≐ is a comparison operator having its two operands
referring to the same real-world object.

3 A compound framework for address matching

Instead of working independently, we prefer to let our deep semantic matching approach work
under a compound framework, where the address matching rule tree is also adopted in the
Syntactic matching step before going into the semantic matching step using deep semantic
representations of addresses.

We illustrate this compound framework in Figure 1: Given a set of addresses, we first generate
a number of candidate address pairs for matching based on some simple heuristic rules as
introduced in [28]. For instance, only addresses in the same city and district (if any), sharing at
least one word (after removing stop words) in the left part of their address strings need to be
compared. For every candidate address pair, we use a basic address matching tree following [4] to
decide whether the two addresses could be syntactically matched in the Syntactic matching step. If
yes, the address pair will be put into the final matching results. Otherwise, the address pair goes
into the semantic matching step, where vectors of the two addresses would be obtained from the
learned deep semantic address representation model. We give more details below:

Address 
table

Word 
segmentation

Label 
address 
element

add1
add2
add3

...

...

Querys

new1
new2
new3

...

...

w1:vec1
w2:vec2
w3:vec3

...

...

Word2vec

encoder

Prepocessing

decoder

predictor

Address representation

Generate word vector

Generate 
candidate 

address pairs

Syntactic matching
Semantic matching

Address rule tree

Address GCN

Matched

Matched or 
Not

Figure 1 A compound framework with both syntactic and semantic address matching
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– Syntactic Matching. For syntactic matching, we adopt an address matching tree
containing a number of expert-defined address matching rules as the one shown in
Figure 2, where every path from the root node to a leaf node corresponds to a
matching rule. For every candidate address pair, we would let them traverse the
whole tree in a deep-first traverse way to find if it could strictly match with a
matching rule. Once successfully matched with a matching rule at its leaf node, the
traverse process will be terminated.

– Semantic Matching. All candidate address pairs that cannot be matched in the syntactic
matching step will go to the semantic matching step. For every candidate pair, we use the
learned geographical address representation model to get the vector of the two addresses, and
then compute their similarities to see if they could be matched or not according to a prede-
fined threshold. The core module of semantic matching is how we build the geographical
address representation learning model, which will be introduced in the following section.

4 Geographical address representation learning model

It is a nontrivial task to learn a deep semantic representation model for addresses. The general
sentence representation models are built for general purposes, but address representation is a
task of a specific domain.

In this paper, we propose to collect the address corpus from the Web with the help of Web
search engines, based on which we then train our geographical address representation learning
model in two stages. In the first stage, for every address in the training set, we crawl the latest
news about it on the Web through Web search engines, and treat these news as our corpus.
Next, we use the corpus to enrich the semantic information of the addresses and employ
Word2Vec [20] to train our word vector. Based on this, we propose to use a encoder-decoder
model with attention mechanism to represent sentence vectors. Different from the traditional
model, we here replace one hot representation with the pre-trained word vectors as the initial
vectors, which helps to capture more semantics.

Figure 2 A basic address matching tree for syntactic address matching
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In the second training stage, we construct a single large graph from the corpus, which
contains address elements and addresses as nodes, and the edges between nodes are built by
word co-occurrence information. We then model the graph with GCN [27] to learn represen-
tations for all the nodes on the graph. Based on the graph embedding results, the address
matching results could be greatly improved even with a small proportion of labeled data.

In the rest of this section, we first introduce how we get extra contexts for a given address
from the Web and perform domain word2vec training in Sec. 4.1, and then present the
encoder-decoder model with attention mechanism for deep semantic address representation
in the first step in Sec. 4.2. After that, we introduce the GCN-based representation learning
model in Sec. 4.3.

4.1 Word embedding for the address domain

There are plenty of contexts on the Web where rich geographic semantic information can be
captured. Let A = {e1, e2, e3, ..., en} denote a collection of elements of an address which can be
gotten with word segment tool [20]. For every address element ei, we use Web Search Engines
to obtain a collection of Web page, denote as Wi = {pi1, pi2,pi3, ..., pim}. Therefore, for an
address, there are a total of n ×m pages. In order to remove irrelevant Web page, we use a
vector space model (VSM) for representing a collection of Web pages to calculate a score for
each page. Specifically, each Web page is represented by a document vector consisting of a set
of weighted keywords. Keywords in each Web page are address elements. The weights of the
address element in each Web page vector are determined according to the term frequency
inverse document frequency (TF-IDF) model. The weight of ei in Web page pj(1 < j < n ×m),
denoted as w(ei, pj), which can be calculated by the following formula:

w ei; pj

� �
¼ Num ei; pj

� �
� log

m� nþ 1

k
ð1Þ

where Num(ei, pj) denotes the number of occurrences of ei in Web page pj and k is the number
of Web pages which contain element ei. After that, we can calculate a score for everyWeb page
by the following equation:

score p j

� �
¼ ∑

n

i¼1
w ei; pj

� �
ð2Þ

Next, we select the Web pages with high scores, e.g. larger than a predefined threshold, and
then extract contexts from the Web pages. These contexts are used as the training corpora to
train the word vectors related to address elements by using the Word2vec technique. A general
corpus, Chinese Wikipedia [23], is also utilized to pre-train word vectors before using the Web
pages for address domain. After that, for every address element ei ∈ A, we can get its vector xi.
Finally, we can obtain a collection of word vectors W = {x1, x2,…, xn} for every sentence.

4.2 Stage 1: deep address representation learning

In the second training state, we focus on learning the address representation with encoder-
decoder model. Specifically, we apply LSTM on the encoder model and decoder model
respectively. In addition, we utilize predictor model to predict the next sentence. In order to
solve the problems of address redundancy and addresses incomplete, we up-sample and



subsample the addresses from the original training set to construct a new training set. That is,
we use address matching rules to determine which address elements are unessential. After that,
we remove the unessential address elements so that the addresses can be represented in
different forms and we can also artificially add duplicate elements to the address. Next, we
take the sampled address as the inputs of the encoder and use the original address as the output
of the decoder to satisfy that the semantics of addresses with incomplete or redundancy are
close. Furthermore, we apply the attention mechanism on encoder-decoder model and
encoder-predictor model such at the important features can be emphasized by assigning higher
weights.

(1) Encoder-decoder Model with Attention Firstly, the encoder reads the input sentence one-
by-one which is an address or a sentence from Web corpus. Note that the address or the
sentence here has been initialized by the word embedding shown in section 4.1, i.e. W = {x1,
x2,…, xn}. Next, in a certain time step t of LSTM, there are three gates in a LSTM time step,
input gate, forget gate and output gate respectively, denoted as it, ft and ot. They are composed
of a sigmoid neural net layer and a pointwise multiplication operation and their values range
from 0 to 1. Let H = {h1, h2,…, ht,…, hm} be the set of hidden state for each sentence from
the inputs. We use the following equations to get the hidden state ht for the time step t. We first
need to forget the old subject when we meet a new subject. And we decide which information
we are going to throw away from the previous hidden state ht − 1 with the Eq. (3):

f t ¼ σ wf *ht−1 þ wf *xt
� � ð3Þ

The next step is to decide what new information we are going to store in the current state. And
input gate decides which values will be updated as follows.

it ¼ θ wi*ht−1 þ wi*xtð Þ ð4Þ
Next, a tanh layer creates a vector of new candidate values ect:

ect ¼ tanh wc*ht−1 þ wc*xtð Þ ð5Þ
After the forget gate and input gate have been computed, it is time to update the old memory
state ct–1 into the new state ct.

ct ¼ f t*ct−1 þ it*ect ð6Þ

where ct denotes the memory state in time step t. Finally, we need to decide what we are going
to output. Specifically, we run a sigmoid layer to decide which parts of the cell state are going
to output.

ot ¼ σ wo*ht−1 þ wo*xtð Þ ð7Þ
Then, we put the memory state through tanh to push the values between −1 and 1 and multiply
it by the output of the output gate. Therefore, we can output the parts.

ht ¼ ot*tanh ctð Þ ð8Þ

where wf, wi, wc, and wo denote weights of each part. In this way, the entire input sentence are
mapped as a fixed-length vector which is then provided as an input to the decoder model.
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Then, the decoder outputs a sentence by decoding the hidden stage into the input sentence in
the same manner. This process is shown in Figure 3.

Due to the hierarchical relationship of address elements, we want to determine which part of
the input is most responsible for the current decoder output. Therefore, we adjust our model by
adding attention mechanism. Suppose that rt denotes the input word embedding at current step
t and ht − 1 denotes the hidden state decoder at previous time step t–1. Attention model would
first mix encoder output vector ht − 1 with current input word embedding rt.

vt ¼ f ht−1; rtð Þ ð9Þ
where vt is the weight of each word vector. Generally, f is a simple feed-forward network with
1 or 2 dense layers. After that, we normalize the vt with the following equation:

wt ¼ exp vtð Þ
∑N

t¼1exp vtð Þ ð10Þ

where N is the number of words contained in a input sentence. Then, the final fixed length
vector v! can be calculated as follows:

v ¼ ∑
N

t¼1
wtht ð11Þ

In this way, the important words are weighted with the higher scores and then we can use
information from these words to construct the fixed length vector. In addition, it can take
variable length inputs instead of the fixed-length inputs.

(2) Encoder-predictor Model with Attention This model is used to predict the next sentence
and obtain the geographic semantic information. Different from the encoder in the encoder-
decoder model, the input of encoder in the encoder-predictor model is just a sentence in the
Web corpus. And the predictor is designed to predict the following words based on the

Figure 3 The illustration of encoder-decoder model
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Figure 4 The illustration of encoder-predictor model
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previous state. And the attention mechanism is also used in the same way. Here, we employ the
conditional probability to output the sentence with the highest probability:

p yjvð Þ ¼ ∑
N

t¼1
p yijy1;…; yi−1; vð Þ ð12Þ

where yi is defined as the output of the predictor at time step i. All the words in the sentence are
sequentially generated using the LSTM until the end of the sentence symbol is generated. The
training objective is to maximize the conditional probability over the corpus using stochastic
gradient descent. Especially, y0 is defined as a zero vector. After that, we store the optimal
parameters of our model for the training set. The process of the encoder-predictor model is shown
in Figure 4. Finally, we use the trained model on the testing set to build vectors of addresses.

4.3 Stage 2: GCN-based address representation learning

Graph Convolutional Network (GCN) [13] is a neural network designed to work directly on
graphs and leverage their structural information about graph. More formally, given a graph
G = (V, E), where V is a set of nodes and E is a set of edges. GCN is a special case of Graph
Neural Network (GNN) which stacks two layers of specific propagation and perceptron:

H 1ð Þ ¼ ReLU
�
PXð ÞW 0ð Þ;

H 2ð Þ ¼ PH 1ð Þ
� �

W 1ð Þ ð13Þ

where P ¼ D−12AD−12is the normalized symmetric adjacency matrix, D is degree matrix of G
and A is its adjacency matrix, and W(0), W(1) are the weight matrixs. Furthermore, GCN can
collect higher neighborhoods information by adding more GCN layers.



We first build a large and heterogeneous address graph containing address element nodes
(like Ei) and address nodes (like Ai) where address nodes depend on address element nodes and
nodes are linked by composition relationship as shown in Figure 5(left part). Note that the
number of nodes connected to an address node equals to the number of unique address
elements it contains. In details, for address elements nodes and the address nodes, they are
initialized by Deep Semantic Address Representation Model which mentioned in Sec. 4.2,
while for edges, they are formed when two address elements appear in the same address. The
weight of an edge among address elements is counted based on the number of co-occurrences
of them in dataset while the weight between address element nodes and address nodes are
calculated with two strategies. The first one is based on the identical weight, for example, all
weights are set to 1, and the second one is based on the auto-learning where attention
mechanism is used to determine which neighbor address element node is more important.

After building the address graph, we use two layer GCN to update the node embeddings.
For the address element nodes, our forward model then takes the simple form:

H 2ð Þ ¼ P*ReLU PXð ÞW 0ð Þ
� �

W 1ð Þ ð14Þ

where P ¼ D−12AD−12 is the same as in equation 13, andH(2) is the output node embeddings. For
the address nodes, we use different propagation rules. The first layer network is the same as the
original GCN, the parameter matrix W(0) transforms node X into a feature vector, and the
activation function is the ReLU:

H 1ð Þ ¼ ReLU XW 0ð Þ
� �

ð15Þ

This is followed by a layer of attention propagation layers parameterized by β(1) ∈ℝ, so the
output vector of node i is:

H 2ð Þ
i ¼ W 2ð Þ ∑

j∈N ið Þ∪i
P 1ð Þ
ij H 1ð Þ

j ð16Þ

Figure 5 Geographical address representation learning process. Note that nodes starting with “E” are address
element nodes, nodes starting with “A” are address nodes, and nodes starting with “H” are the output vectors
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P 1ð Þ
ij ¼ eβ

1ð Þcos H 1ð Þ
i ;H 1ð Þ

jð Þ
∑ j∈N ið Þ∪ie

β 1ð Þcos H 1ð Þ
i ;H 1ð Þ

jð Þ ; j∈N ið Þ∪i ð17Þ

where N(i) denotes the neighborhood of node i and P 1ð Þ
ij denotes the attention from node j to

node i. The cosine distance between node i and node j in the hidden state of layer is to capture
association degree between node i and node j. The attention mechanism is to select the
neighbor address element nodes that are more relevant to the central address node. Finally,
we calculate the probability that the two addresses are matched as follows:

Zi; j ¼ sigmod cosine H 2ð Þ
i ;H 2ð Þ

j

� �� �
ð18Þ

The weights W(0), W(1) and β(1) are trained to minimize the cross entropy loss over all labeled
examples L, labels are denoted by yi, j:

World Wide Web (2020) 23:2005–2022 2015

5 Experiments

This section presents our experimental results. We run the experiments on the a server with a
GTX-1080ti gpu, four-core Intel Core i7 processor, 16GB memory, running centos. All the
models are implemented using Tensorflow [1]. The size of word embedding dimensionality is
set as 300 [21] and the learning rate for DeepAMmodels is 0.002. For Address GCN, we train the
model for a maximum of 200 epochs with a learning rate of 0.01 and set window size as 10 [17].

5.1 Datasets and metrics

For evaluation, we compare our proposed method with several existing state-of-the-art
methods on two real-world datasets below:

– POI.We collect addresses of SuZhou city from a Chinese POI website1 where every POI
has one corresponding address. This dataset contains 200 k pieces of POI addresses, and 6
different districts. The expressions of addresses in this dataset are diverse and they also
have some redundant or incomplete information.

– Company. We also crawl addresses of SuZhou city on two food review websites2,3 and
one company information query website.4 This database contains 10 k company ad-
dresses, and it has two different districts. The problems of the redundant, incomplete
information and diverse expressions for addresses in this dataset becomes even worse.

1 www.poi86.com
2 www.dianping.com
3 www.meituan.com
4 www.qichacha.com

http://www.poi86.com
http://www.dianping.com
http://www.meituan.com
http://www.qichacha.com


Metrics. We basically use three metrics to evaluate the effectiveness of the methods: Preci-
sion: the percentage of correctly matched pairs among all address pairs. Recall: the percentage
of correctly matched pairs among all address pairs that should be matched. F1 Score: a

combination of precision and recall, which is calculated by F1 ¼ 2*precision*recall
precisionþrecall .

5.2 Methods for comparison

In this section, we introduce our proposed method Address GCN with the existing methods
including String-Based method, Dictionary-Basedmethod, and Address Matching Tree method.

– The String-Based method combines the vector space model and edit distance to
calculate the address similarity.

– The Dictionary-Based method uses a place-name dictionary to parse the address elements
such that it can reduce the effect of place-name ambiguity on address matching.

– The Address Matching Tree (AMT for short) method builds up a rule-based matching tree
and applies it to do address matching by transforming address matching tree into a set the
matching rules.

– The DeepAM method utilizes Web Search Engines to get extra contexts for the address as
the corpus and uses an encoder-decoder architecture with two LSTM networks to get the
address representation. The vectors of address pairs are built based on the model to
compute the similarities.

– The Address GCN method build a large and heterogeneous address graph from all corpus
and fed it into a two-layers graph convolution network to obtain more geographic
information.

5.3 Comparisons with previous methods

In this section, we compare the effectiveness of our proposed address matching method with
the mentioned methods above.

As is shown in Figure 6, the String-Based method has the lowest F1 scores, because it just
considers the address similarity based on string which cannot tackle the problem of diversity

 0.5

 0.6

 0.7

 0.8

 0.9

POI Company

F
1 

S
co

re

String
Dictionary

AMT
DeepAM

Adress GCN

Figure 6 Comparing with previous methods on F1 score
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well. The accuracy of the Dictionary-based method is lower than the AMT method since it
greatly relies on the quality of place-name dictionary. DeepAM method performs better in that
it extracts the geographic information from the Web and use sentence representation model to
learn the deep semantic information. Our proposed Address GCN method have the highest
precision and recall because it can obtain spatial structure information of the address.

In addition, we compare the Precision and Recall of these methods on the two datasets.
As is listed in Table 2, the Address GCN method also reaches the highest precision and
recall among all methods, which is followed by the DeepAM method with the second
highest values. The precision and recall of AMT method is better than Dictionary-based
method and String-based method is the worst one. We can see that address GCN in our
model works well and improves both the precision and recall. The reason why Address
GCN works well is analyzed as follows: GCN model which is a special form of Laplacian
smoothing, can compute the new features of a node as the weighted average of itself and
its second order neighbors [17].

5.4 Evaluation of the size of labeled address pairs

In order to evaluate the effect of the size of the labeled Address pairs, we tested our proposed
models with different proportions of the training data. Figure 7 shows matching precision with
1%, 5%, 10%, 15%, 20% of POI and Company training set. We note that Address GCN can
achieve higher test precision with little labeled Address pairs. For instance, Address GCN
achieves a precision of 80% with only 20% training address pairs which are higher than some
baselinemodels with the full training documents. These results are similar to results in [13]
where GCN can perform quite well with low label rate, which again suggests that GCN can
propagate labeled information to entire graph well.

5.5 Evaluation of quality of Web contexts

In this section, we evaluate the influence on the matching precision for the quality of Web
contexts. As shown in Figure 8 (a), “Percentage of Web contexts” represents Web contexts
used for training as a percentage of total text, and the precision of DeepAM method first rises
when the percentage of Web contexts increases, then it reaches the highest points at 0.4. After
that, it has a little drop. This indicates that the model learns richer semantic information when it
has lager Web contexts in the address domain. But when this figure continues to go up, it
shows a decreasing trend since the irrelevant Web content has a negative effect. We can also
see from Figure 8 (b), for the Company dataset, the experimental results show a similar

Table 2 Comparing with baselines on precision and recall on two datasets

Methods POI Company

Precision Recall Precision Recall

String 0.6854 0.6232 0.7015 0.6753
Dictionary 0.7504 0.6854 0.7432 0.6939
AMT 0.7752 0.6843 0.7945 0.7332
DeepAM 0.8249 0.7674 0.8372 0.7736
Adress GCN .8513 .8032 .8659 0.7968
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variation tendency for the precision. Therefore, Web contexts have a good effect instead of bad
effect on address matching, though Web contexts have some noise.

Lastly, we list some examples of Web contexts we get for some example addresses in
Table 3. As can be observed, theses Web contexts contain rich semantic information about
addresses, which is beneficial to get more accurate sentence representation, such as the
location, adjacent objects and so forth.

6 Related work

Given the complexity and diversity of address expressions, it is difficult to form a
unified standard address model and geocoding standard, which results in the hardness
of address data sharing among different government sectors and industries. To tackle
the problem, a wide variety of methods have been proposed for address matching and
address standardization.

A widely-used way for address matching is to build a decision tree consisting of learned
matching rules, where each rule corresponds to a path from the root node to a leaf node on the
tree [34]. Based on this so-called address matching tree, the similarities between two addresses
could be computed. Kang et al. propose an address matching tree model based on the analysis
of the spatial constraint relationship of address elements [19]. This method has a higher
address matching rate, but it needs to establish a variety of complex address models and needs
to determine the spatial constraint between the address elements. An improved hash structure-
based maximum inverse matching algorithm is proposed [6]. This method can make full use of
the hash function to improve the retrieval efficiency, however, it also has the disadvantage of
being sensitive to the address hierarchy.
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Figure 7 Effect of the size of labeled address pairs
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Some recent efforts propose to do address matching based on the semantic analysis to the
addresses. They get the semantic vectors of address expressions and then apply them to
compute the similarity to decide the matching results. Song et al. apply the Chinese word
segmentation and semantic inference (HMM model) in natural language processing to deal
with unstructured Chinese addresses [25]. The disadvantage of this approach has a strong
dependence on the HMM model training set, and it requires a large number of addresses to
train the model. Pu et al. convert the task of address matching to the comparison of semantic
distance on Bayesian network [22]. However, it can not accurately identify multiple ambig-
uous addresses.

The process of translating manually written addresses into a certain digital format is known
as address standardization. There are also some researches on Address Standardization [8, 12,
15, 31]. A method based on trie-tree and finite state machine is proposed in [18] which focuses
on the problem of inaccurate word segmentation. They use trie-tree to realize chinese word
segmentation and apply finite state machine to match each layer of address. However, address
hierarchy is too complex resulting in low matching efficiency. In addition, Wang et al. propose
a standardization method based on the Euclidean distance between the address to be processed

Table 3 An example of Web contexts
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and the address in the standard library, but it only works well on some specific data sets [30].
Furthermore, Shikhar et al. use a fully connected neural network with a single hidden layer to
tackle the syntactic and semantic challenges in a large number of addresses [24]. However, it
needs a large of labeled training samples.

Graph Neural Networks has received growing attention recently [29, 32]. A number of
neural network models like CNN that apply to regular grid structure to work on arbitrarily
structured graphs [3, 9, 33]. In previous work, Kipf and Welling presented a simplified graph
neural network model, called graph convolutional networks (GCN), which achieved state-of-
the-art classification results on a number of datasets. GCN wasalso used to solve several NLP
tasks such as semantic role labeling [5] and machine translation [2], where GCN is used to
encode syntactic information.

7 Conclusions and future work

Address matching is a crucial task in various location-based businesses like take-out services
and express delivery. In this paper, we propose to use an encoder-decoder architecture with two
LSTM networks to learn the semantic vector representation for an address string. Then we
build an address graph and use GCN to update representation of the address node. We also
propose to get rich contexts for addresses from the Web which could strongly enrich the
semantic meaning of addresses that could be learned. Our experiments conducted on two real-
world datasets demonstrate that our proposed model works much better than the state-of-the-
art methods on both precision (up to 8%) and recall (up to 12%). In our future study, we
consider to involve more geographical information into the deep semantic address embedding.
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