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Abstract
Object detection is a technology that deals with recognizing classes of objects and their
location. It is used in many different areas, such as in face-detecting systems [16, 34, 37],
surveillance tools [9], human-machine interfaces [17], and self-driving cars [18, 23, 25,
26, 30]. These days, deep learning object detection approaches have achieved signifi-
cantly better performance than the classical feature-based algorithms. Darknet [31] is a
deep learning object detection framework, which is well known for its fast speed and
simple structure. Unfortunately, Darknet can only work with Nvidia CUDA [6] for
accelerating its deep learning calculations. For this reason, users have only limited options
of selecting appropriate graphic cards. Open computing language (OpenCL) [35], an
open standard for cross-platform, parallel programming of heterogeneous systems, is
available for the general hardware accelerators. However, many deep learning frame-
works including Darknet have no support for OpenCL.
In our previous paper, we presented OpenCL-Darknet [19], which transformed the
CUDA-based Darknet into an open standard OpenCL backend. The original OpenCL-
Darknet successfully showed its ability for the general graphics processing unit (GPU)
hardware. However, it could not achieve competitive performance compared with the
CUDA version, and it only supported a limited platform. In this study, we improved the
performance of OpenCL-Darknet with several optimization techniques and added support
for various architectures. We also evaluated OpenCL-Darknet not only in AMD R7
accelerated processing unit (APU) with OpenCL 2.0, but also in Nvidia GPU and
ARM Mali embedded GPU with OpenCL 1.2 Profile. The evaluation using the standard
object detection datasets showed that our advanced OpenCL-Darknet reduced the pro-
cessing time by at most 50% on average for various deep learning object detection
networks compared with our original implementation. We also showed that our OpenCL
deep learning framework has competitiveness compared with the CUDA-based one.
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1 Introduction

Humans can understand the world with their eyes and their brains, and computers can emulate
human vision with cameras and computing components. The research about this emulation is
computer vision. One of the major fields of computer vision is an object detection, which is a
technology that deals with recognizing classes of objects and their location. With the rise of
face detection [16, 34, 37], surveillance [9], human-machine interfaces [17], and self-driving
cars [18, 23, 25, 26, 30], demands for fast and accurate object detection systems have also
increased. Classic object detection systems use the scheme of feature-based methods, such as
Haar feature extractions [29, 37] or histogram of oriented gradients (HOG) and linear support
vector machine (SVM) algorithms [8].

These days, deep learning is applied to the object detection and has archived signif-
icant precision improvement. There are various deep learning frameworks that execute
deep learning algorithms. Darknet [31] is one of the most widely used frameworks for
object detection. It is fast, does not require installation, and supports CPU and graphics
processing unit (GPU) computation. Unfortunately, like many other frameworks, Darknet
only supports Nvidia CUDA [6], which is only available on the Nvidia graphic devices
for accelerating its deep learning calculations. For this reason, users can have only
limited options of selecting appropriate graphic cards, and they are forced to having
restricted system configurations.

In our previous paper, we presented OpenCL-Darknet [19], which transformed a CUDA-
based Darknet into an open standard open computing language (OpenCL) backend to resolve
this situation. OpenCL [35] is a low-level open standard application programming interface
(API) for cross-platform, parallel programming of heterogeneous systems. It is available not
only for CPUs and GPUs, but also for digital signal processors (DSP), field-programmable
gate arrays (FPGA), and other hardware accelerators. Our goal was to implement a deep
learning-based object detection framework available for general hardware. The original
OpenCL-Darknet successfully showed its ability with AMD GPU hardware. However, it
could not achieve competitive performance compared to the CUDA version. Furthermore,
the original OpenCL-Darknet was able to support only an AMD-based platform and had little
generality.

In this study, we improved the performance of OpenCL-Darknet with several optimization
techniques and added support for various architectures. We will explain the details of OpenCL-
Darknet’s implementation including the unit test methods and optimization techniques, such as
adaptive kernel selection, kernel merging, and asynchronous kernel execution. We evaluated
OpenCL-Darknet optimization in AMD R7 accelerated processing unit (APU) environment
and added supports for ARM Mali embedded boards and Nvidia graphic cards. Finally, we
compared the performance of OpenCL-Darknet with the CUDA-based Darknet. Our optimi-
zations allowed us to achieve a higher performance than the previous one. Evaluations showed
that our advanced OpenCL-Darknet reduced the processing time by at most 50% on average
for various deep learning object detection networks compared with our original implementa-
tion. Currently, machines with AMD or ARM had no methods to execute CUDA codes. For
this reason, those machines had to rely on CPU calculations only. OpenCL-Darknet can help
developers to work with the general accelerators.

The rest of this paper is structured as follows. Section 2 introduces the backgrounds of deep
learning object detection, Darknet framework, and OpenCL. Section 3 explains about our
porting and optimization techniques, and Section 4 shows the evaluation environments and
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results. Related work is described in Section 5. Finally, we will talk about conclusion and our
future work in Section 6.

2 Backgrounds

Deep learning [12] is one of the machine learning methods based on data representations, as
opposed to task-specific algorithms. Deep learning learns the filters from data, which were
hand-crafted by human prior knowledge, and this method leads to significantly better perfor-
mance. Among various deep learning algorithms, a convolutional neural network (CNN) has
been proved as a successful image analysis method. CNN consists of a sequence of various
layers, such as convolutional layers, pooling layers, normalization layers, and fully connected
layers.

You only look once (YOLO) [32] is a state-of-the-art, real-time deep learning object
detection algorithm based on CNN. Prior detection algorithms repurpose classifiers or
localizers to perform detection. They apply the model to an image at multiple locations
and scales. Then high scoring regions of the image are considered detections. YOLO
apply a single neural network to the full image. This network divides the image into
regions and predicts bounding boxes and probabilities for each region. These bounding
boxes are weighted by the predicted probabilities. It performs predictions with a single
network evaluation unlike systems like R-CNN [33] which require thousand networks for
a single image. This makes YOLO extremely fast.

Darknet is an open source neural network framework written in C and CUDA. It was
developed for YOLO deep learning algorithm variants. It offers building blocks for designing,
training and validating deep neural networks, and is well known for its fast processing speed
and simple architecture.

Finally, OpenCL helps developers to incorporate advanced numerical and data analytics
features, perform cutting-edge image and media processing. OpenCL consists of one host and
one or more OpenCL devices. Each OpenCL device is composed of one or more compute
units. Memory structure is also divided into host memory and device memory. The basic idea
of OpenCL is data parallelism, which replaces loops with many kernels executing same
instructions only on the part of large data. The OpenCL program runs with the following
sequences: 1) setup the environment for the OpenCL program, 2) define the platform and build
programs and kernels, 3) setup memory objects, 4) define the kernel arguments, and 5) transfer
memory objects and execute kernels.

3 Porting and optimization strategies

3.1 Algorithm overview

General deep learning algorithms are processed with the sequence as described in Figure 1.
Initialization loads a network structure and its weight on the main memory. Then, it establishes
memory structures for the network calculations. In addition, OpenCL devices are initialized,
and the loaded contents are transferred into the device memory from the host memory. The
initialization is just a one-time step required only once at the beginning to deal with the
multiple images or the image sequences.
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The deep learning process for every single image is composed of three steps: pre-process-
ing, network calculation, and post-processing. First, pre-processing loads an image from a
storage device and resizes it in accordance with the network setting. Its performance depends
on the I/O throughput and CPU speed of the machine, not on the accelerator’s efficiency.
Second, network calculation performs layer-by-layer processing with an input image and
weight matrices. The most important thing we consider is that the output of the previous layer
can be treated as the input of the next layer. Such layer-by-layer iterations are the essential parts
of the deep learning network. Finally, post-processing calculates the probabilities and locations
of candidate classes. Non maximum suppression (NMS) is utilized to ignore redundant,
overlapping bounding boxes, i.e., it merges all detections that belong to the same object [24].

The network calculation looks like a sequential processing, but the calculation of each layer
can be accelerated by parallel hardware due to its own data parallel characteristic. For example,
a convolutional layer can apply filters to an input image using general matrix multiplication
(GEMM). Each row and column are independent and undergo the same operations: multipli-
cation and addition. OpenCL devices can increase performance using this characteristic.

3.2 Unit test framework

As we described in the previous section, the Darknet framework was originally written in C and
CUDA.CUDAandOpenCL have different hardware abstractions,memorymanagement schemes,
and data transfer mechanisms. Therefore, we need a careful approach to developing the OpenCL
deep learning framework. We targeted layer-wise porting using the unit test framework. The unit
test [3] is a software testing method in which the smallest testable parts of an application, called
units, are individually and independently scrutinized for efficient operation. The purpose of the unit
test is to validate that each unit of the software performs as designed. In our OpenCL-Darknet, a
unit is an OpenCL kernel implementation. In detail, each layer in Darknet has both CPU and GPU
implementation, and the user can select one under compiler options. Almost every deep learning
layers in Darknet are deterministic layers, which means that different implementations of layers
should make the same results on the same inputs. We collected representative data of every
OpenCL kernel’s input and output by running CPU implementations with several images. Then,
we built a test framework to verify the OpenCL implementation of each kernel with this data. This
procedure not only proved the right results for the implementations of various layers, but also
provided away tomeasure and compare the performance of each layer’s implementations. Figure 2
shows the structure of our unit test for OpenCL-Darknet. Basic arithmetic functions were also
ported to OpenCLwith the sameway. They included filling, scaling, and normalizingmatrices.We
needed to transform simple layers, such as activation to OpenCL to reduce unnecessary data
transfers between a host and devices. Not only deep learning layers but also post-processing
functions such as NMS functions needed to be implemented for the device.

Initialization Pre-
processing

Network
calculation

Post-
processing

For an image sequence

Processing Time
Figure 1 General deep learning process
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3.3 Convolutional layer calculation

A convolutional layer is the most important one for CNN because it is proved as the
most time-consuming part for deep learning networks. There are many approaches for
the efficient convolution. Among them, Darknet utilizes the GEMM method, and de-
pends on Basic linear algebra subprograms (BLAS) libraries for the GEMM
implementation.

In OpenCL-Darknet, we utilized a GPU-accelerated BLAS library, clBLAS [4] and
CLBlast [27]. clBLAS was developed by AMD and is well optimized for AMD
graphic hardware. CLBlast was an open source BLAS library that designed to
leverage the full performance potential of a wide variety of OpenCL devices from
different vendors. We also used clRNG [5] to generate a random stream array in
parallel on an OpenCL device.

3.4 Adaptive kernel selection

As described above, OpenCL-Darknet carried out all operations on the device side to reduce
the data transfer overhead. However, some kernels did not require device memory input during
calculations. They also involved quite a small data array and simple arithmetic. In this case, it
was efficient to perform calculations in the host side and transfer the results to the device. We
were able to determine such cases using the unit test framework. For example, Figure 3(a)
shows that FILL kernel’s CPU-side calculations with memory transfer are faster than GPU-
side calculations when they deal with memory smaller than a given size. Moreover, we can see
in Figure 3(b) that such small-sized memory fillings were much more frequent than large-sized
memory handlings. Therefore, a strategy of making the calculations on the host and delivering
the result to the device could be a better solution in this case.

3.5 Merging same-level kernels

There exists a sequence of kernels that can work on the same memory address with difference
operations. Pseudo codes below show three kernels, , ,
and , which are dealing the same memory objects. So, they can be merged

CPU calculation

Target

[previous]

[next]

Unit test

OpenCL
execution

Data 
preparation

Output check

Time 
measurement

Output file

Input file

Figure 2 Unit test procedure for OpenCL-Darknet
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into one kernel; . Such kernel merging is able reduce the
OpenCL execution overhead.

3.6 Asynchronous kernel execution

When a host program executes OpenCL kernels, there are two different modes for
waiting for the completion of the kernel execution. In a synchronous mode, a host code
stops and waits for the device codes to be finished. In many cases, such standby
operations are essential because of the dependency of host and device programs. In an
asynchronous mode, a host code does not wait for the completion of the device
execution. OpenCL-Darknet could improve its performance with an asynchronous kernel
execution. Because OpenCL-Darknet performed all the operations, even the simple
arithmetic, in the device side, we did not need host-device memory data transfer except
for the first and last layers. In addition, deep learning layers have their own dependency
for the sequence of layers. These situations allow many kernels to be executed along
with host codes and do not destroy data. Such an optimization technique promoted the
parallel execution of the kernel and host code, so improves the performance. In the case
of asynchronous OpenCL kernel execution mode, the time measurement of the host side
codes did not show precisely accurate results because the host did not wait for the
completion of the device’s kernel execution. For this reason, the layer-by-layer process-
ing time should be measured in the synchronous mode.
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3.7 Removing unnecessary operations

A CUDA-based Darknet can perform inference and training operations. However, in this
study, OpenCL-Darknet only supported calculations for a generic inference situation. Almost
all the embedded devices only run inference processes. Large-scale clusters were responsible
for the training. Training procedures perform backward calculations after forward calculations.
It means that one forward implementation is not only for the inference but also for training.
And it also implies a forward operation contains some codes that are unnecessary during
inference procedures. We carefully investigated every operation needed for the inference. As a
result, we were able to remove unnecessary memory operations from OpenCL-Darknet and
improve its performance.

4 Evaluations

4.1 Test environment

We evaluated OpenCL-Darknet in various environments and compared the performances with
the previous OpenCL and CUDA-based implementations. AMD R7 GPU is integrated within
an AMD Embedded RX-421BD APU chip. In an APU environment, CPU cores and GPU
cores are connected internally and share the main memory. AMD R7 runs at 800 MHz and can
perform half-precision floating point operations at the rate of 819 G floating point operations
per second (GFLOPS). Odroid-XU4 is an ARM-based computing device, which contains a
Mali-T628 MP6 graphic chip and an OpenCL 1.2 profile. Mali-T628 MP6 has a 533 MHz
clock speed and 102.4 GFLOPS performance theoretically. Nvidia GTX1050Ti is a discrete
GPU card that can be attached on the AMD RX-421BD board via a PCI-Express interface, and
it offers a much faster performance than an APU or an ARMMali device. Its 768 CUDA cores
runs at 1366Mhz and has the processing speed of 3962 GFLOPS. We utilized GTX1050Ti to
compare the performance of CUDA-based systems and OpenCL-Darknet. For accurate mea-
surements, we turned off an integrated GPU when we were using a discrete GPU. More
detailed descriptions of each hardware and software configuration are showed in Tables 1, 2,
and 3.

The evaluations were performed with publicly available PASCAL visual object classes
challenge (VOC) 2007 [10], Microsoft common objects in context (COCO) 2017 [22] data
sets, and KITTI vision benchmark suite [11]. PASCALVOC 2007 contains 4952 color images,
each image has about 190,000 pixels. It is also composed of 20 classes, including person, car,
and bicycle. Microsoft COCO 2017 contains 40,670 color images and 80 object categories.

Table 1 Configuration for AMD R7 APU

CPU AMD Embedded RX-421BD 4 cores / 2100 MHz / 28 nm
GPU R7 / 8 compute units 512 shading units / 800 MHz / 819 GFLOPS(FP16)
Memory 16GB DDR4
Storage 256GB SSD / SATA III interface
Operating Systems Ubuntu 14.04 / Kernel 3.16.0–77
OpenCL 2.0 Profile
clBLAS 2.12
CLBlast 1.3.0
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The size of each image is about 300,000. KITTI vision benchmark suite contains 7481 images
for validation specialized in the driving situation. They are the standard data sets for object
classification and detection evaluations. Their main purposes are to recognize objects in
realistic images from various object classes.

The detection models we tested were YOLOv2 and TinyYOLO which were described
in Section II. YOLOv2 contains 32 layers, among which 23 layers are convolutional
layers. TinyYOLO is a smaller one with 16 layers, containing 9 convolutional layers.
Figure 4 shows examples of detection results using two YOLO algorithms with OpenCL-
Darknet. The weights of YOLOv2 and TinyYOLO models for VOC were trained with
VOC 2007 and VOC 2012 training data sets. And these models had a mean average
precision (mAP) on the VOC 2007 test data of 78.6% and 57.1% respectively. Weights
for COCO were trained with COCO trainval data and the trained model had a mAP on
the COCO test-dev data of 48.1%. TinyYOLO on COCO does not reveal its accuracy,
but we expect it has lower precision than YOLOv2. We trained the weights for KITTI
dataset with a training set by ourselves. In this paper, using the unit test implementation,
we demonstrated that our OpenCL-Darknet did not change the calculation results of any
layer. Therefore, the precision of the detection algorithms did remain the same.

4.2 Layer-by-layer performance analysis

As described in Section III, a deep learning object detection executes three steps in every
iteration: pre-processing, network calculation, and post-processing. Figure 5(a) shows the
processing time consumed by each step. Because the pre-processing contains only file
system operations and CPU operations, its performance is not determined by OpenCL
devices, but by dataset configurations. Network calculation is the essential and the most
time-consuming part of deep learning algorithms; it consumes almost 70%–90% of
whole processing time. The performance is varied considerably with network and dataset
configurations. To be specific, the influential elements are the depth of each network,

Table 2 Configuration for ARM Mali

CPU Samsung Exynos5422 CortexTM-A15 2Ghz and CortexTM-A7 Octa core CPUs
GPU Mali-T628 MP6 / 533 MHz / 102.4GFLOPS(FP16)
Memory 2GB LPDDR3
Storage 64GB microSD
Operating Systems Ubuntu 16.04 / Kernel 4.14.28
OpenCL 1.2 Profile
CLBlast 1.3.0

Table 3 Configuration for NVIDIA GTX1050TI

CPU AMD Embedded RX-421BD 4 cores / 2100 MHz / 28 nm
GPU Nvidia GTX1050Ti / 768 CUDA cores 1366 MHz / 3962 GFLOPS(FP16) / 4GB GDDR5
Memory 16GB DDR4
Storage 256GB SSD / SATA III interface
Operating Systems Ubuntu 14.04 / Kernel 4.4.0–97
CUDA 8.0
OpenCL 1.2 Profile
CLBlast 1.3.0
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especially for the number of convolutional layers, and the size of input images. Post-
processing involves NMS and drawing the bounding boxes. This is a part of object
detection algorithms that can be accelerated by OpenCL. However, post-processing is not
a big part of deep learning processing.

We analyzed the layer-by-layer processing time of network calculation step. As you can see
in Figure 5(b), processing time is dominated by convolutional layers, and other layers seem no
impact on performance. And Figure 5(c) shows that the major time consumers in the
convolutional layers are the GEMM calculations.

CPU and GPU load in Figure 5(d) presents that there is a correlation between processing
time and hardware utilization. In general, high utilization means efficiency. However, in
Darknet’s case, CPU and GPU utilization depends on both datasets and algorithms. We think
dataset configurations are more dominant than algorithms because the size of the images is
very important parameter for processing images. It can be an important hint when a system
manager considers the consolidation of the system.

Next, we investigated the elements that could affect the performance of GEMM. Figure 6
shows that time consumed by GEMM is determined by their K parameters. The K parameter is
the number of columns and rows of each input matrix and is proportional to the square of the

YOLOv2 TinyYOLO

VOC 
2007

COCO 
2017

KITTI

Figure 4 Detection results using YOLOv2 and TinyYOLO for datasets
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size of a convolutional layer. Therefore, we concluded that high-speed GEMM algorithms or
convolution methods for the large-sized input matrices are essential to increase the overall
performance. Currently, convolution methods based on the fast Fourier transform (FFT) are
known as suitable algorithms for large-sized data arrays. This issue will remain as a future
investigation.

4.3 Performance comparison with the original OpenCL-Darknet

We successfully adopted several optimization techniques and improved the original
OpenCL-Darknet. Figure 7(a) presents the results tested on the AMD R7 APU, on which
previous one is available. Compared with our original version, newly optimized
OpenCL-Darknet achieved 32%–44% reduced average processing time for YOLOv2,
and 16%–47% for TinyYOLO. With AMD R7 GPU, VOC and COCO images needed
about 280 ms for YOLOv2, and 100 ms for TinyYOLO, including pre-processing and
processing time. In other words, we were able to process 3–4 images per second with
YOLOv2, and 10 images per second with TinyYOLO for these datasets without any
external graphic card.

0

100

200

300

YOLOv2(VOC) YOLOv2(COCO) YOLOv2(KITTI) TinyYOLO(VOC) TinyYOLO(COCO) TinyYOLO(KITTI)
Dataset

Pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

Post−processing
Network Calculation
Pre−processing

0

100

200

300

YOLOv2(VOC) YOLOv2(COCO) YOLOv2(KITTI)
Dataset

Pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

[31] Region

[30] Convolutional

[29] Convolutional

[28] Route

[27] Reorg

[26] Convolutional

[25] Route

[24] Convolutional

[23] Convolutional

[22] Convolutional

[21] Convolutional

[20] Convolutional

[19] Convolutional

[18] Convolutional

[17] Maxpool

[16] Convolutional

[15] Convolutional

[14] Convolutional

[13] Convolutional

[12] Convolutional

[11] Maxpool

[10] Convolutional

[9] Convolutional

[8] Convolutional

[7] Maxpool

[6] Convolutional

[5] Convolutional

[4] Convolutional

[3] Maxpool

[2] Convolutional

[1] Maxpool

[0] Convolutional

0

25

50

75

100

TinyYOLO(VOC)TinyYOLO(COCO)TinyYOLO(KITTI)
Dataset

Pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

[15] Region

[14] Convolutional

[13] Convolutional

[12] Convolutional

[11] Maxpool

[10] Convolutional

[9] Maxpool

[8] Convolutional

[7] Maxpool

[6] Convolutional

[5] Maxpool

[4] Convolutional

[3] Maxpool

[2] Convolutional

[1] Maxpool

[0] Convolutional

0

100

200

YOLOv2(VOC) YOLOv2(COCO) YOLOv2(KITTI) TinyYOLO(VOC) TinyYOLO(COCO) TinyYOLO(KITTI)
Dataset

Pr
oc

es
si

ng
 ti

m
e 

(m
se

c)

Others(im2col, bias, activation)
GEMM

20

40

60

YOLOv2(VOC) YOLOv2(COCO) YOLOv2(KITTI) TinyYOLO(VOC) TinyYOLO(COCO) TinyYOLO(KITTI)
Dataset

C
PU

 lo
ad

 (%
)

50

60

70

80

90

YOLOv2(VOC) YOLOv2(COCO) YOLOv2(KITTI) TinyYOLO(VOC) TinyYOLO(COCO) TinyYOLO(KITTI)
Dataset

G
PU

 lo
ad

 (%
)

(a)  Per-image deep learning step processing time

(b)  Per-image layer processing time

(c) Time consumption of operations in convolutional layers

(d) CPU and GPU load

Figure 5 Deep learning object detection processing time for AMD R7 APU
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Figure 7(b) indicates that the optimizations increase GPU utilization and lead to the
performance improvement. As stated in the previous section, high GPU utilization does not
always lead to the fast processing every time. However, in this case, we can estimate that our
optimization techniques utilize hardware resources efficiently.

4.4 Performance comparison between BLAS libraries

As described in Section III, we utilized clBLAS [4] and CLBlast [27] libraries for the GEMM
calculation of convolutional layers. To compare the performance of two BLAS libraries, we
evaluated OpenCL-Darknet with clBLAS and CLBlast in an AMD R7 GPU board. As you can
see in Figure 8(a), in AMD R7 GPU environment, clBLAS is superior to CLBlast in almost
every situation. GPU load in Figure 8(b) also proves clBLAS is efficient than its open source
counterpart. clBLAS is implemented by a hardware supplier, AMD, so it is optimized to AMD
environment. However, CLBlast is a much extensible library that works on many different
hardware.

4.5 Performance comparison with CPU-based deep learning

Currently, ARM and AMD machines do not have decent deep learning object detection
frameworks. For this reason, developers must rely on CPU-based frameworks or old-
style image processing algorithms. Some recent devices are following a trend towards
additional chips dedicated to neural net calculations. However, such a trend is not
allowed for everyone. Cheap and low-powered boards cannot adapt it because of their
high cost in hardware and software development. OpenCL-Darknet can be a good
candidate to solve such problems. Figure 9(a) and (b) show that OpenCL-Darknet
improves the performance compared with CPU-based Darknet. We got 10x–30x perfor-
mance improvement for AMD R7 and 3x–13x improvement for ARM Mali. Further-
more, CPU-based deep learning needs at most 49 seconds to process an image. That
means it cannot be tolerated by real applications. OpenCL-darknet shows that it is
suitable for practical real-time image processing. Deep learning is a general-purpose
algorithm, that is, developers will have great advantages in easy customization for the
requirements of their programs.

4.6 Performance comparison with CUDA version

We compared the performance of our OpenCL-Darknet with the CUDA-based Darknet. We
ported OpenCL-Darknet to Nvidia GTX-1050Ti with CLBlast library. As you can see in
Figure 10(a), evaluation shows that OpenCL-Darknet has 4%–28% less performance than the
CUDA version. To be more specific, Figure 10(b) shows that OpenCL-Darknet has the
equivalent performance compared with CUDA-based Darknet except GEMM operations. As
we described in section III, GEMM operations are solely relied on BLAS libraries; CLBlast for
OpenCL-Darknet, and cuBLAS [7] for CUDA-based Darknet. Author of CLBlast also
admitted that they were not able to match cuBLAS due to lack of assembly-level optimizations
[28].

GPU load in Figure 10(c) presents that CUDA-based Darknet consumes less GPU resource
than OpenCL-Darknet. That implies GPU utilization is not a direct reason for less performance
of the OpenCL BLAS libraries. Nugteren [28] stated that register pressure reduction and less
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register bank conflicts are the main reason of performance differential between BLAS libraries.
For this reason, we concluded that the BLAS libraries for OpenCL are not optimized compared
with those for CUDA especially for in an aspect of register level memory efficiency. Because
BLAS optimization is highly related with hardware suppliers, it will remain as future work.

4.7 Summary

OpenCL-Darknet enables deep learning acceleration by ARM and AMD GPU, which have
used only slow CPU-based methods. Even though there is some overhead because of the
BLAS optimization issue, we expect that it can be solved if hardware vendors release BLAS
algorithms optimized for their GPU hardware. We reduced the processing time by almost half
compared with the original version presented in our previous paper, and we achieved com-
petitive performance compared with CUDA-version as removed almost all the overhead
except for that from the BLAS algorithm.

5 Related work

Gu et al. [13] transformed the CUDA-based Caffe deep learning framework into OpenCL-based
one, OpenCL Caffe. They described OpenCL porting strategies that guaranteed algorithm
convergence and examined the performance bottlenecks. They also proposed three key optimi-
zation techniques, kernel caching to avoid OpenCL online compilation overheads, a batched
manner data layout scheme to boost data parallelism and multiple command queues to boost task
parallelism. However, OpenCL caffe did not cover object detection situation. Moreover, its
optimization could be adapted to only batches of images, not sequences of images.

Liao et al. [21] designed a unified and efficient OpenCL platform model for multi−/many-
core clusters. Their UHCL-Darknet presented OpenCL-based DNN framework for heteroge-
neous clusters. However, they their implementation is only restricted to high-end CPU and
GPU environment.

There is some research that utilized object detection algorithm. Hendry et al. [15] figured
out the problem of car license plate detection using a YOLO-darknet deep learning framework.
They propose a sliding-window single class detector via tiny YOLO CNN classifiers. Barry
et al. [2] presented a xYOLO model for humanoid soccer robots on low-end hardware.

OpenCL is a widely used parallel acceleration library, and many researchers have taken
advantage of it. Badía et al. [1] accelerated a sound-source localization algorithm, Steered
Response Power with Phase Transform (SRP-PHAT), using OpenCL. SPR-PHAT
implementations require to handle a high number of signals coming from a microphone array
and a huge search grid that influences the localization accuracy of the system. They insisted
that OpenCL achieved close-to CUDA performance in GPU. Lee et al. [20] utilized GPU to
improve performance of an algorithm for forming groups or clusters of similar objects in the
dataset. Haseljic et al. [14] implemented image segmentation algorithms known as Simple
Linear Iterative Clustering based on OpenCL. However, it is only limited multi-core CPU.

clSpMV [36] optimized the sparse matrix vector multiplication (SpMV) kernel, which is a
key computation in linear algebra. They proposed a new sparse matrix format, the Cocktail
Format, to take advantage of the strengths of many different sparse matrix formats. They found
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that clSpMV provided the best representations of the input sparse matrices on both Nvidia and
AMD platforms. OpenCL-Darknet does not take any advantage with the sparse matrix
operations. Moreover, an analysis on YOLO weight matrices show that weights are not sparse.
There are many near-zero values in matrices, but not many zero values.

6 Conclusions and future work

In our previous paper, we presented OpenCL-Darknet [35]. OpenCL-Darknet transformed the
CUDA-based Darknet – a deep learning-based object detection framework – into an open
standard OpenCL backend. In this study, we improved the performance of OpenCL-Darknet
with several optimization techniques and added support for various architectures. We also
evaluated OpenCL-Darknet with various hardware platforms, including AMD R7 APU with
OpenCL 2.0, Nvidia GPU and ARM Mali embedded GPU with OpenCL 1.2. The evaluation
using the standard object detection datasets showed that our optimized OpenCL-Darknet
reduced overhead existed in the previous OpenCL-Darknet and achieved competitive perfor-
mance compared with CUDA-based one.

As future work, we plan to make a more cost-effective deep learning framework by
facilitating FPGA to reduce the cost to run object detection systems. OpenCL supports various
types of hardware and we can expand OpenCL-Darknet with the minimum efforts. We also
have plan to reduce BLAS overhead using other kinds of convolution implementation. FFT-
based convolution can be a good candidate to achieve it.

Funding This work was supported by the Technology Innovation Program (20000946, Development of
artificial intelligent computing platform technology for service robots capable of real-time processing of large-
capacity, high-performance sensor fusion processing and deep learning) funded by the Ministry of Trade,
Industry & Energy (MOTIE, Korea).

References

1. Badía, J., Belloch, J., Cobos, M., Igual, F., Quintana-Ortí, E.: Accelerating the SRP-PHAT algorithm on
multi and many-core platforms using OpenCL. J. Supercomput. 75(3), 1284–1297 (2019)

2. D. Barry, M. Shah, M. Keijsers, H. Khan, and B. Hopman, “xYOLO: A Model For Real-Time Object
Detection In Humanoid Soccer On Low-End Hardware,” arXiv preprint, 2019

3. Beck, K.: Test Driven Development: by Example. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA (2002)

4. clBLAS, Advanced Micro Devices, Inc., Phoenix (n.d.), [Online]. Available: https://github.
com/clMathLibraries/clBLAS

5. clRNG, Advanced Micro Devices, Inc., Phoenix (n.d.), [Online]. Available: https://github.
com/clMathLibraries/clRNG

6. Cook, S.: CUDA Programming: a Developer's Guide to Parallel Computing with GPUs. Morgan Kaufmann
Publishers Inc., San Francisco (2013)

7. cuBLAS, Nvidia Corporation, Santa Clara (n.d.), [Online]. Available: https://developer.nvidia.com/cublas
8. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. of 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005, pp. 886–893
9. N. Dalal, B. Triggs, and C. Schmid, “Human Detection Using Oriented Histograms of Flow and

Appearance,” in Computer Vision (ECCV 2006), Springer Berlin Heidelberg, 2006, pp. 428–441
10. M. Everingham, L. Van-Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCALVisual Object

Classes Challenge 2007 (VOC2007) Results,” [Online]. Available: http://www.pascal-network.
org/challenges/VOC/voc2007/workshop/index.html

1317World Wide Web (2021) 24:1299–1319

https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clRNG
https://github.com/clMathLibraries/clRNG
https://developer.nvidia.com/cublas
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html


11. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark
suite,” in Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), 2012

12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)
13. J. Gu, Y. Liu, Y. Gao, and M. Zhu, “OpenCL Caffe: Accelerating and Enabling a Cross Platform Machine

Learning Framework,” in Proc. The 4th International Workshop on OpenCL, New York, 2016, pp 8:1–8:5
14. H. Haseljic, E. Cogo, I. Prazina, R. Turcinhodzic, E. Buza, and A. Akagic, “OpenCL Superpixel

Implementation on a General Purpose Multi-core CPU,” in Proc. of 2018 IEEE International Conference
on Imaging Systems and Techniques (IST), Krakow, Poland, 2018

15. Hendry, Chern, R.: Automatic License Plate Recognition via sliding-window darknet-YOLO deep learning.
Image Vis. Comput. 87, 47–56 (2019)

16. Ji, Y., Kim, S., Kim, Y., Lee, K.: Human-like sign-language learning method using deep learning. ETRI J.
40, 435–445 (2018)

17. Kim, J., Ryu, J.H., Han, T.M.: Multimodal Interface based on novel HMI UI/UX for in-vehicle infotainment
system. ETRI J. 37(4), 793–803 (2015)

18. Y. Koo, J. Kim, and W. Han, “A method for driving control authority transition for cooperative autonomous
vehicle,” in Proc. 2015 IEEE Intelligent Vehicles Symposium, Seoul, 2015, pp. 394–399

19. Y. Koo, C. You, and S. Kim, “OpenCL-Darknet: An OpenCL Implementation for Object Detection,” in
Proc. The 1st International Workshop on Driving Computing Platform for Autonomous Vehicles, Shanghai,
2018

20. W. Lee, and W. Loh, “G-OPTICS: fast ordering density-based cluster objects using graphics processing
units,” in Int. J. Web Grid Serv., vol. 14(3), 2018

21. L. Liao, K. Li, K. Li, C. Yang, and Q. Tian, “UHCL-Darknet: An OpenCL-based Deep Neural Network
Framework for Heterogeneous Multi−/Many-core Clusters,” in Proc. of the 47th International Conference
on Parallel Processing, Eugene, OR, USA, 2018

22. T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
COCO: Common objects in context,” in European conference on computer vision, pp. 740–755, 2014

23. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D., Hilden, T.,
Hoffmann, G., Huhnke, B., Johnston, D., Klumpp, S., Langer, D., Levandowski, A., Levinson, J., Marcil, J.,
Orenstein, D., Paefgen, J., Penny, I., Petrovskaya, A., Pflueger, M., Stanek, G., Stavens, D., Vogt, A., Thrun,
S.: Junior: the Stanford entry in the urban challenge. J. Field Rob. 25(9), 569–597 (2008)

24. A. Neubeck and L. Van Gool, “Efficient Non-Maximum Suppression,” in Proc. The 18th International
Conference on Pattern Recognition, Washington, 2006, pp. 850–855

25. Noh, S., An, K.: Decision-making framework for automated driving in highway environments. IEEE Trans.
Intell. Transp. Syst. 19(1), 58–71 (2018)

26. Noh, S., Park, B., An, K., Koo, Y., Han, W.: Co-pilot agent for vehicle/driver cooperative and autonomous
driving. ETRI J. 37(5), 1032–1043 (2015)

27. C. Nugteren, “CLBlast: A Tuned OpenCL BLAS Library,” arXiv preprint, 2017
28. C. Nugteren, “CLTune: A Generic Auto-Tuner for OpenCL Kernels,” arXiv preprint, 2017
29. C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection,” in Proc. 6th

International Conference on Computer Vision, Bombay, 1998, pp. 555–562
30. Park, M., Lee, S., Han, W.: Development of steering control system for autonomous vehicle using

geometry-based path tracking algorithm. ETRI J. 37(3), 617–625 (2015)
31. J. Redmon, “Darknet: Open Source Neural Networks in C (n.d.),” [Online]. Available: http://pjreddie.

com/darknet
32. J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” arXiv preprint, 2016
33. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks,” in Proc.Advances in Neural Information Processing Systems, Montréal, 2015, pp. 91–
99

34. Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Anal.
Mach. Intell. 20, 23–38 (1998)

35. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for heterogeneous computing
systems. Comput. Sci. Eng. 12(3), 66–73 (2010)

36. B. Su and K. Keutzer, “clSpMV: A Cross-Platform OpenCL SpMV Framework on GPUs,” in Proc. The
26th ACM International Conference on Supercomputing, New York, 2012, pp 353–364

37. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1318 World Wide Web (2021) 24:1299–1319

http://pjreddie.com/darknet
http://pjreddie.com/darknet


Affiliations

Yongbon Koo1
& Sunghoon Kim1

& Young-guk Ha2

* Young-guk Ha
ygha@konkuk.ac.kr

Yongbon Koo
ybkoo@etri.re.kr

Sunghoon Kim
saint@etri.re.kr

1 Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon, Republic of
Korea

2 Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea

1319World Wide Web (2021) 24:1299–1319

mailto:ygha@konkuk.ac.kr

	OpenCL-Darknet: implementation and optimization of OpenCL-based deep learning object detection framework
	Abstract
	Introduction
	Backgrounds
	Porting and optimization strategies
	Algorithm overview
	Unit test framework
	Convolutional layer calculation
	Adaptive kernel selection
	Merging same-level kernels
	Asynchronous kernel execution
	Removing unnecessary operations

	Evaluations
	Test environment
	Layer-by-layer performance analysis
	Performance comparison with the original OpenCL-Darknet
	Performance comparison between BLAS libraries
	Performance comparison with CPU-based deep learning
	Performance comparison with CUDA version
	Summary

	Related work
	Conclusions and future work
	References




