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Abstract
Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that
causes approximately 12% of all deaths globally. The development of Internet-of-Things
has spawned novel ways for heart monitoring but also presented new challenges for
manual arrhythmia detection. An automated method is highly demanded to provide sup-
port for physicians. Current attempts for automatic arrhythmia detection can roughly be
divided as feature-engineering based and deep-learning based methods. Most of the feature-
engineering based methods are suffering from adopting single classifier and use fixed
features for classifying all five types of heartbeats. This introduces difficulties in iden-
tification of the problematic heartbeats and limits the overall classification performance.
The deep-learning based methods are usually not evaluated in a realistic manner and
report overoptimistic results which may hide potential limitations of the models. Moreover,
the lack of consideration of frequency patterns and the heart rhythms can also limit the
model performance. To fill in the gaps, we propose a framework for arrhythmia detection
from IoT-based ECGs. The framework consists of two modules: a data cleaning mod-
ule and a heartbeat classification module. Specifically, we propose two solutions for the
heartbeat classification task, namely Dynamic Heartbeat Classification with Adjusted Fea-
tures (DHCAF) and Multi-channel Heartbeat Convolution Neural Network (MCHCNN).
DHCAF is a feature-engineering based approach, in which we introduce dynamic ensemble
selection (DES) technique and develop a result regulator to improve classification perfor-
mance. MCHCNN is deep-learning based solution that performs multi-channel convolutions
to capture both temporal and frequency patterns from heartbeat to assist the classification.
We evaluate the proposed framework with DHCAF and with MCHCNN on the well-known
MIT-BIH-AR database, respectively. The results reported in this paper have proven the
effectiveness of our framework.
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1 Introduction

Cardiac arrhythmia is a type of cardiovascular diseases (CVDs) that threatens millions of
people’s lives around the world. The easiest way to identify arrhythmia is to perform a
manual inspection on 24 to 72 hours electrocardiograms (ECG). Traditionally, to have such
long-term ECG recordings, patients need to wear a Holter Monitor for a continuous time
period, which is a very uncomfortable experience. The rapid growth of Internet-of-Things
(IoT) techniques has spawned novel ways, like Fitbit, Apple Watch, or Android Wear, for
heart status tracking [47]. In comparison to the Holter Moniter, the IoT-based devices are
more human-friendly because they have fewer cords and smaller-sizes, and cause fewer
disruptions to patient’s daily routines. However, on the other hand, the prevalence of IoT-
based devices has also resulted in a dramatic increase of ECG data, posing a great challenge
to the ECG interpretation. Manual inspections become time-consuming and error-prone,
which is no longer possible. An automated method is highly demanded to provide a cost-
effective screening for arrhythmia and allow at-risk patients to receive timely treatments.

Heartbeat classification plays a crucial role in identification of arrhythmia. Basically,
heartbeats can be classified into five classes: Normal(N), Supra-ventricular (S) ectopic, Ven-
tricular (V) ectopic, Fusion (F) and Unknown (Q) beats [6]. Particularly, most arrhythmias
are found in S and V beats. Figure 1 presents a sample ECG segment, where the problematic
heartbeats are highlighted by circles. It can be seen that the S beat exhibits a great morpho-
logical similarity in temporal dimension to the normal heartbeats. Since ECG recordings
are mostly dominated by normal heartbeats for the majority of patients [22], the similarity
brings a great difficulty in distinguishing the S beats from the normal ones.

Many research attempts have been made to provide solutions for automated heartbeat
classification. The existing methods are roughly divided as feature-engineering based and
deep-learning based methods. However, none of these methods has achieved a clinical
significance. Most feature-engineering methods are facing a bottleneck of applying a stan-
dalone classifier and using a static feature set to classify all heartbeat samples [11, 15, 16,
31, 50]. This has been shown to cause huge impacts on identification of the problematic
heartbeats. The deep-learning based methods are commonly limited by learning temporal
patterns from the raw ECG heartbeats only. The frequency patterns and the RR-intervals
have not been well considered to assist the classification. Moreover, to supply sufficient
training data for driving the deep neural networks, many works [2, 3, 26, 49, 51, 54] fol-
lowed a biased evaluation procedure, in which they synthesized heartbeat samples from the
whole dataset and then randomly split all heartbeats for model training, validation and test.

Figure 1 A sample ECG recording that contains N, S and V heartbeats. Note: RR-intervals denote the time
distance between two successive R peaks
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Consequently, heartbeats from the same patient are likely to appear in both the training and
test datasets, leading to an over estimation of the model performance. The overoptimistic
results may hide potential limitations of the neural networks.

Besides, data quality also presents challenges for an IoT-based arrhythmia detection
method. First, the IoT-based heart rate sensors may vary the rate of measurement for battery
preservation [7]. Second, the collected ECG recordings are likely interrupted by background
noises and baseline wonders (the effect that the base axis (X-axis) of individual heartbeats
appear to move up or down rather than being straight all the time).

To solve these problems, we propose a framework for arrhythmia detection from
IoT-based ECGs. The framework consists of a data cleaning module and a heartbeat classi-
fication module. Specifically, we provide two novel solutions for the heartbeat classification
task. The first one is a feature-engineering based method, in which we introduce the
Dynamic Ensemble Selection (DES) technique and specially design a result regulator to
improve the problematic heartbeats detection. The other one is a deep neural network that
performs multi-channel convolutions in parallel to manage both temporal and frequency
patterns to assist the classification. To remedy the impact brought by the lack of considera-
tion of heart rhythms, the proposed network accepts heart rhythms (RR-intervals) as part of
the input. In order to reveal the performance of the proposed methods in real-world prac-
tices, we evaluate the models on the benchmark MIT-BIH arrhythmia database following
the inter-patient evaluation paradigm proposed in [16]. The paradigm divides the benchmark
database into a training and a test dataset at patient level, making the heartbeat classification
a significantly more difficult task.

The rest of this paper is structured as follows. Section 2 reviews current methods in
heartbeat classification. Section 3 presents the proposed framework and the two embedded
solutions for heartbeat classification. The experiment results and discussion are presented
in Section 4. Section 5 concludes this paper and discusses the future work.

2 Related work

This section provides a comprehensive review of current methods for heartbeat classifi-
cation. As mentioned before, the existing methods can be roughly allocated to either the
feature-engineering based or the deep-learning based category. The differences between
them are summarized in Table 1.

The feature-engineering based methods focus on signal feature extraction and classifier
selection. Commonly used features includes RR-intervals [4, 11, 52], samples or segments
of ECG curves [35], higher-order statistics [4, 17], wavelet coefficients [15, 20, 37], and sig-
nal energy [50]. They are mostly extracted from cardiac rhythm, or time/frequency domains.
Feature correlation and effectiveness are important concerns for this type of methods. To
avoid negative impacts of noisy data, techniques, like the floating sequential search [29] and
the weighted LD model [18], must be employed to reduce the feature space. Regarding the
selection of classifiers, the support vector machine (SVM) is the most widely used for its
robustness, good generalization and computationally efficiency [1, 14]. Besides, the nearest
neighbors (NN) and artificial neural networks (ANN) are also frequently found in the lit-
erature. The performances of current feature-engineering based methods are mainly limited
by the application of single classifiers and the use of fixed features to classify all heartbeat
types. On one hand, in consideration of the intra- and inter-subjects variations of the feature
values, it is difficult for a single classifier to well handle a wide region of the feature space
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Table 1 Comparison between feature-engineering based and deep-learning based methods

Feature engineering Deep learning

Work flow Feature extraction, selection and
classifier determination

End-to-end processing

Commonly used features RR-intervals, higher-order statis-
tics, wavelet, signal energy coef-
ficients, etc.

Learned by networks, including
CNN, RNN, LSTM, etc.

Feature selection PCA, floating sequential search,
weighted LD model

N.A.

Commonly used classifiers SVM, nearest neighbors, artificial
neural networks, weighted linear
discriminant, optimum-path forest

N.A.

Training data Less More

Parameters Less More

Explainability High Low

Current limitations Use of fixed features for all heart-
beat types classification; Limitation of
static classifiers to handle both intra-
and inter patients variations

Lack of considerations of frequency
patterns and heart rhythms; A biased
evaluation is followed.

[53]. Although some ensemble methods, such as random forest [4] and ensemble of support
vector machine [24], have been employed to remedy the disadvantages, the problem is still
open because the diversity of the traditional ensembles is relatively low. On the other hand,
using fixed features tends to make sporadically occurred S beats be wrongly classified as V
beats because both heartbeats types exhibits anomalies in heart rhythms.

By contrast, the deep-learning based methods are more straightforward and integrated,
in which features and classifiers are not concerns. They provide end-to-end solutions to the
heartbeat classification task. The existing deep learning models are mainly extensions of
convolution neural network (CNN) [2, 3, 26, 38] or combinations of CNN and recurrent
neural network (RNN) [49, 51]. However, most of the CNN models are limited by the
lack of consideration of frequency patterns and the heart rhythm to assist the classification.
Moreover, in order to provide enough training data, many of them are evaluated in an ideal
experimental setting where heartbeats from the same patient are allowed to appear in both
training and test sets. The results can not reveal the true performances of the models in
real-world practices and also may hide potential limitations of the methods. As compared
to the feature-engineering based methods, both the results and the intermediate process of
deep neural networks are less explainable. This is a potential impediment that prevents deep
learning models from being widely applied in practices because explainability is important
for clinicians to justify and rationalize the model outcome.

3 The proposed framework for arrhythmia detection

The proposed framework for arrhythmia detection from IoT-based ECGs is presented in this
section. Figure 2 shows the framework architecture and the whole life-cycle of arrhythmia
detection from IoT-based ECGs. The framework consists of a data cleaning module and a
heartbeat classification module. It accepts raw ECG signals that collected from different
IoT devices as input and outputs predictions for individual heartbeats.
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Figure 2 Architecture of the proposed framework. The whole life-cycle of arrhythmia detection from IoT-
based ECGs includes 4 phases: data collection, storage, analysis and results notification. Specifically, ECG
sensing network generates ECG recordings for patients and transmits the produced data to the IoT cloud,
where fast access storage are conducted. The proposed framework is deployed in the IoT cloud to provide
data analysis. Results from the framework will be pushed to patients’ ends via Internet

To reduce the impact of noisy data on the prediction accuracy, the input signals are per-
formed a series of preprocessing, such as frequency calibration, baseline correction, and
noise reduction, before heartbeat classification. We propose two solutions, namely Dynamic
Heartbeat Classification with Adjusted Features (DHCAF) and Multi-channel Heartbeat
Convolution Neural Network (MCHCNN), for the heartbeat classification task. DHCAF is
a feature-engineering based method, whereas MCHCNN is a deep-learning based method.

Details of the data cleaning module and two heartbeat classification solutions are
presented below.

3.1 Data cleaningmodule

Frequency calibration To avoid the possible bias in sampling frequency caused by dif-
ferent ECG collectors, we develop a frequency calibration component to re-sample all
incoming ECG recordings to 360 Hz at the input of the system.

Baseline correction To correct the baseline wanders, we process each ECG recording with
a 200-ms width median filter followed by a 600-ms median filter to obtain the recording
baseline, and then subtract the baseline from the raw ECG recording to get the baseline
corrected data.

Noise reduction For noise reduction, we apply discrete wavelet transform [39] with
Daubechies-4 mother wavelet function to remove recordings’ Gaussian white noise. The
Daubechies-4 function has short vanishing moment, which is ideal for analyzing signals
like ECG with sudden changes. Concretely, in the noise reduction component, the baseline
corrected recordings are decomposed to different frequency bands with various resolutions.
The coefficients of detail information (cDx) in each frequency band is then processed by a
high-pass filter with a threshold value

T = √
2 ∗ log(n),

where n indicates the length of the input recording. Coefficients that blocked by the filter are
set to zero. Finally, the clean recordings are obtained by employing inverse discrete wavelet
transform on all the coefficients.
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Heartbeat segmentation The clean signals are segmented to individual heartbeats by tak-
ing advantage of the R peak locations that detected by the Pan-Tompkins algorithm [36].
For each R peak, 90 samples (250 ms) before R peak and 144 samples (400 ms) after R

peak are taken to represent a heartbeat, which is long enough to catch samples to represent
the re-polarization of ventricles and short enough to exclude the neighbor heartbeats [4].

3.2 Dynamic heartbeat classification with adjusted features

Architecture of the proposed DHCAF is shown in Figure 3. The model contains 4 processing
stages: Feature Extraction, Classifier Pool Training, Classifier Selection and Prediction, and
Result Refinement.

Feature extraction In this stage, three types of features are extracted to represent individual
heartbeats: RR-intervals, higher order statistics and wavelet coefficients.

As experimentally proven in [52], the RR-interval is one of the most indispensable
features for heartbeat classification and it has great capacity to tell both the S and V
beats from the normal beats. In this work, four types of RR-intervals are extracted from
ECG signals: pre RR, post RR, local RR and global RR [30]. The RR-intervals can
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Figure 3 Architecture of the proposed DHCAF
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significantly vary with patients. To reduce the negative impact of the variation, we normalize
the RR-intervals in the way below:

nomalized pre RR = pre RR

mean(ds.pre RR)
(1)

nomalized post RR = post RR

mean(ds.post RR)
(2)

nomalized local RR = local RR

mean(ds.local RR)
(3)

nomalized global RR = global RR

mean(ds.global RR)
(4)

where ds.pre RR denotes the average of all pre RRs in the ds that the heartbeat belongs
to, and so on.

Regarding the higher order statistics (HOS), it is reported being useful in catching subtle
changes in ECG data [32]. In this work, the skewness (3rd order statistics) and kurtosis

(4th order statistics) are calculated for each heartbeat. They can be mathematically defined
as follows, where X1...,N denotes all the data samples in a signal, X̄ is the mean and s is the
standard deviation.

Skewness =
∑N

i=1(Xi − X̄)3/N

s3
(5)

Kurtosis =
∑N

i=1(Xi − X̄)4/N

s4
− 3 (6)

The wavelet coefficients provide both time and frequency domain information of a sig-
nal, which is claimed to be the best features of ECG signal [30]. The choice of the mother
wavelet function used for coefficients extraction is crucial to the final classification perfor-
mance. In this work, the Haar wavelet function is chosen because of its simplicity and that
it has been demonstrated as the ideal wavelet for short time signal analysis [50].

Classifier pool training In this stage, a collection of classifiers, including multi-layers per-
ceptron, support vector machine (SVM), linear SVM, Bayesian model with Gaussian kernel,
decision tree, and K-nearest neighbors model, are trained using the extracted features, to
create an accurate and diverse classifier pool.

Classifier selection and prediction This stage plays a core role in the model. The Dynamic
Ensemble Selection (DES) [13] technique is introduced in this stage to select the most com-
petent classifiers for making predictions of the test samples. It helps to solve both the intra-
and inter-subjects variations of the feature values.

In DES, the competence of a classifier in the pool is measured by its performance over a
local region of the feature space where the testing sample is located. Methods for defining
a local region includes clustering [28], k-nearest neighbors [40], potential function model
[44, 45] and decision space [9]. The criterion for measuring the performance of a base
classifier can be divided as individual-based and group-based criterion. In the individual-
based criterion, each base classifier is independently measured by evaluation metrics such
as ranking, accuracy, probabilistic, behavior [9], meta-learning [12]. In the group-based
criterion, the performance of a base classifier relates to its iterations with other classifiers
in the pool. For example, diversity, data handling [46] and ambiguity [19] are widely used
group-based performance metrics.
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Once the candidates classifiers are selected, aggregation of results from these classifiers
is then performed to give a united decision. There are three main strategies for results com-
bination: static combiner, trained combiner and dynamic weighting. The majority voting
scheme is a representative static combiner, which is also commonly used in the traditional
ensemble methods. In trainable combiners, the outputs of the selected based classifiers are
used as the input features for another learning algorithm, such as [8, 33]. In dynamic weight-
ing, higher weight value will be allocated to the most competent classifier and then the
outputs of all the weighted classifiers are aggregated to give the united decision.

Currently, prevalent DES techniques that can be used in this stage include DES-KL [45],
DES-KNN [41], KNORA-E [27], KNORA-U [27], KNOP [9], DES-P [45], DES-RRC [44],
and META-DES [12]. Extensive experiments have been done to evaluate these DES tech-
niques in our previous work [21]. The results showed that there is no significant difference
of their performances. We adopt the META-DES in this work since it has reported superior
performances in a wider range of datasets.

Result refinement The aggregated result from the previous stage will be refine in this stage by
our adjusted features strategy. Specifically, we train an SVM classifier with only HOS and
wavelet coefficients (the RR-intervals are removed) to improve the results of S and V beats.
The rationale of such a classification strategy is that the sensitivities to certain feature varies
with heartbeat types [52] . For instance, the RR-intervals are indispensable to for identifying
disease heartbeats from the normal ones. However, the RR-intervals can also cause troubles
to make a distinction between different kinds of disease heartbeats, such as S and V beats.

3.3 Multi-channels heartbeat convolution neural network

Architecture of the proposed Multi-channels Convolution Neural Network (MCHCNN) is
presented in Figure 4. The network accepts two inputs: raw ECG heartbeat and heart rhythm
(RR-intervals). As motivated by an electroencephalogram (EEG) processing network [42]
which uses different sizes of convolution filters to capture temporal and frequency patterns
from EEG signals, the proposed MCHCNN perform 3 channels of convolutions in parallel
on the input ECG heartbeats to extract the temporal and frequency information. The convo-
lution filter size varies with channels, where the smaller filter is used to capture temporal
patterns and the larger filter is used to capture frequency patterns. We denote the convo-
lution process as Conv(x, y) in Figure 4, where x is the convolution filter size and y is
the amount of the output feature maps. Each convolution operation is followed by a batch
normalization and a ReLu activation. The batch normalization normalizes the output of the
convolution by subtracting the batch mean and dividing by the batch standard deviation,
which reduces the problem of internal covariate shift [25] and overfitting. The introduction
of a ReLu activation is to allow the network to extract nonlinear features.

Every three stacked convolutions are wrapped into a building block and bypassed by
a shortcut connection. The learned features are added to the shortcut at the end of each
building block. Such a design helps to reduce the network degradation problem [23]. Each
channel contains 3 building blocks. Learned features from the three channels are integrated
by addition before a pooling layer. The pooling layer is used to reduce feature dimensions,
after which the learned features are reduced to half-size. It helps to reduce the number of
parameters in the following fully connected layer and lower the risk of overfitting.

A Rhythm Integration layer is specially designed to concatenate the learned features and
the input heart rhythms. It reduces the impact brought by the lack of consideration of heart
rhythms on identification of disease heartbeats in many existing network models.
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Figure 4 Architecture of the proposed Multi-channels Heartbeat Convolution Neural Network (MCHCNN)

Next, the dense layer is used to learn non-linear combinations of the learned features.
The softmax layer gives the probabilities of the each heartbeat type.

4 Evaluation

In this section, we evaluate the proposed framework equipped with DHCAF and with
MCHCNN, respectively. The MIT-BIH-AR database [34] is used as the benchmark
database. It is the most representative database for arrhythmia detection and it has been used
for most of the published research [16]. Details of the database are given below.
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4.1 TheMIT-BIH-AR database

The MIT-BIH-AR database contains 48 two-leads ambulatory ECG records from 47 patients
(22 females and 25 males). Each record has approximately 30 minutes in length. These
recordings were digitized at 360Hz. For most of them, the first lead is modified limb lead II
(except for the recording 114). The second lead is a pericardial lead (usually V 1, sometimes
are V 2, V 4 or V 5, depending on subjects).

In order to reveal the performance of the proposed framework, we follow the evaluation
paradigm proposed in [16] to divide the database into a training and a test dataset. The
paradigm avoids heartbeats of the same patient appearing in both training and test stages,
ensuring a fair evaluation. Table 2 shows the division details, where DS1 is the training set
and DS2 denotes the test set.

Noticing that DS1 is extremely imbalanced and dominated by N beats, we apply the
SMOTEENN technique [5, 10, 43] on DS1 to over-sample the minority heartbeats ( S and
V) to the same amount of N beats.

4.2 Evaluationmetrics

Evaluation metrics used in this work are sensitivity (Se), positive predictive value (+P ) and
accuracy value (Acc),as formulated below,

Se = T P

T P + FN
(7)

+ P = T P

T P + FP
(8)

Acc = T P + T N
∑ (9)

where T P , T N , FP and FN denotes true positive, true negative, false positive and false
negative, respectively, and

∑
represents the amount of instances in the data set. According

to the AAMI standard [16], penalties would not be applied for the misclassification of F
and Q beats, as they are naturally unclassifiable.

4.3 Results of the proposed framework

Confusion matrixs of the proposed framework with DHCAF and with MCHCNN on DS2
are presented in Table 3. We summarize the results and compare our framework with

Table 2 Recording distributions and class proportions on DS1 and DS2

Data set N S V F Q Recordings (Patient ID)a

DS1 45808 943 3786 414 8 101, 106, 108, 109, 112, 114, 115,
116, 118, 119, 122, 124, 201, 203,
205, 207, 208, 209, 215, 220, 223,
230

DS2 44198 1836 3219 388 7 100, 103, 105, 111, 113, 117, 121,
123, 200, 202, 210, 212, 213, 214,
219, 221, 222, 228, 231, 232, 233,
234

a Each recording is denoted by a 3-digits number and the numbers are originally discontinuous
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Table 3 Confusion matrixs of DHCAF and MCHCNN on DS2

Predicted class (DHCAF) Predicted class (MCHCNN)

N S V F Q N S V F Q

True class N 40698 2053 1199 0 119 42356 903 734 83 2

S 125 1472 157 0 0 669 686 396 3 0

V 102 103 3013 0 1 259 30 2924 6 0

F 263 2 122 0 1 381 1 6 0 0

Q 3 0 4 0 0 3 0 4 0 0

multiple state-of-the-art methods in Table 4. All results reported in Table 4 are obtained
under the same evaluation paradigm on DS2 of MIT-BIH-AR database.

It is clear that the proposed framework with DHCAF achieves the best sensitivity of both
class S and V, and maintain a good performance in overall accuracy and classification of
class N. Shan’s model [11] obtains the highest accuracy and class N sensitivity. However, it
fails in the detection of class S, with the sensitivity of class S being merely 29.5%, which
limits the model’s practical significance. The proposed framework with MCHCNN out-
performs DHCAF in terms of the overall accuracy, sensitivity of N beats, and the positive
predictive value of S beat, but its performance on sensitivity of S beat is less satisfied. In fact,
it can be found that the positive predictive values of S beats for most listed works in Table 4
are relatively low, as compared to other metrics. This is mainly caused by some N beats
being misclassified as S beats. As mentioned in the Introduction section, the similar QRS
complex and the data imbalance problem have introduced a great difficulty in distinguish-
ing the S from the N beats. We compare the proposed framework with MCHCNN to another
deep-learning based method by Sellami et al. [38], which reports model performance under
the same unbiased evaluation. The results show that Sellami’s work has achieved a promis-
ing performance on identification of both the problematic S and V beats, being close to that
of the proposed framework with DHCAF. However, this is at the cost of the overall accuracy
and sensitivity of normal beats. In real-world practices, the large amount of misclassifica-
tion of normal heartbeats as the disease heartbeats will result in an unnecessary waste in
medical resources.

Table 4 Arrhythmia detection results of the proposed framework and the stat-of-the-art methods on DS2

Method Type Acc N S V

Se +P Se +P Se +P

Proposed (DHCAF) feature engineering 91.4 92.4 98.8 84.0 40.6 93.6 67.3

De Chazal [16] feature engineering 81.9 86.9 99.2 75.9 38.5 77.7 81.9

Ye C [48] feature engineering 86.4 88.5 97.5 60.8 52.3 81.5 63.1

Zhang Z [52] feature engineering 86.7 88.9 99.0 79.1 36.0 85.5 92.8

Shan C [11] feature engineering 93.1 98.4 95.4 29.5 38.4 70.8 85.1

Mariano L [29] feature engineering 78.0 78.0 99.0 76.0 41.0 83.0 88.0

Proposed (MCHCNN) deep learning 93.0 96.1 97.0 39.1 42.3 90.1 72.0

Sellami Ali [38] deep learning 88.3 88.5 98.8 82.0 30.4 92.0 72.1
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Table 5 Ablative analysis of DHCAF

Method Acc N S V

Se +P Se +P Se +P

Proposed (DHCAF) 91.4 92.4 98.8 84.0 40.6 93.6 67.3

Proposed (DHCAF) without Result Refinement 90.8 92.4 98.8 63.6 36.1 95.0 60.8

Proposed (DHCAF) with SVM Ensemble 82.8 82.9 99.4 72.3 30.9 96.7 36.8

From the above analysis, the proposed framework with DHCAF is believed to be a
more appropriate choice than other listed works for cardiac arrhythmia detection, because it
achieves the best identification performance on disease heartbeats while maintaining a good
overall accuracy and classification performance on the normal heartbeats.

4.4 Ablative analysis

We perform ablative analysis for the proposed DHCAF and MCHCNN to demonstrate the
effectiveness of the model architectures. The results are summarized in Table 5 and Table 6,
respectively.

Two baselines are used in the ablative analysis for DHCAF. One is DHCAF with the
result refinement stage removed. The other one is DHCAF with the dynamic ensemble
selection classification of DHCAF replaced by ensemble of SVM classification. It is appar-
ent that the result regulator has made unique contributions to DHCAF, with which the
overall accuracy, sensitivity of class S, and positive predictive of class S and V are visibly
increased. On the other hand, the poor classification performance of the SVM ensemble
has demonstrated the importance of the introduction of dynamic ensemble selection to the
proposed method.

As discussed in Sections 1 and 2, many existing deep neural network models have not
taken the heart rhythms into account for heartbeat classification, but this limitation is hidden
by the over-optimistic results obtained in a biased evaluation paradigm. In the ablative test
of MCHCNN, we want to know the actual impact of heart rhythms on model performances.
Therefore, we construct a baseline MCHCNN which only take raw ECG heartbeats as input.
The results, as seen in Table 6, indicate that heart rhythm (RR-intervals) are necessary for
identification of the disease heartbeats. Without consideration of heart rhythm, the baseline
can hardly detect S beats. The detection on V beats is also affected. The outcome is in line
with the medical fact. As we can see in Figure 1, most V beats present a huge morphological
difference with other heartbeats. That is why the baseline can still maintain 73.8% sensitiv-
ity on V beats. However, for S beats, the heart rhythm is essential for distinguishing them
from the normal heartbeats.

Table 6 Ablative analysis of MCHCNN

Method Acc N S V

Se +P Se +P Se +P

Proposed (MCHCNN) 93.0 96.1 97.0 39.1 42.3 90.1 72.0

Proposed (MCHCNN) without Heart Rhythms 92.1 97.5 95.0 10.3 20.1 73.8 86.0
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Although heartbeat rhythms has been part of the input to the proposed MCHCNN, the
S beats detection performance is still less satisfied. This indicates that the raw heartbeat
rhythms provide limited assistance to our MCHCNN in identification of S beats. A possible
explanation is that the heartbeat rhythms are not integrated well to the network and also
easily affected by other learned features. A future study is needed to investigate this issue.

5 Conclusion

Millions of people around the world are suffering from cardiac arrhythmia. In this work, we
propose a framework for automated arrhythmia detection from IoT-based ECGs. The frame-
work consists of two modules: a data cleaning module to tackle the challenges presented by
IoT-based ECGs, and a heartbeat classification module for identification the disease heart-
beats. Specifically, we proposed two solutions, DHCAF and MCHCNN, for the heartbeat
classification task. DHCAF is a feature-engineering based method which introduces the
dynamic ensemble selection techniques and uses an adjust-feature strategy to assist disease
heartbeats identification. By contrast, MCHCNN is an end-to-end solution that performs
multi-channel convolutions to capture both the temporal and frequency information from
the raw heartbeats to improve the classification performance. We evaluate the proposed
framework on the MIT-BIH-AR database under the inter-patient evaluation paradigm. The
results show that the proposed framework with DHCAF is a qualified candidate for auto-
mated arrhythmia detection from IoT-based ECGs. Besides, although the S beats detection
performance of MCHCNN is less satisfied, the network still provide some insights to our
future study.

This work is a first step to provide a solution for the automated arrhythmia detection in
the era of Internet-of-Things. In our next study, we aim to investigate a more effective way
for integration of the heart rhythms into a neural network.
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