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Abstract
Mobile internet applications on smart phones dominate large portions of daily life for many
people. Conventional machine learning-based knowledge acquisition methods collect users’
data in a centralized server, then train an intelligent model, such as recommendation and
prediction, using all the collected data. This knowledge acquisition method raises serious
privacy concerns, and also violates the rules of the newly published General Data Protection
Regulation. This paper proposes a new attention-augmented federated learning framework
that can conduct decentralized knowledge acquisition for mobile Internet application scenar-
ios, such as mobile keyboard suggestions. In particular, the attention mechanism aggregates
the decentralized knowledge which has been acquired from each mobile using its own
data locally. The centralized server aggregates knowledge without direct access to personal
data. Experiments on three real-world datasets demonstrate that the proposed framework
performs better than other baseline methods in terms of perplexity and communication cost.
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1 Introduction

According to a report in 2017 [29], the majority of respondents spent five hours or more
a day on their smartphones daily. The increasing popularity of smartphones and mobile
wearable devices, such as smart watches has generated a massive amount of distributed
data, such as text messages, click behavior, travel trajectories and health status. Effectively
using these data will provide additional advantages for these application service providers.

Intelligent functions, such as recommendation and personalized suggestions, can greatly
improve the quality of services and provide a more satisfying experience with the applica-
tion. A conventional intelligent approach usually collects big data into a centralized server,
then applies a machine learning algorithm to train an intelligent model. The personalized
intelligent model is also trained in the centralized sever to leverage data from many other
users. This centralized knowledge acquisition method raises serious privacy concerns for
end users who have no idea as to how the company will use their data. One of the best ways
to address this issue is to store the data on local nodes rather than upload private data onto
the central server. This takes into account the recently published General Data Protection
Regulation (GDPR) that lays out strict rules for data usage alongside protection that will
bring new challenges for existing centralized knowledge acquisition methods. Decentralized
knowledge acquisition generates knowledge in each node locally. It is critically important
in protecting sensitive data and preserving privacy. As most existing intelligent models are
trained using machine learning algorithms, we discuss decentralized knowledge acquisition
in the machine learning scenario. In general, most distributed machine learning algorithms
can be categorized into two types: data-distributed and model-distributed. The first splits the
data into many nodes and trains the models in distributed nodes locally. Then, the central
sever acquires knowledge from these distributed nodes by aggregating their model param-
eters. The model-distributed method copies the entire data to many nodes and splits a big
model into many pieces to be allocated to nodes accordingly. A piece of the model will be
trained in each node and the central server acquires knowledge by integrating many of these
pieces.

In recent years, federated learning [16] has attracted broad interest from the research
community[4, 7]. The fundamental technology is derived from distributed machine learn-
ing. However, federated learning focuses on solving the non-IID problem which commonly
exists in the mobile internet environment. In particular, the data distribution of each mobile
user is different. Both distributed machine learning and federated learning still need a
centralized server to aggregate acquired knowledge. Using a centralized server to aggre-
gate knowledge is much more efficient and incurs lower communication costs across a
large-scale network. Some applications have been developed using this federated learning
framework: [11] recommending photos a mobile user would be the most likely to share
on social websites, [2] suggesting the next word for mobile keyboards and [8] ranking
notifications by importance and classifying spam messages.

Most existing federated learning methods use only a centralized aggregated model to
store acquired knowledge which is basically common knowledge with limited information.
This paper proposes a novel, federated learning-based, decentralized knowledge acquisition
framework by using an attention-augmented mechanism to model aggregation, one that suits
the capture of both common and special knowledge of all distributed nodes. A centralized
aggregation model is used to store the common knowledge of all distributed nodes and an
attention mechanism is designed as an augmentation tool to capture the special knowledge
for each. In particular, the aggregation model has shared parameter settings for all nodes
while the attention mechanism automatically attends to the weights or scores of the relation
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between the central agent and various distributed nodes. The attention score is then taken
to minimize the expected distance between the central agent and distributed nodes. The
proposed method considers the relation between the server model and client models: their
weights and can optimize the distance between the central node and distributed nodes in the
parameter space to learn a well-generalized server model.

Our contributions in this paper are as follows:

– This is the first paper whereby attention mechanism is applied to augment the
decentralized knowledge acquisition framework. The attention mechanism is designed
specifically to capture the special knowledge of each distributed node, using an atten-
tion score to represent the relation between the central node and each distributed
node.

– In the server optimization, we propose a novel attention-based Federated loss that can
simultaneously learn the aggregated modes and attention scores between central node
and distributed nodes.

– The proposed framework can solve privacy issues from two perspectives. In the
first step, data are stored securely on local devices and model training is on-device.
To protect the model parameters from inverse engineering, differential privacy via
randomization is employed on the transferred model parameters.

– The experiment results demonstrate the effectiveness of the proposed method on a
mimic mobile internet application using real-world datasets that include the data of
private neural language modeling data and social media.

The paper’s remaining parts are organized as follows. Section 2 discusses the related
works by reviewing federated learning and attention mechanism. Section 3 introduces the
proposed attentive federated aggregation. Section 4 details the experiments undertaken and
our conclusion is drawn in Section 5.

2 Related work

The decentralized knowledge acquisition in this paper relates to the federated learning
framework. Our proposed method using the attention mechanism augments this framework.

2.1 Federated learning

Federated learning was first proposed by McMahan et al. [16] to decouple training pro-
cedures from data collection by an iterative averaging model. It can train a model from
decentralized data using distributed training and communication-efficient learning, and the
decentralized learning framework has great potential to develop various applications with
a focus on privacy preservation. For example, [7] applies a differential privacy-preserving
mechanism on distributed nodes to protect the privacy of the data from gradient-based
reverse engineering. The federated learning model can be fine-tuned to learn a language
model from the decentralized data [21]. Many applications and new settings have been
re-designed using the federated learning framework. For example, [12] proposed federated-
based tensor factorization that could be applied to discover medical concepts from electronic
health records; [4] combines federated learning with meta-learning for recommendation;
[30] introduces federated knowledge transferring for online social care; and [24] tackles
multi-task learning using federated learning.

World Wide Web (2020) 23:2 –2 9653 66 2655



With regard to mobile Internet applications, communication efficiency is one of the per-
formance metrics used to evaluate a deployed decentralized learning algorithm, such as
federated learning techniques. To improve communication efficiency, [13] proposed updates
- both structured and sketched - to reduce up-link communication costs; [1] proposed quan-
tized gradient compression and the encoding of stochastic gradient descent to improve the
efficiency of communication and [25] used ternary gradients to reduce the communication
cost.

2.2 Attentionmechanism

The attention mechanism is designed to orient perception using numerical vectors and has
attracted broad interest in the field of computer vision. Mnih et al. [18] apply attention
onto recurrent neural network (RNN) to tackle image classification tasks. In [3], the authors
apply the attention mechanism in a sequence-to-sequence neural network of natural lan-
guage processing tasks that include neural machine translation. Luong et al. [14] extended
attention-based RNNs and proposed two new attention mechanisms - global and local. The
attention mechanism can also be used in convolution neural networks for sentence encoding.
For example, ABCNN [27] illustrates this for modeling sentence pairs. [26] proposed hierar-
chical attention networks for document classification tasks. Shen et al. proposed directional
self-attention for language understanding [33, 34].

3 Methodology

In this section, we introduce the preliminaries of federated learning, a decentralized
knowledge acquisition framework. Building on this, we propose an attentive federated opti-
mization algorithm to simultaneously learn attentive weights for each distributed node and
aggregated model’s parameters. As for the client learner, we apply the gated recurrent unit
(GRU) [5] as the client model for language modeling. Furthermore, we add a randomized
mechanism [7] for learning differential private client models.

3.1 Federated learning framework

Federated learning framework is composed of two components: central server and dis-
tributed nodes. The central server accumulates common knowledge using model aggrega-
tion among the model parameters collected from many distributed nodes. This is similar to
the works on meta-learning by learning a good initialization for quick adaptation [6, 19],
graph meta-knowledge [31, 32] and transfer learning by transferring knowledge between
domains [20]. The algorithm of federated learning framework [16] comprises two parts -
server optimization in Algorithm 1 and local training in Algorithm 2.

Updating server model in federated learning The server firstly chooses a client learning
model and initializes the parameters of the client learner before setting the clients’ fraction.
It waits for online clients for local model training. Once the selected number of clients has
finished the model update, it receives the updated parameters and performs server optimiza-
tion. The parameter sending and receiving consists of one round of communication. Our
proposed optimization is conducted in Line 9 of Algorithm 1.
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Updating the client model in federated learning Some clients are selected to receive the
parameters from the server model, after which each client performs secure local training
on their own devices using their private data. Stochastic gradient descent is performed to
update the supervised learning-based local model, e.g. GRU-based language modeling as
introduced below in Section 3.5. Once the training of the local model has been completed
- usually in several epochs - the clients send the parameters of their newly trained local
models to the central server over a secure connection. During this local training, clients’
confidential data can be stored on their own devices, thereby protecting their privacy.

3.2 Federated learning-based knowledge acquisition

The ultimate goal of federated learning-based knowledge acquisition is to find the shared
knowledge that is the best fit for all distributed nodes. Specifically, the best fit is defined as
that which offers the greatest help in training the local model across all the distributed nodes.
To provide this help, the federated learning framework sends the model parameters from the
centralized server model to the distributed nodes, then each node uses the received common
knowledge to initialize the parameters of the local model. To acquire and accumulate the
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common knowledge, the central server aggregates the model parameters collected from the
distributed nodes.

During the model aggregation step in the central server, each node’s knowledge (spe-
cial knowledge) has a scale of contribution different from the common knowledge. How to
define the different scale is a crucial in the setting of model aggregation. One of the simplest
settings is use an equal contribution for each node. The original federated learning uses the
data size of each node to measure the contribution. This paper proposes to use the attention
score to measure the contribution, the details of which are given below.

3.3 Attentive model aggregation in federated learning

In this paper, a novel definition of the knowledge acquisition objective is proposed in the
federated learning optimization framework. A new aggregation method is designed next
to accumulate common knowledge effectively from decentralized client models. The pro-
posed aggregation method is Attentive Federated Aggregation (FedAttOpt) in a jointly
optimization manner. It begins by introducing the attention mechanism for federated aggre-
gation by aggregating the contribution of the local models of the selected clients with the
global model in the central server. An illustration of our proposed attentive federated aggre-
gation is shown in Fig. 1 where the left box represents the distributed client models and
the right box represents the attentive aggregation in the central server. Each box has a
series of wi to represent the i-th layer’s parameters of a deep neural network-based model.
This illustration shows only a single iteration t where the central server updates the com-
mon knowledge by aggregating model parameters weighted with attention score, namely
attentive federated updating.

The thinking behind the proposed attentive federated updating is to find the optimal solu-
tion of common knowledge that can offer the most help to all client nodes. To achieve this,
the shared model parameters should be easily generalized to all the clients models to min-
imize their loss. However, the loss of each model is difficult to infer due to the fine-tuning
process in the local model. There is a well-known empirical assumption: if the model param-
eters’ initialization is close to the global optimum, the model is more likely to converge to

Figure 1 The illustration of our proposed layer-wise attentive federated aggregation in the t-th iteration
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the global optimum by updating the parameters with training data and learning function.
The objective of the overall optimization is to minimize loss function as below, namely
Attentive Federated Loss.

L =
m∑

k=1

[α(θ, θk) ∗ d(θ, θk)] =
m∑

k=1

[αk ∗ dk], (1)

where ak is the attention score for center to attend node k, and dk is the distance of model
parameters θ between center and node k. In particular, the θ is a vector by concatenating the
parameters from the multi-layer neural network. The attention score is defined as below.

ak = esk

∑n
j=1 esj

(2)

where sk is the Scaled Dot-Product of two vectors: θ and θk as below.

sk = θT θk√
n

(3)

The distance between two models’ parameters are define as p-norm.

dk = ||θt − θk
t+1||p, (4)

θt is the parameters of the global server model at time stamp t , θk
t+1 is the parameters of

the k-th client model at time stamp t + 1, L(·, ·) is defined as the distance between two sets
of neural parameters, and αk is the attention score to measure the importance of the client
models. To facilitate the illustration, we set p = 2 in the following discussion.

3.4 Optimization for the proposedmodel

As discussed above, the proposed Attentive Federated Loss is to the weighted distance
between the server model and the client models by taking a set of self-adaptive scores as
the attentive weights. However, the current objective function includes two co-related com-
ponents: attention score ak and distance dk between central model and local models. To
facilitate the calculation of gradients, the objective function in (1) could be transformed to
its log loss.

L′ = log L =
m∑

k=1

(log ak + log dk) (5)

For the given loss function in (5), the proposed attentive Federated learning framework
is to minimize the loss as below optimization function.

θ = arg min
θ

L = arg min
θ

L′ (6)

We could use stochastic gradient descent in (7) to solve the optimization function with
logarithmic loss L′.

θt+1 ← θt − ε
∇L′

∇θ
, (7)

where ε is the step size.
The gradient ∇L′/∇θ can be calculated as below function:

∇ = ∇L′

∇θ
=

m∑

k=1

[ 1

ak

∗ ∇ak

∇θ
+ 1

dk

∗ ∇dk

∇θ
], (8)
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where m is the total number of distributed nodes. The two parts of the gradient can be
calculated as below according to (2) and (4).

∇ak

∇θ
= ak√

n
θk (9)

∇dk

∇θ
=

m∑

k=1

2(θt − θk
t+1) (10)

For the selected group of m clients, we perform a gradient descent to update the parame-
ters of the global model in (7). The full procedure of our proposed optimization algorithm is
described in Algorithm 3. It takes the server parameters θt at time stamp t and client param-
eters θ1

t+1, ..., θm
t+1 at time stamp t + 1 and returns the updated parameters of the global

model.

The advantages of our proposed attentive federated aggregation and its optimization
are: 1) The aggregation of the client models is fine-grained considering the similarity
between the client model and the server model in the parameter space. 2) The learned atten-
tion scores and central model’s parameters form a summarized knowledge acquired from
distributed knowledge and can be further applied to assist each node to train the local model.

3.5 GRU-based client model

The learning process on the client side is model-agnostic. For different tasks, we can choose
appropriate models in specific situations. In this paper, we use language modeling as the
target task to mimic the NLP-based applications on mobile phones. Therefore, we use the
gated recurrent unit (GRU) [5] to learn the language modeling on the client side. The GRU
is a well-known and simpler variant of the long short-term memory (LSTM) [9], reached
by merging the forget gate and the input gates into a single gate, along with both the cell
state and the hidden state. In the GRU-based neural language model, words or tokens are
first embedded into word vectors denoted as X = {x0, x1, . . . , xt , . . . } and then put into the
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recurrent loops. The calculation inside the recurrent module is expressed as:

zt = σ(wz · [ht−1, xt ]),
rt = σ(wr · [ht−1, xt ]),
h̃t = tanh(w · [rt ∗ ht−1, xt ]),
ht = (1 − zt ) ∗ ht−1 + zt ∗ h̃t ,

where zt is the update gate, rt is the reset gate, ht is the hidden state, and h̃t is a new hidden
state.

3.6 Disturbing the transmitted parameters using differential privacy

To protect the client’s data from an inverse engineering attack, we apply the randomized
mechanism to federated learning. This ensures differential privacy on the client side without
revealing the client’s data [7]. Initially, this differentially private randomization was pro-
posed as an application for federated averaging, where a white noise with the mean of 0 and
standard deviation of σ is added to the client parameters in (11).

θ̂
(k)
t+1 = θ

(k)
t+1 + βN (0, σ 2)) (11)

Here, we add magnitude coefficient β ∈ (0, 1] on the randomization of normal noise to
control the effect of the randomization mechanism on the performance of the federated
aggregation. The θ̂

(k)
t+1 will be sent to the server for model aggregation.

4 Experiments

We conducted experiments to evaluate our proposed method. Two baseline methods are
compared and additional exploratory experiments are conducted to further the exploration of
the performance of our attentive method. Federated learning-based knowledge acquisition
is a totally new area where the design and background settings are different to conventional
knowledge acquisition methods used with mobile internet applications. Our proposed work
is a theoretical method based on the the federated learning framework, an area in which there
are very few prior works. Therefore, we used some public datasets to mimic the situation of
a knowledge acquisition method across the decentralized environment, e.g. a mobile internet
application.

4.1 Datasets

We mimic a mobile internet application using neural language modeling tasks. Experiments
are conducted on three English language datasets including Penn Treebank [15], WikiText-2
[17] and the Reddit Comments from Kaggle. Language modeling is one of the most suit-
able tasks with which to validate federated learning. It offers a large number of datasets
to test performance and there is a real-world application in the form of the input keyboard
application on smart phones.

Penn Treebank is an annotated English corpus. We use the data derived from Zaremba
et al.1 [28]. The WikiText-2 is available online.2 The May 2015 Reddit Comments dataset is

1Penn Treebank is available at https://github.com/wojzaremba/lstm/tree/master/data
2WikiText-2 is available at https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip
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Table 1 Number of tokens in
training, validation and testing
sets of three datasets

Dataset # Train # Valid. # Test

Penn Treebank 887,521 70,390 78,669

WikiText-2 2,088,628 217,646 245,569

Reddit Comments 1,784,023 102,862 97,940

a portion of a large scale dataset of Reddit comments3 from the popular online community
– Reddit. It is available in the Kaggle Datasets.4 We sampled 1‰ of the comments from
this dataset to train our private language model as a representative of social networks data.
Table 1 shows the statistical information of three datasets - the number of tokens in the
training, validation, and testing set.

4.2 Baseline algorithms

We conducted to several groups of experiments for comparison, for example, performance
with different model aggregation methods, the scale of client models, communication cost,
and so forth. Two baselines are applied in these comparisons, i.e., FedSGD and FedAvg.
The definitions and settings of baselines and our proposed method are as follows.

1. FedSGD: Federated stochastic gradient descent takes all the clients for federated
aggregation and each client performs one epoch of gradient descent.

2. FedAvg: Federated averaging weighted by data-size. It samples a fraction of users for
each iteration and each client can perform several steps of gradient descent. The model
aggregation is an average weighted by each client’s data-size.

3. FedAttOpt: Federated Attentive learning. It treats attention mechanism as a compo-
nent of the optimization procedure in Federated learning.

4.3 Experiment settings and data partitioning

Experiment settings We conducted experiments in the setting of federated learning using
GRU-based private neural language modeling with Nvidia TITAN Xp GPU acceleration.
The GRU-based client model first takes texts as input, then embeds them into word vectors
and feeds them to the GRU network. The last fully connected layer takes the output of GRU
as input to predict the next word. The small model uses 300 dimensional word-embeddings
and a hidden state of the RNN unit. We deploy models of three scales: small, medium and
large with word-embedding dimensions of 300, 650 and 1500 respectively. Tied embedding
is applied to reduce the size of the model and its communication cost. Tied embedding
shares the weights and biases in both embedding and output layers to reduce greatly the
number of trainable parameters.

Data partitions To mimic the mobile Internet application in a real-world scenario, we pre-
process the data by partitioning these three public datasets into many small subsets and
letting each represent the private dataset of one mobile client. First, we shuffle all the sam-
ples in the dataset. Second, we mimic a number of clients and their private datasets by

3Available at https://www.reddit.com/r/datasets/comments/3bxlg7/i have every publicly available reddit
comment/, retrieved in Dec, 2018
4Reddit Comments dataset is available at https://www.kaggle.com/reddit/reddit-comments-may-2015
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randomly collecting (without replacement) a few samples from the whole dataset. In this
way the whole dataset is split into a number of shards to mimic the same number of users
or clients. In particular, these three datasets were partitioned into the 100 subsets to mimic
100 mobile Internet clients who will participate in the training of federated learning.

4.4 Experiment analysis

Our proposed model uses the attention mechanism as an augmentation tool to capture more
knowledge than the other federated learning algorithms in the decentralized knowledge
acquisition scenario. We conduct experiments on these three datasets processed to mimic
mobile Internet applications, and compare our method with other federated learning baseline
methods. In general, the method with more knowledge is likely to achieve better perfor-
mance on intelligent applications. Therefore, we use testing perplexity as the evaluation
metric since perplexity is a standard measurement for probability distribution in natural lan-
guage modelling-related tasks. It is one of the most commonly used metrics for word-level
language modeling, one that we choose to mimic mobile Internet application. In particular,
the perplexity of a distribution is defined as

PPL(x) = 2H(p) = 2− ∑
x p(x) log 1

p(x)

where H(p) represents the entropy of p(x) - the distribution of probability among the pre-
diction labels. In a language modeling task, a lower perplexity indicates a better prediction
result is more likely.

We take 50 rounds of communication between the server and clients and compare the
performance on the validation set to select the best model, then we test the performance on
the testing set to obtain its perplexity. The results of testing perplexity of all three datasets
are shown in Table 2. For FedAvg, we set the client fraction C to be 0.1 and 0.5 within these
results. According to the definition of FedSGD, the client fraction is always 1. As shown
in this table, our proposed FedAttOpt outperforms others in terms of testing perplexity in
all the three datasets other than WikiText-2 with fraction C as 0.5. When the client fraction
C is 0.1 and 0.5 in the Penn Treebank and PTB respectively, the method we proposed here
achieves a significant improvement over its counterparts. We also conduct experiments on
the fine-grained setting of the client fraction C (from 0.1 to 0.9). When the client fraction
is 0.3, our proposed method obtains the best testing perplexity of 64.52 in the WikiText-2
dataset.

We then further our exploration of the four factors in the WikiText-2 dataset to evaluate
the performance of our proposed method with a comparison of its counterpart FedAvg. In
the additional exploratory experiments discussed in the following subsections, we explore
the client fraction, the communication costs, the effect of different randomizations, and the
scale of the models.

Table 2 Testing perplexity of 50
communication rounds for
federated training using
small-scaled GRU network as the
client model

Frac. Methods WikiText-2 PTB Reddit

1 FedSGD 112.45 155.27 244.49

0.1 FedAvg 95.27 138.13 243.76

FedAttOpt 72.25 116.49 129.87

0.5 FedAvg 79.75 128.24 244.83

FedAttOpt 75.58 117.82 212.37
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4.5 Client fraction

In real-world applications of federated learning, some clients may be offline due to a change
in user behavior or network issues. Thus, it is necessary to choose only a small number of
clients for federated optimization. To evaluate the effect of the client fraction C on the per-
formance of our proposed attentive federated optimization, we explore the testing perplexity
with various number of clients. The result is illustrated in Fig. 2 where the client fraction
varies from 0.1 to 0.9. The small-scaled neural language model is used in this evaluation.
The testing perplexity fluctuates when the client fraction increases. There is no guarantee
that more clients result in a better score. Actually, 70% of clients for model aggregation
achieved the lowest perplexity in this experiment. This result indicates that the number
of clients participating in model aggregation has an impact on the performance. But our
proposed FedAtt can achieve much lower perplexity than FedAvg for all settings of client
fraction.

4.6 Communication cost

Communication cost for parameter uploading and downloading between the clients and
server is another important issue for decentralized learning. Communication, wired and
wireless, depends heavily on Internet bandwidth and has an impact on the performance of
federated optimization. To conserve the capacity of network communication, decentralized
training should be more communication efficient. Several approaches apply compression
methods to achieve efficient communication. Our method accelerates the training through
the optimization of the global server because it can converge more quickly than its coun-
terparts. To compare the efficiency of communication, we take the communication rounds
during training as the evaluation metric in this subsection. Three factors are considered:
client fraction, epochs and batch size of client training. The small-scale language model is
used as the client model with 10% of clients are selected for model aggregation. We set the
testing perplexity for the termination of federated training at 90. When the testing perplexity

Figure 2 Testing perplexity of 50 communication rounds when a different number of clients are selected for
federated aggregation
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Figure 3 Rounds comparison by client fraction

is falls below that threshold, federated training comes to an end and we take the rounds of
training as the communication rounds. As shown in Fig. 3, the communication round during
training fluctuates when the number of clients increases. Furthermore, our proposed method
is always better than FedAvg and incurs a lower communication cost. In most of cases, our
proposed method saves half of the communication rounds. Then we evaluate the effect of
the local computation of clients on the communication rounds. We take the local training
epochs to be 1, 5, 10, 15, and 20 and the local batch size to be from 10 to 50. FedAttOpt
achieved a comparable communication cost with different epoch values and the batch size
of local training, as shown in Figs. 4 and 5 respectively.

4.7 Magnitude of randomization

The federated learning framework focuses on the privacy of the input data using distributed
training on each client side to protect the user’s privacy. To enhance the privacy preservation
of decentralized training, we evaluate the magnitude of normal noise in the randomization

Figure 4 Rounds comparison by epochs
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Figure 5 Rounds comparison by batch size

mechanism on the model parameters. Comparative experiments are conducted to analyze
the effect of the magnitude on testing perplexity. The results are shown in Table 3 with
both randomized and non-randomized settings. For the randomized version, four values of
magnitude are chosen: 0.001, 0.005, 0.01, and 0.05.

As shown in the table, a very small noise does not affect the performance of either
method. Actually, the testing perplexity in the randomized setting is slightly better than the
result with the non-randomized setting. With increased noise, the performance deteriorates.
For our proposed method, the testing perplexity is always lower than its counterpart FedAvg,
showing that our method can resist greater noise and can better preserve privacy to ensure
the perplexity of next-word prediction.

4.8 Scale of model

Distributed training depends on communication between the server and clients, and the
central server needs to optimize the model parameters for the aggregation of the clients
models. As a result, the central server will incur a higher communication cost and compu-
tational costs when there is a larger number of clients and the local models have millions of
parameters.

The vocabulary in most language modeling corpora is very extensive. To save training
costs, the embedding weights and output weights are tied to reduce the number of trainable
parameters [10, 22]. We compared three scales of client models with the word embedding
dimensions of 300, 650 and 1500. Two versions of the tied and untied models are used. In
the tied setting, the dimension of the RNN hidden state must be the same as the embedding
dimension.

Table 3 Magnitude of
randomization vs. testing
perplexity using a small-scaled
model with tied embedding

Randomization FedAvg FedAttOpt

Nonrandomized β = 0 88.21 72.31

Randomized β = 0.001 88.17 71.60

β = 0.005 88.36 72.27

β = 0.01 89.74 73.71

β = 0.05 103.17 108.58
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Table 4 Testing perplexity of 50
communication rounds vs. the
scale of the model using a tied
embedding or untied embedding
model

Model FedAvg FedAttOpt

Small tied 88.21 71.60

untied 91.25 71.88

Medium tied 103.07 76.21

untied 96.67 73.80

Large tied 77.51 74.49

untied 82.97 72.85

The results of the model’s scales on testing perplexity are shown in Table 4. The tied
large-scale model achieves the best results with all three methods and the tied model is
usually better than its untied counterpart of the same scale. Our proposed method achieves
lower testing perplexity in five of the six settings, i.e., tied and untied in small model and
large model, untied medium model. For the tied medium settings, the testing perplexity
of our method is higher than all baselines. Overall, for real-world keyboard applications
in practice, tied embedding can be used to conserve the number of trainable parameters,
reducing communication cost while achieving a better performance.

5 Conclusion

Federated learning provides a promising and practical approach to learning from decen-
tralized data while protecting private data with differential privacy. Efficient decentralized
learning is significant for distributed real-world applications such as personalized keyboard
word suggestions on mobile phones, providing a better service and protecting a user’s
private personal data.

To optimize server aggregation using federated averaging, we investigated the model
aggregation and optimization on the central server in this paper. We proposed a novel atten-
tive federated optimization to measure the importance of the knowledge acquired from each
client. We partitioned three popular datasets - Penn Treebank and WikiText-2 for the proto-
typical language modeling task, and Reddit comments from a real-world social networking
website - to mimic the scenario of word-level keyboard suggestions and performed a series
of exploratory experiments. Experiments on these datasets show our proposed method
outperforms its counterparts in most settings.
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