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Abstract
With the proliferation of knowledge graphs, massive RDF graphs have been published on
the Web. As an essential type of queries for RDF graphs, Regular Path Queries (RPQs)
have been attracting increasing research efforts. However, the existing query processing
approaches mainly focus on RPQs under the standard semantics, which cannot provide the
provenance of the answer sets. We propose a distributed Pregel-based approach DP2RPQ to
evaluating provenance-aware RPQs over big RDF graphs. Our method employs Glushkov
automata to keep track of matching processes of RPQs in parallel. Meanwhile, three opti-
mization strategies are devised according to the cost model, including vertex-computation
optimization, message-communication reduction, and counting-paths alleviation, which can
reduce the intermediate results of the basic DP2RPQ algorithm dramatically and overcome
the counting-paths problem to some extent. The proposed algorithms are verified by exten-
sive experiments on both synthetic and real-world datasets, which show that our approach
can efficiently answer the provenance-aware RPQs over large RDF graphs. Furthermore,
the RPQ semantics of DP2RPQ is richer than that of RDFPath, and the performance of
DP2RPQ is still far better than that of RDFPath.

Keywords Regular path query · Provenance-aware · RDF graph · Pregel

1 Introduction

With the increasing popularity of knowledge graphs, Resource Description Framework
(RDF) has been widely recognized as a flexible graph-like data model to represent large-
scale knowledge bases. It has become essential to realize efficient and scalable query
processing for big RDF graphs in various domains, such as social networking [23] and
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bioinformatics [14, 27], stored in distributed clusters. As one of the fundamental operations
for querying graph data [6], regular path queries (RPQs) can explore RDF graphs in a nav-
igational manner, which is an indispensable building block in most graph query languages.
The latest version of the standard query language of RDF, SPARQL 1.1 [13], has provided
the property path [16] feature which is actually an implementation of RPQ semantics. In
particular, answering an RPQ Q = (x, r, y) over an RDF graph T is to find a set of pairs of
resources (v0, vn) such that there exists a path ρ in T from v0 to vn, where the label of ρ,
denoted by λ(ρ), satisfies the regular expression r in Q.

However, from the above standard semantics of RPQs, we cannot tell what such a
path ρ from v0 to vn looks like. To provide the provenance why a pair of resources in
an RDF graph satisfies Q, we focus on the provenance-aware semantics of RPQs which
actually returns a subgraph of the RDF graph consisting of all the “witness triples”.
For example, Figure 1a depicts an RDF graph T1 excerpted from DBpedia [17], which
shows predecessor and father relationships among seven British monarchs [25]. The RPQ
Q1 = (x, (predecessor|father)+, y) asks to find pairs of monarchs (v0, vn) such that v0 can
navigate to vn via one or more predecessor or father edges. The answers under the standard
semantics to Q1 are shown in Figure 1b. In contrast, the provenance-aware answer to Q1 is
a subgraph that contains all the paths whose labels satisfy Q1. In this example, the subgraph
(i.e., answer) is exactly T1, which can efficiently encode the conventional answers to Q1 in
Figure 1b.

Figure 1 An example RDF graph T1 and answers to RPQ Q1
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Currently, there have been some research works on RPQs over RDF graphs under both
standard and provenance-aware semantics. To answer RPQs under the standard semantics,
some approaches leverage views [9] or other auxiliary structures, such as “rare labels” [15].
The RPQ evaluation system Vertigo [20] is implemented based on Brzozowski’s derivatives
using the Giraph parallel framework [2]. Wang et al. [26] employ the partial evaluation
to obtain partial answers to RPQs in parallel and assemble the partial answers using an
automata-based algorithm. However, the above methods may lead to potential large interme-
diate results and suffer from performance bottleneck when evaluating RPQs on large-scale
RDF graphs. Although Dey et al. [11] have done the first work to investigate provenance-
aware RPQs, they translate RPQs into standard Datalog queries, which is hardly scalable
when evaluating on large RDF graph data. Another representative work [24] is based on
product automata to evaluate provenance-aware RPQs, which may incur the costly construc-
tion process of product automata and excessive communications when handling large-scale
RDF graphs.

A variety of parallel models and systems have been developed these years, such as
Neo4j,1 Trinity,2 and BSP. (1) Neo4j is a graph database optimized for graph traversal, but it
performs badly on a large distributed environment; (2) Trinity is a distributed system based
on hypergraphs, and does not support regular path queries; (3) BSP models parallel compu-
tations in supersteps to synchronize communication among workers. Pregel [19] implements
BSP with vertex-centric programming, where a superstep executes a user-defined function
at each vertex in parallel. This vertex-centric approach works well with a series of iterative
programs on graph data. Further, Pregel is more widely implemented in the mainstream big
data platform, such as Spark and Giraph, which mostly rely on share-nothing architectures.
In summary, Pregel is a state-of-the-art distributed graph computing framework.

Pregel is a computational model suitable for programs that can be expressed as a
sequence of iterations, in each of which a vertex can receive messages sent in the previous
iteration, send messages to other vertices, and modify its own state and that of its outgoing
edges or mutate the graph topology. Since our proposed method for answering provenance-
aware RPQs needs to traverse the graph, we can reasonably implement graph processing
algorithms in a sequence of superstep iterations using Pregel.

To this end, in this paper, we propose a distributed Pregel-based parallel approach
DP2RPQ to answering provenance-aware RPQs using Glushkov automata, which consists
of a series of supersteps. The query processing starts with the vertices in an RDF graph to
match against the states in the corresponding automaton of the RPQ; in each superstep, one
hop of edges in the paths of the RDF graph are matched forward to obtain the intermediate
partial answer to the provenance-aware RPQ.

In addition, we design several optimization strategies in three aspects: (1) to reduce
vertex-computation cost, we design edge-filtering and candidate-states techniques to
improve the performance of vertex computation, which can filter out those edges whose
labels not occurring in r and avoid traversals via outgoing edges of the vertex, respectively;
(2) to reduce message-communication cost, pruning-sending-messages and variable-length-
byte encoding techniques are proposed to reduce intermediate results and communication
overhead significantly; (3) to address the counting-paths problem [1], we further propose
another two techniques, which combine multiple equivalent messages into a single mes-
sage and compress the messages that are sent via different outgoing edges. Although our

1https://neo4j.com/
2http://research.microsoft.com/en-us/projects/trinity/
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method is devised for answering provenance-aware RPQs over RDF graphs, it can be well
adapted to the RPQs under the standard semantics. Actually, the answer of provenance-
aware RPQs can be regarded as a subgraph of the RDF graph. In contrast, an RPQ with
standard semantics is to find a set of pairs of vertex, and these vertices are completely
included in the subgraph of provenance-aware answers. Further, our method can be easily
extended to handle RPQs over general (un)directed labeled graphs.

Our main contributions include: (1) we propose an automata-based distributed algo-
rithm, called DP2RPQ, for RPQs under the provenance-aware semantics using the Pregel
graph parallel computing framework; (2) several optimization strategies in three aspects are
presented to reduce the overhead of the basic DP2RPQ algorithm and alleviate the counting-
paths problem; and (3) the extensive experiments were conducted to verify the efficiency
and scalability of the proposed method on both synthetic and real-world datasets.

The rest of this paper is organized as follows. Section 2 reviews related work. In
Section 3, we introduce preliminary definitions of RPQs. In Section 4, we describe in detail
the DP2RPQ algorithm for answering provenance-aware RPQs. We then present the opti-
mization techniques in Section 5. Section 6 shows experiment results, and we conclude in
Section 7.

2 Related work

Most of the existing approaches aim to evaluate RPQs under the standard semantics, but
relatively fewer works focus on RPQs under the provenance-aware semantics. Currently,
we are not aware of any distributed Pregel-based approach to evaluating provenance-aware
RPQs. We classify the existing approaches into the following two categories.

2.1 Standalone RPQs evaluations on a single machine

Standard semantics of RPQs The approach proposed in [9] answers RPQs using views,
which can be interpreted as checking whether a pair of nodes is one of the answers.
The view-based approach for RPQs has been extensively investigated, while the types of
data and queries that this approach can handle are restricted under certain assumptions.
Koschmieder et al. [15] propose a rare-labels-based approach that decomposes RPQs into a
series of smaller RPQs. The rare labels denote the elements in RPQs that have few matches
by utilizing the labels and their frequencies in data graph. However, the performance of the
method highly depends on a specific query decomposition and selectivity of rare labels.

Provenance-aware semantics of RPQs Dey et al. [11] first translate the provenance-aware
RPQs into standard Datalog queries or SQL queries, in which auxiliary predicates are intro-
duced to evaluate queries represented by Datalog. In this work, two evaluators for RPQs
and provenance-aware RPQs are both implemented on the relational DBMS. However, from
the experimental results, we can observe that the approach is hardly scalable for large-scale
RDF graphs.

2.2 Distributed RPQs evaluations in parallel

Standard semantics of RPQs A distributed algorithm for evaluating RPQs on large-scale
RDF graphs is proposed in [26], which is the first work to investigate RPQs using partial
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evaluation. It employs a dynamic programming method to compute partial answers in paral-
lel, which are then assembled to obtain the final results using an automata-based algorithm.
Nevertheless, the experiments on the real-world datasets are not shown in the paper. Sar-
tiani et al. [20] exploit Brzozowski’s derivatives [8] of regular expressions to evaluate RPQs
in a vertex-centric and message-passing-based manner, which is implemented on top of
the Giraph framework. However, the experimental results are only evaluated on the Erdös-
Rényi models and the power-law graphs, lacking experiments on synthetic and real-world
RDF graphs to verify the algorithm. A system for processing GXPath queries on a large data
graphs is proposed in [21], in which GXPath [18] is the most powerful extension of RPQ.
In this system, built on top Hadoop MapReduce, a query is complied into an acyclic graph
of MapReduce jobs, similar in spirit to a database query plan. However, each graph must be
indexed before becoming available for querying.

Provenance-aware semantics of RPQs Wang et al. [24] propose an automata-based
approach, which employs product automata for evaluating RPQs under the provenance-
aware semantics in parallel. The product automaton is constructed using two NFA converted
from the regular expression of an RPQ and the RDF data graph, respectively. Then the
answer paths are extracted by running the product automaton recursively. Nevertheless, the
product automata construction in this method may incur high overhead and excessive com-
munication cost when dealing with large-scale RDF graphs. RDFPath [22] implements an
expressive RDF path query language using the MapReduce framework. A query in RDFPath
is translated as a sequence of location steps, in which the predicate in query is specified by
the next adjacent edge attribute and separated by “>”. Since the location steps in RDFPath
are deterministic predicates, queries are executed only on triples in graphs associated with
these predicates. The execution plan of query is generated by dividing these location steps,
which corresponds to a join between an intermediate set of paths and the corresponding
RDF graph partition. However, it cannot implement the complete expressiveness of regular
path queries, especially the Kleene closure operation. A new query language on the graph is
presented in [3, 4], called G-Path, which focuses on complex path pattern query processing
on a very large graph. Further, a system called Para-G [5] is introduced to process G-Path
queries, which is based on a BSP-like model as well as MapReduce model [10], and can
effectively handle distributed graph data operations and queries. Nevertheless, the experi-
mental results are only evaluated on synthetic datasets, lacking experiments on real-world
datasets.

Unlike the above previous works, we propose a Pregel-based algorithm for evaluating
provenance-aware RPQs on big RDF graphs. To the best of our knowledge, it is the first
work to implement an efficient and scalable evaluation of provenance-aware RPQs using
the Pregel parallel graph computing model.

3 Preliminaries

We start by formally defining background knowledge, this section also serves to establish
the notation we will use through the rest of paper.

Definition 1 RDF graph Let U and L be the disjoint infinite sets of URIs and literals,
respectively. A tuple (s, p, o) ∈ U × U × (U ∪ L) is called an RDF triple, where s is the
subject, p is the predicate (a.k.a. property), and o is the object. A finite set of RDF triples
is called an RDF graph.
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Given an RDF graph T = (V ,E,�), where V , E, and � denote the set of vertices,
edges, and edge labels in T , respectively. Formally, V = {s | (s, p, o) ∈ T }∪{o | (s, p, o) ∈
T }, E = {(s, o) | (s, p, o) ∈ T }, and � = {p | (s, p, o) ∈ T }. In addition, we define
an infinite set V ar of variables that is disjoint from U and L. An example RDF graph T2
is shown in Figure 2a, which consists of 13 triples (i.e., edges). For instance, (v1,a, v2)

is an RDF triple as well as an edge with label a in T2, and VT2 = {vi | 1 ≤ i ≤ 8},
�T2 = {a,b,c,d,e,f,g,h}.

Definition 2 Regular path queries Let Q = (x, r, y) be a regular path query over an RDF
graph T = (V ,E,�), where x, y ∈ V ar are variables, and r is a regular expression over the
alphabet �. Regular expression r is recursively defined as r ::= ε

∣
∣ p

∣
∣ r/r

∣
∣ r|r ∣

∣ r∗, where
p ∈ � and /, |, and ∗ are concatenation, alternation, and the Kleene closure, respectively.
The shorthands r+ for r/r∗ and r? for ε|r are also allowed. L(r) denotes the language
expressed by r and λ(ρ) is the label of path ρ. The answer set of Q under the standard
semantics, denoted by , is defined as {(x, y) | ∃ a path ρ in T from x to y s.t. λ(ρ) ∈
L(r)}.

Given a regular expression r , let Pos(r) = {1, 2, . . . , |r|} be the set of positions in r ,
where |r| is the length of r . Thus, the symbols in r can be denoted as r[1], r[2], . . . , r[|r|].

Definition 3 Automata of RPQs Given an RDF graph T and an RPQ Q = (x, r, y) over
T , the automaton of RPQ Q is the Glushkov automaton AQ converted from the regular
expression r by using the Glushkov’s construction algorithm [7]. The function first(r)

Figure 2 An RDF graph T2 and provenance-aware answer of Q2 on T2
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(resp. last(r)) is the set of positions in r that can match the first (resp. last) symbol of
some string in L(r), and the function follow(r, i) is the set of positions in r that can follow
position i when matching some string in L(r). AQ is defined as a 5-tuple (St, �, δ, q0, F ),
where (1) St = {0} ∪ Pos(r) is a finite set of states, (2) � is the alphabet of r , (3) δ :
St × � → P(St) is the transition function, (4) q0 = 0 is the initial state, (5) and F is the
set of final states. Here, δ and F are further defined as follows:

δ(q, a) =
{ {i | i ∈ first(r) ∧ r[i] = a} if q = q0

{i | i ∈ follow(r, q) ∧ r[i] = a} if q ∈ Pos(r)

F =
{ {q0} ∪ last(r) if ε ∈ L(r)

last(r) otherwise

Example 1 Given an RPQ Q2 = (x, r, y) and r = a/b∗/c/(d|e), we build AQ2 =
{St, �, δ, q0, F } based on r , where St = {0, 1, 2, 3, 4, 5}, � = {a, b, c, d, e}, q0 = {0},
F = {4, 5}, and the transition function δ is represented in the form of the transition graph
shown in Figure 3a.

Definition 4 Provenance-aware answer set of RPQs Given an RDF graph T = (V ,E,�)

and an automaton AQ = (St, �, δ, q0, F ) of an RPQ Q, the provenance-aware answer

set of Q over T , denoted by , is defined as a 5-tuple (Vp, Ep, Lp, Ip, Fp), where (1)
Vp ⊆ V ×St is a set of vertices, (2) Ep ⊆ Vp×Vp is a set of edges, (3) Lp is a function that
assigns each edge a label in �, and (4) Ip = {(v, q0) | v ∈ V } ⊆ Vp and Fp = {(v, qf ) |
v ∈ V ∧ qf ∈ F } ⊆ Vp are the sets of start and final vertices, respectively. Here, is
constructed by the following process: for each path v0a0v1 · · · vn−1an−1vn in T such that

Figure 3 The automaton and the provenance-aware answer of Q2
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Table 1 The functions in Pregel framework

Functions Description

superStep to get the number of the current superstep

getState to get the current state of a vertex

voteToHalt to deactivate a vertex v, i.e., getState(v) = inactive

sendMsg to send messages M from one vertex v to another vertex v′

there exists a sequence of states st0, st1, . . . , stn in St satisfying st0 = q0, sti+1 ∈ δ(sti , ai)

for i ∈ {0, . . . , n − 1}, and stn ∈ F , a path ρ = vp0a0vp1 · · · vpn−1an−1vpn in is
constructed, where vpi

= (vi, sti ) for i ∈ {0, . . . , n} and by definition vp0 ∈ Ip ∧vpn ∈ Fp.

Example 2 The provenance-aware answer set of Q2 over T2 as defined in Definition 4 is
shown in Figure 3b, which can be considered as the extended version of the provenance-
aware answer to Q2 (as a subgraph of T2 marked in green in Figure 2b), which attaches the
matched states of AQ2 to the corresponding vertices.

Pregel is a vertex-centric parallel model for graph computation . The computation in
Pregel is composed of a sequence of iterations, i.e., supersteps, conforming to the Bulk
Synchronous Parallel (BSP) model [12].

There are several functions involving in the process of Pregel-based algorithms, as shown
in Table 1. In particular, for each vertex v, we define V al(v) as the set of values associ-
ated with v. Within a superstep, each vertex executes the user-defined vertex computation
vertexCompute(T ,M) to get and update V al(v) in parallel.

The description of notation introduced in the definition are shown in Table 2, which we
will use in the rest of paper.

Definition 5 Pregel framework Given an RDF graph T = (V ,E,�) as the input data,
in the first superstep, all the vertices are active. The entire computation terminates
when all vertices are inactive. Let M be the set of messages. Within a superstep, the
user-defined function vertexCompute(T ,M) is executed on each active vertex in par-
allel. An inactive vertex will be reactivated by the incoming messages sent to it. When
vertexCompute(T ,M) is invoked on each active vertex v, it (1) gets the number of
current superstep by superStep; (2) receives messages (i.e., each m ∈ M) sent to v

in the previous superstep; (3) obtains and/or updates V al(v); (4) modifies M to generate
the set of new messages M ′; (5) invokes sendMsg(v, v′,M ′) to send M ′ to the adjacent
vertex v′, and (6) invokes voteToHalt.

Definition 6 Matching pair Given an RDF graph T = (V ,E) and an automaton AQ of an
RPQ Q = (x, r, y), the query processing in Pregel is matched forward by generating the
matching pair in each superstep. The matching pair is denoted as a pair (v, q) satisfying ∃
a ∈ S(v) ∧ q ∈ {St \ q0} ∧ v ∈ V ∧ a = r[q], where S(v) is the set of symbols labeled on
the incoming edges of v.

In particular, (v, q0) (q0 ∈ AQ) is also called a matching pair. The macthing pairs
generated in query processing can be demonstrated as the vertices Vp ⊆ V × St in the
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Table 2 The notations in the definition

Notations Description

U the infinite sets of URIs

L the infinite sets of literals

(s, p, o) an RDF triple

s the subject of an RDF triple, where s ∈ U

p the predicate (a.k.a. property) of an RDF triple, where p ∈ U

o the object of an RDF triple, where o ∈ U ∪ L

T an RDF graph, where T = (V ,E,�)

V the set of vertices in T , where V = {s | (s, p, o) ∈ T } ∪ {o | (s, p, o) ∈ T }
E the set of edges in T , where E = {(s, o) | (s, p, o) ∈ T }
� the set of edge labels in T , where � = {p | (s, p, o) ∈ T }
V ar an infinite set of variables that is disjoint from U and L

Q = (x, r, y) a regular path query, where x, y ∈ V ar

r a regular expression, where r ::= ε
∣
∣ p

∣
∣ r/r

∣
∣ r|r ∣

∣ r∗

L(r) the language expressed by r

λ(ρ) the label of path ρ

|r| the length of r

Pos(r) the set of positions in r , where Pos(r) = {1, 2, . . . , |r|}
AQ an automaton of an RPQ Q, where AQ = (St,�, δ, q0, F )

�Q�T the answer set of Q over T under the standard semantics

�Q�
p

T the provenance-aware answer set of Q over T

provenance-aware answer set in Definition 4. In general, an

answer path in can be denoted as a sequence of matching pairs.

4 The Pregel-based algorithm

In this section, we propose the Pregel-based algorithm for answering provenance-aware
RPQs, which employs the automata introduced in Section 3. First, we describe the overall
evaluation, then elaborate the computation in each vertex of each superstep. Finally, we
discuss the cycle detection mechanism to avoid loop or infinite matching when evaluating
on cyclic RDF graphs.

4.1 Architecture overview

The architecture of the Pregel-based algorithm for evaluating provenance-aware RPQs is
shown in Figure 4. 1© Given an RDF graph T and an RPQ Q = (x, r, y) over T , the
automaton of RPQ Q is the Glushkov automaton AQ converted from the regular expression
r by using the Glushkov’s construction algorithm; 2© The query processor, which starts
with the vertices in an RDF graph to match against the states in the corresponding automaton
of Q, operates using the Pregel parallel computing framework to compute the matched
intermediate results; 3© Several optimization strategies are presented to reduce the overhead

World Wide Web (2020) 23:1465–1496 1473



The automaton of Q

RDF Knowledge Graph

Pregel Parallel Graph 

Computation Model

worker_1 worker_4

master

worker_2 worker_3

...

RPQ Q = (x, a/b*/c(d|e), y)

Resultsv1 v2 v4v3

v5 v6 v7 v8

a c

a

h

a

g

f

g

b d e

result_1

result_2

v1,0 v2,1 v4,3a

v6,2 v8,5

b

e

...

v1,0 v2,1 v4,3a

v6,2 v7,4

b

d

result_n

v2,0 v3,1 v4,3a

v7,4

c

0

2 5

1 43a, r[1] c, r[3] d, r[4]

b, r[2]start

b, r[2]

edge-filtering
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counting-paths
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1

2 2

3 4

Figure 4 The architecture of DP2RPQ

of the basic DP2RPQ algorithm and alleviate the counting-paths problem; 4© After the
entire computation completes, we can obtain the final provenance-aware results.

4.2 Provenance-aware RPQs based on Pregel

The overall evaluation DP2RPQ is shown in Algorithm 1, in which we construct an automa-
ton AQ = {St, �, δ, q0, F } of an RPQ Q = (x, r, y) (line 1). In each superstep, each active
vertex v invokes vertexCompute in parallel (line 4) to match against a state q ∈ St ,
while the updated partial answers are maintained in V al(v). The matching process is exe-
cuted repeatedly in the following supersteps until the computation terminates. When the
entire computation completes, we combine V al(v) of each vertex v to obtain the final

provenance-aware answer set (line 5).

The process of the vertex computation vertexCompute is shown in Algorithm 2. It is
executed at each vertex v ∈ V in parallel, which has the following three phases:

1) In the first superstep (lines 2-7), v is considered to be matched against the initial state
q0 only if there exists an outgoing edge (v, v′) such that the label of (v, v′) is the same
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as r[q] satisfying q ∈ first(r) (lines 3-4). Then, the first matched message m is
generated, which formally is a set of matching pair (v, q0). Further, the message set
Ms is a set of matched messages, which is sent to the adjacent vertices by invoking
sendMsg (line 7). Finally, getState(v) = inactive by invoking voteToHalt
(line 21).

2) As to the remaining supersteps (lines 8-20), if the set Mr of the receiving messages
from the adjacent vertices in the previous superstep is empty, v is deactivated by
voteToHalt (line 21), otherwise each active vertex is matched forward based on the
messages in Mr (lines 10-19). First, the set Rq ′ of the next possible states is computed
by follow w.r.t. the current matched state q (line 12). Next, if v has an outgoing edge
labeled with the same symbol as r[q ′] (q ′ ∈ Rq ′ ), a new message m is built by append-
ing (v, q ′) to m′ and then added to the message set Ms to be sent (lines 13-16). Finally,
sendMsg(v, v′,Ms) is invoked to send Ms from v to v′ (line 20). Meanwhile, v checks
whether the current matched state q ′ of the new set of matching pairs m is a final state
(i.e., q ′ ∈ last(r))(line 17). If it is, then m is regard as the answer path ρf in form of
a sequence of matching pairs, which is added to the partial provenance-aware answer
set, denoted by V al(v) (lines 18-19).

In sendMsg(v, v′,Ms) (line7, 20), the condition of sending a message m ∈ Ms from v

to v′ is that the current matched state q satisfies ∃ q ′ ∈ follow(r, q) ∧ r[q ′] = λ((v, v′)).
In addition, when v′ receives messages from different adjacent vertices, it merges all the
messages into Mr .
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The correctness of the DP2RPQ algorithm is guaranteed by the following theorem.

Theorem 1 Given an RPQ Q = (x, r, y) over an RDF graph T ,

.

Proof (Sketch)

(i) “If” direction: for , ∃ a path ρ1 in T from
v0 to vn and a path ρ2 in AQ from q0 to qn. It can be observed that qi ∈
δ(qi−1, λ((vi−1, vi))), for 1 ∈ {1, . . . , n}, holds in DP2RPQ. The label of ρ1 is the
same as that of ρ2, i.e., λ(ρ1) ∈ L(r). Therefore, .

(ii) “Only if” direction: for , assume a path in form of
v0a0 · · · vn−1an−1vn in T such that there exists a sequence of states st0 . . . stn in St

of AQ in DP2RPQ satisfying st0 = q0, sti+1 ∈ δ(sti , ai) for i ∈ {0, . . . , n − 1}, and
stn ∈ F . The path ρ = (v0, q0)a0(v1, q1) · · · (vn−1, qn−1)an−1(vn, qn) is constructed

in DP2RPQ, i.e., .

Theorem 2 The complexity of the DP2RPQ algorithm is bounded by O(|deg+
m |k · |r|k ·

|deg−
m |k−1), where |r| is the length of the regular expression r in Q, k is the total number

of supersteps, and |deg+
m | (resp. |deg−

m |) is the maximum outdegree (resp. indegree) of the
vertices in T .

Proof (Sketch)

(i) Basis: When k = 1, in the first superstep, there exists a vertex that is matched for
O(|deg+

m | · |r|) times since at most |deg+
m | outgoing edges of the vertex are matched

against the states in first(r). Thus, the complexity is O(|deg+
m | · |r|).

(ii) Induction step: For k (k ≥ 1) supersteps, the complexity is O(|deg+
m |k · |r|k ·

|deg−
m |k−1) as the induction hypothesis. Thus, there exists a vertex that is matched

O(|deg+
m |k · |r|k · |deg−

m |k−1) times, and all these matches are sent as messages via the
outgoing edges. Then, for (k + 1) supersteps, since the maximum number of incom-
ing edges of a vertex may be |deg−

m |, the receiving message set of the vertex includes
O(|deg+

m |k · |r|k · |deg−
m |k+1) messages. Next, each receiving message of the vertex are

matched against at most |r| states in the automaton based on the label of |deg+
m | out-

going edges of the vertex to generate O(|deg+
m |k+1 · |r|k+1 · |deg−

m |k) messages. Thus,
the vertex is matched O(|deg+

m |k+1 · |r|k+1 · |deg−
m |k) times, which is the complexity

for (k + 1) supersteps.

In particular, |deg+
m | and |deg−

m | can be further reduced to |r| by our optimization techniques
in Section 5. Thus, the complexity of the optimized DP2RPQ algorithm is O(|r|3k−1).
In general, |r| is short in length and the number of total supersteps k is also
limited.

4.3 Cycle detection

Loop matching may be generated in the matching process of RPQs when evaluating on
cyclic RDF graphs. A cycle in an RDF graph is a path of edges and vertices wherein a vertex
is reachable from itself.
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Definition 7 (Loop matching) Given a provenance-aware answer set
of an RPQ Q over an RDF graph T , an answer path ρf = {(vs,

q0), . . . , (vi, qm), . . . , (vj , qn), . . . } in is called a loop matching if and only if j = i.

In Definition 7, only if a vertex is matched more than once in a path, the matching can be
regarded as a loop matching. Considering the edges and states additionally, loop matching
can be further refined into four cases.

(1) only vertex: (vi, qm) and (vi, qk) (m = k) occur in the same path
(2) vertex and state: (vi, qm) and (vi, qk) (m = k) occur in the same path
(3) vertex and edge: (vi, qm)(vj , qn) and (vi, qk)(vj , ql) (m = k∧n = l∧r[qn] = r[ql])

occur in the same path
(4) vertex, edge and state: (vi, qm)(vj , qn) and (vi, qk)(vj , ql) (m = k∧n = l∧r[qn] =

r[ql]) occur in the same path

In particular, when closure operations ∗ and/or + occur in r , it may lead to infinite num-
ber of matches when evaluating on cyclic RDF graphs. Therefore, we introduce a cycle
detection mechanism in DP2RPQ to ensure that a vertex is not matched with the same state
twice in intermediate partial answers, i.e., considering vertex and state. For a message m′
in a set of receiving messages, if a 2-tuple matching pair (v, q) ∈ m′, then (v, q) cannot be
added to m′ again for generating a new message in the following supersteps.

5 Optimization strategies

To improve the efficiency of our method, we evaluate the cost of the Pregel computa-
tion. Further, three optimization strategies are devised according to the cost model, which can
reduce the cost of vertex-computation, reduce the intermediate results of the basic DP2RPQ
algorithm dramatically, and address the counting-paths problem to some extent, respectively.

5.1 Cost estimation

The cost of the Pregel computation is determined as the sum of the cost of all supersteps.
The cost of each superstep consists of the following terms: (1) wi is the maximum cost
of vertex computation among all vertices in the i-th superstep; (2) hi is the maximum
number of messages sent or received by each vertex; and (3) l is the cost of the barrier
synchronization at the end of a superstep. Thus, the cost of a Pregel-based algorithm is
∑k

i=1 wi + g
∑k

i=1 hi + kl, where g is the cost to deliver a message and k is the num-
ber of total supersteps. Therefore, the cost of DP2RPQ is determined by the cost of vertex
computation, the cost of passing messages, and the number of the supersteps.

5.2 Vertex-computation optimization

In this section, we design two techniques to reduce the cost of vertex-computation in each
superstep.

5.2.1 Edge filtering

Generally, the input graph is stored into main memory in Pregel, which may result in an inef-
ficient memory utilization. In order to improve the efficiency and scalability of the DP2RPQ
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algorithm, we design the edge-filtering technique, which only loads the edges labeled with
the symbols that occur in r of Q = (x, r, y) by filtering other edges. We use �r to denote
the subset of the alphabet that appears in r . Then, an edge (v,a, u) in the input RDF graph
T is loaded if and only if a ∈ �r . In Example 2, with edge filtering, only the edges labeled
with the symbols in �r = {a,b,c,d,e} are involved in the processing, while the edges
labeled with f, g, and h are filtered.

5.2.2 Candidate states

In Algorithm 2, the traversal operations over the incoming edges of each vertex (line 13)
are not efficient when evaluating RPQs on large-scale RDF graphs. Thus, we leverage the
prior knowledge in a given query RPQ Q over an RDF graph T to construct an auxiliary
structure called candidate states, denoted by Rc, which keeps a set of the state q of the RPQ
automaton in each vertex v satisfying a matching pair (v, q).

Rc is precomputed before processing and calculated only once. The construction
of the candidate-states consists of two situations. First, we construct a set including
{(v1, q0), . . . , (vi, q0), . . . , (vn, q0)} (n ≤ |V |) and check whether the outgoing edges of
each vertex v labeled with the same symbols as r[q] (q ∈ first(r)). If it satisfies, q0 is
put into Rc of v. Then, at each vertex v, we check whether the incoming edges of v labeled
with the same symbols as r[q] (q ∈ St). If it satisfies, q is put into Rc of v. With candidate-
states technique, we traverse the edges of each vertex only once, which avoids the excessive
cost of traversal operations in each superstep of the Pregel-based processing.

In vertex computation, we compare the states in Rc with that in Rq ′ instead of the costly
iteration of all adjacent vertices. Algorithm 3 is an optimized version of lines 13-16 in
Algorithm 2 by using the candidate-states technique, in which the modified matching pro-
cess is: (1) Rq ′ is computed by function follow; (2) v receives the message m′ ∈ Mr , if
q ′ ∈ Rc ∩ Rq ′ , a new message m will be built by appending (v, q ′) to m′, otherwise there is
no new message to be generated for this particular message m′.

Example 3 Consider the RDF graph T2 = (V ,E,�), the RPQ Q2 = (x, r, y), and the
automaton AQ2 = {St, �, δ, q0, F } in Example 2. First, q0 is appended to Rcv1

and Rcv2
since v1 and v2 have outgoing edges labeled with a satisfying first(r) = {1} and r[1] =
a. Then, for example, there exists an incoming edge of v2 labeled with a and r[1] = a, the
candidate states for v2 are Rcv2

= {0, 1}, as shown in Figure 5. If v2 receives a message
m′ = ((v1, 0)) from v2, Rq ′

0
= follow(r, 0) = {1} is computed. Thus, (v2, 1) is appended

to m′ to generate a new matched message.
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Figure 5 The RDF graph T2 with candidate-states technique

5.3 Message-communication optimization

With the number of the superstep increasing, the size of each message to be sent will become
larger. Meanwhile, from the analysis of algorithm complexity, it can be seen that the number
of messages to be sent in the k-th superstep can reach exponential complexity of the max-
imum degree of outdegree/indegree in an RDF graph. When dealing with large-scale RDF
knowledge graphs, the communication cost of sending a large number of messages is time-
consuming, in this section, we consider reducing the communication cost. On one hand, we
prune unnecessary messages by using the provenance-aware RPQs’ features and the Kleene
closure operations to reduce the message-passing cost and the number of supersteps. On
the other hand, we encode the messages that have to be sent by using variable-length-byte
encoding to reduce the sizes of messages.

5.3.1 Pruning sendingmessages

In order to realize pruning some matching pairs in the messages to be sent, we subtract
the matching pairs that has already been added to the partial provenance-aware answer set.
Further, we subtract the duplicate matching pairs which are incurred by the Kleene closure
operations.

Pruning answermatches In the matching process of the DP2RPQ algorithm, when the cur-
rent matched state of a message that received at the vertex is an accept state, the message is
converted into an equivalent answer path, meanwhile, it is matched forward by appending a
matching pair. Obviously, as the number of the superstep increases, the length of this mes-
sage will increase accordingly. To this end, we prune the matching pairs that have already
been added into the partial provenance-aware answer set to reduce the length of the message.

For example, given an RPQ Q3 = (x, r3, y) and r3 = a/b/c∗, it is evaluated on the
RDF graph T3 shown in Figure 6. In the third superstep, v3 receives the message m′ =
(v1, 0)(v2, 1) from v2, then v3 append (v3, 2) to m′ and maintain the new message m =
(v1, 0)(v2, 1)(v3, 2) as the answer path into the partial answer set V al(v3). The message
m is also sent to v4 to be matched forward, among which (v1, 0)(v2, 1) is already kept in
V al(v3). Thus, the matching pairs (v1, 0) and (v2, 1) in m are pruned, only m = (v3, 2) is
sent to v4 as the message. It has no effect on the final result and can reduce the length of
messages sent.
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Figure 6 An RDF graph T3

Pruning duplicatematches When evaluating RPQs, the number of the supersteps required
to process different queries may vary considerably. For example, in DP2RPQ, given Q4 =
(x, a/b/c/d, y), |r| = 4, it needs (|r| + 1) supersteps at most; given Q5 = (x, (a/a)+, y),
|r| = 2, it needs (|r| ∗ k + 1) (k ∈ {1, ..., n}) supersteps, and k is proportional to the size of
an RDF graph.

When evaluating Q5 on T3, it needs five supersteps. The longest answer path of Q5
is of the form (v1, 0)(v2, 1)(v7, 2)(v8, 1)(v9, 2), which is generated at v9 in the fifth
superstep. For the matching process, at the third superstep, v7 generates a new message
(v1, 0)(v2, 1)(v7, 2), which is to be sent and maintained in the partial provenance-aware
set of v7, i.e., V al(v7). Meanwhile, v9 generates a new message (v7, 0)(v8, 1)(v9, 2) and
maintains it in V al(v9) at the third superstep. Next, in the fourth superstep, v8 receives the
message (v1, 0)(v2, 1)(v7, 2) from v7 and appends (v8, 1) to it to generate a new message.
The matching pair (v8, 1) is a duplicate match, which cannot be appended to the receiving
message. Thus, there is no new message in v8 in the fourth superstep. With pruning dupli-
cate matches, the number of total supersteps decreases into |r| + 1, which is only related
to |r|. Generally, |r| can be considered as a constant, which reduces the number of total
supersteps and the number of intermediate results.

In summary, the size of messages to be sent can be reduced by pruning matches. The
maximum number of sending messages in the k-th superstep decreases from exponential
complexity to polynomial complexity, i.e., O(|deg+

m | · |r| · |deg−
m |).

5.3.2 Variable-length-byte encoding

In fact, the cost of passing messages has a significant impact on query performance.
Therefore, we need to compress the storage space of messages based on encoding messages.

The message includes a series of matching pairs (v, q), where (1) v can correspond to
the vertex label or vertex ID, both of which are unique identifiers; (2) q is the matched state
of the automation of an RPQ. In general, v and q can be represented by an integer variable
using 4 bytes. If using integer variables to represent v and q, when the value is small, space
utilization will be very low. It can be seen that fixed length byte encoding that represents
v and q wastes a lot of space. Therefore, we use variable-length-byte encoding method, as
shown in Algorithm 4. The storage space varbyteEncoding(x) occupied by the integer
variable x is as follows:

varbyteEncoding(x) =
⎧

⎨

⎩

1B if x < 27

2B if 27 ≤ x < 214

3B if 214 ≤ x < 221
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5.4 Counting-paths alleviation strategy

In particular, due to the provenance-aware semantics, the counting-paths problem in DP2RPQ is
often caused. To address it, we attempt to decrease the times of matching and compress the
messages to be sent.

5.4.1 Counting-paths problem

It is inevitable to cause the counting-paths problem for a distributed Pregel-based algo-
rithm to generate provenance-aware answers to RPQs, which may incur the prohibitively
expensive overhead [1].

Theorem 3 In distributed provenance-aware RPQs evaluation, counting-paths problem is
inevitable in most cases.

Proof (Sketch) For example, given an RDF graph T4 in Figure 7, the vertex x has k incom-
ing edges labeled with a and n outgoing edges labeled with b. If x receives a set Mr of k

messages via the incoming edges (v1, x), (v2, x), . . . , (vk, x), there exists a set including
{m′

j , . . . , m
′
p} ∈ Mr (j ≥ 1 ∧ p ≤ k) such that the last element (vi, qi) (j ≤ i ≤ q) in

these messages satisfying Rq ′=follow(qi) ∧ r[q ′] = a ∧ q ′ ∈ Rq ′ . Then, for each mes-
sage m′ ∈ {m′

j , . . . , m
′
p}, |r|× k new messages may be built by appending (x, q ′) to m′ and

sent to the adjacent vertices by the n outgoing edges labeled b when Rq ′′ = follow(q ′) ∧
r[q ′′] = b ∧ q ′′ ∈ Rq ′′ . Obviously, |r| × k × n messages need to be sent in total, which is
actually the Cartesian product of the k receiving messages and n outgoing edges. It is known
that the Cartesian product is the key factor in causing the counting-paths problem.

5.4.2 Message selection

To partly address the counting-paths problem, we reduce the number of matches between a
vertex and a state, which is the dominant cost in vertex computation of each superstep. Let

Figure 7 RDF graph T4 with the
Cartesian product
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a message set M = {m′
1, . . . , m

′
k} be a subset of Mr . If the next matched states of the last

elements of all messages in M are the same, we just select any message m′ from M and
append the element (v, q ′) to m′ to built the message, and the remaining message set M \m′
is cached in v. If there exists an answer path that contains m′, then M \m′ is appended to the
final provenance-aware answer set. This optimization technique is referred to as message
selection, which can avoid the Cartesian product by reducing the number of messages from
O(k · |r| · n) to O(|r| · n).

In Figure 8, there are |r| × k messages generated at x satisfying q ′ ∈ Rqi
∧ Rqi

=
follow(qi) ∧ Rqi

= Rqj
∧ 1 ≤ i, j ≤ k. Then we just select any message among |r| × k

messages to be matched.

5.4.3 Message compression

In Algorithm 2, a message m ∈ Ms generated at a vertex v may be sent several times via
different edges when v has more than one outgoing edges labeled with the same symbol,
which may incur excessive message passing cost. Since the messages are sent via the edges
from one vertex to another vertex in Pregel, it is inevitable to send some message multiple
times.

Figure 8 Matching processing with message selection
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Definition 8 (Duplicated-passing message) In DP2RPQ evaluation, if a generated message
can be sent via more than one edges from one vertex to multiple adjacent vertices labeled
with the same symbol, it is called a duplicated-passing message.

To reduce the cost of message-passing, in Algorithm 5, we compress the duplicated-
passing messages. Thus, Algorithm 5 is an optimized version of line 20 in Algorithm 2. We
leverage a sequence Sm(v) to keep the original uncompressed messages, which is attached
to v. Then a duplicated-passing messages m is compressed into a message ((Cm, i), (v, q ′))
to be sent at v, which only consists of two elements compared to the original message, where
Cm is a flag representing the message is compressed, i denotes the index of the original
message in Sm(v), and q ′ is the matched state of v in the current superstep. Then, the
compressed message is appended to the message set Ms (line 9). Finally, when transforming
a message to an equivalent path in line 18 in Algorithm 2, we uncompressed the partial
message ((Cm, i), (v, q ′)) by employing index searching strategy, in which i is regarded
as the searching index to lookup the uncompressed message in Sm(v). With the message-
compression technique, the process of matching is shown as follows.

I. Construction of the compressed messages. For RDF graph T2 in Example 2, in the
third superstep, there exist the messages that can be compressed at v4. When it receives
a message m′ = ((v2, 0), (v3, 1)), a new message m = ((v2, 0), (v3, 1), (v4, 3)) will be
built and then sent via the two outgoing edges (v4,d, v7) and (v4,d, v8) in Figure 9.
In particular, the matching pairs in the message are represented as rectangle nodes,
which are connected by the edges between the vertices. Next, the original message is
compressed to become ((Cm, 0), (v4, 3)), where the index i = 0 since m is the first
element of Sm(v). For the matching in the next superstep, (v4, 3) denotes the cached
position of the compressed message. Meanwhile, the original message m is appended to
the sequence Sm(v) of v4. The message passing cost can be reduced dramatically when
the original message is large in length.

II. Uncompression of the answer paths. When completing Algorithm 2, we collect all the
answer paths by traversing V al(v) over each vertex v, shown in line 5 in Algorithm 1.
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Figure 9 The building of the compressed message in RDF graph T2

In Example 2, the set of answer paths, i.e., V al(v), is not empty at v7 and v8 merely,
as shown in Table 3. Taking the answer ((Cm,0),(v4,3),(v7,4)) in V al(v7) for exam-
ple, as shown in Figure 10, we exhibit the processing of uncompressing the answer
into the original answer path for presenting provenance-aware answer set. First, the
compressed message is determined by the Cm. Next, since the index i=0, the original
message is the first element of the sequence Sm(v) of v4. At last, we can uncompress
the answer path by the original message (v2, 0), (v3, 1), (v4, 3).

In addition, we also employ the message selection technique in Section 5.4.2 to reduce
the cost of message passing to help alleviate the counting-paths problem even further.

6 Experimental evaluation

In this section, we evaluate the performance of our method. We conducted extensive exper-
iments to verify the efficiency and scalability of our proposed algorithms on both synthetic
and real-world datasets.

Table 3 The set of answer path V al(v) cached in each vertex

v V al(v)

v7 {((Cm, 0), (v4, 3), (v7, 4)),((Cm, 1), (v4, 3), (v7, 4))}
v8 {((Cm, 0), (v4, 3), (v8, 4)), ((Cm, 1), (v4, 3), (v8, 4)),

((Cm, 0), (v4, 3), (v8, 5)), ((Cm, 1), (v4, 3), (v8, 5))}
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Figure 10 The uncompressing of answer path in RDF graph T2

6.1 Experimental settings

The proposed algorithms were implemented in Scala using Spark GraphX, which were
deployed on a 10-site cluster in the Tencent Cloud.3 Each site in this cluster installs a 64-bit
CentOS 7.3 Linux operating system, with a 4-core CPU and 16GB memory. Our algorithms
were executed on Java 1.8, Scala 2.11, Hadoop 2.7.4, and Spark 2.2.0.

For the verification of our algorithms, we use three datasets, including two benchmark
datasets (LUBM4 and WatDiv5) and a real-world dataset (DBpedia6), which are listed in
Table 4. At present, there is no benchmark for RPQs. We designed twelve RPQs based on
the characteristics of operators in regular expressions, including simple queries and complex
queries, denoted by Q1 to Q12 in Table 5. For an RPQ Q, if it contains the closure operators
∗ and/or +, it is a complex query, otherwise it is a simple one. Since the complex query
contains closure operations, the length of the language expressed by r is uncertain, and
it is likely to increase the number of supersteps in the query process. The above query is
a combination of typical operators in the regular expression, which can cover all typical
patterns of RPQs that match paths of different lengths.

6.2 Experimental results

We compared the performance of the basic algorithm and three optimized algorithms, which
are denoted as DP2RPQ, DP2RPQopt (vertex-computation optimization), DP2RPQmsg

(message-communication reduction), and DP2RPQcnt (counting-paths problem alleviation),
respectively, using different queries over 3 datasets. In addition, we evaluated the scalability
of DP2RPQ and DP2RPQopt . Finally, our approach is compared with RDFPath [22].

3https://cloud.tencent.com/
4http://swat.cse.lehigh.edu/projects/lubm/
5http://dsg.uwaterloo.ca/watdiv/
6http://wiki.dbpedia.org/
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Table 4 Datasets
Datasets |V | |E|

LUBM10 314,853 1,316,700

LUBM100 3,301,718 1,387,997

LUBM200 6,574,860 27,643,644

WatDiv10 158,118 1,109,678

WatDiv100 1,526,677 10,958,704

WatDiv200 3,228,213 24,098,747

DBpedia 5,526,330 18,295,010

6.2.1 Efficiency of the algorithms

I. Different queries over some dataset. We evaluate twelve queries (Q1 to Q12) over
LUBM100 and DBpedia datasets, respectively.

The results are shown in Figure 11. Obviously, the basic and the optimized algorithm, i.e.,
DP2RPQ and DP2RPQopt , return answers to the queries in limited time, which verifies the
efficiency of the algorithms. Although the size of LUBM100 is relatively smaller than the
size of DBpedia dataset, the query time of an RPQ over LUBM100 dataset is not always less
than that over DBpedia dataset, which is due to a large number of results when evaluating
Q1 and Q6.

Especially, the experimental results on LUBM100 and DBpedia datasets indicate that
DP2RPQopt performs better than DP2RPQ in all cases. When evaluating on LUBM100
dataset, we notice that the query time of Q6 is more than other queries. In fact, the number
of the intermediate partial results has reached millions of paths in the query processing of
Q6. When evaluating on DBpedia dataset, for DP2RPQopt , the most significant improve-
ment is for the most complex query Q11, which takes 52.44% of the query time of DP2RPQ.
Meanwhile, the average improvement ratio is 40.62%.

II. Same queries over the datasets in different sizes. We evaluate the queries in Table 5
over the LUBM datasets and WatDiv datasets with different scale factors, i.e., 10, 100,
and 200, respectively.

(1) LUBM dataset. Both DP2RPQ and DP2RPQopt are executed on LUBM datasets,
whose results are illustrated in Figure 12. It can be observed that the time of the algo-
rithms scales linearly with the size of the data. However, the time of Q1, Q3, and Q6
increases rapidly along with the increasing size of the data because the query results

Table 5 Regular path queries
Simple RPQs

Q1 = (a/b)|(c/d) Q3 = a/b/(c|d|e)
Q2 = a/b/c/d Q4 = (a|b)/(a|c)

Complex RPQs

Q5 = (a/a)+ Q9 = (a/b)+|(c/d)+

Q6 = (a|b|c)+ Q10 = (a/(b/c)∗)+|(d/e)+

Q7 = a+ Q11 = ((a/b)/(c|d)∗)+/(e|f )∗

Q8 = a/(a|b|c)∗ Q12 = (a|b)+/(c|d)+
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Figure 11 The experimental results of LUBM100 and DBpedia datasets

have reached a relatively large scale (i.e., millions of paths). In most cases, the query
time of DP2RPQopt is reduced significantly compared with DP2RPQ, which verifies
the effectiveness of our optimization strategies. However, when Q3 and Q11 are evalu-
ated on LUBM10, DP2RPQopt takes slightly longer time than DP2RPQ. The reason is
that �r of these queries involve more various symbols than other queries and LUBM10
is relatively small in size, which result in filtering out fewer useless edges than other
queries. We can see as a general rule that the larger the dataset is, the better DP2RPQopt

performs. The optimization effect of DP2RPQopt for all queries on LUBM200 has
become much more significant than that on other datasets.

(2) WatDiv dataset. Four representative queries (Q4, Q6, Q7, and Q10) are selected from
Table 5 and evaluated on the WatDiv datasets of varying scale factors (SF), i.e., 10,
100, and 200, respectively. In Figure 13, it can be observed that DP2RPQopt outper-
forms DP2RPQ for all queries. The query time of DP2RPQopt is on average 41.59%
of that of DP2RPQ. Due to the diversified predicates in WatDiv, DP2RPQopt can
reduce the times of traversals and filter out more useless edges in comparison with the
evaluation on the LUBM datasets.

6.2.2 Scalability of the algorithms

I. Varying site number. In order to evaluate the scalability of DP2RPQ and DP2RPQopt ,
we use the LUBM100 and DBpedia datasets, with four representative queries (Q2, Q4,
Q5, and Q11) selected from Table 5.
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Figure 12 The experimental results of efficiency on LUBM datasets

The query time on the different number of sites, varying from 4 to 10, is shown in
Figure 14. The query time of DP2RPQ and DP2RPQopt decreases with the number of sites
increasing, which confirms that our algorithms can take full advantage of the vertex-centric
Pregel framework for graph parallel computing. Moreover, the average speedup ratio of
DP2RPQ is 1.21 times of DP2RPQopt .
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Figure 13 The experimental results of efficiency on WatDiv datasets

II. Maximum time in vertex computation. It is obvious that the maximum execution
time in each vertex computation is the dominant cost except the message passing cost.
We selected four queries (Q2, Q3, Q6 and Q8) and evaluted them over LUBM datasets
with different sizes (LUBM10, LUBM100, LUBM200).
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Figure 14 Scalability by varying the number of sites
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The optimized techniques, i.e., edges-filtering and candidate-states strategies, reduce the
maximum execution time in vertex computation, whose results are shown in Figure 15. It
can be observed that the maximum time of vertex computation scales linearly with the size
of the data. Generally, DP2RPQopt performs better than DP2RPQ in terms of maximum time
in the vertex computation.

6.2.3 Efficiency of the message-communication optimization

Based on the algorithm of DP2RPQopt , the optimization strategies including sending mes-
sage pruning and variable-length-byte encoding are further implemented for reducing the
communication cost, which is called DP2RPQmsg . To verify the impact of sending message
pruning on reducing the sending message size, we compare the maximum length of mes-
sages to be sent in all supersteps between DP2RPQ and DP2RPQmsg . Eight queries (Q1 to
Q7, Q9) are selected from Table 5 to evaluate on the LUBM datasets with different sizes,
i.e., LUBM10, LUBM100, and LUBM200, respectively.

It presents the maximum length of sending messages in Table 6, where Rmsg is the reduc-
tion rate of the message length after message-communication optimization. As can be seen,
the maximum length of sending messages is reduced significantly by the pruning-message
strategy. Moreover, we notice that the reduction rate is more than 50% in all cases, which
indicates that DP2RPQmsg reduce the number of messages efficiently.

6.2.4 Effectiveness of the counting-paths alleviation strategy

Another optimized algorithm, called DP2RPQcnt , was implemented with the message-
compression and message-selection techniques to partly address the counting-paths problem.
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Figure 15 The experimental results of the maximum time in vertex computation
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Table 6 The experimental results of the maximum length of sending messages

The maximum length of sending messages

LUBM10 LUBM100 LUBM200

DP2RPQmsg DP2RPQ Rmsg DP2RPQmsg DP2RPQ Rmsg DP2RPQmsg DP2RPQ Rmsg

Q1 20 54 63.0% 20 60 66.7% 23 69 66.7%

Q2 44 955 95.4% 190 1090 82.6% 218 1090 80.0%

Q3 12 64 81.3% 19 72 73.6% 23 72 55.6%

Q4 20 54 63.0% 20 60 66.7% 23 66 65.2%

Q5 19 60 68.3% 20 60 66.7% 20 60 66.7%

Q6 1 170 99.4% 1 1865 99.9% 1 1865 99.9%

Q7 1 2 50.0% 1 2 50.0% 1 2 50.0%

Q9 13 39 66.7% 19 56 66.1% 23 66 65.2%

Due to the limited lengths of the answers to the queries in Table 5, DP2RPQcnt can-
not reach its full potential. To this end, we generate RDF graphs w.r.t. the data model of
WatDiv7 by constructing structures like T4 in Figure 7. Meanwhile, we design an RPQ
Qc = x1/x2/ . . . /x10 by covering the predicates that may generate the Cartesian product.
It is obvious that the lengths of the answer paths to Qc are much longer than that of the
previous queries.

In Figure 16, it can be observed that DP2RPQ and DP2RPQopt cannot finish within the
time limit (104s), denoted by INF, while DP2RPQcnt can return the answers in 78.39s and
377.56s over the RDF graphs that contain 1 million and 10 million triples, respectively.
Thus, DP2RPQcnt can effectively alleviate the counting-paths problem.

6.2.5 Performance comparison between DP2RPQ and RDFPath

The existing distributed method for provenance-aware regular path query is rare. To the best
of our knowledge, RDFPath is the only method for answering RPQs using a distributed set-
ting. Thus, in this section, we compare our approach DP2RPQmsg with RDFPath. Although
RDFPath is designed based on the MapReduce framework, it is implemented using Spark.
RDFPath is deployed on a 10-site cluster in the Tencent Cloud and executed on Hadoop
2.6.0 and Spark 1.6.1.

I. Efficiency. We first evaluated the efficiency of DP2RPQmsg and RDFPath, with four
simple queries (Q1 to Q4) and four complex queries (Q5, Q6, Q7, and Q9). In
RDFPath, a path query is composed by a sequence of basic navigational component
denoted as location steps, it is very suitable for handling connection operations rather
than the closure operators ∗ and/or +. In fact, the regular path query is converted into
an SQL in the processing of RDFPath, which leads to the number of join operation is
proportional to the length of path in the query. In particular, the semantics of the queries
that RDFPath can handle are limited. If a query is not supported by RDFPath, its
query response time is empty.

7http://dsg.uwaterloo.ca/watdiv/watdiv-data-model.txt
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Figure 16 The experimental
results of the counting-paths
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(1) LUBM dataset. We evaluated DP2RPQmsg and RDFPath with four simple queries
over LUBM datasets, which is shown in Figure 17. It can be observed that the
experimental results of Q2 indicate that RDFPath performs better than DP2RPQmsg ,
since Q2 only contain the concatenation operator that RDFPath is suitable for hand-
ing. However, RDFPath only supports Q2 since the other queries all contain the
alternation operator not supported by RDFPath.

The number of edges can be specified in RDFPath query, so a fixed-length join opera-
tion can be used to simulate approximately the closure operations. For Q7 = a+, we convert
it to an approximate query in RDFPath, denoted as a <k>, where k is the number of
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Figure 17 The experimental contrast results of simple queries on LUBM datasets
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Figure 18 Influence of different k values on query performance of RDFPath

occurrences of the label a. Obviously, the expression power of a <k>is weaker than a+ in
RPQ. Moreover, with the value of k increasing, the query time increases rapidly, as shown
in Figure 18. When k = 15, we compare the complex query response time of DP2RPQmsg

and RDFPath. It can be observed that DP2RPQmsg has better performance than RDFPath,
as shown in Figure 19.

(2) DBpedia dataset. The real-world dataset DBpedia has richer predicates and more
complex structure, which can be used to design RPQs with a long length of path.
Since RDFPath can only perform two queries of Q2 and Q7, in order to compare
the performance of DP2RPQmsg and RDFPath, we design two additional queries
Q13 = a/b/ . . . /k/ l and Q14 = a/b/ . . . /o/p with lengths of 12 and 16, respec-
tively. It shows that the RDFPath can only execute Q2, Q7, Q13, and Q14, and our
method is more effective than RDFPath in most cases in Figure 20. Although the
query time of DP2RPQmsg on Q2 is longer than RDFPath, the semantics of RPQs are
far richer than RDFPath on the whole.
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Figure 19 The experimental contrast results of complex queries on LUBM datasets
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Figure 20 The experimental contrast results on DBpedia datasets

II. Scalability. To evaluate the scalability with different number of sites, we used
LUBM100 and DBpedia as the datasets and varied the number of sites from 4 to 10. The
experimental results of four queries (Q1, Q2, Q7, and Q9) on LUBM100 are shown
in Figure 21a, it can be seen that the query time of DP2RPQopt decreases with the
number of sites increasing. However, the change of query time is not obvious on the
two queries (Q2 and Q7) in RDFPath. Figure 21b depicts the scalability evaluation of
DP2RPQmsg and RDFPath for DBpedia dataset on queries (Q2,Q7,Q9, and Q14), in
which the query time of DP2RPQmsg decreases more significantly than RDFPath with
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the number of sites increasing. It confirms that our algorithm can take full advantage
of the graph parallel computing model in comparison with RDFPath.

7 Conclusion

In this paper, we propose a novel method for answering provenance-aware RPQs over
large RDF knowledge graphs by using the Pregel parallel graph computing framework. We
also devise three optimization techniques, among which the edge-filtering and candidate-
states techniques can significantly improve the performance of RPQs, the sending message
pruning and variable-length-byte encoding can reduce intermediate results and communi-
cation overhead greatly, and the message-compression and message-selection strategies are
employed to alleviate the counting-paths problem. The extensive experiments were con-
ducted on both synthetic and real-world datasets, which have verified the effectiveness,
efficiency, and scalability of our method.
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