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Abstract
As a common technology in social network, clustering has attracted lots of research inter-
est due to its high performance, and many clustering methods have been presented. The
most of existing clustering methods are based on unsupervised learning. In fact, we usually
can obtain some/few labeled samples in real applications. Recently, several semi-supervised
clustering methods have been proposed, while there is still much space for improvement.
In this paper, we aim to tackle two research questions in the process of semi-supervised
clustering: (i) How to learn more discriminative feature representations to boost the pro-
cess of the clustering; (ii) How to effectively make use of both the labeled and unlabeled
data to enhance the performance of clustering. To address these two issues, we propose
a novel semi-supervised clustering approach based on deep metric learning (SCDML)
which leverages deep metric learning and semi-supervised learning effectively in a novel
way. To make the extracted features of the contribution of data more representative and
the label propagation network more suitable for real applications, we further improve our
approach by adopting triplet loss in deep metric learning network and combining bedding
with label propagation strategy to dynamically update the unlabeled to labeled data, which
is named as semi-supervised clustering with deep metric learning and graph embedding
(SCDMLGE). SCDMLGE enhances the robustness of metric learning network and pro-
motes the accuracy of clustering. Substantial experimental results on Mnist, CIFAR-10,
YaleB, and 20-Newsgroups benchmarks demonstrate the high effectiveness of our proposed
approaches.
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1 Introduction

Data mining has become a research hotspot of great concern to researchers for decades
because of its significance in various application fields. Cluster analysis, as one of the most
important technologies of data mining, has been developing various algorithms [2, 35, 49,
54] continuously, which is widely applied in a variety of application scenarios, such as
social network analysis [9, 32, 33, 53], community detection [15, 45, 50, 57, 60], computer
vision [34, 38, 46], natural language processing [24, 28] and knowledge discovery [20,
58, 59]. Clustering and classification are the most two important categories of machine
learning, and their major difference is whether supervised learning or not. The objective
of clustering is to pull similar data points (according to specific metric in extracted feature
space) into the same clusters, while those data points with highly distinct features will be
far apart.

Initially, clustering only categories the unlabeled data, which is a branch of unsuper-
vised learning. The unsupervised clustering technique has drawn a tremendous amount
of research attention, and many clustering methods have been proposed [11, 12, 19, 51,
55] in the past. These clustering methods can be generally categorized into three types:
(1) Feature learning based methods. This kind of methods tries to find more discrimina-
tive features by combining with data dimension reduction technique [39, 55] or subspace
learning technique [1, 11]. (2) Metric learning based methods. These methods aim to learn
an appropriate distance metric for the training data. Under the learned distance metric, it
can group similar samples together and separate dissimilar samples apart at the same time
[19, 22, 42]. (3) Graph based clustering. This kind of methods partitions the data into
different classes according to their pairwise similarities [10, 48]. Recently, deep learning
technique has achieved great success in many fields due to its superiority of learning capac-
ity, and some deep learning based methods [26, 40, 52] have been used to solve clustering
problems.

Generally speaking, how to extract useful features and learn an appropriate metric for
high-dimensional data without any supervised information is a challenging task. Conse-
quently, some supervised clustering algorithms[13, 17, 56] have been proposed to improve
the clustering result. However, most of these methods have great limitations in real practical
applications, because it is almost impossible for all data having labels. At the same time,
tagging enough sample manually is a waste of human resources and time, and it is also unre-
alistic. In fact, in most of the real-world applications, we can only obtain limited labeled
data while most of the data are unlabeled. Based on the above problems, semi-supervised
based clustering methods [4, 14, 44] have emerged more recently. These methods adjust the
learning framework through limited label data, so that the clustering process can be exe-
cuted in the supervised framework, which greatly improve the clustering performance and
have widely applicability.

1.1 Motivation

Although the existing semi-supervised clustering algorithms have achieved good results,
there are still two important issues that will hinder the performance of clustering. (i) Most
of these methods extract features or learn a distance metric through traditional SVM, neural
networks or linear mapping, which limits its performance. (ii) They only use the labeled
data to guide the process of the clustering, so they can not make full use of the traits of data
especially unlabeled data.
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Inspired by these problems, we propose a semi-supervised clustering with deep metric
learning (SCDML), which can extract discriminative features by using deep metric learning
model. At the same time, the unlabeled data is also used to optimize clustering result through
k-nearest neighbors label updating strategy to dynamically increase the labeled data set, and
then it can promote the performance of the metric learning network. Figure 1a illustrates
the existing semi-supervised clustering models which trains the network model with fixed
input, while in our network model, the model will be constantly improved by updating the
labeled data incrementally, as shown in Figure 1b.

In order to further improve the performance of SCDML, through extensive analysis and
experimental results, we found that: (i) SCDML takes Siamese CNNs as the metric learning
network, in which the contrastive loss function is used to optimize the network. The main
objective of contrastive loss is to reduce the distance between positive samples and increase
the distance between negative samples. However, contrastive loss treats positive sample and
negative sample equally while ignores the difficulty in metric learning brought by negative
sample. (ii) In the process of labeling propagation, the k-nearest neighbors of cluster center
are tagged as the new labeled data in each cluster, which doesn’t fully utilize the results of
deep metric learning network. In addition, the parameter k is difficult to be predefined, so it
is crude to select k unlabeled data nearest to the center of the labeled data from each cluster.
Therefore, we will further improve the performance of our SCDML approach based on the
above two aspects.

Labeled Data

Classification 
Model

Learning

Testing
Data

Unlabeled 
Data

prediction

(a) Existing Semi-supervised Models

Labeled Data

Classification 
Model

Learning

Unlabeled 
Data

prediction

Label
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(b) Label Propagation Model

Figure 1 The difference between existing semi-supervised learning methods and our proposed label
propagation model
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1.2 Contributions

The key contributions of our work can be summarized as below:

(1) In this work, we design a novel semi-supervised clustering model, which includes
a semi-supervised deep metric learning subnetwork and a labeling propagation sub-
network. To the best of our knowledge, the proposed method is a pioneer to address
clustering task by combining deep metric learning with semi-supervise learning
techniques.

(2) In the metric learning subnetwork, we integrate the Siamese CNNs to extract discrim-
inative features to minimize the cluster error.

(3) In the labeling propagation subnetwork, we design a k-nearest neighbors label updat-
ing strategy to transform the unlabeled data into labeled data. As a result, it can
reinforce the ability of metric learning network.

(4) We have conducted extensive experiments on three datasets to demonstrate the effec-
tiveness of our proposed approach. Experimental results show that our approach is a
robust competitor for the most state-of-the-art clustering methods.

Note that we presented our preliminary study of deep semi-supervised clustering in the
prior work [29] as an abstract paper. In this article, we make significant revision and add
substantial new materials compared with the prior work. Specifically, this article makes the
following new contributions:

(1) We provide a systematically analysis of SCDML and also a more comprehensive
review of the related work.

(2) To obtain more discriminative and robust features, we improve our model by applying
the triplet loss as the metric learning network’s loss function instead of contrastive
loss. The triplet CNNs takes three labeled samples (an anchor, a positive sample and
a negative sample) as an input. Under the triplet loss function, the positive sample can
be pulled closer to anchor point while the negative sample will be pushed away from
the anchor at the same time. As a result, all the labeled data can be clustered in learned
feature space.

(3) To reinforce the reliable of new labeled data, we propose a more reasonable and
effective labeling propagation network. Specifically, by combining the result of clas-
sification network and the result of our improved graph clustering algorithm, the
unlabeled data can be transformed from weak labeled data into strong labeled data.
The new added strong labeled data can positively forward the deep metric learning and
classification network, and then improve the accuracy of metric learning network.

(4) We have conducted extensive experiments on four datasets and compared our
approaches with more competing methods. In addition, we evaluate the effectiveness of
our approaches with its two variants and have provided more verification experiments.

2 Related work

2.1 Clusteringmethods

In this subsection, we briefly introduce the background of clustering methods, including
features learning based methods, metric learning based methods and deep learning based
methods.
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Features based clustering Features based clustering divides the dataset to clusters accord-
ing the data’s features. The k-means [18] clustering algorithm is a classical features based
unsupervised feature learning. This method aims to minimize the following objective
function:

J =
k∑

j=1

n∑

i=1

||xj
i − cj ||2

where ||xj
i − cj ||2 indicates the Euler distance between the data point x

j
i and the cluster

center cj .
Many more efficient varieties of k-means were proposed in the last few decades. Saha

et al. [39] proposed a useful model, which performs clustering according to the feature
selection and the fuzzy data simultaneously. In literature [55], an adaptive hashing method
based on feature clustering is proposed to reduce data dimension.

Metric learning based clustering Metric learning can learn the distance metric function
for a specific task autonomously according to different tasks. A common metric distance
function is defined as follows:

dM(x, x′) =
√

(x − x′)T M(x − x′)
where M ∈ R

d×d is called the metric matrix which is the inverse of covariance matrix
∑

.
Obviously, M is a symmetric matrix.

Kalintha et al.[22] proposed a non-linear transformation of distance matric learning for
clustering, which performs well on non-linear separable data. Heidari et al. [19] proposed a
probabilistic model, which combines the fuzzy clustering and metric learning to maximize
the distance between clusters and minimize the intra-cluster distance.

Graph based methods As one of the most popular clustering techniques recently, graph
clustering has attracted lots of researchers and various graph based clustering methods were
proposed[30, 31, 46, 47]. These methods represent entities as vertices in an undirected graph
with weighted edges to describe the relationships between entities. In [10], Chen et al. pro-
posed a sparse representation method for graph clustering. In [48], Xie et al. proposed a
multi-view graph clustering with global and local graph embedding.

Deep learning based methods These methods can learn more discriminative and robust
features by using convolutional neural networks(CNNs) [6, 7, 21]. In [40], Sekmen et al.
combined subspace clustering with CNNs to train a deep subspace clustering model. In
[27], a nonlinear embedding model is proposed to learn a new representation of examples,
so that elements in the same category are organized into the same cluster. In [8], Chen
et al. proposed a deep nonparametric clustering method, in which deep learning is used
for feature extraction and dimension reduction. Compared with these methods, our pro-
posed approach is semi-supervised, which can improve the performance of clustering with
supervised information.

2.2 Semi-supervised learning

Semi-supervised learning is a machine learning technique to improve the performance of the
trained model [4, 25, 44]. Different from unsupervised learning, semi-supervised learning
train model by utilizing few labeled sample and abundant unlabeled data. Guan et al. [14]
proposed a feature space learning model based on semi-supervised framework to better
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understand and learn feature space. In [37], Laine et al. proposed a temporal ensemble model
for semi-supervised learning. In [43], a local density model is proposed to measure the
similarity between k-nearest vertex. Kang et al. [23] combined multiple kernel learning with
semi-supervised technique to tackle clustering problem. Compared to these traditional semi-
supervised learning based clustering methods, our approach can learn more meaningful and
discriminative features, which are beneficial to the following clustering.

Recently, some deep semi-supervised based clustering methods have been proposed [3,
36, 41]. In [3], Arshad proposed a semi-supervised deep fuzzy C-mean clustering (DFCM).
In [36], Ren et al. proposed a semi-supervised deep embedded model for clustering. In [41],
a ClusterNet model is designed by Shukla et al, which uses pair-wise semantic constraints
to drive the clustering approach. However, our approach is different from these methods in
two aspects. (i) We can make full use of the unlabeled data instead of only utilization for
regularization. (ii) We employ label propagation strategy to tag more unlabeled data, while
in these methods the number of labeled data is fixed.

3 SCDML

To extract more discriminative features for optimizing the clustering model, we apply the
Siamese CNNs and take the contrastive loss as the metric learning’s loss function. We
also propose the k-nearest neighbors label updating strategy to dynamically transform the
unlabeled data into labeled data, which can give full play to the contribution of unlabeled
data.

3.1 semi-supervised deepmetric learning network

We design a semi-supervised deep metric learning network based on Siamese CNNs, as
shown in Figure 2a.

First feed labeled sample pairs to Siamese CNNs to extract discriminable features. In
the features learning process, we take the contrastive loss as the objective function of our
network. The loss function can be computed as follows:

L = y||x1 − x2||22 + (1 − y)max
(
α − ||x1 − x2||22, 0

)
(1)

where ||x1 − x2||2 is the Euclidean Distance between x1 and x2. x1 and x2 represent the
features of input pair samples extracting by metric learning network respectively. y ∈ {0, 1}

Figure 2 Illustration of the SCDML approach. The approach consists of two steps: (1) extract discriminative
features by Siamese CNNs (the left); (2) obtain more labeled data by k-nearest neighbors algorithm (the right)
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(1 if the input pair is from the same class, and 0 if the input pair is from the different classes.)
is the corresponding label of input pair samples.

Then encode all the data including labeled data and unlabeled data through the trained
metric learning network to obtain their features.

Finally, classify the unlabeled data according to the encoded features, and record the
classification results as the label of the unlabeled data.

3.2 k -nearest neighbors label updating strategy

In this subsection, we propose a k-nearest neighbors label updating strategy to transform
the unlabeled data into labeled data.

As discussed above, all the data are classified in to C clusters and each cluster contains
limited labeled data while a lot of unlabeled data. To make full use of the features of unla-
beled data, we add k ∗ C new unlabeled data to the labeled dataset each time. The main
process of k-nearest neighbors label updating strategy is as follows.

Step 1: Compute the center of each cluster according to the labeled data.

ci = 1

Nl
ci

Nci∑

j=1

{(
sl
j , lj

)
|lj = i

}
(2)

where sl
j is the labeled data, Nl

ci
is the number of labeled samples in cluster ci , Nc is the

number of cluster, lj is the label of sample sl
j .

Step 2: Search the k nearest unlabeled data from the center of labeled data in each clus-
ter, and then update their attributes from unlabeled data to labeled data. The new added
labeled data Δ in cluster ci can be computed by:

ΔS = Sort
({

Dis
((

su
j , lj

)
|lj = i, ci

)}
, k

)
(3)

where (su
j , lj )|lj = i indicates the unlabeled data su

j in the ith cluster, Dis(, ) is the
distance function, Sort (X, k) indicates sorting the elements of X by ascending order and
return the top k elements.

For example, in Figure 2b the solid points represent labeled data, and the hollow
points represent unlabeled data. After finding each cluster’s center of labeled data, each
cluster generate three new labeled data which are the nearest unlabeled samples in this
center.

As the number of labeled data increases, our proposed metric model can learn more
robust and discriminative features, which will further improve the accuracy of the clustering.

4 Improved semi-supervised clustering with deepmetric learning

As discussed in the motivation of Section 1, there are still two factors that will affect the
performance of clustering: (i) The selection of metric function will influence the accuracy of
data feature extraction, then further affect the accuracy of clustering results; (ii) In practical
applications, the k-nearest neighbors label updating strategy is not very suitable, due to the
different density of each cluster, the number of labeled data and their distribution in each

(2020) 23:781–798World Wide Web 787



cluster. Moreover, the choice of parameter k also hinders the effectiveness of the algorithm.
To enhance the performance of SCDML for the semi-supervised clustering, we improve our
SCDML approach from the following two aspects: (i) We take the triplet CNNs as the metric
learning model and employ the triplet loss function as the model’s loss to train the network.
(ii) We design a more reasonable label propagation network to transform the unlabeled data
into labeled data dynamically.

The framework of improved semi-supervised clustering with deep metric learning
(SCDMLGE) is shown in Figure 3, which contains two subnetworks: a semi-supervised
deep metric learning and classification network, and a labeling propagation network. The
following subsections will present the details of our proposed approach.

4.1 Semi-supervised deepmetric learning and classification network

Unlike the metric learning network used in previous work, we applied triplet network in this
work, which contain an anchor, a positive sample and a negative sample. As we discussed
above, contrastive loss treats positive sample and negative sample equally while ignores the
difficulty in metric learning brought by negative sample, so we introduce the triplet loss
function into our CNN model, which pushes away the negative samples from the anchor
and pulls the positive samples closer to the anchor.

After training by the triplet metric learning network, the distance between anchor and
the positive sample will be shorten and the negative sample will be pushed away from the
anchor simultaneously. Therefore, clusters can be better formed in this feature space.

The main training process of the network consists of the following three steps.

Step 1: Train the network with the labeled triplets. First, extract discriminable features
through the triplet CNNs, then use the features to train a classifier. To train the fea-
ture extracting network and classification network at the same time, we design the
loss function for semi-supervised deep metric learning and classification network as
follows:

min L = LM + λ1LC + λ2‖W‖2
F , (4)

Figure 3 The framework of the clustering with deep semi-supervised metric learning. The framework
consists of two subnetworks: (1) a feature extraction subnetwork by Triplet CNNs (the left); (2) a label
propagation subnetwork by graph clustering algorithm (the right)
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where, λ1 and λ2 are a tunable positive parameter. ‖W‖2
F is a regular term to prevent

overfitting. LM and LC are metric learning loss and classification loss, respectively. They
can be computed as follows:

LM = 1

N

N∑

i=1

{max(||f (xa
i ) − f (x

p
i )||2

−||f (
xa
i

) − f (xn
i )||2 + α, 0)} (5)

where f (xa
i ), f (x

p
i ) and f (xn

i ), indicate the feature of anchor, positive sample and
negative sample respectively. α is the minimum margin of ||f (xa

i ) − f (x
p
i )||2 and

||f (xa
i ) − f (xn

i )||2.

LC = −
∑

f (x)

p(f (x)) log q(f (x)) (6)

where p(f (x)) is the expected outputs, and q(f (x)) is the actual outputs of the
classification network.

Step 2: Encode the labeled and unlabeled data. Assume that Sl = {(sli , lli )|i =
1, 2, . . . , Nl} and Su = {(sui |i = 1, 2, . . . , Nu} separately represent the init labeled data
and unlabeled data, where Nl is the number of labeled samples, Nu is the number of unla-
beled samples, and lli ∈ {1, 2, . . . , C}, where C is the number of classes. We use S′

l =
{s′

li |i = 1, 2, . . . , Nl} and S′
u = {s′

ui |i = 1, 2, . . . , Nu} represent the outputs of the Sl and
Su by CNNs.

Step 3: Tag the unlabeled data according to the classification network. Therefore, Su can
be denoted as Su = {(sui, l

1
ui)|i = 1, 2, . . . , Nu}, where l1

ui is the classification label of
the sui .

4.2 Semi-supervised clustering labeling propagation network

Through the deep metric learning and classification network, we can obtain the label of
the unlabeled data, as called weak label. To acquire the strong label of the unlabeled data,
we design a semi-supervised labeling propagation network. It includes two parts: semi-
supervised clustering and labeling propagation.

In the process of the semi-supervised clustering, we propose an improved graph
clustering algorithm. The details of the algorithm are as follows:

Firstly, we compute the similarity matrix W according to the following equation:

wij =

⎧
⎪⎨

⎪⎩

exp
−||xi−xj ||2

2σ 2 {xi, xj } ∈ S′
u

1 {xi, xj } ∈ S′
l ∧ {lxi

= lxj
}

0 {xi, xj } ∈ S′
l ∧ {lxi

�= lxj
}

(7)

where σ represents the neighborhood width of the sample points, i.e., the larger the σ , the
greater the similarity between the sample points.

Secondly, we use the following formula to calculate the degree matrix D:

di =
n∑

j=1

wij , (8)

and then we can obtain the corresponding Laplacian matrix.

L = D − W, (9)

(2020) 23:781–798World Wide Web 789



Next, we use the top k eigenvectors u1, u2, . . . , uk of L to form a new matrix U . And
then, we obtain the clustering results by using k-means clustering algorithm.

At last, we mark the S′
u according to the clustering results, and record as S′

u =
{(s′

ui, l
2
ui)|i = 1, 2, . . . , N2}, where l2

ui is the clustering label of the s′
ui .

When both the classification label and clustering label of the unlabeled data Su are
obtained, we can implement labeling propagation strategy. Assume that ΔS represents
newly added strong label data, it can be acquired by:

ΔS =
{
sui |

(
l1
ui = l2

ui

)}
, (10)

According (10), we can update Sl and Su untill all of the unlabeled data transform into
labeled data.

Sl = Sl + ΔS

Su = Su − ΔS , (11)

Algorithm 1 summarizes the main process of our SCDMLGE approach. It trains a
classifier using the labeled data through the semi-supervised deep metric learning and clas-
sification network, and then obtains the classification label of unlabeled data L1

u (line 3∼4).
We get the clustering label of unlabeled data L2

u by applying our improved graph cluster-
ing, then compared L1

u with L2
u to update the labeled dataset(line 5∼7). This algorithm

terminates until all the unlabeled data are transformed into strong label data, or the current
iteration error is less than the minimum threshold ε, or the number of iterations reaches the
maximum iteration value T .

5 Experiments

5.1 Datasets and comparedmethods

Datesets We implement experiments on four publicly available datasets including: Mnist,
CIFAR-10 [36], YaleB [11] and 20-Newsgroups [8]. The Mnist dataset consists of 70000
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images of hand-written digits from 0 to 9, and widely used for character recognition. The
CIFRA-10 dataset consists of 60000 images with 10 categories, and each category includes
6000 samples. The YaleB dataset has 2414 grayscale face images including 38 persons.
Each person has 64 samples captured from five different angles. The 20-Newsgroups dataset
is often used in text and document classification, and it contains 18846 documents labeled
into 20 categories.

Comparedmethods To evaluate the efficacy of the proposed approaches, we compare our
approaches with some state-of-the-art related methods including:

(1) traditional unsupervised based methods: FCH [55], SC-CNMF [11];
(2) traditional semi-supervised (supervised) methods: FSLSC [14], SMKL [23];
(3) deep unsupervised based methods: DCN [5], IDEC [16];
(4) deep semi-supervised based methods: DFCM [3], SDEC [36], ClusterNet [41].

5.2 Evaluationmeasures and experimental settings

To evaluate the performance of our proposed methods and compared methods, we use two
types of measures, namely clustering accuracy (AC), normalized mutual information (NMI).

Table 1 Clustering performance
on Mnist, CIFAR-10, YaleB and
20-Newsgroups datasets (the
percentage of labeled data is
10%). The best results are shown
in bold

Methods Mnist CIFAR-10 YaleB 20-Newsgroups

AC(%)

FCH 66.5 22.4 52.1 31.6

SC-CNMF 68.4 23.2 62.5 30.2

FSLSC 75.2 23.9 59.4 38.6

SMKL 78.3 24.4 59.6 42.5

DCN 81.1 26.3 63.8 49.2

IDEC 88.1 25.0 67.7 50.5

DFCM 90.4 31.4 74.6 52.7

SDEC 89.4 30.3 74.8 78.1

ClusterNet 98.9 38.5 79.5 67.7

SCDML 92.3 32.7 78.3 57.1

SCDMLGE 98.3 40.3 81.1 73.7

NMI(%)

FCH 65.7 14.6 50.6 30.5

SC-CNMF 66.5 14.2 60.2 28.6

FSLSC 73.2 15.8 58.7 36.7

SMKL 76.3 16.3 58.6 40.3

DCN 75.7 17.0 62.4 44.7

IDEC 86.7 17.3 65.3 45.8

DFCM 90.2 21.5 73.6 50.4

SDEC 87.6 23.4 74.1 48.3

ClusterNet 97.0 31.8 77.6 58.6

SCDML 91.9 24.9 75.6 54.1

SCDMLGE 97.8 33.1 79.2 59.4
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These two measures are widely used to evaluate the performance of clustering in many
researches [5, 16, 42, 55].

AC can be computed as follows:

AC = 1

N

K∑

i=1

max(Ci |Li), (12)

where N is the number of samples to be clustered. K is the number of clusters. Li is the true
label information, and Ci is the predicted label information by clustering algorithm.

NMI can be computed as follows:

NMI(A, B) = MI(A, B)√
H(A)H(B)

, (13)

where A is the true cluster set, and B is the predicted cluster set. MI(A, B) is the mutual
information between A and B. H(A) and H(B) denote the entropies of A and B. The range
of NMI is from 0 (A is independent from B) to 1 (A is equivalent to B).

5.3 Results and analysis

5.3.1 Clustering performance evaluation

In this subsection, we conduct experiment to evaluate the clustering performance of our
proposed semi-supervised clustering with deep metric learning approach named SCDML,

Table 2 AC results of proposed methods and three semi-supervised clustering methods with different per-
centages of labeled data on Mnist, YaleB, CIFAR-10 and 20-Newsgroups datasets. The best results are shown
in bold

Datesets Percentages FSLSC SMKL DFCM SDEC ClusterNet SCDML SCDMLGE

Mnist 0.5% 65.8 72.9 84.0 83.5 96.8 86.1 97.1

1% 67.1 73.5 84.6 83.8 98.1 87.5 97.3

2% 67.3 74.2 85.7 84.5 98.3 88.4 97.4

5% 69.0 75.5 87.4 86.1 98.6 89.6 97.7

10% 75.2 78.3 90.4 89.4 98.9 92.3 98.3

CIFAR-10 0.5% 21.5 22.8 29.7 28.2 37.1 31.1 38.5

1% 21.7 23.3 30.2 28.4 37.2 31.3 38.8

2% 22.6 23.7 30.5 28.6 37.7 31.6 39.2

5% 22.8 24.0 30.7 30.1 38.2 31.8 39.7

10% 23.9 24.4 31.4 30.3 38.5 32.7 40.3

YaleB 0.5% 50.3 48.6 65.5 70.8 77.3 74.2 78.3

1% 50.4 48.7 66.2 71.2 77.6 74.5 79.6

2% 51.9 50.5 66.3 71.7 78.5 74.9 80.0

5% 52.8 54.4 68.8 72.3 78.8 75.7 80.4

10% 58.7 59.6 73.8 74.8 79.5 78.3 81.1

20-Newsgroups 0.5% 28.3 36.7 47.6 46.3 62.7 51.8 66.5

1% 28.6 36.9 48.4 46.9 63.5 52.3 66.8

2% 28.8 37.2 49.1 47.5 63.8 52.7 67.2

5% 29.1 38.6 50.3 49.2 64.6 53.5 69.7

10% 38.6 42.5 52.7 78.1 67.7 57.1 73.7
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and its improved version named SCDMLGE. Table 1 shows the clustering results on Mnist,
CIFAE-10, YaleB and 20-Newsgroups datasets. According to the experimental results, we
observe that: (i) our proposed SCDMLGE outperforms all of state-of-the-art methods. (ii)
SCDML can achieve better performance than most of compared methods.

Specifically, compared with traditional clustering methods FCH, SC-CNMF, FSLSC,
SMKL, our approaches can learn more meaningful and robust features by using deep metric
learning. Moreover, FCH and SC-CNMF are unsupervised methods and the label infor-
mation is not used in the process of clustering, which further weaken the performance
of them. Compared with deep clustering methods DCN, IDEC, DFCM and SDEC, the
reasons for the performance improvement as follows: DCN and IDEC ignore the utiliza-
tion of information of labeled data. The unlabeled data is only use for regularization in
DFCM, which limits the performance of deep metric learning. SDEC adopts the pairwise
constraints to lead the direction of clustering, which is similar to contrastive loss. In addi-
tion, we can see that ClusterNet can outperforms other methods except our SCDMLGE
approach.

From the results of last two rows in Table 1 we can confirm that SCDMLGE is superior
to SCDML. As SCDMLGE takes the triplet CNNs to train the deep metric network, it can
extract more discriminative features than Siamese CNNs adopted in SCDML. Better yet
SCDMLGE designs an improved labeling propagation network which is more reasonable
to transform unlabeled data into labeled data, and then make full use of the contribution of
unlabeled data to optimize of classification model.

Table 3 NMI results of proposed methods and three semi-supervised clustering methods with different per-
centages of labeled data on Mnist, YaleB, CIFAR-10 and 20-Newsgroups datasets. The best results are shown
in bold

Datesets Percentages FSLSC SMKL DFCM SDEC ClusterNet SCDML SCDMLGE

Mnist 0.5% 65.6 69.6 86.2 85.3 95.2 85.7 95.7

1% 65.8 70.0 86.7 85.5 95.6 86.3 96.1

2% 66.5 71.3 87.3 85.8 95.7 86.5 96.5

5% 68.5 72.4 88.6 86.5 96.3 88.7 96.8

10% 73.2 76.3 90.2 87.6 97.0 91.9 97.8

CIFAR-10 0.5% 14.1 14.6 20.3 21.7 29.5 22.3 29.4

1% 14.1 14.8 20.4 21.9 29.7 22.7 30.0

2% 14.3 15.2 20.7 22.2 30.6 23.1 30.4

5% 15.6 15.8 21.1 22.5 31.3 23.4 31.5

10% 15.8 16.3 21.5 23.4 31.8 24.9 33.1

YaleB 0.5% 51.7 53.2 68.1 70.2 75.7 71.4 76.1

1% 52.2 53.4 68.3 70.6 76.2 71.7 76.5

2% 52.5 53.9 68.5 71.3 76.8 72.4 77.4

5% 53.5 54.4 70.5 72.6 76.9 73.8 77.7

10% 58.7 58.6 73.6 74.1 77.6 75.6 79.2

20-Newsgroups 0.5% 24.6 31.7 45.2 44.5 55.9 50.6 55.6

1% 24.6 32.2 45.7 44.9 56.5 51.3 56.9

2% 24.8 32.4 46.6 45.6 56.8 51.7 57.7

5% 25.1 33.3 48.3 47.5 58.3 53.5 58.8

10% 36.7 40.3 50.4 48.3 58.6 54.1 59.4
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5.3.2 Clustering performance evaluation with different percentages of labeled
data

To further evaluate the clustering performance of our proposed approaches, we increase the
percentage of labeled data from 0.5% to 10%. Tables 2 and 3 separately report the AC and
NMI results of our proposed SCDML and SCDMLGE approaches and five semi-supervised
clustering methods on four datasets. From the results of Tables 2 and 3, we can obviously see
that our SCDMLGE approach performs better than all compared semi-supervised clustering
methods, which indicates that SCDMLGE can learn better discriminative structure features,
and simultaneously make full use of the unlabeled data.

5.3.3 Evaluation of the Influence of parameters

This subsection focuses on evaluating the impact of important parameters in
SCDMLGE(λ1, λ2), and we take Mnist dataset as a example. For parameter λ1 and λ2,
we separately observe the performance variations of SCDMLGE in the change interval of
[0.1,1] with the step size of 0.1 and [0.01,0.1] with the step size of 0.01. From the results
in Figure 4a and b, SCDMLGE can reach a stable and good clustering performance when
λ1 is in [0.4,0.7] and λ2 is in [0.02,0.05]. In addition, other datasets can observe similar
results.

(a)

(b)

Figure 4 AC results of SCDMLGE versus different values of a parameter λ1, b parameter λ2
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Table 4 Clustering performance
of our proposed improving
strategies on Mnist, YaleB and 20
Newsgroups datasets (the
percentage of labeled data is
10%)

Methods Mnist CIFAR-10 YaleB 20-Newsgroups

AC(%)

SCDML 92.3 32.7 78.3 57.1

SCDML+t 95.6 36.9 79.5 68.4

SCDML+p 96.5 37.1 80.0 67.2

SCDMLGE 98.3 40.3 81.1 73.7

NMI(%)

SCDML 91.9 24.9 75.6 54.1

SCDML+t 94.2 29.4 78.1 57.5

SCDML+p 95.7 28.3 77.7 57.9

SCDMLGE 97.8 33.1 79.2 59.4

5.4 Effectiveness of new strategies

SCDMLGE is the improved version of SCDML which mainly takes two new strategies. In
order to evaluate the effectiveness of these two improvements separately, we generate two
modified versions of SCDML: (1) “SCDML+t”. A variant version of SCDML by employ-
ing triplet CNNs as deep metric learning model; (2) “SCDML+p”. A variant version of
SCDML by using the new labeling propagation network to dynamically increase the labeled
data.

Table 4 shows the effectiveness of our proposed new strategies. From the experimental
results, we can see that the clustering performance of SCDML+t and SCDML+p are better
than SCDML, which means that our proposed new strategies in SCDMLGE are beneficial
to improve the performance of clustering.

6 Conclusion

In this paper, we propose a novel semi-supervised clustering with deep metric learn-
ing approach(SCDML) to address the problem of extracting more discriminative features
with deep metric learning network and making full use of the unlabeled data features.
In order to further improve the effectiveness and practicability of SCDML, we pro-
pose an improved semi-supervised clustering related to SCDML, named SCDMLGE,
which embeds triplet CNNs in deep metric learning network instead of siamese network
and comprises a new labeling propagation network simultaneously. The semi-supervised
deep metric learning network adopted triplet loss function can extract more powerful
features, and then learn a more discriminative metric. After that, labeling propaga-
tion network is used to label new data which is more suitable for real applications.
Experimental results on Mnist, CIFAE-10, YaleB and 20-Newsgroups datasets have
shown the high performance and effectiveness of our proposed semi-supervised clus-
tering with deep metric learning approaches, and the SCDMLGE performs better than
SCDML.

In our proposed approach, labeled data must cover all class, which should hinder its
application value. For the future work, we will further enhance the performance of our
proposed method, and apply it to solve incremental clustering problem.
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