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Abstract
Edge Computing is a novel paradigm that extends Cloud Computing by moving the compu-
tation closer to the end users and/or data sources. When considering Edge Computing, it is
possible to design a three-tier architecture (comprising tiers for the cloud devices, edge
devices, and end devices) which is useful to meet emerging IoT applications that demand
low latency, geo-localization, and energy efficiency. Like the Cloud, the Edge Computing
paradigm relies on virtualization. An Edge Computing virtualization model provides a set of
virtual nodes (VNs) built on top of the physical devices that make up the three-tier architecture.
It also provides the processes of provisioning and allocating VNs to IoT applications at the
edge of the network. Performing these processes efficiently and cost-effectively raises a
resource management challenge. Applying the traditional cloud virtualization models (typi-
cally centralized) to virtualize the edge tier, are unsuitable to handle emerging IoT application
scenarios due to the specific features of the edge nodes, such as geographical distribution,
heterogeneity and, resource constraints. Therefore, we propose a novel distributed and light-
weight virtualization model targeting the edge tier, encompassing the specific requirements of
IoT applications. We designed heuristic algorithms along with a P2P collaboration process to
operate in our virtualization model. The algorithms perform (i) a distributed resource man-
agement process, and (ii) data sharing among neighboring VNs. The distributed resource
management process provides each edge node with decision-making capability, engaging
neighboring edge nodes to allocate or provision on-demand VNs. Thus, the distributed
resource management improves system performance, serving more requests and handling
edge node geographical distribution. Meanwhile, data sharing reduces the data transmissions
between end devices and edge nodes, saving energy and reducing data traffic for IoT-edge
infrastructures.
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1 Introduction

The Internet of Things (IoT) is considered one of the main components of the Internet of the
future [69]. The IoT is a novel paradigm in which smart objects (things) communicate with
each other and with physical and/or virtual resources through an existing network infrastruc-
ture, including the Internet [6, 33]. The IoT is attractive to several application domains (e.g.,
healthcare [16], smart cities [76], smart homes [74], and industry [57]). However, the wide
dissemination of IoT applications and the growth of the number of devices connected to the
Internet gave rise to many challenges regarding the infrastructure for supporting these appli-
cations. In this context, paradigms grounded on virtualized infrastructures, such as Cloud
Computing [5], Cloud of Things (CoT) [17], Cloud of Sensors [60], Fog/Edge Computing [9,
10], and most recently the Edge Mesh [59] approach, have emerged as solutions for supporting
the needs of storing, processing, and distribution of data generated by IoT devices.

In the last years, the Cloud Computing paradigm [5] has been advocated as a promising
solution to tackle most of the IoT issues regarding reliability, performance, and scalability by
playing the role of intermediary between smart objects and applications that use data and
resources provided by these objects. Indeed, with its vast computational capacity, cloud
computing comes hand-in-hand with IoT to act as backend infrastructure for processing and
long-term storage the massive amount of data produced by IoT devices. The integration
between IoT and Cloud has been addressed by several works and gave birth to the paradigm
called Cloud of Things (CoT) [2, 4, 11, 17, 21, 60]. CoT extends the traditional Cloud models
(IaaS, PaaS, and SaaS) to include novel models as, for instance, Sensing as a Service [63],
Sensing and Actuation as a Service [23] to name a few.

Despite its advantages, the Cloud provides centralized services that are unsuitable to meet
requirements of some types of IoT applications. There are still problems unsolved on the
application side, mainly concerning the latency in the data transmissions between the devices
and the Cloud, mobility, geo-distribution, energy efficiency, location-awareness, among others
[9, 10, 13, 53, 56, 79]. To overcome these open issues, the Edge Computing paradigm has
recently emerged as a solution for delivering data and real-time data processing closer to the
data source [77].

Fog/Edge Computing [1, 9, 10, 43, 46, 50, 65] is a computing paradigm strongly based on
virtualization [40] of physical edge devices, allowing the decoupling of the applications from
both the edge infrastructure and the end devices. To achieve this goal, the physical infrastruc-
ture is abstracted through a set of virtual entities. The virtual entity represents the resources
available at the Fog infrastructure (e.g., data, computation, and communication capabilities) to
users. The end devices are devices capable of performing sensing and actuation tasks (e.g., a
temperature sensor, a relay actuator). According to Yi et.al [77], the physical edge devices
(also called Fog or Edge nodes) encompass both resource-poor devices (e.g., access points,
smart routers, switches, base stations and smart sensors), and more powerful computing nodes
as Micro Datacenters, and server clusters such as Cloudlet [62] and IOx [20]. These devices
are heterogeneous regarding (i) their physical capabilities/resources (vertical heterogeneity)
and (ii) their provided services (horizontal heterogeneity) [32]. Moreover, they can provide
resources for services at the edge of the network and execute tasks which were previously
assigned to the cloud (e.g., data collection from end devices, data storage, data preprocessing,
and data filtering), thereby decreasing the data traffic to the cloud servers. Therefore, the Fog
Computing already meets some requirements of emerging IoT applications such as low
latency, energy efficiency, and location-awareness. It is worth noting that the terms “Fog”
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[8] and “Edge” [31] come from different communities, and sometimes, have a slightly different
meaning for expressing the same type of computation. Thereby, we are adopting the term
“Edge” for the remaining of this paper to denote the tier (providing computation, storage and
communication capabilities) between physical objects (things/sensors) that act as data source,
and the remote cloud data centers.

Although Edge computing already meets some requirements of emerging IoT applications
(e.g., low latency, energy efficiency, and location-awareness), several other challenges need to
be dealt with to fully benefit from the synergy of these two technologies. Among such
challenges, we can mention dealing with the high heterogeneity (of devices and applications),
resource-constraint (in comparison to the cloud), mobility and geo-distribution of the edge
devices, and promoting a fair and cost-effective consumption of the available resources. In our
work, we focus on the challenges of designing a suitable virtualization model, of managing
the collaboration process among edge devices and solving resource management issues.
Our goal is to leverage the state of the art in Edge Computing and CoT paradigms to meet
requirements such as heterogeneity, mobility, and geo-distribution of devices, scalability of
services, and low response time [3, 9, 32, 50]. The addressed challenges and the respective
requirements to be met are described in the next Section.

1.1 Current challenges in edge computing

In this Section, we describe the research challenges found in the current literature regarding the
virtualization model, collaboration process, and resource management for Edge Computing,
which are within the scope of the contributions of this paper.

Virtualization is widely used and well addressed in Cloud Computing. However, in the
context of Edge Computing, it is necessary to consider the specific features of the edge
devices, such as heterogeneity, resource-constraint and geographical distribution (geo-
location) [50, 65, 77], and propose novel models tailored to this new scenario. The geo-
location of edge nodes at the edge of the network has advantages compared to cloud nodes by
allowing taking computing closer to data sources. However, this geo-location also brings
challenges regarding managing and deployment of the applications. The heterogeneity of edge
nodes hinders both the development and maintenance of the services provided by these nodes
regarding the complexity and amount of generated code, besides the time of coding [15, 30].
Since edge devices are more restricted in resources than cloud nodes, Edge Computing
requires lighter virtualization models. Moreover, the design of a new virtualization model
for the edge must also consider the requirements of emerging IoT applications, such as low
latency and fast response to events.

Another challenge faced when proposing a virtualization model for edge computing is how
to perform the data sharing between the virtual entities [59]. The data sharing can bring
benefits to the system such as improving the energy saving (thus increasing the lifespan of
sensors) and reducing the bandwidth consumption. Santos et al. [61] proposed a virtualization
model where Virtual Nodes (VN) are provided to store and share (with other VNs) raw sensing
data generated from one or many sensor devices or processed data using a data fusion
technique. In this model, the VNs can only interact with each other within the same workflow,
where a workflow represents the set of application tasks. Thus, whenever there is a depen-
dency between data inputs and outputs of the application requests, the VNs will need to share
their data. This model represents a typical dataflow approach, where the result of the
processing (data output) from a node is the input of processing (data input) of another node
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[38]. Such approach is passive and data sharing only occurs when requested, i.e., a VN does
not automatically send its data to other VNs which share the same datatype. Therefore, the
challenge is to make the data sharing an active process using a collaboration process in Edge
Computing, allowing a VN to share its data with neighboring VNs, efficiently and transpar-
ently, to improve the sensor lifespan (energy saving).

Regarding the collaboration process, several works in Edge Computing use the hierarchical
model to share resources, since such a model makes easy the set-up of collaboration between
edge nodes [10, 13, 46, 66, 72]. According to Mahmud et al. [46], this model is typically based
on the concept of master-slave, in which the master edge node controls functionalities,
processing load, data flow, etc. of its subordinated slave nodes. Although this approach
facilitates the collaboration, it has at least two significant drawbacks. The first drawback
concerns the strong dependency on the master node. In case of failures of the master node,
the communication with slave-nodes is interrupted, leaving the underlying network inacces-
sible. This problem generates the second drawback by requiring procedures to re-setup the
hierarchy structure which can consume many processing resources, bandwidth, and energy,
thus affecting the capability of the system to meet the application requests. According to
Mahmud et al. [46], the master-slave approach when assembled in a cluster model or Peer-to-
Peer (P2P) is inadequate in real-time data processing environments since the communication
between master-slave produces high bandwidth consumption. A feasible solution regarding
such drawbacks is to organize the edge nodes in groups, i.e., in a neighborhood, and promote a
node-to-node communication (within the neighborhood), without the need of a node acting as
the communication controller. Therefore, since the hierarchical approach has its drawbacks in a
dynamic scenario as the Edge Computing environment, we argue that, for adequately tackling
this challenging issue, the flat P2P approach [46] is a feasible solution for the collaboration
process between edge nodes. In such approach, the closeness defines the connection between
nodes, thereby reducing the latency and saving bandwidth during the communication and
indeed improves the response time to meet, for instance, the request for a latency-sensitive
application.

Concerning resource management, it encompasses two primary activities, namely
resource allocation and resource provisioning. Resource provisioning is responsible for
preparing the infrastructure to host and instantiate the virtual entities to further meet
the requests issued by the applications [66, 72, 78]. In turn, resource allocation
allocates the resources required by virtual entities to adequately meet the workload
of the multiple applications using the edge infrastructure in a given moment [22, 26].
The solutions for resource management are well established in the Cloud Computing
field. However, in a scenario involving a mix of IoT and edge nodes, the centralized
model of the Cloud is unsuitable since the edge nodes are distributed along the edge
of the network. Several issues remain open in this regard [22, 59, 72, 75]. Recent
works have been proposing [61, 66, 72] models to deal with resource management in
Edge Computing. However, these works adopt centralized or hierarchical models to
support the distributed decision-making at the edge of the network. In these models,
the master node is responsible for identifying the edge slave-node capable of receiving
the workload. The slave node is the one in charge of provisioning the required
resources to run the workload. Therefore, existing solutions are not fully distributed,
and present the drawbacks beforementioned. We argue that, for properly tackling this
challenging issue, it is necessary to distribute the resource management entirely at the
edge of the network.
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1.2 Goals of our work

In order to contribute for providing solutions to the challenges mentioned in Section 1.1, and
advance the state of the art in Edge Computing, in this paper we propose and evaluate LW-
CoEdge, a new virtualization model improved with a collaboration process. The main goal of
this work is to design a lightweight virtualization model for Edge Computing, which is based
on the virtual node concept as proposed by Olympus [60, 61], and enhanced with a flat P2P
collaboration process to allow both the data sharing and the distributed resource management
at the edge of the network.

The remainder of this paper is organized as follows. Section 2 discusses related work.
Section 3 describes our lightweight virtualization model and the collaboration process.
Section 4 describes the heuristic algorithms for our distributed resource management and
P2P collaboration. Sections 5 and 6 discuss the performed evaluation and final remarks.

2 Related work

In this Section, we describe the works related to ours in the light of the following main aspects:
(i) computing paradigm and virtualization model, (ii) P2P collaboration, (iii) resource man-
agement, and (iv) architecture (two or three-tiers). At the end, we present a classification of the
described papers.

2.1 Computing paradigm and virtualization model

Two recent works brought significant advances to the Cloud of Sensors (CoS) field [45, 61].
Madria et al. [45] proposed a centralized virtualization model, which encompasses Virtual
Sensors and provides sensing as a service for the users (SaaS). Our proposal differs from [45]
since we implement a decentralized virtualization model tailored to meet requirements of
emerging IoT applications such as low latency and location-awareness. The authors in Santos
et al. [61] extended their original design of Olympus [60] to create a three-tier CoS infrastruc-
ture by including the Edge tier to provision Virtual Nodes (VN) at the edge of the network. Our
proposal differs from Olympus in two essential aspects. First, we provide a process of
collaboration between the VNs to actively share fresh data with neighboring VNs. Thus, we
avoid re-reading the sensors to get the same data, thereby improving response time, latency,
bandwidth, and sensor lifespan. Second, Olympus defines the VN as a program capable of
performing a set of information fusion techniques based on application requirements. Unlike
Olympus, our model provides predefined types of VNs representing each data type provided to
serve the application requests. This is important to favor the collaboration process among
virtual nodes. Sahni et al. [59] present a novel computing approach named Edge Mesh
integrating the best characteristics of the Cloud Computing, Edge Computing, and Cooperative
Computing into a mesh network of edge devices and routers to decentralize decision-making
tasks instead of sending them to be processed by a centralized server. It enables collaboration
between edge devices for data sharing and computation tasks as well as the interaction between
different end devices. However, the authors present several open issues for implementing the
communication between different types of devices. Some open issues are how and which data
are shared between edge devices, and the appropriate local to execute the intelligence of the
application at the edge of the network. Our proposal leverages the advances promoted by the
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Edge mesh approach and addresses the related open issues. We implemented a P2P collabo-
ration process for enabling the data sharing between VNs and a resource management process
distributed between edge nodes. Our data sharing process is smart, because it considers the
data requirements of other VNs before replicating the data. Moreover, the distributed resource
management provides for each edge node the ability to make decisions and engage neighbor-
ing edge nodes to allocate or provision VNs whenever it is necessary.

2.2 Collaboration

According to Mahmud et al. [46], the implementation of P2P collaboration can be hierarchical
and non-hierarchical (flat). Mobile Fog [35] is a PaaS that provides a high-level programming
model based on events. Applications use Mobile Fog to send messages between nodes or to
get sensing data from an active sensor, besides other functions. Mobile Fog uses a hierarchical
network topology of edge devices. It distributes the processes through the cloud (the root node
of a hierarchy), fog (intermediate nodes) and edge (leaf node). Our proposal differs from the
Mobile Fog approach in two fundamental aspects. First, we adopt a flat P2P collaboration
between edge nodes to avoid the drawbacks related to the hierarchical model. In a flat P2P
model, if a physical node fails only the VNs provisioned in this physical node are lost and the
other VNs continue working. Second, our proposal provides VNs that are already pre-
programmed to perform the essential operations to deliver sensing data or perform actuation.
Thus, the end-users access the VNs by including in their applications a simple call to submit
the requests to our CoT system, without the need to implement the VN behavior from scratch.
Shi et al. [64] provide a non-hierarchical P2P view of Fog Computing that connects the cloud
of sensors and smart devices via mobile devices. Moreover, the infrastructure offers and
consumes resources and services of mobile devices through the REST pattern using the CoAP
protocol, thereby promoting the dissemination of data between users in a decentralized way.
Unlike Shi et al. [64], we designed a new virtualization model capable of running VNs for
providing sensing data or performing actuation in response to the application requests directly
at the edge of the network. Moreover, we implemented a process of collaboration to allow VNs
to share data with their neighboring nodes without the user mediation, thereby improving the
request response time and saving bandwidth.

Concerning the collaboration between edge nodes, Taleb et al. [68] introduced the “Follow
Me Edge”. It is a concept based on Mobile Edge Computing (MEC) providing a two-tiered
architecture to enable the containers migration across edge nodes according to the localization
of their mobile users. Although the container migration emerges as a feasible solution for the
mobility requirement, the authors claim that the selection of the appropriate technique to
perform the migration is a vital task to avoid both communication latency and data synchro-
nism problems. Our proposal differs from [68] by providing a flat P2P collaboration to share
only the sensing data between edge nodes. Thus, we avoid transferring huge container images
through the network, since each edge node already provides its services (VN container),
thereby saving bandwidth and decreasing latency.

2.3 Resource management

Recent works on resource allocation and provisioning have been presented to take
advantage of Edge Computing to enable workload offloading from the Cloud servers
to edge devices, i.e., closer to the users. Zenith [75] is a novel resource allocation model
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for Edge Computing. It uses Weighted Voronoi Diagrams (WVD) [36] to divide a
geographic area composed of several Micro Datacenters (MDCs). Then it allocates the
infrastructure resources (from the MDC with the lowest communication latency) bought
by the service providers to run their services. Our model applies the ideas behind the
Zenith approach by using the WVD algorithm to divide an Edge network into regions
and build the neighborhoods of edge nodes. Unlike Zenith, our model assigns virtual
nodes running in the edge node to provide either raw or processed data in response to the
application requests. Wang et al. [72] present the Edge Node Resource Management
(ENORM), a framework for handling the application requests and performing the
workload offloading from the Cloud to running at the Edge network. ENORM addresses
the resource management problem through a provisioning and deployment mechanism to
integrate an edge node with a cloud server, and an auto-scaling tool to dynamically
manage edge resources. Although we provide a resource management approach inspired
by ENORM, our proposal is fully decentralized at the edge network. Such feature
enables the edge nodes to find or provision the best VNs for providing either raw or
aggregated sensing data, or performing actuation in response to the user application
requests arriving from the cloud or the edge of the network. Skarlat et al. [66] present a
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hierarchical architecture of fog colonies for resource provisioning and orchestration in
both the cloud and fog that takes into account the available resources in Fog/IoT
scenarios. This architecture encompasses a cloud-fog control middleware that controls
fog cells at the IoT tier through a fog orchestration control node. Fog cells are software
components serving as access points to the IoT devices. They can receive and execute
tasks (e.g., data analysis, data storage, monitoring, data transfer), allocate resources, and
communicate to the fog orchestration control node to propagate tasks. The ideas behind
this framework have a point of convergence with our proposal regarding performing data
sharing. However, our approach implements the data sharing using the flat P2P collab-
oration, i.e., a full decentralized approach.

2.4 Architecture

Munir et al. [50] present the Integrated Fog Cloud IoT Architecture (IFCIoT), a fog-
centric architectural paradigm that integrates IoT, Fog, and Cloud into the three-tier
architecture to support five service layers, namely the Application, Analytics,
Virtualization, Reconfigurable, and Hardware. It is designed to enhance system proper-
ties including performance, energy efficiency, latency, scalability, and to provide better-
localized accuracy for IoT and cyber-physical systems (CPS) applications. Despite all the
innovation, IFCIoT does not show how the fog nodes can collaborate with each other for
data sharing, for instance. Our proposal differs from the IFCIoT by providing a light-
weight virtualization model through virtual nodes and a collaboration process between
the fog nodes that is fully distributed.
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2.5 Classification

Table 1 summarizes the main characteristics, contributions and open issues of the related
works and includes the features of our work. In this table, the symbol indicates a feature
supported by the respective work, and the symbol means an open issue.

3 LW-CoEdge model

This Section presents LW-CoEdge, our proposal for a lightweight virtualization model en-
hanced with a collaboration process for Edge Computing. Initially, we detail the three-tier
architecture considered in this paper (Section 3.1) and then we describe the virtualization
model (Section 3.2). Next, we present the collaboration process (Section 3.3) that encompasses
the data sharing and the distributed resource management.

3.1 The three-tier architecture

Figure 1 depicts the architecture adopted in this work to support the virtualization model. We
assume an ecosystem composed of three tiers: (i) Cloud tier (CT), (ii) Edge tier (ET), and (iii)
End device tier (EdT).

The Cloud tier (CT) is the top level of the architecture. It includes a set of cloud
nodes CN = {cn1, cn2,…, cnn}. Each cni represents physical data centers that provide elastic
resources on-demand (e.g., processing, storage, energy, and bandwidth). Hence, the CT can
provide virtually unlimited resources to perform high-performance computing such as time-
based data analysis and long-term storage of high amounts of data.

The Edge tier (ET) is the middle level and encompasses a set of edge nodes EN = {en1, en2,
…, enn} placed geographically closer to the data sources, i.e. they are closest to the End
devices tier than the cloud nodes. Moreover, each eni provides the same resources of cnibut in a
smaller scale, i.e. eni is a less powerful device than cni.

Finally, the End devices tier (EdT) is the bottom level and encompasses a set of end devices
Ed = {ed1, ed2,…, edn} deployed over a geographical area. Each edi is heterogeneous regard-
ing the processing speed, total memory, and energy capacity. Besides, it is able to provide
sensing data and/or perform actuation tasks. Thus, the EdT may comprise smart devices such
as a smartwatch or smart phone, for instance, or smart sensors connected and composing one
or more Wireless Sensor and Actuator Networks (WSANs).

In our architecture, we assume that the cloud nodes (CNs) and edge nodes (ENs) host the
majority of computational entities in our work, namely: APIs, Virtual Nodes, Resource
Management components, and sensing & actuation components responsible for managing
the interactions between the VNs and the End devices tier. The CN and EN host the APIs that
expose the application entry point and the management services of the framework. The entry
point is the service accessed by the users to submit the application requests. Concerning the
components hosted at the EN, they are responsible for handling the application requests by
performing tasks to provide sensing data (acquired from end devices) or to perform actions (on
the end devices). All computational units are detailed in the following sections.

Furthermore, we identified the main actors in typical CoT infrastructures. These actors can
be either humans or software systems. The software system can be either a web site (a Web
Portal), or a web-service, or a mobile app that interacts with our CoT system by calling the
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APIs for sending request for information from the monitored environment or to perform some
actuation. Seismic monitoring, traffic monitoring, and temperature control are examples of
typical IoT applications (accessed via web site or deployed as a mobile app). The human actor
is a user of the system playing roles such as Software Developer, End-user, and Service
Provider Manager. The Software Developer is the actor in charge of programming the
software above-mentioned. He/She is also responsible for programming the end devices to
send sensing data to the CoT system. The End-user is the actor in charge of operating the
software to perform some action (sending a request to our system). The software operation
occurs either via a Web Portal or via mobile devices (e.g., smartphone, tablet, smartwatch) in
which the software is installed. The last human actor is the Service Provider Manager (SPM).
The SPM is responsible for configuring the CoT system through a set of managing APIs to
describe the datatype(s) used by the Virtual Node to meet the requests, besides configuring the
neighborhood of edge nodes. The SPM can specify a simple datatype or combine datatypes to
provide more accurate or more complex data for the application. Moreover, the SPM can
engage one or many end devices to compose a datatype. In the next Section, we depict the
virtualization model, the relation between its elements, and the formal description of the
Virtual Node, the application request, and the Datatype descriptor used in the virtualization.

3.2 The virtualization model

LW-CoEdge provides the services of the physical infrastructure (things, edge, and cloud) to
users and their applications by means of a virtualization model. Our proposed model leverages
the Edge tier for the provision of Virtual Nodes (VNs) closer to the data sources (end devices)
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besides providing a collaboration process to support distributed intelligence and decision-
making at the edge tier. In addition, it promotes the decoupling of user’s applications from the
physical details of both edge nodes and end devices. Thus, we leverage the VN as the core
computational unit of the virtualization model to provide sensing data or perform actuation in
response to the application requests. LW-CoEdge comprises the process for VN instantiation
along with three main sub-processes, namely (i) a process to perform the resource management
(encompassing allocation and provisioning), (ii) a process for managing sensing and actuation
tasks, and (iii) a process for managing the collaboration among nodes. Figure 2 summarizes
the components implementing these processes and the relationships among them.

3.2.1 The definition of the application request and the system operation

Regarding the system operation, End-users operate software (web site or application) to
perform actions that generate requests to the system using the system API. This API also
provides the functionalities to list the available datatype descriptors for the Software Devel-
opers in their geolocation or for the entire system (when requested via cloud). From this list,
the Software Developers choose the datatype to be used in their requests.

The request represents an abstract command to get sensing data or perform actuation in
order to fulfill the functional requirements of the application. We describe the request
(Figure 3a) as a tuple Request = (datatype, param, callback). The datatype denotes the type
of requested data (it can be either a simple, or a complex type or an actuation command), and
its specification is presented further below. In this property, the Software Developer sets only
the id related to the datatype descriptor chosen previously from the repository. The param
represents a set of properties required by the Virtual Node (VN) to process a datatype, and the
callback is a notification procedure. Figure 3b presents an example of code representing the
request of a simple datatype. The VN uses the callback address to deliver the processing
response with either a data stream or the status of the actuation command to the request issuer.
The properties of the param depend on the datatype. The datatype of the type simple
encompasses the properties fr (data freshness threshold in milliseconds), rtth (it denotes the
expected response time threshold in milliseconds) and the sr (sampling data rate). Finally, the
datatype of the types complex and actuation command encompass only the property rtth since
they do not obtain data from the sensor.
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The submitted requests arrive at the system through the entry point at the Cloud or via an
edge node. When requests arrive via Cloud, the system must forward each request to the
nearest edge node from the application request location. Therefore, the adoption of an
algorithm to find the closest edge node is required. Nevertheless, the creation of the algorithm
is out of the scope of our current work. Hence, we suggest the use of existing approaches in the
literature to accomplish the task. Nishant et al. [54] and Xu et al. [75] are examples. Regardless
the entry point in our CoT system, the requests are met by the virtualization system at the
nearest selected edge node.

Inside the virtualization system, the Resource Allocator (RA) is the component in charge
of the resource allocation process for allocating a Virtual Node (VN) in response to the
application request. First, the RA receives a submitted request via API and then, searches in
the cache of instances for a VN whose datatype matches the datatype requested by the
application. When the VN is found, the RA forwards the request for the respective VN to
execute the tasks and provide the requested datatype. In cases where the RA is not able to
allocate a VN instance, or the selected one is busy fulfilling other requests, then the RA always
invokes the Resource Provisioner (RP). The RP is the component in charge of the resource
provisioning process. It is responsible for provisioning a new VN instance (whenever the RA
did not find one available) or to scale-up an existing VN instance (when the current one is busy
but has available resources). Moreover, the RP registers the new VN instances into the cache
of instances and returns the new instance to the RA. The new (or scaled up) VN instance is
created/configured to meet the datatype stated in the received request. The instantiation
(deploy) and scale-up tasks are the responsibility of the Edge Node manager. Edge Node
manager is an important component for abstracting the physical details of the edge nodes by
providing services to support the operations of both the collaboration process and the resource
provisioning. Besides the previous tasks, the Edge Node manager also allows un-deploying
and scaling down the VN resources by checking the availability of edge node resources and
other services, for instance, the load of edge node settings. Furthermore, the Edge node
manager checks the availability and loads the datatype descriptors in the repository before
performing its tasks. Thus, when the edge node does not have enough resources to instantiate
the VN, the RP invokes the Collaboration Manager to identify a neighboring node to
provision a new VN. However, if a neighbor cannot be selected, the request is refused and
the RP throws a warning message to the RA. In parallel, the RP uses the Collaboration
Manager that interacts with existing VNs to register the new VN instance for the purposes of
performing the data sharing. The Collaboration Manager is the component in charge of
enabling the collaboration process (Section 3.3) at the Edge tier.

At the time when a VN receives a request to process, it interacts with the SensingManager
and the Actuation Manager components. These two are responsible for managing all
interactions between the VN and the End devices tier. As the tasks of the VN are finalized,
the VN sends the result of the processing to the request issuer by using the callback URL. For
instance, when an actuation command arrives, the Actuation Manager sends it to be executed
by the end device in the physical environment, and the result is sent back to the request issuer.

The importance of the Sensing Manager and the Actuation Manager is to abstract the
complexity of dealing with the highly heterogeneous devices (both from the Edge tier and End
device tier) regarding their physical capabilities/resources (vertical heterogeneity) and services
(horizontal heterogeneity) [32] as well as all the communication processes. They are used to
retrieve data (raw or processed) or to perform actuation on the physical environment depend-
ing on the requested datatype. Moreover, the Sensing Manager implements the Data
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processing sub-process. It is responsible for abstracting the complexity of dealing with
operations for getting sensing data from the physical devices, and operations on data (persis-
tence, update, delete, and retrieval) in the historical databases maintained at the Edge tier.

A concern regarding the VN operations is optimizing the use of resources, mainly the end
devices energy. The VN always must check for the possibility of reusing data in the cache
(memory) when the request is for getting sensing data, thus avoiding unnecessary access to the
End devices tier. Therefore, the data freshness [12] is an essential requirement which a VN must
verify when it is processing the request. The data freshness can be described according to
Bouzeghoub [12] as “The time elapsed from the last update to the source.” In order to validate
the data freshness, the VN checks the request time against the last acquisition date time of the
provided data (freshness = request time − acquisition datetime) before accessing the Sensing
Manager. Then, when the last data delivered is within a valid range time of data freshness (request.
param. fr ≥ freshness), the VN sends the data from the cache to the application. Otherwise, the VN
interacts with the SensingManager to get fresh data before forwarding it to the application. In the
end, the VN invokes the Collaboration Manager to share the new data with its neighbor VNs,
thereby avoiding other VNs to access unnecessarily access the edge device tier for getting the same
data. The criteria for defining the neighborhood of VNs are defined in Section 3.3.

3.2.2 The datatype descriptor

The datatype is a fundamental element used for the Virtual Node (VN) operations. The
datatypes are specified by the Service Provider Manager (SPM) and they are stored in the
Datatype descriptors repository. A datatype descriptor or simply Descriptor describes the
elements to be used by the VN to get simple data or complex data or the outcome of an
actuation task. Also, a Descriptor may be related to several VN instances. However, each VN
instance refers to one Descriptor.

Descriptor ¼ id; description; type; elementð Þ ð1Þ
Per definition (1), each Descriptor (Figure 4a) is a tuple in terms of the properties id,
description, type, and element. Id is the unique identification; description is a high-level
description to help the Software Developers understand the type of data being provided. In
this property, the SPMs can provide any technical level information that they deem to be
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relevant to the Software Developer, such as sensor accuracy and the periodicity of measure-
ment. All these extra information are obtained from the infrastructure components used to
interact with the physical environment; type denotes the type of information provided; and
element represents an array where its elements are described further below. Figure 4b repre-
sents a datatype descriptor for a simple datatype.

The datatype descriptor identification (id) is a fundamental property to facilitate its iden-
tification by users. Therefore, an efficient and friendly naming schema to identify a data type is
needed. However, such a naming mechanism for the Edge Computing paradigm has not been
built and standardized up till now. For this reason, we envision to create the identification
using the naming technique depicted in Shi et al. [65] which encompasses location (where),
r o l e (who ) , and da t a de sc r i p t i on (what ) . Fo r i n s t ance , t he id va l ue
“UFRJ.UbicompLab.temperature” identifies the descriptor used by the VN to provide raw
data of temperature from the Ubicomp laboratory at our university, UFRJ. Indeed, this friendly
naming style allows users to identify the data type descriptors registered in the catalog easily
using a search mechanism.

The type is described using three pre-defined values, namely: simple, complex and
actuation. The simple type means that the information provided is a raw data (e.g., temper-
ature), the actuation means an actuation operation (e.g., turning on/off a lamp), and complex
represents a workflow. Regarding both simple and actuation types, each elementi ∣ i ≥
1 represents a physical device used to either get sensing data (sensor device) or perform
actuation (actuator device) respectively. Concerning the complex type, elementi ∣ i = 1 repre-
sents only an instance of the workflow. The workflow is used to specify a data flow containing
other data types (either simple or complex) that VN instances use to get data (either raw or
processed) as input, perform some processing, and generate information as output. These tasks
are similar to the processing performed in a Complex Event Processing (CEP) engine [19].
Therefore, we envisioned using a CEP engine for executing the workflow. Nevertheless, the
creation of the workflow is out of the scope of our current work.

3.2.3 The virtual nodes

In our virtualization model, the Virtual Node (VN) is the core computational unit. Our
virtualization model was designed to circumvent two drawbacks identified in the model
adopted in Olympus [61]. The first drawback concerns the design of the VN and the second
is the lack of collaboration between VNs. Furthermore, our model design is simplified based
on the integration of lightweight virtualization [47, 48] approach and the microservice pattern
[42, 70], thereby defining VNs as “lightweight-nodes”. This new VN is provided as a
microservice as it is small, high decoupled, and owns a single responsibility. Moreover, the
VN is packaged in lightweight-images thereby facilitating its distribution and managing at the
edge nodes.
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The first drawback is tackled by simplifying the VN concept as proposed by Olympus. Our
VN is defined as an abstract class (Figure 5) providing common attributes and functionalities
to design predefined types of VNs for each provided datatype. A datatype can represent either
a raw data, or a processed data (representing a complex event or the result of a data fusion
procedure), or an actuation result. Therefore, there is a VN to represents the simple datatypes
(SensingVN), a VN to represent the actuation datatypes (ActuationVN), and a VN to represent
complex datatypes (DatahandlingVN). They are depicted further below.

VN ¼ ID;Datatype;Data;Neighborsð Þ ð2Þ

The second drawback is fulfilled by extending the VN concept to allow the collaboration
among VNs for the purpose of data sharing using the collaboration process.

Per definition (2), we describe each VN (Figure 6a) as a tuple in terms of the properties ID,
Datatype, Data, and Neighbors. ID is the virtual node identification; Datatype is a link to the
datatype descriptor, and it is defined as a tuple is _ referenc = Ra, where Ra = id representing the
unique Descriptor identifier; Data represents the resources provided by the VN; and the
Neighbors = {vn1,…, vnn} represents a set of neighboring VN connected to the VN that shares
the same data (values). Figure 6b represents a VN providing a simple datatype of temperature.

The ID is a relevant property used to identify the VN instances into the repository in each
edge node. In the same way as in the datatype identification, we need of an efficient and
friendly naming schema for the VN identification that facilitates the collaboration. Therefore,
we describe the identification of the VN as a tuple VNID = {hostname,Descriptor(id)}, where
hostname is the unique label (assigned by the network administrator) identifying the edge node
connected to a network, and Descriptor(id) denotes the datatype identification provided by the
VN. This decision aims to facilitate the collaboration during the task of identifying which edge
node the VN is executing since the same datatype can be provided on different edge nodes.
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Let’s use the prior datatype identification as an example, “UFRJ.UbicompLab.temperature”.
Considering that our system can provide the datatype in the edge nodes EN1 and EN2, the
r e l a t e d I D s w i l l b e “EN 1 . U F R J . U b i c o m p L a b . t e m p e r a t u r e ” a n d
“EN2.UFRJ.UbicompLab.temperature”.

Regarding the resources provided by the VN (Data property), it can be either raw data (e.g.,
temperature, humidity, luminosity, presence, etc.) or data processed by a CEP engine, such as
the description of an event of interest as, for instance, a Fire Detection. Finally, the resource
can also be information relating to the result of the actuation command (actuation type).
Moreover, the acquisition datetime represents the date and time in which a data has been
acquired. Hereafter, we describe the predefined types of VNs.

The VN of the type Sensing represents the simple datatype and provides a stream of raw
data sensed by one or many physical nodes. This VN has a set of properties p : p = (simple, fr,
sr, callback). Simple property denotes the information to process, fr means the data freshness
threshold in milliseconds, sr the sampling data rate, and callback is an operation invoked by
the VN to deliver data to the request issuer whenever it finishes the processing. The stream of
raw data is retrieved either from historical databases maintained at the edge tier or by a direct
connection with the physical nodes at the sensor tier. However, the latter option depends on the
value of the data freshness property.

The VN of the type Actuation provides actuation capabilities over the physical environment
and has a set of properties p : p = (command, callback). Command denotes the type of actuation
function provided by the VN, and the callback denotes anURL address used by theVN to notify
the request issuer when the operation finalizes along with its status (e.g., processed or not).

The VN of the type Data handling is used to provide value-added information to meet user
requests by employing information fusion techniques [60]. This is done by executing pre-
defined queries on sensing data using a Complex Event Processing (CEP) engine. The VN
represents the complex datatype and has a set of properties p : p = (complex, callback). Com-
plex represents the query to be executed, and callback is used by the VN to notify the request
issuer when the CEP has completed its operation along with the query response (data stream).

In this Section, we presented the virtualization model, its main components, and the
relationship between them. Moreover, we described the Virtual Node, the application request
and the Datatype descriptor. In the next Section, we describe the collaboration process.

3.3 Collaboration process

We designed a novel flat P2P collaboration process entirely distributed at the edge tier. This
process is used in two activities of the CoT infrastructure operation. First, in the data sharing
activity that allows a VN to actively share its fresh data with neighboring VNs. Second, in the
distributed resource management that provides for each edge node the capability of decision-
making to engage neighboring edge nodes to allocate or provisionVNswhenever it is necessary.

Our approach uses the flat P2P model in opposition to the hierarchical model [35] to
overcome the drawback regarding hierarchical models and avoid the high dependence on the
master node (or controller node – a single point of failure). Also, we avoid the communication
overhead to create and maintain the hierarchy. Therefore, our VNs and resource management
are independent of each other from an operational point of view, i.e., each edge node has its
own resource management to allocate or provision one or many VNs. By following our
approach, the edge nodes are homogeneous regarding their functionalities even though
heterogeneous regarding their capabilities.
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A challenge regarding our approach is how to organize the edge nodes in a neighborhood to
enable the collaboration process. Therefore, we define the neighborhood concept using (i) the
closeness between the edge nodes and (ii) the semantics of the data provided by them. The
geographic closeness is used to take advantage of the location-aware capability of the edge
nodes and helps decreasing the latency and bandwidth consumed between the edge nodes. The
data semantics is used to determine which data the VNs can share with each other to reduce the
access and the data transmissions between end devices and edge nodes, thereby saving energy
and bandwidth. Thus, we need to apply techniques to identify which edge nodes can be
neighbor to each other and which data to be shared.

In the first case (closeness), we adopted the Weighted Voronoi Diagrams (WVD) [36] to
divide a geographic area (Edge network) into regions to promote the collaboration among edge
nodes. The WVD was adopted as a solution to build the neighborhood because it is widely
used in the areas of GIS (Geographic Information Systems), sensor networks and wireless
networks for making placement decisions. To use the WVD algorithm, we need to provide the
edge nodes geographic locations on the map. This location in the WVD is called “site.”
Moreover, the algorithm allows setting the weight for each site that represents a value
determining the distance between the site A and site B, for instance. As our approach focuses
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on each edge node belonging to the Edge network which is connected to the underlying
network of end devices, our problem P is how to divide the Edge network into regions of edge
nodes to establish the neighborhood. Figure 7 illustrates our collaboration process.

To better understand its operation, we will detail how the essential elements are distributed
both at End device tier and Edge tier besides how the neighborhood is defined. The specifi-
cations of the Edge and End device tiers regarding their elements are the same presented in
Section 3.1. Regarding the End devices tier, our example encompasses the end devices ed1,
ed2, ed3, ed4 and ed5. The Edge tier encompasses four edge nodes en1, en2, en3 and en4. Each
edge node eni is connected to one or many end devices. In our example, en1 is connected to end
devices ed1, ed2 and ed3; en2 is connected to end devices ed2 and ed3; en3 is connected to end
devices ed3 and ed4; and, en4 is connected to end devices ed5.Moreover, each edge node eni can
host and run one or many virtual nodes VN = {vn1, vn2,…, vnn}. Each vni can provide sensing
data obtained from or perform actuation on one or many end devices. For instance, in the
en1the VN1 is connected to the End device ed1and ed3 whereas the VN2 is connected to the
End device ed1 and ed2.

In this work, we provide a process to support the Service Provider Manager (SPM)
activities regarding the setup of the collaboration among edge nodes. The setup encompasses
two main steps: (i) dividing the End device tier into areas and positioning the edge nodes
inside these areas, (ii) building the neighborhoods. The activity diagram in Figure 8 illustrates
the process.

The SPM executes the first step when there are new end devices and/or edge nodes to be
integrated into the CoT infrastructure. Thus, the SPM can determinate the best position for
each edge node (at the Edge tier) regarding the end device. Initially, we assume that the best
localization for each edge node is the closest to the end devices which it will be connected to,
thereby minimizing the latency of communication between them. In order to achieve this goal,
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the SPM obtains the position of each end device at the End device tier (EdT). Next, the WVD
algorithm is invoked to divide the EdT into areas A = {a1, a2,…, an} using the end device
localization as site. Thus, each area ai ∈ [1, A] can contain one or many edge nodes. Lastly, the
SPM places each edge node on the areas and generates a list of the edge nodes positions.
Figure 9a presents the WVD with the edge nodes positioned. In our example, we placed the
en1 on the boundary of the areas a1, a2, and a3 to enable the connection to the end devices ed1,
ed2 and ed3. The en2 is placed on the boundary of the areas a2, and a3 to enable the connection
to the end devices ed2 and ed3. The en3 is placed on the boundary of the areas a3, and a4 to
enable the connection to the end devices ed3 and ed4. Finally, the en4 is placed on the area a5 to
enable the connection to the end devices ed5. Therefore, the position of each edge node
respects, besides the distance, which type of data is provided by the end device(s).

The second step of the setup process can be executed independently of step one. The SPM
uses this step to determine the neighborhoods. Upon getting the location of each edge node at
the Edge tier (ET), the SPM invokes the WVD algorithm to divide the ET into regions R = {r1,
r2,…, rn}. Moreover, the edge node localization is used as the site, and each site has the
weight(s) determined by a distance D, where D = dlm represents the distance between enl
and enm. Also, each region ri ∈ [1, R] only contains one edge node. Next, for each edge
node eni, the border of its area is verified regarding the other edge nodes. So, the edge nodes
that border a given edge node eniare selected and included in its list of neighboring nodes. For
instance, Figure 9b illustrates the ET divided into four regions by the WVD algorithm, and the
border between them defines the neighborhoods . Thus, the edge node
en1 has en2 and en3 as neighbors. The edge node en2has en1 and en3 as neighbors. The edge
node en3 has en1, en2 and en4 as neighbors. Lastly, the edge node en4 has the edge node en3 as
neighbor. After defining the neighborhoods, for each edge node, a configuration file containing
its neighboring nodes is generated, and then the setup process finalizes.

From now onwards, the virtual nodes (VN) can collaborate with each other for data sharing
by means of a dataflow approach. In the dataflow programming model, the application is
represented as a graph [32]. In the graph, the nodes can be (i) data producers, (ii) data
consumers, and (iii) processing units (or intermediary). The producer node only produces
outputs and represents the start of the dataflow. The consumer node only consumes inputs
provided by another node and represents the end of the flow, whereas the processing units are
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nodes developed for processing the inputs and produce outputs. Hence, in the context of the
dataflow model, we can classify the VN as a processing unit, since our VN is able to receive/
provide sensed data from/to its neighboring VNs.

In addition to the approaches and techniques before mentioned, we also need to establish
which data a VN can share with its neighbors, thereby defining the semantic collaboration. The
data sharing may be either total or partial. In the first case, the VN sends all its data to the
neighboring VNs. In turn, in the partial model, the VN sends only the sensing data related to
the end device(s) (e.g., a sensor) connected to neighboring VNs. For instance, in the model of
Figure 7, the VN2 of en1is connected to end devices ed1 and ed2 whereas the VN2 of en2is
connected to the ed2. Thus, VN2 of the en1 sends only the sensing data ( S2) related to ed2 for
the neighboring VN2 of en2 and vice-versa. Therefore, our model avoids the communication
overhead by sending only the necessary data between the VNs.

Furthermore, our collaboration process allowed designing a novel model of distributed
resource management (RM). This model takes advantage of the best features of the flat P2P
collaboration so that each edge node has the capability of decision-making to allocate the best
resource to meet the application request. Thus, whenever the edge node does not have enough
resources to instantiate the VN, the RM will identify a neighboring node with available
resources to provision a new VN. However, if a neighbor edge node is not able to be selected,
the application request is refused.

In this Section, we presented our collaboration process. It focuses on meeting the requests
of emerging IoT applications besides providing a model where both the virtual nodes and the
resource management components are independent of each other from an operational point of
view. To achieve the collaboration goal, initially, a process was presented to create the
neighborhood of edge nodes. Next, we described the main features of the data sharing between
virtual nodes and the decentralized resource management between edge nodes. In the next
Section, we present heuristic algorithms implementing our distributed resource management
and P2P collaboration with data sharing.

4 Heuristic algorithms for the distributed resource management and P2P
collaboration

In this section, we present the proposal of four heuristic algorithms implementing our
distributed resource management and flat P2P collaboration processes. We are using a heuristic
method since our problem involves placement decisions of which edge node will meet the
applications requests to maximize utility regarding response time (latency) and bandwidth
consumed. According to Xu et al. [75], this class of problem is NP-Hard, and the heuristic
algorithms are often used to solve it [41, 44]. We define some premises to drive the algorithm
development, that are: (i) each edge node has its datatype repository, and all components of the
architecture deployed; (ii) the information about which is the neighbor node of a specific node
is already available, and it was generated using the second step of the setup process (Figure 8);
(iii) during the collaboration, the perimeter of actuation should be limited by only looking at
the neighboring nodes regarding the node in which the request arrived; (iv) the application
requests a single datatype; (v) the requests arriving in the system are served immediately and in
order of arrival; (vi) the resource availability of the edge node should always be checked before
provisioning the new virtual node; (vii) the resource availability of the VN should always be
checked before meeting the request; (viii) the infrastructure should try to scale-up the resources
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of the VN to meet more requests before provisioning another VN; (ix) the VN identification
(VNid) is unique and should be combined using the datatype id and edge node hostname
aiming to facilitate the collaboration process.

Our resource management is based on the algorithms proposed by Wang et al. [72] and also
by Hong et al. [35] with several modifications described as follows. First, we have modified
the model from hierarchical to flat for addressing the collaboration described in Section 3.3.
Second, we have enhanced the resource management with P2P collaboration (Section 4.3).
The third modification concerns how the edge nodes deal with the application requests. To
handle the requests, Wang et al. [72] enable workload offloading from cloud servers to run on
the edge nodes. Our proposal adopts a different approach: the infrastructure meets the
applications requests by allocating virtual nodes running at the edge tier. Thus, we save
bandwidth consumption and avoid network overhead, thereby favoring the execution of the
emerging IoT applications that are latency-sensitive, for instance.

A remarkable feature of our algorithm is to work on-demand. As user application requests
arrive in any edge nodes, the Resource Allocator (RA) component (Section 4.1) receives the
requests and allocates virtual nodes (VN) to meet them. The Resource Provisioner
(Section 4.2) only provisions a new VN instance whenever it is requested by the RA. As
the edge nodes are resource constrained devices, this strategy avoids the additional provision-
ing of VNs, thereby saving resources and avoiding affecting their original (primary) functions,
for instance, routing whenever the edge node is a smart router. Furthermore, we limit the
actuation perimeter of our algorithm only to look at neighboring nodes regarding the node in
which the request arrived. Therefore, in this P2P collaboration, the requests are forwarded only
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to one hop regarding the entry edge node. To best understand our algorithms, we present two
UML activity diagrams that describe their primary activities and the relationship between
them. Figure 10 represents the distributed resource management logic (Sections 4.1 and 4.2)
and Figure 11 the P2P collaboration (Sections 4.3 and 4.4). They are explained in details in the
next Sections.

4.1 Resource allocation

Resource Allocation is a process in charge of executing the tasks to allocate resources
necessary to meet the workloads of one or several applications [22]. In our virtualization
model, the Resource Allocator (RA) component is responsible for performing this process.
Following the virtualization approach, it has the main tasks of finding and allocating virtual
nodes (VNs) to meet application requests. Moreover, the RA can invoke the Resource
Provisioner component to provision new VNs whenever it is necessary. Algorithm1 imple-
ments all the logic steps of our RA. The RA listens for incoming requests from the application
(lines 21–30). Upon receiving the request, the RA verifies the type of message, and if it is
APP_REQUEST, the handleRequest procedure is executed to meet it (line 1).

The handleRequest procedure performs a search in the instances repository for a Virtual
Node (VN) matching the received request (line 3). If no VN exists matching the request, the
RA invokes the Resource Provisioner (RP) to provision a new VN instance (lines 4–5).
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Moreover, if the selected VN has its resources busy managing other requests, the RP is also
invoked (lines 7–10) either to increase the VN resources (e.g., memory) or to provide another
VN. As VN instances are chosen (or provisioned), the RA forwards the requests to the
respective VN to process them (lines 12–16). It is worth noting that the catch command (line
17) is responsible for capturing any processing error whereas the throw exception (line 18) is
the command in charge of throwing the error messages. These commands have the same goals
in all algorithms.

4.2 Resource provisioning

In the context of this paper, Resource Provisioning is the process responsible for provisioning
new Virtual Nodes (VN) or empowering the VN with extra resources to meet new received
requests. The Resource Provisioner (RP) is the component in charge of performing this
process. Algorithm2 implements our RP logic. The algorithm starts when the Resource
Allocator invokes the RP through the provisioning function passing two parameters, namely
CurrentVirtualNode and Request (line 1).
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Initially, the RP invokes the EdgeNodeManager component to verify the resources of the edge
node for hosting a new VN instance (line 2). EdgeNodeManager is the component in charge of
providing a set of methods for abstracting the access to physical information of the edge nodes
besides controlling the VN life-cycle. When the edge node has enough resources available (line 3),
the next step is either deploying a newVN container or to re-configure (scale-up) an existing one. In
case ofCurrentVirtualNode parameter is null (line 4), the RP instantiates a newVN by invoking the
containerDeploy method from the EdgeNodeManager component (line 5). Next, the new VN is
cached and also registered for purposes of data sharing collaboration (lines 6 and 8). At the end, the
VN instance is returned (line 10). When a CurrentVirtualNode parameter is not null, the scale-up
method from the EdgeNodeManager component (line 12) is invoked to increase the VN container
with extra resources for improving its performance to meet more requests. If the scale-up worked
fine, the current virtual node instance is returned (lines 13–14). Otherwise, if the scale-up fails or the
container does not have enough resources, the RP forwards the request to the P2P collaboration for
finding a neighbor edge node capable of meeting it (line 20). The RP always return the null value
when a VN instance cannot be created (line 22).
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4.3 P2P collaboration

P2P collaboration component implements the essential services to enable the collab-
oration process at the Edge tier. Among the services, we can mention: (i) forwarding
of requests to be served by a neighboring edge node, (ii) determining the best
neighboring edge node to meet a request and (iii) registering a VN to enable the
data sharing collaboration. Algorithm3 implements the logic of these services. During
the initialization process, there is a call to the EdgeNodeManager component to get
the edge node neighborhood and the needed resources to deploy a VN. Next, the run
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method (line 56) is performed to listen for incoming events sent by the Resource
Provisioner (lines 60 and 63) and EdgeNodeManager (line 66).

Upon receiving the event, the algorithm verifies the type of event. When the event is
SEND_TO_NEIGHBOR_NODE, then the sendToNeighborNode method (line 1) is executed.
The sendToNeighborNode selects a neighboring node through the private method
getNeighborNode (line 3), and then forwards the Request to the neighboring Resource
Allocator (lines 4). The getNeighborNode (lines 9–23) is used to provide a neighboring node
with the best resources for hosting and running the virtual node. Initially, the method seeks an
instance of the datatype descriptor in the repository by invoking the Catalog component using
the id property (from the Request object) (line 10). Next, the candidate neighboring nodes are
selected, i.e., the nodes that provide the requested data (lines 12–17).

Next, the bestResource private method is invoked to find the best neighbor among
the candidate edge nodes belonging to its neighborhood (line 18). In case of the best
neighbor does not exist, an exception message is thrown (lines 19–21). Initially, when
the bestResource method runs (line 24), it obtains the amount of memory required to
process the request (line 28). Next, for every candidate node, its available physical
resources (e.g., memory, CPU) are obtained (line 31) using the monitor component.
Such memory information is used to verify if the candidate node has enough available
memory to process the received request (line 34). When the candidate node has
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available physical memory to process the request, it is selected and stored into the list
of the best candidate nodes (lines 34–36), otherwise, it is discarded. Moreover,
network latency also is measured (line 33). Then the list of candidate edge nodes is
sorted based on the criteria of the number of available CPUs, free memory and lower
latency. In the end, we find and select the node with the best resources on top of the
list (line 42). Whenever the received event is REGISTER_VN_TO_DATASHARING,
the registerVNtoDataSharing method is executed (line 44). This method is responsible
for registering a new virtual node instance to participate of the data sharing process.
First, the process executes the register inside of the same edge node (lines 45–48).
Next, the register occurs on the neighboring nodes that can collaborate (lines 49–54),
i.e., the neighboring edge nodes running Virtual Nodes that provide the same datatype
elements. In order to check if a VN can collaborate, the VerifyIntersection private
method is used to check the intersection of the elements of the NewVirtualNode and
existing VirtualNode.

Finally, when the received event is RELOAD_CONFIG, the settings related to the
neighborhood and resources needed are reloaded (line 67 and 68). This event is
essential when new data about the neighborhood are made available (insertion or
exclusion of neighbor nodes) through a manual or dynamic process.

4.4 P2P data sharing

P2P Data Sharing is responsible for enabling a Virtual Node (VN) to share data with its
neighboring VNs. Algorithm4 implements the logic of this service.

The VN calls the shareData method to share fresh data obtained directly from (physical)
sensor devices or received from other VNs (line 2–15). The data sharing occurs only among
elements of the same type (line 4), i.e., according to the data sharing constraint presented in
Section 3.3. When the previous restriction is valid, and the neighboring VN belongs to the
same edge node, the data are share locally (lines 6–7); otherwise, the data are sent to the VN in
the neighboring edge node (line 10).

In this section, we presented a set of algorithms that implement our distributed resource
management and the flat P2P collaboration. First, we detailed a set of premises used to drive
the implementation. Next, we presented two algorithms found in the literature that served as

World Wide Web (2020) 23:1127–1175 1153



the base for our solution as well as the types of adaptations needed in these algorithms to
support our model. Last, we presented the four main algorithms and a detailed explanation of
their operations.

5 Evaluation

We used the Goal Question Metric (GQM) methodology to help in the design of the performed
evaluation. The GQM [7] is a hierarchical approach (three levels) based on the premise of
deriving software metrics from questions and goals. According to the methodology, first, we
have to define the goals. The goal represents the conceptual level related to the measurement
purpose (what object and why), the perspective (what aspect and who), and the environmental
characteristics (where). Second, each goal needs to be refined into several questions. A
question represents the operational level used to define the object of measurement (product,
process, resource). Finally, the metrics represent the information at the quantitative level that
should be collected to answer one or many questions. According to Basili et al. [7], the metrics
can be either objective or subjective. Objective metrics represent data that depends only on the
object that is being measured and not on the point of view of who is measuring it. Subjective
metrics represent data that depends on the object that is being measured as well as the point of
view of who is measuring it.

In Section 5.1, we describe the goals, questions, and metrics defined to be used in our
evaluation. In Section 5.2, we describe the overall parameters of the scenarios considered in
our experiments. In Section 5.3, we describe the three experiments performed to answer each
of the questions defined using the GQM methodology, including the responses to the defined
questions.

5.1 Goals, questions and metrics

The goals, questions, and the derived metrics used in our work are presented as follows.
Goal G1 is to analyze LW-CoEdge, for the purpose of evaluating its resource management

algorithms, with respect to the performance in meeting application requests, from the
viewpoint of the end-user.

Goal G2 is to analyze LW-CoEdge, for the purpose of evaluating its collaboration
mechanisms, with respect to the impact of meeting a request through a neighboring edge
node regarding the bandwidth, the latency of communications and energy saving, from the
viewpoints of both the end-user and the underlying computational infrastructure.

Table 2 GQM Questions

Question Goal
(G)

Q1 Does the proposed approach for collaborative Resource Management help meeting all application
requests submitted to the system?

G1

Q2 Does the collaboration among virtual nodes help decreasing the data traffic between edge nodes
and end devices?

G2

Q3 Does the collaboration among virtual nodes help saving energy of the end device nodes? G2
Q4 Does collaboration between virtual nodes help meeting requests within the application-defined

response time threshold?
G2
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From these two goals, we raise four relevant questions (Q1, Q2, Q3, and Q4) described in
Table 2 . It is important to mention that the performed evaluation always considered as
benchmark for comparison purposes a version of the resource management process with no
collaboration among edge nodes.

Table 3 shows a set of metrics that are collected from our CoT system. We used these
metrics to answer our posed research questions. To answer the question Q1, we classified
application requests within two groups: (a) request met, and (b) request not met. Our
system considers that a request is met whenever the CoT system provides the required
datatype and the Response Time Threshold (RTTh) desired by the application is satisfied.
It is worth noting that the system delivers the results to the request issuer even if the
RTTh desired by the application is not respected. The RTTh is an important QoS
parameter and depends on the type of application. In PubNub Staff [58], a discussion
about the impact of the Real-time applications and the response time desirable is
performed. In Yi et al. [77], the authors argue that augmented reality and real-time video
analytics are two examples of applications in which a high response time (more than tens
of milliseconds) can affect the user experience. Moreover, network latency is a factor that
affects the response time of the applications and also needs to be measured.

Table 3 Summary of the metrics used to answer the questions

Metric (M) Description Question

M1 REQ_MET Number of requests met. Q1
M2 REQ_NOT_MET Number of requests not met. Q1
M3 AVG_DT_EN Average of data traffic generated among edge nodes during the

collaboration.
Q2

M4 AVG_DT_ENED Average of data traffic generated between edge nodes and end
devices.

Q2

M5 ED_ENERGY End node energy consumption. Q3
M6 REQ_RTTH_INV Total of requests met that violated the response time threshold

desired by the application.
Q4

M7 AVG_DT_TRAFFIC_KB The average in KB of data traffic to meet a request. Q2

Table 4 Some parameters used in experiments

Parameter Value

Edge node core speed 3 × 106 cycles/s
Number of cores of each EN 2 cores
Delay for querying local database (FiWARE) (0,972 ± 0,019 s)
Maximum freshness 5 (seconds)
Virtual Node output data size 72 Bytes
Application request size 140 Bytes (average)
Sensing data size – (SDsize) – FiWARE 122 bytes
Time to feed the local database 30(seconds)
Number of Edge nodes (EN) 5
Number of End devices 4
Communication latency between ENs 20 ms
The average power consumption of devices 20w
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For the purpose of assessing if the received requests are met, we used the metrics
REQ_MET (M1) and REQ_NOT_MET (M2) that measure the effectiveness of the resource
management (RM) algorithms to meet the application requests arriving in the system.
REQ_MET computes the number of requests which were properly met, while
REQ_NOT_MET records the number of requests which the RM algorithm was unable to
meet during a monitoring period. Hereafter, we present the expression (3) and the expression
(4), used to assist in measuring the metrics REQ_MET and REQ_NOT_MET.

TTS ¼ TIME REQþ TIME SPENT FWþ COMM TIMEð Þ ð3Þ

f DType;RTTH ; TTSð Þ ¼ 1 j DType is provided∧TTS≤RTTH
0 j DType is not provided∨TTS > RTTH

�
ð4Þ

Per expression (3), the metric TTS represents the total time spent to meet a given request. It is
the sum of the time periods collected through the parameters TIME_REQ,
TIME_SPENT_FW, and COMM_TIME. TIME_REQ denotes the time required by our
algorithm to handle a request at the same edge node where the application has issued the
request. TIME_SPENT_FW measures the time spent since receiving the request, finding a
neighbor node, and forwarding the request to the neighbor node. Lastly, COMM_TIME
measures the communication time between the node that received the request and the
neighboring edge node that will serve the request. It is important to mention that the
parameters TIME_SPENT_FW and COMM_TIME are collected only when the collaboration
process is executed.

Expression (4) presents a function used to determine whether the request has been met
adequately or not (i.e. to calculate REQ_MET and REQ_NOT_MET). The function receives
as input the datatype (DType) and the response time threshold (RTTH) from the request, along
with the measured value of the TTS metric. The function returns the value 1 when a request
has been met, i.e., if the DType required is provided in the system and the value of TTS is less
than or equal to the RTTH desired by the application. On the other hand, the function returns
the value 0 if the DType is not provided or TTS is greater than RTTH. Furthermore, our CoT
system considers if the datatype is provided when the virtual node responsible for processing it
has enough resources in term of memory, CPU and the datatype descriptor configured.
Otherwise, the datatype is classified as not provided and the application request is forwarded
to the collaboration mechanism that, if it is active, checks the availability of a neighboring
virtual node to process it.

Therefore, the metrics aforementioned help us assessing the effectiveness of our CoT
system to meet more requests using the proposed collaborative RM, in comparison to a system
without collaboration among edge nodes.

To answer question Q2, it is necessary to assess if the collaboration process helps
decreasing the data traffic between edge nodes and end devices (thus, contributing to save
bandwidth consumption in the CoT system). To do so, we used a set of metrics to evaluate the
data traffic in relation to the consumption and saving obtained during the execution of the
collaboration mechanisms. The network usage is a concern in this work since its high
consumption affects the overall system performance. Thus, we selected the metrics
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AVG_DT_EN (M3) and AVG_DT_ENED (M4) to assess the data traffic. The metric
AVG_DT_EN (M3), represented by expression (5), has the purpose of monitoring the entire
data flow of the collaboration process, i.e., the message exchange (request/response opera-
tions) between edge nodes. For example, a message exchange may represent the operation of
an edge node sending the application request to the neighboring edge node to process. Each
message (including body and headers) has its size calculated and registered in the system.

AVG DT EN ¼ DT REQREC APPþ DT REQSENT NBþ DT DTSHARING

þ DT CALLBACK ð5Þ
Per expression (5), the metric AVG_DT_EN is the sum of the data traffic generated to meet the
application request and is collected through the parameters DT_REQREC_APP,
DT_REQSENT_NB, DT_DTSHARING, and DT_CALLBACK. The parameter
DT_REQREC_APP records the data traffic to receive an application request arriving in the
system. The parameter DT_REQSENT_NB records the data traffic during the operation of an
edge node to select the neighboring edge node and send to it the application request to process.
The parameter DT_DTSHARING records the data traffic during the operation of data sharing
among virtual nodes. Lastly, the parameter DT_CALLBACK records the data traffic to send
the answer to the request issuer.

In addition to the consumption related to the communication between edge nodes, the data
traffic regarding the interaction between edge nodes and end devices was also assessed, since it
is another part of the CoT system that strongly influences in its overall performance in terms of
bandwidth consumption. As aforementioned in Section 3.2, the virtual nodes (VN) can obtain
fresh data either from historical databases maintained at the edge tier (local databases deployed
into edge nodes), or from a direct connection with the physical nodes at the end devices tier, or
from cache system in memory of the VN. Each source of data has a substantial impact on
traffic in the network between the edge tier and end device tier. For instance, the less access to
physical sensors, the less traffic is generated. Although these strategies are also used without
running the collaboration, it is essential to evaluate whether our collaboration, along with the
proposed mechanism for data sharing among VNs, helps to decrease the number of accesses to
the end device tier, thus, reducing the data traffic. The metrics used for evaluation are described
below.

The metric AVG_DT_ENED (M4), represented by expression (6), has the purpose of
assessing the data traffic during the interaction between edge nodes and end devices to obtain
sensing data or perform actuation tasks. In order to provide input to the expression (6), we used
the parameter R_ENDEV responsible for recording the number of requests served using
sensing data read directly from the end device. Moreover, the parameter SDsize represents
the size of the sensing data in kilobytes (Kb) handled in our CoT system (Table 4). Per
expression (6), we calculate the metric AVG_DT_ENED by multiplying value of the param-
eter R _ ENDEV with the size of the sensing data (SDsize).

AVG DT ENED ¼ R ENDEV*SDsize ð6Þ

Therefore, when the collaboration process finalizes, the metrics AVG_DT_EN (M3) and
AVG_DT_ENED (M4) help to identify the traffic generated during such a process. In this way,
we are able to know the overhead added on the network and determine the effectiveness of our
CoT system to reduce the data traffic between edge nodes and end devices.
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Furthermore, we have selected the AVG_DT_TRAFFIC_KB (M7) metric to provide
information to assess if our system is cost-effective regarding the traffic generated in the
network to meet a request with the collaboration process enabled and disabled. The metric is
calculated using the expression (7). To provide input for the expression, we use as parameters
the previously mentioned AVG_DT_EN and REQ_MET metrics.

AVG DT TRAFFIC KB ¼ AVG DT EN=REQ MET ð7Þ
Therefore, when the collaboration process finalizes, the metrics AVG_DT_EN (M3), and
AVG_DT_ENED (M4) help identifying the traffic generated during such a process. Also,
the metric AVG_DT_TRAFFIC_KB helps to identify the average in KB of the data traffic to
meet a request. In this way, we are able to know the overhead added on the network and
determine the effectiveness of our CoT system to reduce the data traffic between edge nodes
and end devices.

Regarding the defined question Q3, in order to provide input to answer it, we need to assess
if the collaboration along with the proposed mechanism for data sharing among virtual nodes
effectively helps to save energy of the end devices. To do so, we used the metric
ED_ENERGY (M5) that represents the energy consumption of the end device to meet the
edge node request (e.g., delivering a requested sensing data). Since it is not the purpose of this
work to define any novel energy model, we calculated the metric using the expression (8). The
expression was defined based on the energy model available in Santos et al. [61].

ED ENERGY ¼ PTM*NODE POMAX*1:0ð Þ*R ENDEV ð8Þ
In order to provide input to the expression, we used the parameters R_ENDEV, PTM, and
NODE_POMAX. The parameter R_ENDDEV is the same used in expression (6) whose
purpose is to provide the number of requests met using sensing data read directly from end
devices instead of using data available from local database and memory cache. The parameter
PTM represents the processing time to meet the request. Lastly, the parameter
NODE_POMAX represents the maximum node power. Therefore, at the end of the collabo-
ration, the metric ED_ENERGY helps to show if the data sharing mechanism decreases the
accesses to the end devices nodes to obtain fresh data, thereby saving energy.

Finally, to answer the question Q4, we need to monitor all requests and check if the
response time threshold required by the application was met. For this purpose, we used the
metric REQ_RTTH_INV (M6) represented by expression (9).

REQ RTTH INV ¼ f RTTH;TTSð Þ ¼ 0 j TTS≤RTTH
1 j TTS > RTTH

�
ð9Þ

The metric computes the number of requests that, although being met by the system, did not
have the response time threshold desired by the application satisfied, i.e., if the value of metric
TTS is greater than RTTH. Therefore, this metric helps to assess the effectiveness of the
collaboration process to meet the requests within the response time threshold required by the
application. For some types of applications (time critical), sending data after the defined
threshold is useless. For REQ_RTTH_INV (M6), a lower value indicates that our collaboration
is efficient.

In addition, concerning the metrics to evaluate the latency and bandwidth, we assume that
each edge node already has the container images deployed to run the respective VN. Thus, we
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avoid overheads related to the transfer of image backup of the VN container between edge
nodes, since it is further cheaper to request hard disk space to store the images of the container.

5.2 Proof-of-concept implementation

To achieve the goals mentioned in Section 5.1, we developed a Proof-of-Concept (PoC) that
concretizes the components of our three-tier architecture (Section 3.1) and implements our
algorithms (Section 4). In this section, we describe the PoC and provide details about the
software framework used to its development as well as the hardware configuration to execute
it.

To build the prototype of our system, we used the Java programming language [37]. We
also used the Spring boot Framework version 2.1.3 [67] to build the micro services that
represent our VNs as well as all the other components of our infrastructure. To run these
components and VNs, we used Docker containers [24]. In the Docker containers, we installed
Java 64-bits virtual machine version “11.0.3 2019-04-16 LTS” [37], that is the java version
specifically prepared to perform the memory management within Docker containers. All the
components of the infrastructure (e.g. resource allocator, resource provisioner, edge node
manager, entry point) and the VNs are allocated to run within a separate container. However,
the VNs are instantiated on demand. Moreover, the protocol used to perform communication
among micro services was REST/HTTP [64], which is the standard among micro services. The
messages exchanged among micro services were implemented in JSON [39] format and
compacted using the HTTP GZIP [34], in order to reduce the number of bytes transmitted
in the network.

The end device tier is virtualized by using virtual end devices nodes configured into the
FiWARE framework [27]. FiWARE is a generic platform providing several components
(called Generic Enablers, GEs) to build IoT systems in several application domains. FiWARE
reduces the effort necessary for the CoT components to interact with the physical environment.
As FIWARE is a generic platform, we have selected only the elements necessary to use in our
CoT system, thereby avoiding the overhead of using unnecessary components. Thus, we used
the GE Orion Broker [29] and the GE IoTAgent [28] to perform tasks related to the access to
the physical environment. The GE Orion Broker allows getting sensing data from the local
database. The sensing data are inserted into the local database by the end devices. The GE IoT
Agent allows managing and communicating with the physical end devices. Each virtual end
device node represents a physical node equipped with a sensor to provide sensing data. Nodes
for sensing the ambient light (luminosity) and the temperature are examples. The number of
virtual end devices nodes configured in our PoC depends on the performed experiment, and
they are described in the next sections. Using the FiWARE, the virtual nodes obtain sensing
data by invoking the GE Orion Context Broker at the edge device tier. In addition, when the
access is to obtain fresh data, the message used to obtain the data directly from the sensors has
an average size of 122 bytes (SDsize = 0.1191 KB). Also, the message dispatched (callback
message to the client application) as the output of the Virtual Node has an average of 72 bytes
of size. In our environment, the average delay measured for querying a sensing data in the
Context Broker is 0.972 ± 0,019 s. We also assumed that all the deployed end devices pertain
to the same WSN and are homogeneous regarding their capabilities in terms of CPU, memory,
and battery. By using FiWARE, our framework is able to support both homogeneous and
heterogeneous sensor nodes that are accessed via a single interface. Moreover, in the
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performed evaluation, we did not use any actuator devices since to validate the research
questions the experiments only required sensor nodes.

Concerning the Edge tier, a total of five edge nodes were simulated by deploying the code
in VMware [71] virtual machines using CentOS 7 64-bit operating system [18]. The config-
uration of these virtual machines comprises 2.3 GB RAM, 10 GB HD space (with 2.5 GB
used) and 2 CPUs model i7-8550U of 1.80 Ghz. The Edge nodes are connected using a local
network with a link capacity of 10/100Mbps and the latency among them is defined according
to the design of each experiment. Moreover, the process of setting up each edge node and its
neighborhood is the same process of collaboration represented by Figure 7. We consider that
such a process had already been run, previously to the start of the experiments, and the Service
Provider Manager had already performed the configuration of the neighborhood of each edge
node. In addition, the datatype descriptions were created and deployed in the edge nodes. They
represent the sensing data generated from the virtual devices and provided by the respective
VN. The same model from Figure 4 was used in the definition of these datatypes. In our
implementation, there can only be one VN container of a datatype per edge node due to its
multi-tenancy feature [52], but multiple edge nodes can perform the same VN. This multi-
tenancy feature allows that one VN instance running in a container can meet multiple tenants
(users) to provide temperature given data. Moreover, every VN is enabled to share sensing data
with their neighbors VNs in our scenarios. A reference implementation of the LW-CoEdge is
available as open-source in https://github.com/mpitanga/lwcoedge.git.

5.2.1 Application description and parameters used in the experiments

The smart city is a typical IoT use case that encompasses several types of applications such as
smart building, smart traffic, smoke pollution mapping, smart transportation, to name a few
[52, 65]. These emerging IoT-applications demand requirements such as low latency, energy
efficiency, and location-awareness. Thus, Edge computing is used to provide flexible, scalable
and smooth services closer to data sources and/or users. Therefore, these types of applications
are suitable to depict the features of our CoT system.

In our PoC, we simulate a smart building application [49] and execute scenarios to assess
both the resource management and the collaboration process proposed in this paper. A scenario
represents a possible way to use a system (the interactions between the actor and system) to
accomplish a given functionality under a set of conditions [14, 73]. Every scenario in our PoC
encompasses a group of experiments in which a client application is used to simulate the end-
user operating a system (web or app) responsible for issuing several requests to the CoT
system. End users can access the sensing data either via the code of this application deployed
in their devices or by invoking the application through a web page. In the experiments, we
simulate several users sending requests and assess the scalability of our solution to meet them.
Each request is specified based on the model depicted in Figure 3, and it encompasses (i) a
single datatype, (ii) the desired value of data freshness in milliseconds, (iii) response time
threshold, and (iv) a callback URL. Moreover, every application request arrives via an entry-
point located at the edge tier and has an average size of 140 bytes.

Table 4 summarizes the relevant parameters used to the execution of the experiments. A
desktop computer equipped with an Intel Core I7-8550U 1.80 GHz - 1.99 GHz processor and
16 GB RAMwas used to run the experiments in a controlled environment within the Ubicomp
laboratory at UFRJ. In our PoC, the number of VNs and the datatype provided by each VN are
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specified and varied for each experiment. In the next sections, we describe the scenarios and
the adopted values for specific requirements.

5.3 Design and analysis of the first scenario

In this Section, we describe the first scenario and how we designed and performed the
experiments, along with the analysis of the achieved results.

This hypothetical scenario represents the monitoring of a rectangular area of 200 × 200
meters representing an office floor of a smart building where the sensors of the end device tier
and the edge devices are deployed. In this area, the network of edge nodes has a latency of
about 20 ms. Moreover, software components (based on FiWARE figway1) were used to
simulate physical sensors deployed for monitoring the area, for instance, smoke sensors
deployed on the restroom and meeting room. Thus, monitoring applications submit their
requests to (a) detect if employees are smoking in an unauthorized area, e.g., within the
restroom and meeting rooms; (b) monitor the temperature and humidity of the offices; and (c)
monitor the luminosity of the environments. It is worth noting that the sensing data obtained in
items (b) and (c) can be used to perform actuation tasks in order to regulate the air-conditioning
system automatically and adjust the ambient light. However, the operation of actuation is not
the focus of this current PoC. Based on this scenario, we run three experiments (E1, E2 and
E3) to answer the research questions mentioned in Section 5.1. In Table 5, we describe the
datatypes configured in each edge node to represent the sensing data obtained from the sensors
as well as the neighboring edge nodes in this scenario.

In this scenario, the experiment was executed 10 times and every execution was divided
into five groups regarding the number of requests sent to the CoT (starting with 200 requests
and varying from 200 to 200 up to 1000 requests). For instance, in the first group 200 requests
were generated, in the second 400, the third 600, the fourth 800 and in the fifth group 1000
requests were sent to the system. Therefore, in each execution of the experiment, a total of
3000 application requests were produced. Such a method leads to a confidence interval of 95%
for the obtained results and it was limited by the performance of the hardware available to
perform the experiments. During the execution of the experiments, for each application request
we have varied: (i) the edge node receiving the request (entry point), (ii) the required value of

1 https://github.com/telefonicaid/fiware-figway

Table 5 Summary of edge nodes and neighborhood configurations

Edge Node Datatype Neighbor EN

EN0 DT1 UFRJ.UbicompLab.temperature EN1, EN2
EN1 DT1 UFRJ.UbicompLab.temperature EN0, EN2

DT2 UFRJ.UbicompLab.humidity
EN2 DT1 UFRJ.UbicompLab.temperature EN0, EN1,EN3, EN4

DT2 UFRJ.UbicompLab.humidity
DT3 UFRJ.UbicompLab.luminosity
DT4 UFRJ.UbicompLab.smoke

EN3 DT3 UFRJ.UbicompLab. luminosity EN2, EN4
DT4 UFRJ.UbicompLab.smoke

EN4 DT4 UFRJ.UbicompLab.smoke EN2, EN3
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data freshness, and (iii) the requested datatype. Although our approach allows each request to
have a different value of sensing data rate depending on the application requirements, the
current implementation of our PoC does not provide support to this feature yet. Thus, as we are
using FiWARE, the sensors were manually configured to automatically push the sensing data
to the Orion Context Broker (temporary database) at every 30 s. The “push” is the primary
method used in FiWARE for the sensors sending their sensing data. Therefore, we are
currently assuming the data sensing rate of 30 s for all the application requests. In Table 6,
we present the content of generated and submitted requests. We can see that, for DT1, a total of
747 requests were generated with the values of data freshness varying randomly between 1000
and 5000 milliseconds (ms). A total of 744 requests were generated for DT2 with the values of
data freshness also varying randomly between 1000 and 5000 milliseconds (ms). The total of
requests for DT3 and DT4 are 764 and 745 respectively and were generated with the fixed
value of data freshness of 5000 ms. We used different values of freshness to stimulate the data
update into the Virtual node cache from either the sensors or database. Thus, we can assess the
impact on data traffic during the tasks of data sharing and obtaining fresh data from the
sensors. In order to assess whether the response time threshold (RTTh) desired by the
application is being properly met, we are considering a response time value less than a second
1(s). Thus, if a response time greater than 1(s) is achieved, our system accounts the request as
not being met. Such a value was defined taking into account that our scenario is not a real-time
application that requires low response time like interactive games, intelligent traffic, and
healthcare IoT systems [51, 55, 58, 77]. Furthermore, the adopted strategy was to run the
system with and without using the collaboration process and measuring its effectiveness to
meet the application requests in each case.

5.3.1 Experiment E1

We designed the experiment E1 to answer the questions Q1 and Q4, which assess the
capability of the CoT system to meet application requests. According to Figure 12a, for the
scenario executed using the resource management algorithm with the proposed collaboration
process enabled, the CoTsystem can serve all the application requests submitted. For instance,
in the first point, for every 200 requests submitted to the system, all the 200 requests were met
using the collaboration process, an efficiency of 100%. This behavior is due to the ability of
our algorithms to engage a neighbor node to meet a request that would not be met by the node
that received the original request. On the other hand, when the collaboration is disabled the
ability of the system to meet the requests is reduced. In figure (a) and (b), we can see in the first
point that for each 200 requests submitted to the system it was only able to meet 101 and, not
met 99 respectively, i.e., a decrease of the efficiency of 49.5%. The reason for this behavior is
that without the collaboration, the node that receives the request but unmet it (either because it

Table 6 Generated requests

Datatype Number of requests Data freshness (ms)

DT1 747 1000–5000
DT2 744 1000–5000
DT3 764 5000
DT4 745 5000
Total 3000
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does not provide the data or because it is busy), cannot engage its neighboring nodes to
forward the request to be met. This behavior can be observed up to the last point in the graph,
for instance, the second point shows that for each 400 requests submitted to the system it was
only able to meet 198 and not met 202, and so on.

Figure 12c shows the average total time spent (TTS) to meet a request with collaboration and
without collaboration. For instance, we can see in the first point that for every 200 requests the TTS
with the collaboration process enabled is 55 ms against a TTS of 35 ms without collaboration, an
average overhead of 20 ms. In the second point, the TTS with collaboration is 51 ms against a TTS
of 31 ms, and so on. In addition, we can observe in this experiment that this added overhead has a
greater impact due to the latency values of the network since it is necessary to check the neighboring
nodes to find the node with the best resources available to forward the request. This statement
regarding the impact of network latency is observed in Figure 12d, in which we can see only the
requests served using the collaboration process, i.e., those requests forwarded to be served by a
neighboring node. According to the figure, the first point shows that 99 requests (Figure 12b) met
using the collaboration process the average total time spent (TTS) to meet a single request was
86 ms. The second point shows that 202 requests met using the collaboration process the TTS to
meet a single request was 79 ms, and so on. Moreover, we can observe that from 400 requests the
total time spent to fulfill a request presents little variation stabilizing in the range between 78 and

World Wide Web (2020) 23:1127–1175 1163

Figure 12 a Average number of requests served. b Average number of requests not met. c Average total time
spent (TTS) to meet a request. d A view of the average total time spent (TTS) only of the requests met by the
collaboration process



79 ms. This behavior is due to some technical details implemented to increase the performance
during the collaboration between edge nodes, for instance, a pool of HTTP connections2 to re-use
connections to avoid the overhead of creating new connections. Despite the latency impact in this
experiment, the average response time achieved is less than the defined RTTh value.

From the results presented in this Section, we can conclude that the proposed collaboration
process among virtual nodes effectively helped to meet a larger number of requests, with
improved performance, i.e., satisfying the response time threshold desired by the application.
Although our scenario does not represent a real-time application, the result obtained in these
experiments, according to the values presented in PubNub Staff [58], are encouraging to our
approach to also serve real-time applications with sensing data. Therefore, these results
suitable provide answers to the posed questions Q1 and Q4.

5.3.2 Experiment E2

We designed experiment E2 to answer the question Q2, i.e., to show that our proposed
collaboration among virtual nodes helps to reduce the data traffic at the end device tier while

2 https://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html
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https://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html


at the same time meeting more requests. In our CoT system, for each incoming application
request, when the collaboration process is enabled and the parameter DType (expression (4)) is
classified as not provided, this means that the following tasks were executed by the compo-
nents: (a) discovering of the best neighboring node in terms of the capability of available
resources, (b) forwarding the requests to the discovered neighbor node. In addition to the tasks
before mentioned, when the collaboration process is activated, the data sharing mechanism is
also executed allowing a VN to share fresh data with its neighbor VNs. These tasks generate
new messages (control messages), which increase the data traffic in the system. In addition, the
amount of control messages executed depends on the number of neighbor nodes connected to
the edge node that received the initial request. Also, an additional message is generated
whenever it is required to instantiate a new container or to scale-up one.

In order to properly show both the data traffic during the collaboration between CoT
components at the edge tier and the reduction of traffic between edge nodes and end devices
through the proposed collaboration process, we divided the experiment into two parts. The first
part, depicted in Figure 13a, calculates the data traffic generated at the edge tier to meet the
requests with the collaboration process turned on and off. The data traffic was measured
through the metric AVG_DT_EN (M3) that represents the traffic at the Edge tier from the
reception of the request, during the communication between CoT components to discover the
best neighboring edge node to meet the request, until the delivery of the data to the request
issuer. The second part of the experiment, depicted in Figure 13b, has the purpose of showing
how much data traffic the proposed collaboration process, along with the data sharing
mechanism, was able to decrease during the communication between the edge nodes and
end devices.

By observing Figure 13a, as expected, the scenario executed with the proposed
collaboration process incurs in data traffic overhead due to the control messages required
to perform the collaboration. We can also see in Figure 13a and c that there is a relation
between the increase of the data traffic, the overhead due to the communication among
the edge nodes, and the higher number of requests met. In contrast, when we have fewer
requests met, the data traffic also decreases. By using the expression (7) to measure the
amount of data traffic (with collaboration and without collaboration) to meet a single
request, we can observe from the results obtained that our collaboration process is
efficient even presenting an increase of data traffic at edge network. For example, in
the first point of the figures (a) and (c), we can see that the average of data traffic (KB)
to meet 200 of 200 requests submitted using the proposed collaboration process is
0.44 KB per request, whereas without collaboration the average of data traffic to serve
101 of 200 requests submitted is 0.36 KB per request, i.e., a difference of 18.2% of the
data traffic. This behavior can be observed up to the last point in the graph, where we
can see that the average of data traffic (KB) to meet 1000 of 1000 requests submitted
using the proposed collaboration process is 0.43 KB per request, whereas without
collaboration the average of data traffic to serve 503 of 1000 requests submitted is
0.36 KB per request, i.e., a difference of 16.3% of the data traffic. It is worth noting that
from the third point up to the last point, the average of data traffic is constant. Moreover,
for the CoT system to meet all the 1000 requests without collaboration, the user will need
to submit at least 100% more requests, i.e., 2000 requests, which will consume according
to the metric AVG_DT_TRAFFIC_KB (M7), on average, 0.53 KB in data traffic per
request, i.e., an increase of 23.3% concerning the measured consume using the collab-
oration to meet the same 1000 requests. This increase is mainly due to the data traffic
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generated from the requests received but not met. Therefore, we can conclude from the
results before mentioned, that the difference presented of 16.3% of data traffic is low in
relation to the user’s perception of the system inefficiency to meet requests when the
collaboration is disabled.

Furthermore, according to Figure 13b and c, we can observe that there is strong relation
between requests met with collaboration enabled and the reduction of data traffic. For
instance, we can see in the first point that for every 200 requests submitted to the system,
the communication between edge nodes and end devices (to obtain data) produced, on average,
2.29 KB of data traffic using collaboration against 3.12 KB without collaboration, i.e., a
decrease of 26.6%. This reduction in data traffic can be observed at all points in Figure 13b and
intensifies as more requests are processed. For instance, we can see in the last point of the
figure that for every 1000 requests submitted, the data traffic using collaboration was 9.15 KB
against 12.76 KB without collaboration, i.e., a decrease of 28.3% in data traffic using the
collaboration. This behavior is related to the strategy used by the virtual node (VN) to select
the data source, either from the local database or from memory cache. Moreover, the proposed
mechanism for data sharing was able to update the fresh data obtained from the sensors by a
VN in the cache memory of its neighboring VNs, thereby avoiding the communication with
the end device tier, and consequently reducing the network traffic.

Answering the question Q2, we conclude from the results presented in this Section that the
proposed collaboration process along with data sharing among virtual nodes effectively
reduces the data traffic between the edge tier and end device tier while properly meeting the
received application requests.

5.3.3 Experiment E3

We designed experiment E3 to answer the question Q3, assessing if the collaboration among
virtual nodes helps to save energy for the end device nodes. Figure 14a shows the energy
consumption of the devices for different similarity degrees of application requests. In the figure,
each point on the X-axis represents the percentage (%) of similar requests processed in the CoT
system. A similarity between requests occurs when the system receives two or more requests
with the same characteristics, i.e., the same datatype, with the same data freshness value, and so
on. Therefore, the data sharing feature of our proposal can be used, and sensor data already
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acquired may be reused to meet new (similar) arriving requests. In this experiment, the requests
were generated for the temperature datatype. In order to measure the energy consumption, ten
thousand (10000) requests were generated for each point. A 0% of similarity between requests
denotes that the ten thousand requests were processed without taking advantage of the data
sharing, since there were no common datatypes among the requests. Meanwhile, a similarity of
25% indicates that, from the 10,000 requests submitted, only 2500 requests were processed with
the data sharing mechanism being exploited, and so on up to 100%.

By analyzing the results, and responding to Q3, we can conclude that the proposed
collaboration process along with data sharing among virtual nodes helps saving energy
for the end device nodes. In Figure 14a, we can observe that the higher the similarity of
the requests, the more energy of the end devices was saved. Such behavior happens since
our CoT system avoids the continuous access to the end device to obtain the same
datatype previously acquired and processed. For example, after executing ten thousand
requests, we can observe in Figure 14b that when the similarity is equal to 0%, i.e., no
similarity, our system accessed 601 times the end devices nodes to obtain sensing data.
For a behavior where all requests are similar, i.e., equal to 100%, the system performed
411 accesses to the end devices, thereby showing a reduction of 31.6%. This perfor-
mance is obtained by combining our data sharing process and the datatype cache system
of the virtual nodes. It is important to notice that performance can vary for more or less,
depending on the data freshness configured in the request. In this experiment, all the
requisitions were generated with constant values of freshness (Table 4). Therefore, we
can conclude that, for a higher freshness value, a lesser amount of accesses to the end
devices to obtain sensing data will be performed.

Going back to the goals defined to assess our work, the results of the experiment E1 showed
that the goal G1 was properly achieved, since an increase in efficiency of 100% to meet a larger
number of requests and with improved performance was observed when the proposed collab-
oration process was enabled. The achievement of goal G2 can be observed from the results of
experiments E2 and E3, since the system was able to effectively reduce both the energy
consumption of the sensors as the data traffic during the processing of the application requests
received. Therefore, from the result of the three experiments depicted above, we conclude that
the goals presented in Section 5.1 were overall achieved.

5.3.4 Comparative analysis

In this Section, we present a comparative analysis of our results in comparison to the work
described in [72], where the authors present the Edge Node Resource Management (ENORM),
a framework for provisioning and auto-scaling edge node resources. As shown in Section 4,
ENORM was used as inspiration to create our distributed resource management algorithm
even though the final model and architecture of our proposal are totally distinct. The presented
analysis is divided into two parts. The first analysis concerns the performance in terms of
response time (Experiment E1) and the second refers to the data traffic generated in the
network (Experiment E2).

A. Comparative Discussion on Response Time

Due to the characteristics of our scenarios, we assume that up to one second of response time is
adequate to fit the classes of IoT applications considered in the work. We do not assume hard
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real-time applications in the scenarios considered in the performed experiments. However, in
PubNub Staff [58], the authors discuss the impact of the real-time applications and the
response time desirable in online games. The authors argue that the ideal response time for
such scenarios is 50 ms, a delay of even 100 ms reduces player performance and if a delay of
150 ms occurs, the gameplay is degraded.

In ENORM [72], the authors present an experiment to assess the performance of their
resource allocation and resource provisioning approach using an open-source version of
Pokemon go game (iPokeMon3). By observing their results using edge servers (Figure 9c in
[72]), ENORM achieved an average latency of 100 ms using multiples Belfast edge servers
(128), thereby being within the range of 50 and 100 ms. Thus, ENORM is an approach suitable
to meet real-time applications. Regarding our proposal, we performed the experiment E1 to
show the average response time achieved by using our proposed approach. The results of the
experiments have shown encouraging results, even using a more resource-constrained envi-
ronment (e.g., number of edge nodes) than the one used by ENORM. In our proposal, Figure 12
shows response times close to the ideal values (values between 50 ms and 100 ms) according to
the discussion presented in PubNub Staff [58]. By observing the measured times from the
requests met with or without the collaboration process, we clearly show that the same QoS
requirement in terms of response time was met with fewer resources being consumed. There-
fore, our proposal makes more efficient use of the available resources then ENORM.

B. Data traffic

The high data traffic generates bottlenecks in the network and increases the time of communi-
cation during the collaboration between the devices, thereby reducing the response time of the
applications. Therefore, the reduction of data traffic is a feature necessary in Edge computing.

In ENORM, the authors present results comparing the data traffic between the Cloud tier and
the Edge tier. They show a significant breakthrough in reducing data traffic to the Cloud, ranging
from 88% to 95% in the performed evaluation using iPokeMon. Such a performance is achieved
thanks to ENORM’s ability to place the computing closer to the data source, thereby avoiding the
sending of all data to the cloud. Moreover, in the experiments with ENORM [72], the data traffic
between the servers (cloud and edge) was 12 KB per user, which includes the information
necessary to configure the chosen edge node (control messages) and the user data. Regarding
our proposal, we performed the experiment E2 to show the data traffic required to meet an
application request. The average data traffic to meet the application requests using the proposed
collaboration process ranges from 0.43 KB to 0.44 KB per request between the edge nodes.
Besides the sensing data requested, such data traffic also includes the control messages for the
discovery and selection of the neighbor node to forward the request. Therefore, by comparing with
the hierarchical approach adopted in ENORM, our flat model presented a smaller volume in terms
of data traffic generated in the network, thereby favoring those applications sensitive to latency.

5.4 Design and analysis of the second scenario

In this Section, we describe the second scenario, the performed experiment, along with the
analysis of the achieved results.

3 https://github.com/Kjuly/iPokeMon
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For this hypothetical scenario, we have considered an area with approximately 800 × 400
meters representing a distribution center of a retail company at the Rio de Janeiro city where
the sensors of the end device tier would be deployed. At this location, the company stores high
valuable goods and cartons that are highly flammable. Due to the climate conditions of the city,
the distribution center faces high temperatures, which affect both the equipment used for order
processing and the well-being of employees. Thus, the company deployed an application to
monitor the environment temperature to regulate the cooling system automatically. Moreover,
the system also is used to detect the presence of smoke that may indicate a fire situation caused
either by smoking in an unauthorized area or by overheating of an electronic device used in
order processing. Data captured from the sensors are displayed on monitors scattered in the
distribution center as well as being accessible from mobile devices. In this second scenario,
experiment E4 was performed to assess the capability of our CoT system to meet requests in an
environment with edge nodes overloaded to serve requests. Moreover, we also show how the
algorithm performs balancing among the neighbor edge nodes. Thus, this experiment also
helps in answering the research questions Q1 and Q4 mentioned in Section 5.1.

5.4.1 Experiment E4

To execute this experiment, we modified relevant system settings in the edge nodes concerning
the datatypes, and neighborhood. Unlike the first scenario, the edge nodes are homogeneous
regarding the provided data types allowing more effective demonstration of the collaboration
behavior (e.g., load balancing) when one or more edge nodes are overloaded. In Table 7 we
describe the configuration concerning the datatypes and the neighborhood. For instance, the
edge node EN0 was configured to provide the datatypes DT1 and DT4 and its neighbors are
the edge nodes EN1 and EN4, and so on.

To simulate the behavior of the overloaded edge node, i.e., the resource exhaustion of the
VN to meet a request, for this experiment we use the parameter of memory available for
processing, since the number of available CPUs is always the same. As our PoC was
developed using Java programming language, the low volume of heap memory causes the
JVM to run more intensively the garbage collector (GC)4 operation. The GC operation
suspends the execution of the components until the allocated, but unused memory is released,
thereby generating a slowness to meet the requests. The minimum value of 14% of available
memory (JVM heap) was set for all the edge nodes. Thus, whenever the available memory is
less than the minimum configured, our resource management algorithm tries to scale up the

Table 7 Summary of Edge Nodes, datatypes and neighborhood configuration (second scenario)

Edge Node Datatype Neighbor EN

EN0 DT1 UFRJ.UbicompLab.temperature EN1, EN4
DT4 UFRJ.UbicompLab.smoke

EN1 DT1 UFRJ.UbicompLab.temperature EN0, EN2, EN3
DT4 UFRJ.UbicompLab.smoke

EN2 DT1 UFRJ.UbicompLab.temperature EN1,EN3
DT4 UFRJ.UbicompLab.smoke

EN3 DT1 UFRJ.UbicompLab.temperature EN1, EN2, EN4
DT4 UFRJ.UbicompLab.smoke

EN4 DT1 UFRJ.UbicompLab.temperature EN0, EN3
DT4 UFRJ.UbicompLab.smoke
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container by adding more memory. Moreover, we are considering that the physical memory
available of the edge node is not enough to scale up the container, then this task will fail, and
the request will be forwarded to the collaboration process. It is worth to inform that the default
setting for the minimum memory available in our system is 5%.

The operation of the experiment E4 is similar to the E1 with some modifications regarding
parameters used to its execution. First, the freshness was set to 5(s). Second, the requests were
submitted to the same edge node EN2, thereby generating an overloaded of its resources. We
choose the EN2 since it is the neighbor of the EN1 and EN3 that are neighbors with each other.
Moreover, EN1 and EN3 are neighbors of the other ENs. Therefore, a request not met by EN2
can be met by any EN.

Figure 15a shows the requests met with the proposed resource management (RM) algorithm
and collaboration process enabled and disabled. We can see in the figure that our system can
serve 200 out of 200 submitted requests using the collaboration process against only 39 requests
met without collaboration. Similarly, the system served 400 out of 400 requests submitted
whereas only 85 were met without collaboration. This behavior is observed up to the last point
in the graph, where 1000 out of 1000 requests submitted were successfully met with collabo-
ration against only 255 requests met without collaboration, thereby demonstrating a decrease in
efficiency of 74.5%. Therefore, by using the proposed collaboration process, we obtained an

4 https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
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efficiency of 100% in meeting the application requests. This performance was achieved by
using the neighboring nodes to meet the requests that the source node (EN2) could not serve.
Figure 15b depicts the requests not met.We can see in the first point of the graph that 161 out of
200 requests submitted were not met by the CoT system because the collaboration process has
been disabled. In the second point, 315 out of 400 requests submitted were not met. We can see
this behavior up to the last point in the graph. These values represent the number of requests not
forwarded for processing on the neighboring edge nodes.

Figure 15c shows how our system distributed the requests between the other ENs when the
collaboration process is enabled and the EN that received the request is unable to meet.
According to the figure, we can see that for every 1000 requests submitted to the EN2, it
was able to serve only 340 requests due to the exhaustion of its resources. For the 660 requests
not met by the EN2, our distributed resource management with collaboration selected the
neighboring edge node EN1 and EN3 to meet such requests since these ENs had the best
resources at that moment. Moreover, when EN1 and/or EN3 did not have enough resources to
meet a request, our algorithm selected one of its neighboring nodes to forward the request, and
so on. The remaining of the distribution occurred as follows. The edge node EN1 served a total
of 251 requests. The edge node EN3 met 370 requests. The edge node EN0 met 22 requests.
Lastly, the edge node EN4 met 17 requests.

From the results presented in this Section, we can conclude that even though the CoTsystem
has presented edge nodes with the exhaustion of resources, the proposed collaboration process
effectively helped to engage the neighbor edge nodes to meet such requests. Despite this, the
requests were served by satisfying the response time threshold desired by the application.
Therefore, these results suitable provide answers to the posed questions Q1 and Q4.

6 Final remarks

In this work, we presented LW-CoEdge, a novel lightweight virtualization model and P2P
collaboration process for Edge computing. Our proposal relies on a three-tier architecture using
Edge computing, and it is supported by two main technologies/approaches: containerization
and microservice. The containerization provides a simple mechanism for configuration, pack-
aging, and instantiation of our components and tackling the heterogeneity of edge nodes to
build the virtual nodes (VN). Moreover, it allows hiding the physical details of infrastructure
thus avoiding dependence on any technology, consuming less resource, and processing time.
The microservices are exploited to develop our VNs and operational support components. They
are designed as lightweight components, i.e., small, highly decoupled and performing a single
responsibility. Therefore, containerization and microservice fulfill the goal of enabling our
lightweight virtualization model besides facilitating the distribution and managing our compo-
nents on the edge nodes. Concerning the collaboration, we designed a flat P2P process to create
and manage the neighborhood of edge nodes besides allowing the data sharing and the
distributed resource management. The data sharing allows a VN to share its fresh data with
neighboring VNs actively. Also, the data sharing provides the capability for VNs to identify the
data demands of other VNs during the collaboration process, thereby reducing the data
transmissions between VNs. Furthermore, our resource management distributes the decision-
making at the edge of the network, i.e., each edge node is provided with the ability to engage
neighboring edge nodes to allocate or provision VNs when needed, thereby allowing meeting
more requests.

World Wide Web (2020) 23:1127–1175 1171



A prototype with all the proposed features was implemented in a real environment. This
prototype was used as a Proof-of-Concept, generating the data that served as input for the
experiments performed in order to assess the proposed process and algorithms. The results of
the performed experiments showed that our algorithm for distributed allocation of resources
and resource provisioning, improved with flat P2P collaboration and data sharing, enabled the
CoT system to meet more application requests, with lower latency, while saving energy of the
end devices and decreasing the overall data traffic.

Despite the advances promoted by our proposal to advance the state-of-the-art of the Edge
computing paradigm, we have selected a set of open issues that need to be addressed as future
work to improve our CoT system. First, we are planning new experiments to be applied in a
real environment encompassing a larger number of heterogeneous edge nodes deployed in a
geographically larger area. The current number of nodes used in our experiments was limited
by the computational capacity available at the laboratory where the experiments were execut-
ed. Second, our solution currently allows the applications to send only a single datatype per
request. Therefore, we intend to support applications requesting different types of data in a
single request in the future. Third, we plan to design a new monitor system to identify the most
commonly used VN containers to start them during the system boot automatically, thereby
optimizing the initial response time to meet a request. The task of starting the new container
requires an amount of time. During this operation, the requests are queued to be met later and
are served with high response time. Therefore, with a proactive approach to start containers,
we aim at further improving the response time of the system. Lastly, we intend to integrate our
virtualization model with other frameworks in charge of interacting with the Things tier, for
instance, the Edgex Foundry [25].
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