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Abstract
Illness severity prediction (ISP) is crucial for caregivers in the intensive care unit (ICU)
while saving the life of patients. Existing ISP methods fail to provide sufficient evidence
for the time-critical decision making in the dynamic changing environment. Moreover, the
correlated temporal features in multivariate time-series are rarely be considered in existing
machine learning-based ISP models. Therefore, in this paper, we propose a novel inter-
pretable analysis framework which simultaneously analyses organ systems differentiated
based on the pathological and physiological evidence to predict illness severity of patients
in ICU. It not only timely but also intuitively reflects the critical conditions of patients for
caregivers. In particular, we develop a deep interpretable learning model, namely AMRNN,
which is based on the Multi-task RNNs and Attention Mechanism. Physiological features
of each organ system in multivariate time series are learned by a single Long-Short Term
Memory unit as a dedicated task. To utilize the functional and temporal relationships among
organ systems, we use a shared LSTM task to exploit correlations between different learning
tasks for further performance improvement. Real-world clinical datasets (MIMIC-III) are
used for conducting extensive experiments, and our method is compared with the existing
state-of-the-art methods. The experimental results demonstrated that our proposed approach
outperforms those methods and suggests a promising way of evidence-based decision
support.
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1 Introduction

The accumulation of over 69 million EHRs from over 21.9 million (90.1% of National Par-
ticipation Rate) individuals in the My Health Record System1, has cached great attentions
from machine learning and data mining communities. Learning such a large volume of data
from different sources could provide strong supports for evidence-based clinical decision
making in ICU, which could benefit clinical practice. However, multi-format of EHRs are
abundant in terms of data categories, data types, and multivariate time series, but are usu-
ally vendor-specific and limited in scope [3]. A clinical decision in ICU is fundamentally
driven by forecasting an outcome for patients in terms of quality and length of life [3].
Recently, deep learning technics have advanced the researches in ICU decision support.
But, they mainly focus on mortality estimation [23] and phenotype analysis [16]. In gen-
eral, clinical decisions in ICUs are time-critical and highly dependant 1n the physiological
data analysis. Without sufficient real-time patients’ information, making an accurate and
rapid decision would be very challenging for clinicians in a fast-changing environment. In
the past decades, numerous scoring systems, such as SOFA [26], APACHE II [14], SAPS
II [15], etc., have been introduced and progressively refined to assess conditions of patients
and evaluate the effectiveness of treatment in ICU. These scores can reflect the status of
patients with adequate medical insights from different physiological aspects.

1.1 Motivation

Although numerous scoring systems can reflect the critical condition of patients on dif-
ferent physiological aspects, they are unable to provide time-critical information because
they are currently still a hand-crafted calculation with daily time intervals. Since most of
the medication evaluation, such as pathology tests, are organized over a long-period of
time-window, e.g. 24-hours, it results in less responsiveness to patients who are in critical
condition. Referring to the need for providing early warning scoring systems [4] for ICU
patients, we believe that an instant scoring system can help monitor the medical develop-
ment of patients. To demonstrate this idea, we firstly conducted a study on showing how
medical conditions are developed with two SOFA score trajectories for two patients. As it
can be seen in Figure 1, two SOFA trajectories of patients can envision the development of
diseases and the effectiveness of treatments. The high-frequency SOFA scores can be used
as a baseline of patients’ medical conditions. In this way, continuously predicting the illness
severity scores can be a new tool for monitoring patients.

1.2 Challenge

ICU data is mainly recorded as multivariate time series. Over the years, RNNs (Recurrent
Neural Networks) and their variants that are used as a deep model capable of capturing fea-
tures of time series, have been investigated and achieved significant results on the mortality
prediction and disease-code prediction. In this field of research, ICU data is characterized
as sparse, irregular, and also noisy. However, many imputation methods have been investi-
gated and implemented in the learning framework for performance improvement. Most of
the existing methods have a drawback that they treat all features of physiological time series
as a single multivariate input stream without considering the correlations between organ

1https://myhealthrecord.gov.au
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Figure 1 Two different SOFA trajectories of ICU patients. The patient (ID=249621, red) was initially in
a critical condition (measured using SOFA score), but gradually improved and eventually discharged. In
contrast, the conditions of the patient (ID=277565, blue) deteriorated in ICU and finally passed away

systems in a human body (e.g., heartbeats are correlated to blood pressure). As a result, this
unfortunate ignorance can be detrimental to the performance of a prediction model. Con-
sequently, the existing works are unavoidably biased and sensitive to a few physiological
features in their learning process and have ignored the abnormal organ functions that may
have a significant contribution to the prediction model in training.

1.3 Solution

To address the above-mentioned problems, we developed a novel deep learning model,
namely, Attention Multi-task Recurrent Neural Networks (AMRNN) for continuously
analysing multiple organ systems. In order to learn the multivariate time series of physio-
logical features of each organ system separately, the approach of Multi-task LSTMs is used.
Furthermore, a model of shared LSTM Layer is applied to utilise the temporal and func-
tional relationships between organ systems to achieve better prediction results. Our model
demonstrated a promising new solution for learning the correlated feature in multivariate
time series with interpretable results.

1.4 Contributions

In summary, Our contributions are threefold:

– A novel multi-task LSTMs framework is proposed to learn each of the individual human
organ systems simultaneously. The Attention mechanism was applied to capture the
temporal and functional correlations between systems. As a result, better prediction
performance is obtained.

– To learn correlated temporal features, the shared LSTM layer is applied to capture the
important correlated features overtime by integrating both task-specific and cross-task
interactions through the sequential EHR. This has suggested a new way of processing
correlated temporal features.
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– We have compared our method with state-of-the-art methods on real-world data with
respect to the continuous illness severity prediction. The experimental results have
shown that our framework outperforms all other methods.

2 Related work

EHR mainly consists of multivariate time series with various types of medical variables.
In practice, time-series deep models have been widely adopted for analytic tasks, such as
mortality risk estimation, phenotyping analysis, and disease modelling.

2.1 Multivariate time-series deepmodelling

To address the above analytic challenges, many sophisticated models were developed over
the pasting years. Wang et al. [27] investigate disease-specific features embedded in descrip-
tive data for analysing the phenotype of patients. To improve the model performance, Zhou
et al. [31] and Nie et al. [18] take the consistency of multiple modalities and the task-specific
features into consideration for performance improvement. Unfortunately, the performance
of the above prediction model is impacted by not utilising the temporal information embed-
ded in the multivariate time series data. In particular, multivariate time series features can
properly reflect the illness severity of a patient. To utilising the temporal information embed-
ded in time series data, Pham et al. [20] adopted RNNs models to learn the time series
feature to estimate ICU patients‘ illness severity. For performance improvement, Chen et al.
[6], Lipton et al. [16] and Chen et al. [5] consider time interval while integrating RNNs for
investigating irregular EHR time series data. However, the above works process the tempo-
ral feature in a heuristic manner by using a monotonically decreasing function. Therefore,
these frameworks may cause under-parameterisation or over-parameterisation.

2.2 Multi-task learnning

Multi-task Learning aims to leverage useful information contained in related learning tasks
to improve the model performance, and it is widely used in computer vision [28, 29].
Abdulnabi et al. [1] proposed a multi-task CNN for attribute prediction, in which multiple
CNNs tasks are used for learning image segments features, to unitise useful information
a common layer is designed for determining the spatial correlation between image fea-
tures. In spite of multi-task CNN, Chen et al. [6] proposed multi-task RNNs frameworks
to exploit the correlations between sub-tasks by jointly learning EEG signals for inten-
tion recognition tasks. For multivariate time-series data analysis, Chen et al. [5] proposed a
multi-task learning method to capture the temporal correlations embedded in learning tasks.
The core design of multi-task analytics frameworks is to capture the intrinsic relationships
between different learning tasks, and utilise the common features significant for perfor-
mance improvement, Zhou et al. [30]. Harutyunyan et al. [10] extend the success of the
heterogeneous model for time series learning. However, the performance of these models is
impacted by over-parameterisation.

2.3 Sequencemodeling

Despite recurrent neural networks(RNNs), many none-time series models are used in
sequence modelling problem by adopting recurrent architecture, recently. Gehring et al. [8]
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using convolution neural network with attention mechanisms, achieved a competitive result
in sequence mining task. Extending the basic encoder-decoder architecture and attention
mechanism Rocktäschel et al. [22] and Verga et al. [25] proposed a multi-head self-attention
mechanism, and it demonstrated satisfactory performance in NLP tasks. In this paper, we
apply and incorporate attention-based techniques in our proposed memory fusion network
to effectively learn particular features across tasks.

3 Proposedmethod

In this section, we present the details of our novel framework based on multi-task deep
RNNs with the attention mechanism to predict one of the commonly used illness servility
scores, i.e., Sequential Organ Failure Assessment (SOFA) score, in ICU. Firstly, data pre-
possessing detail, including the cohort selection, data extraction, data cleansing, and feature
extraction, is discussed. Secondly, The architecture detail of the proposed phased multi-task
model is reviewed, showing the model is not only able to learn distinctive features from
different human organ systems in time-series EHRs but also can exploit the temporal corre-
lations between organ systems. Finally, we demonstrate how the Memory Fusion Network,
which focuses on recognizing selectively features, is embedded in the proposed multi-task
model to capture descriptive representations for result improvement.

3.1 Data preprocessing

We adopted the MIMIC-III V1.3 [12], which contains 53,423 de-identified adult patients
from Beth Israel Deaconess Medical Center from 2001 to 2012 in this work. Following the
convention, we exclude all patients who are younger than 16 (age < 16) and stay in ICU less
than 24 hours. In this work, we consider each ICU stay as an independent data observation in
our benchmark dataset, which eventually has 45,321 records. Figure 2 illustrates the detail
data distribution regarding gender and age-groups.

To collect multi-variate physiological features, we have extracted 41 features, as shown
in Table 1, with respect to different human organ systems from multiple tables in MIMIC
III. More details of the extracted feature sets can be found in the supplementary material.
The values of each feature within a time window will be averaged as the new value in that
time slot. We have also considered three different time-window different lengths, including

Figure 2 Age distribution in the
selected cohort
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Table 1 List of 41 features extracted from MIMIC III

Index Feature name Index Feature name

1 BPd 22 HR

2 BPm 23 INR

3 BPs 24 Magnesium

4 Albumin 25 Mean Airway Pressure

5 ALT 26 O2 Flow

6 ApH 27 PaCO2

7 Phosphorous 28 PaO2

8 Alkaline Phosphate 29 Platelets

9 Bilirubin 30 Potassium

10 BUN 31 PT

11 Calcium 32 PTT

12 Calcium-Ionized 33 RR

13 Chloride 34 SaO2 (Arterial O2 Saturation)

14 Creatinne 35 Sodium

15 CVP 36 SpO2 (O2 saturation pulseoxymetry)

16 FiO2 37 TCO2

17 GCS 38 Temperature

18 Glucose 39 Urine

19 HCO3 40 WBC

20 HCT 41 Weight

21 Hemoglobin

1-hour, 3-hour, and 6-hour. For each stay record, all extracted features will be converted into
a matrix with a variable number of rows as Figure 4 illustrated. D is the number of features,
while n is the number of ICU stay records. We use ti to denote the max length in time for
the i-th data sample, i = 1, · · · , n. In this way, the data samples can be represented by
X = {x1, x2, · · · , xn}, xi ∈ Rti×D (Figure 3). As pointed out in [21], extracted data are in a
low quality due to missing values, irregular sampling, the outlier, etc. We have borrowed the
same procedures in [21] to improve the data quality. For missing values of the d-th variable
at t , we adopted the forward-fill imputation strategy in [16] as follows:

– If there is at least one valid observation at time t ′, where t ′ < t , then xt,d := xt ′,d .
– If there are no previous observations, then the missing value will be replaced by the

median value over all measurements.

This strategy is inspired by the fact that measurements are recorded at intervals
proportional to the rate at which the values are believed or observed to change (Figure 4).

3.2 Multi-task recurrent neural networks

The recurrent neural networks (RNNs) [7] is capable to process arbitrary sequential inputs
by applying a transaction function to its hidden vector ht recursively. However, RNNs have
difficulties learning long-range dependencies overtime. The components of the gradient
vector will vanish or explode exponentially over a very long sequence. In order to address
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Figure 3 The structure of data organization

the vanishing problem, a LSTM (Long Short-Term Memory) network [11] has been pro-
posed by implementing gating functions into RNNs. By comparing to RNNs, at each time
step the LSTM maintains a hidden vector and a memory vectors for controlling state updates
and outputs in [9]. The LSTM unit consists of i, f , o, c, which are the input gate, forget
gate, output gate, memory cell. The forget gate is used to control the amount of memory to
be “forgotten” in each unit, while the input gate controls the update of each time step and
the output gate rules the exposure of memory state of each time step. The activation function
of LSTM can be computed as followings:

ht =
{

0 t = 0
f (ht−1, xt ) otherwise,

(1)

where xt is the input of current time-step, and ht−1 is the hidden state of previous time-step.
The LSTM transition equations are defined as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf )

ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc)

ht = ot tanh(ct ) (2)

Figure 4 The work-flow of data prepossessing
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where xt is the input at a time t , W are weights, bs are bias terms, and σ denotes the logistic
sigmoid function.

In order to capture the correlations organ systems, we have used a shared layer to exploit
temporal correlations between different systems. Figure 5 has shown the structure of our
MTRNN. Specifically, features from different systems are fed into different learning task.
For example, features denoted by x from respiratory system and the ones denoted by x′ from
cardiovascular system are simultaneously fed into two separate LSTMs, i.e., LST M(m) and
LST M(n), each of which is regarded as a different tasks and aims to capture intrinsic fea-
tures in long-short terms, respectively. As human organs collaboratively work together, it
is believed that there must be correlations between organ systems, which can be benefi-
cial to learning tasks. To capture such kind of temporal correlation between systems, we
added a shared layer LST M(s), as shown in the middle of Figure 5, in our framework. The
shared hidden layer fully connects with all the other task-LSTMs layers, e.g., LST M(m)

and LST M(n) in the figure. The activation function f of the current hidden state for the
shared layer, h(s)

t , is the same as the one in (2). In contrast, we have modified the activation

function for each LSTM h
(m)
t , which learns different organ features as below:

h(m)
t =

{
0 t = 0

f
(
h(m)

t−1 � h(s)
t−1, x

m,i
t

)
otherwise,

(3)

where � denotes an concatenate operation. Meantime, we also change the state c
(m)
t for in

each task-specific LSTM (LST M(m) or LST M(n)) as follows:

c
(m)
t = ftc

(m)
t−1 + i

(m)
t tanh(Wxcx

m,i
t

+Whch
(m)
t−1 � h

(s)
t−1 + b(m)

c ), (4)

where x
m,i
t is the input at time t . h

(m)
t−1 is the output of (3) when t − 1. The shared hidden

layer outputs h
(s)
t−1 when t − 1.

3.3 Attentionmechanism

Attention mechanisms as been shown to produce state-of-the-art results in computer vision
and natural language task. When combining with sequential learning models e.g. RNNs,

Figure 5 Demonstration of our proposed Multi-task LSTM Architecture with a shared hidden layer. Note
that this structure has not detailed structure of the attention layer
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attention filters the perceptions that can be stroed in memory while perceiving the sur-
rounding information, and then adjusting the focal point over time. In order to taking the
advantages of attention, we corporate our multi-task RNNs with the attention As shown in
Figure 6. So that our model can pay more “attention” selective important feature overtime.
For each patient, the attention weight is calculated using the dot-product ,�, of the hid-
den state for every feature in the input. Therefore the score for the t-th feature scoret is
calculated as follows:

scoret = h�
f ĥs (5)

where ĥs is the concatenated hidden state of LSTM, in which the t-th the input, and hf is
the learned feature of the input.

The weight of the t-th input Wt can be computed by using the out put of scoret as
follows:

Wt = exp (scoret )∑
t ′ exp (scoret ′)

(6)

here, t ′ means the all input features.
The final output af can be computed by using he weight and the hidden state of the

feature as a convex sum of hidden states ht :

af =
∑

Wtht (7)

The structure of attention mechanisms, in which the attentional decisions are made inde-
pendently, is illustrated in Figure 6. The reasons of adopting the attention mechanisms are
two-fold:

Figure 6 Illustration of the structure of dot-product based attention mechanism
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– the attention function gives high weight to the feature that strongly affect the vector
representation of the whole input

– it establishes direct short-cut connections between the target and the source.

3.4 Loss function

In this setting, we use a software classifier to predict the label ŷ from a discrete set of classes
Y for ICU each stay X. The classifier takes the output of attention vector ĥt as input:

p̂ (y | X) = sof tmax(W(X)ĥt + b(X)) (8)

ŷ = arg max
y

p̂ (y | X) (9)

The loss function is the negative log-likelihood of the true class labels ŷ. The loss function
is defined as follows:

L = −w

c∑
i=1

ti log ti + λ‖y − ŷ‖2
F (10)

where t ∈ �m is the one-hot representation of groundtruth, y ∈ �m is the estimated proba-
bility for each class by Softmax, C is the number of output classes, and the estimate value
ŷ, and λ is hyper-parameter of L2-norm regularisation.

To alleviate over-fitting, we coupled Dropout with L2-norm. Dropout prevents co-
adaptation of hidden units by randomly omitting feature detectors from the network. The
L2-norm imposes an additional constraint over the weight vectors by rescaling w to have
‖w‖ = x. The training details will be further introduced in Section 4.

3.5 Complexity

In this section, we discuss the asymptotic complexity of our framework and how it offers a
higher degree of parallelism than the other single LSTM based framework. We assume that
all hidden dimensions are d and n is the sequence length.

Since our proposed multi-task LSTM is implemented in parallel fashion, so we only
focus on the most complex task which is the Shared LSTM Layer in our framework, and its
time complexity is O(nd2)[19]. In addition, the complexity of dot-product based attention
mechanism is O(n2d)[24] Thus the overall complexity is O(nd2 + n2d). However, note
that since n � d , i.e., the hidden dimension d in our case is far greater than the sequence
length n. The overall complexity of our framework can be simplified as O(nd2). In sum,
the complexity of our model is identical to a basic LSTM model.

4 Experiments

4.1 Data description and experiment design

we conducted extensive experiments to evaluate the performace of the proposed model on
a publicly available benchmark dataset MIMIC III.2 We compare our model against state-
of-the-art algorithms and several baselines. Meanwhile, we also investigate the influence of
the multi-task structure and the Memory Fusion Network via experiments.

2https://mimic.physionet.org/
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4.2 Details of dataset and settings

We have investigated all methods on the version 1.3 MIMIC-III dataset [12], which is pub-
licly available. In this work, we focus only on adult ICU patients who are older than and
equal to 16 years of age and has records for more than 24 hours. We treat each admission as
an independent data sample. We randomly select 80% of 45,321 ICU stays as training data,
while another 20% of data are used as testing and validation. To select best parameters, we
have employed a 10-fold cross-validation schema in the experiments. All the experiments
are repeatedly run 10 times.

All neural networks were implemented with the TensorFlow and Keras frameworks and
trained on 2 Nvidia 1080 Ti GPUs from scratch in a fully-supervised manner. To minimise
the cross-entropy loss, we employed the stochastic gradient descent with Adam update rule
[13]. The network parameter is optimised with a learning rate of 10−4. The keep probability
of the dropout operation is 0.5. The number of neurons in the input and output layers in the
AMRNN model is fixed at 41. and the λ is 4 × 10−4.

4.3 Comparisonmethods

The effectiveness of AMRNN is evaluated using ROC, AUC, Precision, Recall, and F1-
Score by comparing with the following state-of-the-art algorithms and baselines methods.

1. GRU-ATT: Nguyen et al. [17] proposed a GRU-based (Gated Recurrent Unit) attention
networks for mortality risk estimation.

2. HMT-RNN: Harutyunyan et al. [10] have employed RNNs (recurrent neural networks)
for the prediction of in-hospital mortality.

3. pRNN: Aczon et al. [2] take encounter records (physiologic feature, laboratory test,
and administered drugs) into consideration while using an RNN-based framework for
mortality prediction.

4. RNN: A standard recurrent neural network (RNNs) is implemented as one of the
baselines.

5. MTRNN: A standard multi-task RNNs without attention network is implemented as
one of the baselines.

6. RNNATT: A standard single task RNNs with attention network is implemented as
another baseline method.

Apart from a set of state-of-the-art methods, we comparing the proposed method against
some representative classification baseline methods, including Support Vector Machines
(SVMs), Decision Tree (DT), Linear Discriminant Analysis (LDA), Random Forest
(RF), and XGboost. All the parameters have been fine-tuned using a Grid-search scheme
and the best results with the optimal parameters are reported.

The SOFA score is useful while envisioning the developing of critically sick patients, the
mortality risk estimation is based on the highest SOFA score during a patient’s ICU stay as
shown in Table 2. We follow the class setting in [5] categorised by critical care experts.

Table 2 The SOFA scores and its corresponding label

Sofa Score 0–6 7–9 10–12 13–14 15 15–24

Class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Mortality Rate 10% 15–20% 40–50% 50–60% 80% 90%
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4.4 Evaluationmetrics

To choose appropriate evaluation metrics in this study, we applied precision and F1, which
have been widely used in this field of studies, to evaluate accuracy. These metrics have been
adapted to evaluate the accuracy of a set of correct predicted and are defined as follows:

Accuracy = TP+TN

Total
(11)

Precision = TP

TP + FP
(12)

Recall = TP

TP + FN
(13)

F1 = 2 · precision · recall

precision + recall
(14)

4.5 Discussion

To consider the overall classification performance, we have reported the results of all the
methods measured by Accuracy in Table 3. It is clear that our approach performs better
than all compared methods. Particularly, the proposed multi-task framework (#12) performs
much better than most of the counterparts with the Gated Recurrent Unit with attention
mechanism GRU-ATT [17] (#1: 83.05%) and RNNATT (#11: 83.77%) settings. It may con-
tribute to the exploitation of temporal correlations between different human organ systems
by the Memory Fusion Network.

To evaluate the impact of modelling missingness and the effectiveness of data imputation
strategy. We conducted experiments on the raw data and processed data. As illustrated in
Table 4, the imputation strategy is effectively improving the data quality, where the perfor-
mance of all classification models are all improved. In addition, our model can effectively
handle missing values in multivariate time-series data and achieved best the result.

Table 3 Overall performance
comparison (Accuracy) Index Method Accuracy

1 GRU-ATT 0.8305
2 HMT-RNN 0.8690
3 pRNN 0.8041
4 SVM 0.6893
5 RF 0.7153
6 DT 0.7230
7 LDA 0.7122
8 XGBoost 0.6334
9 RNN 0.8041
10 MTRNN 0.8330
11 RNNATT 0.8377
12 AMRNN 0.8742
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Table 4 Classification
performance on Raw ICU data,
data with missing values, and
imputed data. Model
performances measured by
Accuracy

Index Method Raw data Processed data

1 SVM 0.4103 0.6983
2 RF 0.3981 0.7153
3 DT 0.3915 0.7230
4 LDA 0.3851 0.7122
5 XGBoost 0.4463 0.6334
6 MTRNN 0.5717 0.8330
7 AMRNN 0.6332 0.8742

To evaluate the model performance with respect to different sizes of training dataset, we
randomly sub-sample three smaller datasets of 30%, 60%, and 90% admissions from the
entire experimental dataset while keeping the same class distribution. We compare our pro-
posed model with all the baseline methods and the second and third best models in overall
performance test, i.e. GRU-ATT, and HMT-RNN on 1-hour time-window dataset. From
Figure 10, It can be observed that all the methods achieve better performance while more
training samples are given. However, the prediction performance improvements of baselines
are limited by comparing to deep learning methods. The proposed model achieves the best
performance on all sub-sample datasets and the performance gap between AMRNN and
baselines will show continuing growth when more data become available (Figure 7). The
Receiver Operating Characteristic (ROC) curve can demonstrate the discrimination capa-
bility of a classifier by plotting the True Positive Rate against the False Positive Rate in a
range of threshold values. In Figure 8, we noted that the ROC curves of all the categories are
very far from the 45-degree diagonal and close to the upper left corner of the ROC space.
The areas under each of these six ROC curves (AUC) are shown in Table 5, and the aver-
age value is about 96.72% showing an excellent performance. Also, we can observe that
the proposed method is very sensitive to Class 1 and Class 6, which are two critical scenar-
ios in the ICU. In other words, the proposed method can not only effectively recognise the

30% 60% 90%

0.4

0.5

0.6

0.7

0.8

0.9

Sub-sampled dataset size

A
cc
ur
cy

XGBoost SVM RF DT LDA RNN MTRNN RNNATT AMRNN

Figure 7 Acc. vs Data Proportion: Prediction accuracy with different training set sizes. x-axis = sub-sampled
dataset size; y-axis = accuracy
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Figure 8 The ROC curves showing the discrimination capability of a classifier. x-axis, True positive size;
y-axis, False positive

critical conditions of ICU patients but is also reasonably good at discrimination of
intermediate conditions of patients.

The window size is another important parameter that impacts on the classification per-
formance. To evaluate the influences of window size, we have evaluated the algorithms with
respect to different sizes (1-hour, 3-hour, and 6-hour) and report the performance results

Table 5 Evaluation on the influence of Memory Fusion Networks and Multi-Task Model

Method Class1 Class2 Class3 Class4 Class5 Class6 Average

Percison RNN 0.8821 0.6707 0.4074 0.5714 0.6136 0.6356 0.7893
MTRNN 0.8857 0.6535 0.6470 0.6250 0.7326 0.7241 0.8219
RNNATT 0.8921 0.7021 0.6667 0.6250 0.7826 0.7241 0.8219
AMRNN 0.9391 0.7393 0.6728 0.6538 0.8076 0.9062 0.8698

Recall RNN 0.9454 0.4823 0.5314 0.3612 0.6923 0.4705 0.8040
MTRNN 0.9569 0.5882 0.6285 0.6428 0.5815 0.6174 0.8330
RNNATT 0.9540 0.5941 0.6285 0.5210 0.6438 0.6458 0.8377
AMRNN 0.9625 0.7393 0.6428 0.6538 0.8076 0.9062 0.8742

F1 RNN 0.9127 0.5377 0.5348 0.3670 0.5606 0.5612 0.7936
MTRNN 0.9200 0.6191 0.6376 0.3681 0.5806 0.6667 0.8217
RNNATT 0.9223 0.6412 0.6945 0.5652 0.6268 0.7581 0.8343
AMRNN 0.9394 0.7283 0.7714 0.6777 0.6465 0.8788 0.8703

AUC RNN 0.9105 0.8411 0.9168 0.9360 0.9780 0.9815 0.9273
MTRNN 0.9358 0.8772 0.9454 0.9294 0.9597 0.9841 0.9386
RNNATT 0.9281 0.8846 0.9635 0.9614 0.9795 0.9318 0.9414
AMRNN 0.9596 0.9249 0.9647 0.9652 0.9819 0.9980 0.9657
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Figure 9 Precision vs Time window: Precision on different length of prediction time windows. x-axis = time
window; y-axis = precision

in Figures 9 and 10. The experiment results are measured by Precision and Recall. The
two figures, it clearly shows that our method achieves the best performance, over the base-
line methods. Also, we have observed that prediction performance drops slightly with the
increase of time windows. This may be because the variations of the medical condition can
change dramatically, for better or worse, over a longer period of time.

To investigate the influence of Memory Fusion Networks and Phased model, we have
built up three baseline models and reported the results in Table 5, which illustrates the
classification performance with respect to each class. The performance measurements we
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Figure 10 Recall vs Time window: Recall on different length of prediction time windows. x-axis = time
window; y-axis = precision
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have used use include precision, recall, F1 score, AUC, and test error. For individual class,
the criteria is calculated with a one-versus-all method. We observe consistently superior
performance of our method against all the baseline models for all criterion and all individual
classification tasks. From the results in Table 5, our method achieves a better result in all
cases than all compassion methods.

5 Conclusion

In this paper, we propose a novel deep learning framework that simultaneously analyses dif-
ferent human organ systems to predict illness severity of patients in the ICU. our framework
based on multi-tasks LSTMs and it treat each organ system separately and also exploit the
correlations between organ systems by a shared unit. To our best knowledge, this work is
the first to analyse ICU patient systematically. To deal with problems raised by data quality,
we have applied attention mechanisms to gives high weight to the “important” feature of the
input to further improve the model performance. Through the comprehensive experiments,
we have shown that our approach outperforms all the compared methods and baselines in
the scenario of illness severity prediction, which is actually a multi-class problem.

6 Future work

In our future work, for missing value imputation, we intend to incorporate a mask of missing
data to indicate the placement of imputation values or missing values. So that the model
can not only captures the long-term temporal dependencies of time-series observations but
also utilizes the missing patterns to further improve the prediction results. In addition, we
plan to investigate the most sophisticated sharing mechanisms in the RNNs based multi-task
architecture to enhance the feature representation.
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