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Abstract
With the development of mobile social networks, more and more crowdsourced data are
generated on the Web or collected from real-world sensing. The fragment, heterogeneous, and
noisy nature of online/offline crowdsourced data, however, makes it difficult to be understood.
Traditional content-based analyzing methods suffer from potential issues such as computa-
tional intensiveness and poor performance. To address them, this paper presents
CrowdMining. In particular, we observe that the knowledge hidden in the process of data
generation, regarding individual/crowd behavior patterns (e.g., mobility patterns, community
contexts such as social ties and structure) and crowd-object interaction patterns (flickering or
tweeting patterns) are neglected in crowdsourced data mining. Therefore, a novel approach
that leverages implicit human intelligence (implicit HI) for crowdsourced data mining and
understanding is proposed. Two studies titled CrowdEvent and CrowdRoute are presented to
showcase its usage, where implicit HIs are extracted either from online or offline
crowdsourced data. A generic model for CrowdMining is further proposed based on a set of
existing studies. Experiments based on real-world datasets demonstrate the effectiveness of
CrowdMining.
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1 Introduction

Crowdsourcing system enlists a number of humans to help solve a wide variety of problems
with their skills, experiences, and intelligence. The first trend of such systems appeared on the
World-Wide-Web [11], with the purpose of building artifacts (knowledge bases, maps) and
performing tasks (e.g., Amazon Mturk,1 Crowdflowers2). In the Web 2.0 era, the rapid
development of social media services (e.g., Twitter3) makes it easier for the crowd to share
contents, feelings, and knowledge. This has become another way to present crowd intelligence
(e.g., using Twitter data to detect and characterize events [30]).

Recently, with the prevalence of sensor-equipped mobile devices, we have envisioned a
new trend of crowdsourcing systems that often work in the real-world settings, i.e., the so-
called mobile crowdsourcing (MCS) [23, 26]. Specifically, the participants in MCS use their
mobile devices to perform large-scale sensing tasks, such as collecting traffic information. In
contrast with traditional sensor networks, MCS aims to leverage the power of average users
and their associated mobile devices to achieve large-scale sensing. Representative examples on
MCS include FlierMeet [15], SmartPhoto [37], Urban Resolution [22], and so on.

For either online or mobile crowdsourcing tasks, data collection and sharing is a primary
task [39]. The ever increasing participants contribute large volume of data [38]. The data
contain rich and complex information, which can be used in a variety of applications such as
event reporting [30], traffic dynamics [44], disaster management [37], pollution monitoring
[22], and object imagery [35]. The crowdsourced data can hardly be used directly to yield
usable information [3]. Intelligently analyzing and processing crowdsourced information can
help prepare data to maximize the usable information, thus returning the benefit to the crowd.
The major features and relevant issues are characterized below.

& Noisy. The data contributed by average users vary in quality and reliability. Some people
can contribute accurate information while others may not. Data from distributed ‘human
sensors’ are often redundant, e.g., people may Tweet similar posts, pictures taken nearby
can be highly-duplicate [15].

& Heterogeneous. Crowd contributed data often contain rich yet heterogeneous information,
in the forms such as texts, images, and audio/video clips. Varied interaction information
(e.g., reposts, likes) is also available with the development of Web 2.0 services. With the
prevalence of sensing-equipped devices, we envision more and more sensory information
collected in crowdsourcing systems, such as locations and activities.

& Fragmented. The data are fragmented yet correlated regarding latent objects or themes,
e.g., places, events, products, and humans. For example, people can express their opinions
about the different aspects of a product (e.g., iPhone 6). They can also take pictures of
different stages of an event (e.g., a street performance).

The above features make it challenging to analyze and understand crowd-contributed data.
Existing methods towards this are mostly based on the data itself [40, 41]. Analyzing the
content of huge volume of data is usually computationally intensive and thus works poorly in
many cases. For many problems such as image understanding, humans can still perform more

1 http://www.mturk.com/
2 http:// www.crowdflower.com/
3 http://www.twitter.com/
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accurately and efficiently than a machine. To this end, some researchers have tried to involve
explicit human intelligence (HI) to support crowdsourced data mining, for the tasks such as
data classification [5] and query-answering [12]. Though effective, active participation is often
boring for the participants. We aim to address the challenge from a new perspective:
harnessing the implicit HI to better understand crowdsourced data. We notice that the
knowledge hidden in the process of data generation, regarding individual or crowd behavior
patterns are neglected in crowdsourced data mining [45]. There are some examples of implicit
HI, including online tweeting or flickring (picture shooting & sharing) patterns, human
mobility patterns, social interaction behaviors, etc. Such knowledge is implicit and does not
need active response from people. This paper studies how to measure and use the aggregated
effects of crowd behavior patterns for crowdsourced data mining (i.e., CrowdMining).

We have made the following contributions.

(1) Giving an insight of data-centric crowdsourcing and characterizing the difference be-
tween explicit and implicit HI in CrowdMining.

(2) Proposing a formal model for crowdsourced data understanding with implicit HI,
regarding general data mining tasks such as filtering, classification, and grouping.

(3) Presenting two case studies to demonstrate how implicit HI can be used for
crowdsourced data understanding. More existing studies are also summarized.

(4) Experiments over real-world datasets to the two case studies demonstrate the effective-
ness of using implicit HI.

The remaining paper is organized as follows. Section 2 gives a characterization of
CrowdMining, including its layered data structure and the scope of implicit HIs. Section 3
presents a generic CrowdMining model. Two case studies are presented in Sections 4 and 5 to
demonstrate the usefulness of using implicit HI. Finally, Section 6 gives the conclusion of this
paper and the vision of future research directions.

2 Characterizing CrowdMining

We first give an anatomy of data-centric crowdsourcing. A comparison of explicit and implicit
HI for crowdsourced data understanding is then presented.

2.1 A deep insight into data-centric crowdsourcing

The core concept in crowdsourcing has been around for some time, and it is broad and
incorporates a wide range of apps. This paper focuses on some specific tasks, named data-
centric crowdsourcing, where crowdsourced data is contributed by people on the mobile app.
Early practices are user-generated content in online social media, such as Wikipedia,4 Twitter,
Yahoo Answers,5 Yelp.6 For example, Twitter has been proven to be a useful crowdsourcing
tool, for the tasks such as work collaboration, collective wisdom, and emergent event
identification [11]. Recently we have witnessed the development of mobile crowdsensing by

4 http://www.wikipedia.org/
5 http://answers.yahoo.com/
6 http://www.yelp.com/
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capturing the dynamics of real-world objects (e.g., a place [18], an event [2], and a shop [14]).
Overall, data-centric crowdsourcing is about human-object interaction/association, where
people generate data about virtual objects in social media or sensory data about physical
objects in the real world, as shown in Figure 1.

A deep insight of crowdsourced data has three corresponding layers: content, interaction
context, and community context.

& Content refers to user-contributed data, i.e., real-world sensing data or user-generated
content in social media.

& Interaction context. It refers to the relationship between human and data, i.e., how data is
generated or contributed by human.

& Community context. For a selected crowdsourced dataset, there will be an associated
community that participates in data contribution. The information about the community
and its members (i.e., community contexts), such as individual profiles, user preferences,
social ties, interaction dynamics, and behavior patterns, are important information to
understand crowdsourced data.

2.2 Explicit and implicit human intelligence

We present and make a comparison of the three concepts related to ‘intelligence’ in
crowdsourcing.

Machine intelligence (MI) is the intelligence exhibited by machines [33], i.e., the so-called
artificial intelligence. For data-centric crowdsourcing, the approaches used mainly include
image recognition, natural language processing, statistical learning, and reasoning. It is
motivated by enabling machines to simulate human intelligence (HI) [32]. In this paper, we
characterize HI into two types: explicit HI and implicit HI. The difference between them is
about the awareness of tasks on processing crowdsourced data.

For explicit HI, people are aware of the data processing/understanding tasks and they
actively perform the tasks using their abilities and knowledge. There have been numerous
works in this area. For example, Digg7 employs people to assign tags to articles (i.e., article
classification). ReCAPTCHA [36] uses human intelligence for irregular character recognition,
which is hard to be achieved by MI. Hashtags in Twitter help cluster the tweets with the same
topic. Links in Wikipedia identify the association among the items. Flock [8] employs the
crowd to suggest predictive features for data labeling, and the suggested features are then
weighted and used in a machine learning model. We list the typical abilities relevant to explicit
HI in Figure 2. Explicit HI can be directly used (e.g., ReCAPTCHA, Hashtags in Twitter) or
integrated with MI (e.g., Flock [8]) for crowdsourced data understanding.

For implicit HI, people are not aware of the crowd mining tasks and they do not actively
contribute their intelligence and knowledge for data processing/understanding. More specifi-
cally, such knowledge is implicit, which is hidden in the process of data generation, and does
not need active response from people. Alternatively, we leverage human-relevant knowledge
implied in crowdsourced data contribution for data understanding, such as online tweeting or
flickring, human mobility patterns, etc. In data-centric crowdsourcing, it refers to the two

7 http://www.digg.com
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human-relevant layers in Figure 1, i.e., interaction and community contexts [46]. Various types
of human intelligence are embedded in the data sensing or content generation process.

& Interaction contexts are based on human perception, decision making, opinions, etc.
& Community contexts are related to individual traits, community structure, and social/

individual behavior patterns.

They are often used indirectly for crowdsourced data understanding, i.e., used as features or
parameter inputs of MI. We list the often-used implicit HI in Figure 2. There are various data
mining tasks that can be performed by means of crowdsourcing, such as data filtering and
classification.

3 Towards a generic CrowdMining model

We make a brief review of other recent studies where implicit HI is also partly used for
crowdsourced data understanding. Afterwards, we propose a generic model and framework for
building crowd mining systems.

3.1 Other data-centric crowdsourcing tasks

We present the related studies from two aspects: mobile crowdsourcing and online
crowdsourcing.

(1) Mobile crowdsourcing. FlierMeet is an MCS app for public information (distributed
fliers in the city) sensing and tagging. There are two aspects that implicit HI is used,
details can be found in our previous work [15]. a) Best shooting angle detection. Crowd-
contributed flier pictures are redundant, presenting the opportunity to select high-quality
data. One of the issues is how to select pictures with the best shooting angle. Pictures shot
in the frontal direction normally have better quality than yawed ones. To determine the
best-shooting direction for the fliers on a certain bulletin board, a crowd-powered
approach is proposed: we measure the central tendency of the collected heading angles
to the board, and use the central value as the best shooting angle. b) Flier tagging with
crowd-flier interaction patterns. The tags (popular, hot, community-specific) learned are

Figure 1 Human and data-centric crowdsourcing: a deep insight
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useful for flier sharing and personalized information suggestion. Specifically, we utilize
various contexts (e.g., spatio-temporal info, flier posting behaviors) to group similar
reposts. We further identify a novel set of crowd-object interaction hints (e.g., crowd-flier
entropy, temporal feature, number of reposts) to predict the semantic tags of reposts.

CrowdMap [6] leveraged aggregated user motion traces to generate indoor floor plan and room
shape. The premise is that users would be able to move across all edges and corners in an
indoor environment. Crowd visiting patterns at the target places are leveraged as implicit HI
for outlier filtering and key point detection. Movi [2] used group behavior patterns (laughter,
group rotation, shared viewing, ambience fluctuation) to identify potential interesting scenes
from crowdsourced video clips in social events. Data contributed by the crowd may be
semantically or visually relevant, to eliminate data redundancy and reduce network overhead,
PicPick [16] proposed a Pyramid Tree approach to select an optimal set of pictures from
picture streams based on multi-dimensional task constraints (e.g. spatio-temporal contexts,
single or multiple shooting angles). Besides event localization, we have also investigated event
picture selection and multi-grained summarization using crowd photographing entropy fea-
tures [7].

(2) Online crowdsourcing. There have also been many studies of online crowdsourced data
understanding with implicit HI. Cranshaw et al. [10] examined crowdsourced location
traces in a location sharing social network for inter-user friendship prediction. A set of
location-based features are introduced for analyzing the diversity of a geographic region
(e.g., a shopping mall, a restaurant), including visitor counting, visiting frequency,
location entropy (measuring the diversity of unique visitors of a location), and so on.
Crowd mobility patterns (implicit HI) are thus used to predict the social relationship
between users.

Redi et al. [29] used visual cues extracted from the profile pictures in FourSquare to guess the
ambiance (e.g., calm, relaxing, reading, and cramp) of places. The visual cues are human-
oriented, including aesthetics, emotions, demographics, self-presentation, etc. For example,
dark pictures (those lacking brightness) are indeed used by people who go to cramped places
(aesthetics); people going to strange places do not smile, while those going to places catered to
attractive people do so (emotion). Facebook likes and FourSquare check-ins have been found
useful for predicting personal traits and attributes [20, 31, 43]. TwitInfo [24] leveraged the

Figure 2 Explicit and implicit HI
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crowd posting patterns (e.g., peaks) in Twitter for subevent detection in sports. Lin et al. [21]
selected representative data from numerous microblogging posts for event summary, leverag-
ing both content and posting context features.

3.2 The generic model

As discussed above, understanding of crowdsourced data is useful for at least the following
types of applications.

& Object profiling. Characterizing the features of an object, such as a place, a shop, or a flier.
& Human profiling. Characterizing the features of a person or social relations.
& Event sensing. Detecting, segmenting, and summarizing events.

The usage of implicit HI for data processing incorporates at least the following task types, and
we make a summary shown in Table 1.

& Data filtering. Filtering noisy or low-quality data.
& Data classification and tagging. Categorizing the data or assigning tags to the data.
& Data clustering & segmentation. Grouping redundant data. For evolutionary sensing

objects such as events, it is often important to segment the data stream.
& Data selection. Selecting representative data from the redundant data set.

3.3 The framework

To facilitate the development of CrowdMining applications, a generic system framework is
essential. We have proposed a conceptual framework for CrowdMining systems, as shown in
Figure 3. It can be a starting point to build CrowdMining applications with framework support.

The framework consists of the following components: The data crowdsourcing layer is
responsible for collecting data from participatory sensing communities or online social media.
The implicit HI layer applies diverse machine processing techniques to extract implicit HI,
such as human behavior patterns and mobility patterns. The crowdsourced mining layer

Table 1 Understanding of crowdsourced data with implicit HI

Task type Related work The usage of Implicit HI

Filtering Data quality measurement [15],
Eliminating errors and outliers [6]

Aggregated shooting behaviors,
Aggregated mobility traces

Classification & Tagging Flier tagging [15],
Friendship prediction [10],
Human trait understanding
[20, 31, 43],
Place categorization [29]

Group structure,
Crowd-object interaction patterns
Mobility patterns

Clustering & Segmentation Highlight detection [2],
Subevent detection [24]

Group behavior patterns (rotation, laughing),
Crowd posting patterns

Data selection Redundancy elimination [16],
Event summary [21]

Picture shooting contexts,
Posting patterns

World Wide Web (2020) 23:1101–1125 1107



leverages the learned implicit HI to various data mining tasks, such as data filtering, data
selection, and clustering. Finally, the application layer includes a variety of potential services
that can be enabled by the availability of CrowdMining.

4 CrowdMining on the way with case Study-1: CrowdEvent

We present two of our studies to demonstrate the power of using implicit HI for crowdsourced
data understanding in Sections 3 and 4. For each case study, we first describe a scenario and
discuss the issues related to data processing, and then present our methods that leverage
implicit HI. Experiments to validate the effectiveness of these methods will finally be
presented.

4.1 The scenario and data-specific tasks

Figure 4 shows that four people (i.e., reporter A~D) take pictures of a street performance.
Absent people may want to watch it. A real-time mobile visual sensing and sharing system can
facilitate sharing this event with these absentees.

There are many challenges to be addressed in this use case. Here we mainly focus on two of
the following issues.

Figure 3 A generic framework for CrowdMining
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a) Event localization. There might be several co-occurring events nearby. They can be
distinguished by their location. However, the locations of picture-takers are not necessar-
ily the location of events (the distance between them can range from several meters to tens
of meters), so simply using GPS coordinates of the event reporter as the event location
could be misleading. We thus should find an approach for event localization.

b) Sub-event detection. Events usually evolve and can be divided into a series of sub-events.
To make better visualization of events to readers, it is necessary to find an efficient
method to segment the crowdsourced event picture stream into sub-events. Existing
studies concentrate on using visual content similarity to segment events [4, 9, 13, 19].
They suffer from issues such as semantically incorrect segmentation (e.g., two pictures
with similar content may represent different event stages) and high computational
overhead.

4.2 The usage of implicit HI

We develop CrowdEvent and use implicit HI to address the two issues above.

a. Event localization with shared attention. Photographing contexts, such as the location and
shooting angle of a viewer, can represent her attention area (e.g., the event area) in picture
taking. However, a person often takes pictures from one direction and thus we cannot
localize an event with individually contributed data. To this end, we infer the event
location from the overlapping attention area using data contributed by the opportunistic
community formed in event sensing.

First, as shown in Figure 5(a), an attention area in the form of a trapezoid (we call it an
attention trapezoid) is created according to the photographing location and shooting direction,
where er is the location error (e.g, GPS error) and mvd denotes the assumed maximum visual

Reporter A

Reporter B

Reporter C

Reporter  D

Time line

Reporter on the scene

Picture stream

Event changes

Scene change 
moments

Photographing

Figure 4 The CrowdEvent scenario
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distance between an event and a viewer (e.g., 50 m). θ represents the shooting direction, which
is the angle between the shooting direction and the eastward. To make it simple, we assume
that the visual range of the camera is around π/3(i.e., 2*η = π/3), which is considered in
constructing the trapezoid.

Second, to localize an event, we divide the map into same-sized grids (e.g., 5 m*5 m), and
we name the length of a grid as glen. The grids covered by an attention trapezoid might be the
place where the event is going on. However, considering the implicit HI that people often place
the target in the middle of a picture, we derive that each covered grid has different probability
to be the event place. We thus assign a location weight to each covered grid. Instead of using
even distribution, to characterize the implicit HI in photographing, we use the normal
distribution to value each grid’s location weight. If the point R in Figure 5(a) denotes the
centroid of a grid g, g ∈ Gr, the location weight of g, denoted by locWeight(g), is calculated by
Eq. (1).

locWeight gð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

x2

2σ2 where x ¼ len RSð Þ
len USð Þ ð1Þ

where len(.) refers to the length of a line, RS andUS are the lines shown in Figure 5(a), and σ is
used as 0.5 in our work.

Third, depending on a number of attention trapezoids, the cumulated weights of grids are
normalized and those grids whose location weights exceed a threshold compose the event
location. As shown in Figure 5(b), given n pictures, we can get n attention trapezoids (see
Figure 5(b)). The accumulated location weight denoted by alc of a grid is the sum of
locWeights calculated according to these location trapezoids. After being normalized, alc of
each grid is between 0 and 1. The grid subset Gr’ of Gr (Gr’ ⊆Gr) consists of all grids whose
alcs are over the threshold loc_th and then Gr’ is the event location, whose centroid is the
event localization result.

mvd is an important parameter in attention trapezoid construction. We may assign it a static
value (we call it SMVD), e.g., 45 m. However, if the size of an object is large enough (e.g. the
fire in a tall building), people may take pictures of it from over 45 m away. If we still use 45 m,
then some attention trapezoids might have no overlapping area. Therefore, an adaptive and
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Location 
weightCrowdEvent

loc_th

(a) Attention trapezoid (b) locWeight and loc_th.
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Figure 5 Event localization with shared attention
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dynamic mvd is used (we call it DMVD) in our work. Considering that the position of an event
might be in the middle of different viewers, DMVD calculates mvd by Eq. (2).

mvd ¼ 1

2
*

maxD

sin
jθi−θ jj

2

� � ð2Þ

wheremaxD is the maximum geo-distance among the crowd contributed pictures, and θi and θj
denote their shooting angle. An example is shown in Figure 6, where there are four pictures
taken by four viewers, and maxD is obtained between viewer 1 and viewer 4.

b) Streaming data segmentation with crowd behaviors. Instead of using visual content
analysis, we segment crowdsourced picture stream into subevents with implicit HI. In
particular, through a set of user studies, we identify the temporal patterns of crowd-event
interaction, including both individual posting and community contribution patterns. Two
lightweight subevent detection methods are then proposed based on these findings.

Generally, people take pictures of an event when something is interesting or important. To
observe the characteristics of moments when people take pictures, we downloaded seven event
videos from Youku,8 including one fire-fighting activity, one rescue activity, three street
shows, and two talent shows. Eight university students were recruited to tag the moments
that they would like to take pictures for these events. To understand the relationship between
event evolution and picture taking, we segment the seven events into subevents. Three experts
on social event study are asked for event segmentation, where three major factors are
considered: new entity joins (e.g., an ambulance car arrives), the entity status changes
significantly (e.g., a person falls down), the interaction status between a human and an object
changes (e.g., a person leaves the house).

The temporal distribution of pictures to the fire-fighting activity is shown in Figure 7. In
general, many participants may witness the same event and supply data about it. However,
they individually decide what to share and may upload pictures already shared by others,
resulting in high redundancy. Therefore, from the results shown in Figure 7, we find that most
subjects would like to take pictures again when the event evolves (we obtain 12 subevents for
this activity). However, as bias exists, some people might take more pictures than others when
they are interested in what is going on. For each sub-event, if a subject takes two more pictures
during it, we consider that the sub-event has redundant submissions. Specifically, we use the
redundancy ratio (RedR) to reflect the redundancy in the sub-event, which is calculated as the
ratio of the number of redundant images to the total number of images taken by people in the
sub-event. With this, we can calculate the RedR at the sub-event level in data collection, i.e., the
number of sub-events that has redundant submissions to the whole sub-event set size of an
event. The average RedR of the subjects to the seven videos is given in Table 2, and the
average RedR of the subjects to each sub-event of the fire-fighting activity is shown in Figure 7.
We find that the average RedR is 20%, which is much smaller than the redundant ratio of the
complete picture set (RRc, at the individual picture level). This observation motivates us to
develop implicit HI based event segmentation method.

8 www.youku.com
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Given a picture stream P including a series of pictures taken by users, one segment position
before a picture pm, and the sub-stream Si which is the subset of a picture stream. The stream
can be segmented again only if either the stream stops increasing or the sub-stream Si = {pm,
…,pn} meets certain conditions as used in one of the following methods.

& Crowd-behavior-based segmentation (CS). According to our findings, if a viewer has been
active for an event, she probably takes a new picture when the event changes. Therefore,
an interesting moment of the event might be captured by most viewers (i.e., a crowd
behavior pattern). Using CS, if the ratio of the number of picture contributors of sub-
stream Si over the total number of nearby viewers (denoted as μ(Si)) reaches a threshold r
(0 < r ≤ 1), P is split after pn. It is formulated by Eq. (3), which can measure whether
picture pn+ 1 belongs to sub-stream Si or Si + 1.

pnþ1∈Si; if μ Sið Þ < r
pnþ1∈Siþ1; if μ Sið Þ≥r

�
ð3Þ

& Crowd-individual-behavior based segmentation (CIS). CS only considers about crowd
behavior, while individual behavior pattern is not considered. As presented earlier, partic-
ipants tend to take a new picture when the event evolves, which may indicate the
appearance of a new sub-event. However, only using individual behaviors may result in
segmentation errors, since bias exists and some people may take many pictures within a
sub-event that she is interested in. Based on these observations, we combine individual and
crowd behavior patterns and propose CIS. In CIS, the CS condition should be met and
there should be at least one person who takes more than one picture. Equation (4) is used
by CIS to assess which fragment pn+ 1 belongs to.

pnþ1∈Si; if ∀pt pnþ1 � r≠pt � r; pt∈Si
� �

⋁ μ Sið Þ < rð Þ
pnþ1∈Siþ1; if ∃pt pnþ1 � r ¼ pt � r; pt∈Si

� �
⋀ μ Sið Þ≥rð Þ

�
ð4Þ

Let us use an example to explain the above segmentation rules. Assuming that pictures {p1,…,
p7} are orderly taken by viewers {v1, v3, v5, v2, v5, v6, v5} respectively. If r = 0.5, the
segmentation is {{p1, p2, p3}, {p4, p5, p6}, {p7}} by using CS, and {{p1, p2, p3, p4}, {p5, p6,
p7}} by CIS.

Figure 6 An illustration of DMVD calculation
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4.3 Evaluation

This section presents the experiments to CrowdEvent to demonstrate the effectiveness of using
implicit HI for crowd event sensing.

(1) The dataset. A real-world collected dataset is used for testing implicit HI-based event
localization. Both the datasets collected from online-tagging and offline-photographing
are used for event segmentation.

Location dataset To mimic the location of events, we collected pictures for 10 outdoor
objects (e.g., a building, a monument) in our campus. To obtain diverse samples and evaluate
the impacts of geographical distribution of these samples on event localization accuracy, we
selected different-sized targets, including a 5-m-high sculpture, a 20-m-high library, and a car
in the parking lot. For each object, we collected 5~10 pictures.

Event dataset with online tagging We collected 21 social events from Youku, topics
including street performance, talent show, accidents, talks, etc. The length ranged from 20 s
to 9 min. 15 subjects were recruited for evaluation. A video-tagging tool was developed for
mimicking the photographing behavior based on video viewing. Supposing that each subject
was on the spot of the events, they were asked to “take pictures” by pressing the

Figure 7 Picture timestamp distribution of the fire-fighting activity

Table 2 The RedR of the seven videos

e1 e2 e3 e4 e5 e6 e7 Mean

RedR 0.30 0.09 0.25 0.06 0.13 0.28 0.29 0.2
RRc 0.89 0.57 0.62 0.73 0.83 0.88 0.89 0.77
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photographing button of the tool while watching the event videos. The corresponding frame
was regarded as the picture taken. We collected a total of 766 pictures for the 21 social events,
an average of 36 for each.

Event dataset with offline photographing Besides online tagging, we recruited subjects to
collect data for two real-world events in our campus. They are all about presentation events.
152 and 176 event pictures were collected for the two presentations by 9 and 12 viewers,
respectively.

Still, we asked the three experts to segment the events according to the event segmentation
rules, which are used as the ground truth for performance measurement. After event segmen-
tation with experts, we find that the picture redundancy ratio to each event ranges from 54% to
88%.

(2) Baselines and metrics. We define different metrics to evaluate the effectiveness of our
approach.

Event localization To evaluate the performance of event localization, we calculate the
Euclidian distance of the detected location with the ground truth, denoted by e. The localiza-
tion method in iSee [27] is used for comparison. iSee locates physical events by leveraging the
crowd swiping information on their smart phone’s touchscreen in the direction of the event.
However, it uses a static mvd value 45 m (SMVD) for localization, and the probability-based
grid weighting scheme is also not used.

Event segmentation To evaluate the quality of segmentation, we use the pair-counting F-
Measure which is often used in data clustering [28]. Supposing that the computed partitioning
is S and the ground truth partitioning is G. PairsS and PairsG denote the pairs of each
partitioning of S and G, respectively. If we assume that S = {{1,2},{3,4,5}}, PairsS =
{(1,2),(3,4),(3,5),(4,5)}. Using PairsS and PairsG the precision and recall of the segmentation
are computed by (5) and (6), respectively.

Precision S ¼ jPairsS∩PairsGj
jPairsS j ð5Þ

Recall S ¼ PairsS∩PairsGj j
jPairsGj ð6Þ

We introduced two baselines for comparison: namely mean segmentation (MEAN) and
similarity-based segmentation (SIM). Given a constant K (which is the number of ground-
truth segmentations), the entire picture set is equally split into K fragments by Mean. To make
comparison, we set K to be the same value as the number of segmented sub-events by CIS, i.e.,
K= |CIS|. SIM partitions the event according to image similarity measured by the Euclidean
distance of images’ GIST [34] and color histogram (HIST) [17] features. Similarly, for the
purpose of comparison, we adjust the similarity threshold of SIM to make it split the picture
stream into K segments. If the similarity of two subsequent pictures is less than the trained
similarity threshold, the picture stream is segmented at that point by SIM.
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(3) Experimental results. For event localization, four different glens (grid length) are used
and the experimental results are shown in Figure 8. From the result it is clear that the
localization error of our method is much lower than iSee’s. It is mainly because that we
use dynamic mvd and probability-based grid weighting (inspired by implicit HI).

For event segmentation, we first study how the value of r affects the performance of CS.
Based on the results shown in Figure 9, we set r = 0.4 when F1-Measure values are the best for
both video-event and real-event datasets. Figure 10 compares the performance of four seg-
mentation methods: CS, CIS, SIM, and Mean. CIS outperforms CS and MEAN as it considers
about both crowd and individual behavior patterns. As SIM is based on image processing, the
computational complexity of SIM is much higher than CIS.

5 CrowdMining on the way with case Study-2: CrowdTrip

5.1 The scenario and data-specific tasks

When paying a visit to an unknown/unfamiliar city, trip planning can be an important, yet time-
consuming travel preparation activity. To facilitate the preparation process, numerous studies have
been done to recommend a POI (point of Interest) or a sequence of POIs to satisfy users’ needs,
using the data from social media. However, the issue of planning the detailed travel routes
between POIs is ignored, leaving the task to online map services. Such route planning services
are mainly based on shortest travel distance or time suggestion, which cannot meet the diverse
needs of users. For instance, in the case of travel by driving for a leisure purpose, the scenic view
along the travel route would be fun to users. In such contexts, users probably are not rushing to
reach the next destination, and the visual and scenic attributes along the driving route are more
desirable. Thus, without emphasizing the shortest distance, we aim to recommend the travel route
between two POIs with the best scenic view for visitors under a given distance budget.

There are many challenges to be addressed in this case study. Here we mainly focus on two
of the following issues.

a) Scenic Road Network Modeling. The goal of scenic road network modeling is to score
each road segment in the road network according to its nearby scenic information, which

Figure 8 Event localization error
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is a basis for best scenic view route generation. Nevertheless, road segment scoring is
rather subjective and can be impacted by several factors, such as its beauty, popularity, and
user preference. This makes the modeling task quite challenging.

b) Travel route generation. Another issue in trip planning is about travel route generation,
i.e., to select and connect the scenic road segments with high score under given constraints
(e.g., the travel distance budget, the starting and ending points). This problem is usually
NP-hard, and heuristic algorithms are often employed.

5.2 The usage of implicit HI

We develop CrowdTrip and use implicit HI to address the two issues above.

Scenic road network modeling with implicit HI To measure the scenic beauty of a road
segment, we consider two implicit HIs that can be extracted from social media. First, POIs
usually have a high density of surrounding geo-tagged photos from social sharing sites (e.g.,
Flickr9). Second, popular roads where users can glimpse more natural view or road-side tourist
attractions (e.g., churches, palaces, squares) are also preferred during driving. The popularity
of POIs, however, can be learned from the check-in data from location-based social networks
(e.g., FourSquare10). In this way, we make use of the complementary information provided by
both geo-tagged images and check-in data to score the scenic view of a given road segment

9 http://www.flickr.com
10 https://foursquare.com

(a) Using video-event datasets.

(b) Using real-event datasets.

Figure 9 The impact of r on performance of CS-based segmentation
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& Beauty estimation with geo-tagged photos. A road segment should be scored higher if it is
surrounded by more geo-tagged photos. Given road segmentations of a city denoted by RS,
and photos of scenic views denoted by PSV, we compute the scenic score denoted by SP of
a road segment rsi∈RS as Eq. (7).

SP rsið Þ ¼ logj psvjdis psv:loc; rsið Þ < δf gj ð7Þ

where dis(psv.loc, rsi) computes the shortest distance from the photographing location of the
photo psv∈PSV denoted by psv.loc to the road segment rsi, and δ is a user-specified threshold.
Only the geo-tagged photos with the distance less than δ are counted when calculating the
density to ensure the visibility.

& Popularity estimation with POI check-ins. Popular roads where users can glimpse more
natural view or road-side tourist attractions should also be scored high. Thus, to score
the scenic view of a road, the POIs on or near the road should also be taken into
consideration. Inspired by the idea that POIs with some specific categories would
contribute relatively more to its scenic view [1], we intentionally divide the POIs into
three groups according to their category labels, as shown in Table 3. The check-ins are
weighted differently according to the group of the corresponding checked-in venues,
which investigates the scenic view and the surrounding POI categories of a travel route
quantitatively. Given a check-in dataset denoted by CK, each check-in cki∈CK can be

(a) Using online-event dataset.  

(b) Using offline-event dataset. 

Figure 10 Comparison of segmentation methods by pair-counting: r = 0.4 and K = |CIS |
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categorized according to the category of its POI and its category is denoted by cki.cate.
The scenic score of a road segment rsi denoted by SC can be computed by Eq. (8).

SC rsið Þ ¼
∑
3

k¼1
wk �

n
ckjdis ck:loc; rsið Þ < δ⋀ck:cate ¼ k

��� ���
CKj j ð8Þ

where the location of a check-in ck∈CK is denoted by ck.loc, k denotes one of the three POI
categories shown in Table 3, and wk is the weight of the corresponding POI category. Through
a number of experiments, we empirically set w1 = 0.65, w2 = 0.3, and w3 = 0.05.

The integrated scenic score denoted by SI of a given road segment based on both geo-
tagged image and check-in data is given in Eq. (9).

SI rsið Þ ¼ SP rsið Þ � SC rsið Þ ð9Þ

Crowdsourced data fusion for travel route generation The objective of scenic route
planning is to generate a high scored scenic view route while satisfying user-specified
constraints, including the starting/ending points of the user and the maximum travel
distance. The essence is how to select road segments and determine their order. This
problem is NP hard and suffers from combinatorial explosion. On one hand, some road
segments have higher scenic view score yet higher travel time cost (i.e., resulting in a
longer travel distance). On the other hand, there are many possible orders to travel
through the selected road segments, and different visiting order can result in different
total travel distance. Furthermore, for most road segments, they have two driving
directions. The resulted total travel distance is distinct if the road segment is traversed
from different driving directions. An approach with three procedures is proposed, as
presented below

& Interesting area determination. We first determine the interesting area according to the
locations of the given starting/ending points. The minimal rectangle area which covers the
two points is selected as the interested area. Only the road segments lying in the area are
qualified to be the candidates for traveling.

& Crowdsourced driving direction determination. It is hard to determine the driving
direction to a road segment. Here, we propose an approach based on implicit HI in
human traveling. For a given road segment, we mined the taxi GPS trajectory data to
determine its driving direction from the starting point to the ending point. To be more
specific, a taxi trajectory is first represented by a sequence of road segments. Then,
all the taxi trajectories containing the given road segments are retrieved. Among

Table 3 Three groups of POIs

Group Name Category Labels

1 Natural scenery Park, garden, lake, forest, mountain, beach, sea, river, bridge, harbor, scenic, hiking.
2 Tourist

attraction
Museum, palace, church, gallery, memorial, monument, square, zoo, university, historic

site.
3 Others Restaurant, cafe, hotel, and etc.
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them, trajectories with sources and destinations close to the given pair of starting and
ending point are further kept. For a given road segment, we define a trajectory with
close source and destination to the given starting and ending points if 1) the direction
from the source of the trajectory to the near node of the given road segment is close
to the direction from the starting point to that node, and 2) the direction from the near
node of the given road segment to the destination of the trajectory is close to the
direction from that node to the ending point. An example is shown in Figure 11.
Finally, the frequent driving direction of the kept taxi trajectories is used as the
driving direction for the road segment, given the starting/ending points.

& Scenic route generation. We have obtained the score for each road segment using
crowd intelligence, and the next step is how to select road segments and determine
their order to generate a high-score route. We designed three road segment selection
strategies. (i) To maximize the scenic score, an intuitive idea is to select the road
segment with the highest score in the interesting area and add it into the travel route,
which is called the Highest-score-first Selecting (HfS) strategy. However, this strat-
egy may perform poor if the highest-score road segment is far away, declining adding
more high-score road segments. (ii) To make a trade-off between the scenic score of
an individual road segment and the number of road segments, we propose a heuristic
algorithm called Probability-based Selecting (PbS) strategy. It is based on the idea
that the road segment with a higher scenic view score would be selected and added
into the route with a higher probability. (iii) As a comparison, the strategy which is
based on selecting the road segment randomly regardless its scenic view score is also
adopted. We call it the Random-based Selection (RbS) strategy. Note that, for PbS
and RbS selection strategies, the algorithm should run repeatedly for a given number
of times to ensure a high-score travel route. Each run is independent and can be
easily implemented in a parallel way.

A heuristic-based algorithm is proposed, as summarized in Algorithm 1. Lines 1 ∼ 4
refer to the initialization process. Based on user travel route query, the interested area
and the driving direction of the road segments in the area will be first determined. We
also rank the road segments according to their scenic view score (Line 2). The travel
route is initialized as the shortest path from the starting point (i.e. po) to the ending
point (i.e. pd) (Line 3). The shortest path is computed based on the Dijkstra algorithm
[25]. Lines 4 ∼ 7 illustrate the iterative process of road segment selection and order-
ing. At each iteration, a new road segment will be selected based on HfS, PbS or
RbS, and then added in the current travel route (Line 6). The road segment selection
and route extension methods are discussed later. The iteration will be terminated once
no more new road segments can be added under the maximum distance constraint
(Line 5).

Another key issue is route extension by adding new selected road segments. Based on the
proposed selection strategies, assume that a road segment (a1- > a2) is selected and added into
the travel route TR. The shortest path algorithm is used to link the starting/ending points and
the selected travel routes. At the second iteration, a new road segment (a3- > a4) would be
selected, and there are two ordering options to insert it (a1- > a2- > a3- > a4 or a3- > a4- >
a1- > a2). We, however, will choose the one with the least distance as the new route. More
generally, there are (n + 1) options that the newly selected road segment can be added if the
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travel route has already added n road segments in.

Algorithm 1 Algorithm of scenic travel route planning

Input: Maximum travel distance constraint distmax.
Starting point po;

Ending point pd;

Scenic Road Network GS.

Output: A travel route (TR)

1:

2:

3:

4:

5:

6:

7:

G’=GetInterestedArea (GS, po, pd);  // The determination 

of the interested area.

RS=Rank (GetRoadSegment (G’) ); //Get and rank all 

road segments on area G’ according to the integrated

scenic score;

TR=shortestPath(po, pd); RS=RS-TR;

While (dist(TR)<distmax) do
es=SelectRoadSegment(RS);

TR TR+{es};

RS=RS-{es};

end while

5.3 Evaluation

This section presents the experiments to CrowdTrip to demonstrate the effectiveness of using
implicit HI for crowd trip planning.

Dataset Three datasets in the Bay Area in the city of San Francisco are used, i.e. the road
network, the geo-tagged image data, and the check-in data. The statistical information about
the three datasets is shown in Table 4

N

S

W E

NENW

SW SE

N

S

W E

NENW

SW SE

a road segment

starting point
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Figure 11 Illustration of driving direction determination for a road segment and a given pair of source and
destination
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Evaluation metrics The scenic score of the travel route is used to measure the effectiveness of
the proposed travel route algorithm, which is defined as the sum of the scenic score of all road
segments that the travel route contains. We formulate it in Eq. (10)

∑jTRj
i¼1 SI trið Þ ð10Þ

where tri∈TR, TR is the travel route.

Experimental results We compare our scenic road network modeling approach to the previ-
ous work which is solely based on geo-tagged image data [42]. It fails to take category
information about POIs into consideration which is rooted by the fact that geo-tagged images
do not contain such information explicitly. Taking the two road segments shown in Figure 12
for example, the road in the left is the “Bicycle Route 65”, which is a famous driving road
regarding to its attractive scenic view. As can be seen, though “Bicycle Route 65” is
surrounded by only four POIs (i.e. ‘conservatory flows’, ‘Gold Gate Park’, and so on), it also
offers a pleasant driving experience. The road in the right is the “the 7th St”, which is a regular
and normal commercial urban street. It is surrounded by at least eight popular POIs (twice
more than that in “bicycle route 65”), but they are more preferred by shoppers. Hence, the road
in the left should be scored higher. The “bicycle route 65” is ranked 23rd by our modeling
approach but ranked 234th by the approach in [42]; “the 7th St” ranked 1004th by our
modeling approach but ranked 12th by approach in [42]. In summary, our modeling approach

Figure 12 Two road segments: The road in the left is a famous driving road for its attractive scenic view; while
the road in the right is a regular commercial urban street

Table 4 A statistics of the datasets used by CrowdTrip

Datasets Properties Statistics

Geo-tagged photos from Flickr # of images
# of users

31,022
1571

Check-in data from FourSquare # of check-ins
# of users

110,214
15,680

Road network from OpenStreetMapa # of nodes
# of road segments

3771
5940

a http://www.openstreetmap.org/
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achieves a more reasonable result as we extract the complementary information provided by
two data sources

We also conduct experiments to the three route planning methods (i.e., HfS, PbS, and RbS),
and present the comparison results in the scenic score of the travel route. In particular, we
select five Origin-Destination (OD) pairs (in different areas) for the evaluation.

Figure 13 shows the results of the scenic score of the planned travel routes for the selected
OD pairs. Considering that the difference in scenic scores between the first three and the last
two OD pairs is quite great, we adjust the values of y-axis in order to show them in the same
figure. Therefore, the region between the double-dotted line indicates omitted values of y-axis
(i.e., 0.4–1.5). For all five OD pairs, PbS achieves the highest scenic score, while RbS results
the lowest one. The scenic score obtained by HfS is in-between, better than that of RbS, worse
than that of PbS.

6 Conclusion and future vision

We have presented CrowdMining, which leverages implicit HI for crowdsourced data under-
standing. The intrinsic concepts and two studies on CrowdMining are presented, which
demonstrate how we use implicit HI for solving complex data tasks. A generic model for
CrowdMining systems is also proposed. Experiments based on online/offline crowdsourced
data indicate that implicit HI can be used effectively to solve various crowd data mining tasks.

This paper reports our efforts to crowdsourced data understanding with the usage of implicit
HI. There are several interesting directions to be investigated further in the future, as discussed
below.

& The scope of implicit HI. The major types of implicit HI presented in this paper include
crowd behavior patterns, crowd-object interaction patterns, and so on. Implicit HI has wide
scope in terms of cognitive abilities, individual attributes, social features, interaction and
behavior patterns. It is crucial to characterize them and investigate their usage in
crowdsourced data mining.
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Figure 13 The scenic score of the travel routes resulted by different route planning approaches
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& The benefits of using implicit HI. We study the usage of implicit HI for a variety of data
mining tasks. In the future it is interesting to extend its application scope and make use of it
in other data-centric crowdsourcing tasks and for more-complex problems that are not easy
to be solved by pure machine intelligence.

& The emergence of crowd-machine computational systems. This paper investigates the
integration of implicit HI and MI in mobile crowd sensing. Implicit HI is used as feature
inputs for machine learning and data mining algorithms. With the manifold efforts of
embedding human intelligence in computing systems, we will finally build crowd-machine
computation systems. The complementary features of implicit, explicit, and human intel-
ligence should be further explored and new integration/collaboration manners should be
studied.

Funding This work was partially supported by the National Key R&D Program of China(2017YFB1001803),
National Basic Research Program of China (No.2015CB352400), and the National Natural Science Foundation
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