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Abstract
With the advent of the era of big data, the scale of data has grown dramatically, and there is a
close correlation between massive multi-source heterogeneous data, which can be visually
depicted by a big graph. Big graph, especially from Web data, social networks, or biometric
data, has attracted more and more attention from researchers, which usually contains complex
relationships and multiple attributes. How to perform efficient query and matching on big
graph data is the basic problem on analyzing big graph. Using multi-constrained graph pattern
matching, we can design patterns that meet our specific requirements, and find matched
subgraphs to locate the required patterns to accomplish specific tasks. So how to find matched
subgraphs with good attributes in big graph becomes the key problem on big graph research.
Considering the possibility that a node in a subgraph may fail due to reliability, in order to
select more and better matched subgraphs, in this paper, we introduce fuzziness and reliability
into multi-objective graph pattern matching, and then use a multi-objective genetic algorithm
NSGA-II to find the subgraphs with higher reliability and better attributes including social trust
and social relationship. Finally, a reliability-based multi-fuzzy-objective graph pattern
matching method (named as RMFO-GPM) is proposed. The experimental results on real data
sets show the effectiveness of the proposed RMFO-GPM method comparing with other state-
of-art methods.
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1 Introduction

With the rapid development of the Internet and information technology, the data scale
has grown rapidly, and the types of data have been increasing as well [36]. Meanwhile,
there is a close correlation between massive multi-source heterogeneous data, and the
relationship between entities in different fields is usually complicated, which can be
visually depicted by the graph, such as social networks [32], Web data, or biological data
[15]. In these big data, there are not only the information about each data entity (i.e., the
nodes in the graph), but also the related information among the data entities (i.e., the
edges connected between the nodes in the graph) [20]. We can call these complex and
large-scale data as Big Graph data. The relevant theories and technologies on big graph
can be used for the detection of the relationship between various groups and people [15],
the detection of traffic accidents in road networks, task assignment in crowdsourcing [21,
33, 34], or the detection of proteins in biological data. Graph pattern matching, as an
important method for efficient query on big graph, is widely used in the above mentioned
various fields [1, 35]. Specifically, how to obtain accurate and efficient matching queries
in big graph has attracted more and more attention from researchers [22, 23].

In social network analysis, entities and relationships between entities can be represented in
the form of big graphs [18]. The nodes in the graph represent participants, and the edges
represent social relationships between them, which can be subordinates, domestic affection,
friendship, or colleagues [16]. Querying a group or a person with a specific relationship on
social graph can be converted to a graph pattern matching problem in which a matched
subgraph or a specific node is located in a big graph [17], such as expert finding [5], travel
planning [30], important role detecting [2], or learning group selecting, etc. For example, in
social security analysis, an application system that exploits the law of crime and assists in
solving crimes [29] can be developed through certain graph pattern matching based technol-
ogy. Meanwhile, graph matching technology can be used to mine the shopping behavior of
online shopping users and find out the most favorite shopping patterns of different users. Fan
et al., [9] can recommend the content by users who share the same hobbies based on the
mining of the big graph relationship on YouTube. However, due to the NP-complete time
complexity, it is hard to apply graph pattern matching in big graph environments. In a specific
field, how to find a matched subgraph that meets their specific requirements and has a high
reliability in a big graph environment efficiently and effectively becomes a key issue.

The main contributions of this paper are summarized as follows:

1. In the traditional multi-constrained graph pattern matching, there may be a case in the data
graph, where a certain attribute value of a subgraph is slightly lower than the given
threshold value, but other attribute values are significantly better than the given threshold
values; the corresponding graph may be a better subgraph, but it is not selected by the
traditional multi-constrained pattern matching. Therefore, we introduce fuzzy numbers to
include these good subgraphs.

2. In the traditional multi-constrained graph pattern matching, there may be a failure of a
node in the matched subgraph which leads to the failure of the whole matched subgraph to
accomplish a specific task. Therefore, we introduce two attributes including the total times
of experiments and the times of successes to each node in the graph to evaluate the
probability of a subgraph working normally, and the theory of reliability is introduced to
evaluate the reliability of a matched subgraph.
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3. In big graph environments, there may be thousands of matched subgraphs for a given
graph pattern. How to quickly select multiple targets from many matched subgraphs
which is a better matched subgraph cannot be solved by a simple single objective
optimization algorithm. In this paper, multi-objective genetic algorithm NSGA-II is used
for multi-objective optimization, and the better subgraphs in matched subgraphs can be
selected. Specifically, a reliability-based multi-fuzzy-objective graph pattern matching
method (named as RMFO-GPM) is proposed. The experimental results on real data sets
show the effectiveness of the proposed RMFO-GPM method compared with other
existing methods.

The rest structure of this paper is as follows. We describe the progress of graph pattern
matching and multi-objective genetic algorithm NSGA-II in section 2, and then introduce
the main ideas and steps of the reliability-based pattern matching algorithm RMFO-GPM for
multi-fuzzy-objective graphs in section 3. The experiments on real data sets show the
effectiveness of the proposed RMFO-GPM method in section 4. Finally, we summarize our
proposed work in section 5.

2 Related work

2.1 Graph pattern matching

This section introduces the current research status of graph pattern matching, more specifically
two most important research points including isomorphism-based graph pattern matching and
simulation-based graph pattern matching.

(1) Isomorphism-based graph patternmatching: Isomorphicmatching requires a bijective function
between a pattern graph and a data graph. The isomorphic matching requires that the matched
subgraph’s topology is exactly the same as the pattern graph. This matching method is mainly
used in the application of graph data with strict structural requirements, such as network
abnormal behavior detection [6] or protein-molecule interaction.

Tong et al., [30] proposed a fast G-Ray method for finding matched subgraphs, which
introduced a goodness score function to measure the matching degree between the obtained
subgraphs and query patterns, and returned the optimal K subgraphs in all matched subgraphs.
Cheng et al., [4] proposed that the graph pattern matching should be regarded as accessibility
query in graph data table. Based on the join index of clustered graph, an R-join (where R stood
for accessibility) algorithm including filtering and acquisition steps was proposed. Then an
optimization method was proposed to optimize R-join/R-semijoins sequence, which improved
the efficiency of graph pattern matching. In addition, Cheng et al., [5] proposed a method to
construct a timely ranking list based on the spanning tree of the cyclic query graph, and use the
timely ranking list to answer the multidimensional representation of the Top-K matched
subgraphs. With this representation, a cost model was proposed to estimate the minimum
number of spanning trees consumed in each ranking list for a given Top-K matching subgraph
query. Then, the matched subgraphs were sorted based on the number of spanning trees, and
the optimal K matched subgraphs can be returned. However, this graph indexing method was
inefficient for processing large-scale graph queries. Therefore, Sun et al., [28] proposed an
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efficient graph exploration and large-scale parallel computing to improve the efficiency of
graph matching, which can be validated by experiments efficiently on Web data graphs.

Isomorphism-based graph pattern matching is very popular in many applications, such as
3D object matching or protein structure matching. Indexing, parallel and distributed methods
are effective ways to improve the efficiency of graph pattern matching. However, such graph
pattern matching still suffers from high computational costs because it is NP-complete.
Isomorphism-based graph pattern matching is too harsh for the applications of social networks
which do not require strict matching accuracy. Therefore, many scholars have turned to study
simulation-based graph pattern matching.

(2) Simulation-based pattern matching: Henzinger [11] proposed the concept of graph
simulation for the first time, which required that the nodes in the matched subgraph
maintained the same succession relationship with the corresponding nodes in the pattern
graph. Fan et al., [8] extended the graph simulation by proposing the bounded simulation,
in which the label of each node of the graph was not unique, and the bounded length can
be specified on the side of the query graph. In bounded simulation, it is unnecessary to
match each node and each edge exactly like isomorphic matching, but to match any node
with the same label and a path whose length is not greater than the bounded length in the
data graph, that is, a path in the data graph is matched with an edge in the pattern graph,
and the length of the path is less than or equal to the boundary length defined by the
corresponding edge in the pattern graph. Fan et al., [10] proposed a method to find Top-K
matches for specific node patterns, in which some patterns containing important nodes
and edges had high priority for matching in query graphs. In order to solve the problem
that the topological structure of the matched subgraph and the topology of the pattern
graph were different in bounded simulation, Ma et al., [24] proposed a strong simulation
method based on the bounded simulation. Strong simulation required matching the nodes
of the subgraph with the corresponding nodes in the pattern graph to be searched to
maintain the same predecessor relationship and the radius of the matched nodes in the
matched subgraph was less than or equal to the radius of the pattern graph. Considering
that the graph would contain attribute information of both nodes and edges, Liu et al.,
[19] further proposed the multi-constrained simulation, which was an extension of
bounded simulation. In this model, multiple attribute information can be defined on the
edge and the node of data graph, and the aggregated attribute information of each path in
data graph should be larger than the minimum value of given attribute information of
nodes and edges in pattern graph while satisfying bounded simulation. In order to add
attribute information of nodes and edges to graph pattern matching, a graph pattern
matching method based on multi-constrained simulation was proposed. In order to solve
the efficiency and validity of multi-constrained Top-K graph pattern matching in large-
scale social graphs, Shi et al., [26] proposed an index HB-Tree, which can index the label
and degree of nodes in data graphs and effectively obtain candidates for designated query
nodes v0. Then, a multi-constrained Top-K graph pattern matching method named MTK
was proposed, which can effectively and efficiently recognize Top-K matching of v0.

Simulated matching is more flexible than isomorphic matching, and it can find more useful
matched subgraphs. Simulated matching is mainly used to detect the relationship between
groups (e.g., drug-related trading network), which focuses on the application analysis of graph
data mining on the relationship between nodes.
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2.2 NSGA-II genetic algorithm

NSGA-II algorithm [7] is improved by Kalyanmoy Deb on the basis of NSGA [27], which is a
genetic algorithm based on non-dominated sorting, and can be used to solve multi-objective
optimization problems.

In order to overcome the shortcomings of high computational complexity, including the
lack of elite mechanism and the requirement to specify shared parameters in NSGA, NSGA-II
mainly improves the following three aspects:

(1) A fast non-dominated sorting algorithm is proposed to reduce the time cost of the
algorithm from O(MN3) to O(MN2), where M is the number of objective functions and
N is the population size.

(2) The elite strategy is introduced to merge the parents and offspring of the population into a
hierarchical ranking, which ensures that some excellent individuals of the population will
not be discarded in the evolutionary process, thus improving the accuracy of the
optimization results.

(3) The comparison operator of congestion degree is used to avoid the difficulty of preset
sharing parameters.

NSGA-II is one of the most popular multi-objective genetic algorithms, which has been widely
used in all walks of life to find the best solution. For example, Li et al., [14] used an NSGA-II-
based method to predict multi-label, which can greatly save the time consumption and memory
occupancy of label prediction and improve the accuracy of label prediction to a certain extent.
Jiang et al., [31] proposed a multi-objective time-of-use pricing optimization method based on
NGSA-II, which can better achieve the effect of peak cutting and valley filling. NSGA-II has a
good effect in finding multi-objective optimal solutions, so this paper uses NSGA-II method to
find better subgraphs in multi-constrained matched subgraphs.

3 Reliability-based multi-fuzzy-objective graph pattern matching

3.1 Preliminaries

3.1.1 Reliability

Reliability is the probability of an entity to perform its functions under certain conditions at
certain time. Please refer to Table 1 for all symbols and notations adopted to introduce and
describe reliability in this section.

The reliability of a system is related to the reliability of components of the system and its
various combinations. From the perspective of reliability, each component in the system can be
status of normal or malfunction, in which the reliability can be evaluated as the probability of
the function of the component is normal. Here, in big graph, we can take a subgraph as a
system, and the reliability of a subgraph is determined by the reliability of its component nodes
and their connections. Obviously, the subgraph S functions well only when all its component
nodes perform well. Set the reliability of component node i as

R Sð Þ
i tð Þ ¼ P T Sð Þ

i > t
� �

; i ¼ 1; 2;…m, where T Sð Þ
i is the lifetime of component node i in
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subgraph S, which is the time from t = 0 to the time when the component node becomes
malfunction. Assume that the malfunction of a component node is independent to each other,

i.e., T Sð Þ
1 ; T Sð Þ

2 ;…; T Sð Þ
m share mutual independence. Suppose that all component nodes in the

subgraph S begin to function at t = 0, and the lifetime of the subgraph should be

T Sð Þ ¼ min T Sð Þ
1 ; T Sð Þ

2 ;…; T Sð Þ
m

� �
ð1Þ

Then the reliability of the subgraph is

R Sð Þ tð Þ ¼ P T Sð Þ > t
� �

¼ ∏
m

i¼1
R Sð Þ
i tð Þ ð2Þ

However, from time to time, although there are m component nodes in the subgraph, it can
function well if and only if there are at least k component nodes which function well, where k
<m. For example, a composite service can perform well only when some key components
function well to satisfy the specific requirements; a small community can be selected only
when some community members can perform the functionality well. Mathematically, if the

lifetime of component nodes in the subgraph S are T Sð Þ
1 ; T Sð Þ

2 ;…; T Sð Þ
m , which are independent

and conform to the same distribution, and the reliability of component nodes in the subgraph S

are denoted as R Sð Þ
i tð Þ ¼ P T Sð Þ

i > t
� �

, then the reliability of the subgraph is

R Sð Þ ¼ ∑
m

j¼k

m
j

� �
R Sð Þ
i tð Þ

� � j
1−R Sð Þ

i tð Þ
� �m− j

ð3Þ

The reliability of the subgraph S is

R Sð Þ ¼ ϕ R Sð Þ
1 ;R Sð Þ

2 ;…;R Sð Þ
m

� �
ð4Þ

Table 1 The symbols and notations used in Section 3.1.1

S subgraph
i component node

R Sð Þ
i tð Þ the reliability of component node i

T Sð Þ
i

the lifetime of component node i in subgraph S

T(S) the lifetime of the subgraph
R(S) the reliability of the subgraph
m the total number of component nodes
k some of component nodes
ϕ a known function

n Sð Þ
i

the number of test for component node i

s Sð Þ
i

the number of succeed test for component node i

f Sð Þ
i

the number of failed test for component node i

Z(S) the number of succeed test for the subgraph
θ(S) the number of failed test for the subgraph
l ∏m

k¼1 nk þ 1ð Þ
R Sð Þ
L Z Sð Þ� � the lower confidence with 1 −α for reliability R(S)

^R Sð Þ the maximum likelihood estimation on R(S)

F1 −α(m, n) F distribution with quantile 1 −α
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where ϕ is a known function. From the history record, as for component node i there are n Sð Þ
i

tests, where it successes s Sð Þ
i times, and fails f Sð Þ

i times, n Sð Þ
i ¼ s Sð Þ

i þ f Sð Þ
i , n Sð Þ

i ≥1, s Sð Þ
i ≥0,

f Sð Þ
i ≥0. Denote

Z Sð Þ ¼ s Sð Þ
1 ; s Sð Þ

2 ;…; s Sð Þ
m

� �
ð5Þ

θ Sð Þ ¼ R Sð Þ
1 ;R Sð Þ

2 ;…;R Sð Þ
m

� �
ð6Þ

Assume each test is independent to each other. Obviously, the distribution of Z(S) is dependent
on θ(S),

Pθ Sð Þ Z Sð Þ ¼ i Sð Þ
1 ; i Sð Þ

2 ;…; i Sð Þ
m

� �� �
¼ ∏

m

k¼1

n Sð Þ
k

i Sð Þ
k

 !
R Sð Þ
k

� �i Sð Þ
k

1−R Sð Þ
k

� �n Sð Þ
k −i Sð Þ

k ð7Þ

Then it is possible to sort Z(S) with certain rule

z1≻z2≻…zl ð8Þ
where

l ¼ ∏m
k¼1 nk þ 1ð Þ ð9Þ

Let

G Sð Þ z; θ Sð Þ
� �

¼ ∑
zk ≥ z

Pθ Sð Þ Z Sð Þ ¼ zk
� �

ð10Þ

R Sð Þ
L zð Þ ¼ inf ϕ θ Sð Þ

� �
: G Sð Þ z; θ Sð Þ

� �
> α

n o
ð11Þ

With Theorem 2.1 in Chapter 8 of [3], we have

Pθ R Sð Þ≥R Sð Þ
L Z Sð Þ
� �� �

≥1−α ð12Þ

where 0 <α < 1, and R Sð Þ
L Z Sð Þ� �

is the lower confidence with 1 −α for reliability R(S).

With Eq. (2), we have the maximum likelihood estimation on R(S) as

R Sð Þ ¼ ∏
m

j¼1

s Sð Þ
j

n Sð Þ
j

ð13Þ

Theorem 1: If there is no malfunction in the subgraph S, i.e., max(fi) = 0, then the
confidence lower limits of the reliability of the subgraph S with confidence level 1-α is

R Sð Þ
L n Sð Þ

1 ;…; n Sð Þ
m

� �
¼ α

1

n
Sð Þ
* ð14Þ
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where n Sð Þ
* ¼ min n Sð Þ

1 ;…; n Sð Þ
m

� �
.

Proof: From Eq. (11), we have

R Sð Þ
L n Sð Þ

1 ;…; n Sð Þ
m

� �
¼ inf ∏

m

i¼1
R Sð Þ
i : ∏

m

i¼1
R
n Sð Þ
i

i ¼ α

� 	
ð15Þ

Then

α ¼ ∏
m

i¼1
R
n Sð Þ
i
i ¼ R Sð Þ

� �n Sð Þ
* ∏

m

j¼1
R
n Sð Þ
j −n Sð Þ

*
j ð16Þ

i.e.,

R Sð Þ ¼ α

∏m
j¼1R

n Sð Þ
j −n Sð Þ

*
j

2
64

3
75

1

n
Sð Þ
*

ð17Þ

Obviously,

R Sð Þ
L n Sð Þ

1 ;…; n Sð Þ
m

� �
≥α

1

n
Sð Þ
* ð18Þ

i.e., the confidence lower limits of the reliability of the subgraph S with confidence level 1 −α
is

R Sð Þ
L n Sð Þ

1 ;…; n Sð Þ
m

� �
¼ α

1

n
Sð Þ
* ð19Þ

It is easy to calculate the reliability of the subgraph S with no malfunction at all based on the
above theorem. However, it is difficult to compute the reliability of the subgraph without any
constraint. Here we adopt an interpolation method to approximately calculate the confidence
lower limits of the reliability of the subgraph S with confidence level 1 −α as follows. With

n Sð Þ
* ¼ min n Sð Þ

1 ;…; n Sð Þ
m

� �
ð20Þ

and

s Sð Þ
* ¼ n Sð Þ

* ∏
m

i¼1

s Sð Þ
i

n Sð Þ
i

ð21Þ

Let R Sð Þ 1ð Þ
LM and R Sð Þ 2ð Þ

LM satisfy.

∑
n Sð Þ
*

x¼ s Sð Þ
*½ �

n Sð Þ
*

x

� �
R Sð Þ 1ð Þ
LM

� �x
1−R Sð Þ 1ð Þ

LM

� �n Sð Þ
* −x ¼ α,

∑
n Sð Þ
*

x¼ s Sð Þ
*½ �þ1

n Sð Þ
*

x

� �
R Sð Þ 2ð Þ
LM

� �x
1−R Sð Þ 2ð Þ

LM

� �n Sð Þ
* −x

¼ α:

Then the approximate confidence lower limits of the reliability of the subgraph S with
confidence level 1 −α is
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R Sð Þ
LM ¼ R Sð Þ 1ð Þ

LM þ s Sð Þ
* − s Sð Þ

*

h i� �
R Sð Þ 2ð Þ
LM −R Sð Þ 1ð Þ

LM

� �
ð22Þ

With the Lindstrom-Madden approach from [3], we can have

R Sð Þ 1ð Þ
LM ¼ 1

1þ
n Sð Þ
* − s Sð Þ

*

h i
þ 1

s Sð Þ
*

h i F1−α 2 n Sð Þ
* − s Sð Þ

*

h i
þ 1

� �
; 2 s Sð Þ

*

h i� �2
4

3
5

R Sð Þ 2ð Þ
LM ¼ 1

1þ
n Sð Þ
* − s Sð Þ

*

h i
s Sð Þ
*

h i
þ 1

F1−α 2 n Sð Þ
* − s Sð Þ

*

h i� �
; 2 s Sð Þ

*

h i
þ 1

� �� �2
4

3
5

where F1 − α(m, n) is F distribution with quantile 1 −α.

3.1.2 Multi-fuzzy-objective simulation

As for reliability, each node vi in the data graph has two attributes including the total number of
experiments ni and the number of successes si, so we can define the probability that node vi
works normally pi ¼ si=ni. In the data graph, the edge between nodes has attribute information,
such as social trust T and social intimacy r. The premise that a path in the graph works
normally is that a certain number of nodes on the path should work normally, so the probability
of normal operation of the path should be calculated by the multiplication of the probability of
normal operation of its components, which is the same as the method when calculating social
trust or social intimacy proposed by Liu et al., in [19].

On the one hand, in the traditional multi-constrained graph pattern matching, there may be a
case that in the data graph, where a certain attribute value of a subgraph is slightly lower than
the corresponding given threshold value, but other attribute values are obviously better than
the corresponding given threshold values. The corresponding subgraphs should be better
subgraphs, but they are excluded by traditional multi-constrained graph pattern matching.
Therefore, we can introduce fuzzy numbers to obtain this kind of good subgraphs. On the other
hand, because social trust and social intimacy reflect the subjective consciousness of partic-
ipants, and using numerical values to express trust and intimacy between participants has some
ambiguity, so we introduce fuzzy parameters [12, 13] to appropriately expand the range of trust
and social intimacy. For example, when the minimum value of social trust required in the
pattern graph is t, we introduce a fuzzy parameter γ(0 < γ ≤ 1) to modify the minimum value of
social trust to γ • t.

Definition 1: Data graph GD ¼ V ;E; f DV ; f
�

D
E Þ is

a labeled directed graph, where – V is a set of nodes;
– E is a set of edges, and (vi, vj) ∈ E is a directed edge from node vi ∈ V to node vj ∈ V;
– fV is a function defined on the node set V such that for each node v ∈ V, f DV vð Þ is a set of

attributes associated with v, represented by a set of labels for v.
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– f DE is a function defined on edge set E such that for each edge e ∈ E, f DE is the set of
attributes associated with e, represented by a set of labels for e.

Definition 2: Pattern Graph GP ¼ VP;EP; f PV ; f
P
E

� �
is a directed graph with labels,

where – VP and EP are node sets and directed edge sets, respectively;

– f PV is a function defined on the node set VP such that f
P
V vð Þ is the attributes associated with

v for each node v ∈ V;
– f PE is a function defined on the edge set EP such that f

P
E eð Þ is the attributes associated with

e for each edge e ∈ E;

Definition 3: Multi-Fuzzy-Objective Simulation (MFOS): Given the data graph GD ¼
V ;E; f DV ; f

D
E

� �
and the pattern graph GP ¼ VP;EP; f PV ; f

P
E

� �
, GD simulates the matched GP

through the multi-fuzzy-objective, that is, the multi-fuzzy-objective simulation map GD to GP,
defined as GP⊲MFO

S GD if there is a binary relationship S ⊆ VP × V such that

& For all u ∈ VP, there exists v ∈ V such that (u, v) ∈ S;
& For each pair (u, v) ∈ S,
& For each edge (u, u') in EP, there exists a non-empty path ρ from v to v' in GD

such that (u', v') ∈ S, and the length of path len(ρ) should be minimized fuzzily.
& The attributes of f DV or f DE should be optimized fuzzily.

In this paper, when multiple matched subgraphs with good attributes are required to be
selected, this decision-making is affected by the following six factors:

& Objective 1: Social trust value (T): This value represents the degree of trust between two
participants in a social network. The bigger, the better.

max f 1 ¼ T

& Objective 2: Social relationship value (R): This value represents the degree of intimacy
between two participants in a social network. The bigger, the better.

max f 2 ¼ R

& Objective 3: Reliability value (RLM): This value indicates the possibility that the matched
subgraph will work normally. The bigger, the better.

max f 3 ¼ RLM
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& Objective 4: The membership degree of social relationship: This value indicates the degree
of fuzziness of social relationship value. The closer the degree of social relationship to 1,
i.e., the closer the value of social relationship to the specified threshold value on the pattern
graph, the better.

max f 4 ¼
T−B

AλT−B
T−B

AλT−B
< 1

� �
1 otherwise

8<
:

& Objective 5: The membership value of reliability: This value represents the degree of
fuzziness of reliability. The closer to 1, the less ambiguous.

max f 5 ¼
R Sð Þ
LM−C

AλR Sð Þ
LM
−C

R Sð Þ
LM−C

AλR Sð Þ
LM
−C

< 1

 !
1 otherwise

(

& Objective 6: The path length of matched subgraph: The larger the path length of matched
subgraph, the smaller the aggregated attribute value of the path of matched subgraph.
Hence, the smaller the value, the better.

min f 6 ¼ Pathlength

where AλT and Aλ ^
R Sð Þ
LM

represent aggregated values of social trust and reliability in pattern

graph; T and R represent the social trust value and social relationship value of matched
subgraphs; The calculation methods of these values are mentioned in [19]; the reliability
values are obtained by the above Eq. (22); B and C are parameters set according to the personal
requirements of users.

3.2 Reliability-based multi-fuzzy-objective graph pattern matching algorithm

The most classical graph pattern matching is isomorphism-based graph pattern matching,
which is to find whether there is a matched subgraph in the data graph with the structure
pattern matching in the query graph. Since this subgraph simulation is an NP-complete
problem, it is difficult to locate the matched subgraph directly. Therefore, we here need first
find a strong subgraph in the big graph, then compress the strong subgraph, calculate the index
of the compressed graph, and finally propose a heuristic algorithm based on the simulation of
graph pattern matching. Considering the reliability of nodes in the subgraph matching and the
selection of more and better subgraphs, we propose a reliability-based multi-fuzzy-objective
graph pattern matching (shorted as RMFO-GPM) method, with the detailed process as
follows:
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Step 1: Find the strong subgraph: The strong subgraph is a closely related subgraph, that is,
all attribute values in the subgraph are good enough. Formally, we have the
following definition about the strong graph.

Definition 4: A strong graph is a strongly connected graph where each node associated
with a high reliability in a specific domain which is connected with the edges associated
with strong trust and strong social relationships Obviously, the use of graph pattern
matching in the strong subgraph can greatly improve the searching efficiency. Based on
the theory from social psychology [25], social structure and social relations between
persons usually remain stable for a long time, such as the one in [19]. In order to
facilitate the calculation, we put the attribute information of a node about the probability
when the node performs normally on an edge of the graph, as adopted by [19].

Step 2: Compress the strong subgraph: As for nodes in the strong subgraph, we perform the
accessible compression, the subgraph pattern compression, and the subgraph attri-
bute compression.

Step 2.1: Accessible compression: If two nodes in a strong subgraph have the same ancestor
and can reach each other’s descendant nodes, then the two nodes can be com-
pressed into one node.

Step 2.2: Subgraph pattern compression: If two nodes in a strong subgraph have the same
label, the same descendant node and the same ancestor node, the two nodes can be
compressed into one node.

Step 2.3: Subgraph attribute compression: If two nodes in a strong subgraph have the same
label, the same descendant node, the same ancestor node and one path with one
node dominates the other path with another node, the two nodes can be com-
pressed into one node and the aggregation value of the attribute is the attribute
value of the dominated node [19].

Step 3: Index the compressed graph of strong subgraph: As for the nodes of strong
subgraph, evaluate the accessible index value, the subgraph pattern index value,
the subgraph attribute index value and the aggregated attribute value.

Step 3.1: Accessible index: Records the ancestors and precursors that the node can access.
Step 3.2: Subgraph pattern index: Record the shortest path length between any two nodes in

the strong subgraph.
Step 3.3: Subgraph attribute indexes and aggregated attribute values: These values are

related to the shortest path in the subgraph pattern index.
Step 4: Subgraph pattern matching heuristic algorithm: Dijkstra algorithm can be used to

get the minimum of the maximal aggregated values of node attributes. Usually
the smaller the node attribute value, the greater the probability of satisfying the
maximum requirement. Each matched subgraph contains four attribute values,
including the value of social trust and social intimacy on the edge, the value of
reliability of matched subgraph obtained from the total number of experiments
and the number of successes of nodes in matched subgraph, and the path length
of the whole matched subgraph. The matched subgraph set can be used in
NSGA-II algorithm to make decision according to the six objective functions
mentioned above, and the better partial matched subgraphs can be found.
NSGA-II is a multi-objective genetic algorithm, which has a good effect in
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finding Pareto frontier quickly and maintaining population diversity. The algo-
rithm can obtain a set of Pareto solutions satisfying multi-objective require-
ments in all feasible solutions. Because NSGA-II can search Pareto solutions
well in academia and industry, this paper uses NSGA-II to select better
matched subgraphs from the matched subgraph set. Hence, a reliability-based
multi-fuzzy-objective graph pattern matching method (named as RMFO-GPM)
is proposed.

4 Experiments

4.1 Experimental settings

4.1.1 Dataset

This paper adopts datasets from the Epinions dataset (please refer to http://snap.stanford.edu)
shared by Stanford University. The Epinions data set is a trust network, including the user trust
relationship, the user’s score information for the item, and the comment information.
Statistically, this data set has 75,879 nodes and 508,837 edges.

4.1.2 Parameter settings

As mentioned in [19], the mining of the social factor values through social networks is beyond
the scope of our work. The value of the real world attribute is usually different from each other,
which may be low or high. Therefore, in the experiment we also use the rand() function in
MYSQL to generate a random number between [0, 1] to simulate the value of the attribute. In
the experiment, we randomly generate three sets of random numbers using the rand() function
and discover that the experimental results are similar to each other. Therefore, in this paper we
choose to present the results of only a set of data. For each node’s number of experimental
successes and the total number of experiments, we use a heuristic algorithm simulated by the
above subgraph to conduct 10 sets of experiments firstly, and then count the total number of
experiments and the number of successful experiments. In addition, set the confidence levels in
the F distribution function to 0.10, 0.20, 0.30, 0.40, 0.50, 0.60,

Figure 1 The pattern graph
adopted in the experiments
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Figure 1 is the pattern graph inputted in the experiment, and 0.90 in Figure 1 is the
membership parameter. We have conducted many experiments on the membership parameter,
and the experiment shows that when the membership parameter is 0.90, the effect is the best,
so the membership parameter is set as γ = 0.90 in the experiment. The first multiplier of the
equation in Figure 1 is the minimum of social trust, social intimacy and probability of
performing normally.

Since the matched results of subgraph simulation already contain the attribute values of
each matched subgraph, we only need to select the better matched subgraphs. Therefore, the
decision variables in the NSGA-II algorithm in this paper are the binary representation of the
sequence number of matched subgraph. If crossover operation is used in NSGA-II algorithm,
many repetitive individuals will be generated in the descendant population, so mutation
operation is only used in this experiment and the mutation efficiency is 0.10. Experiments
on population sizes of 80, 90, 100, 110 and 120 show that the population size as 100 and the
generation number as 4000 are the best. Figures 2, 3, 4 are the results of the matched subgraphs
obtained by the Epinions dataset with a confidence level of 0.10 in the RMFO-GPM. The
population size of the multi-objective genetic algorithm is 80, 100, and 120, respectively, and
generation number is 4000. From Figures 2, 3, 4, we can see that the Pareto solution with
population size as 100 and generation number as 4000 (as in Figure 3) is evenly distributed,

Figure 2 The results of the optimized matched subgraphs by NGSA-II when pop = 800.70, 0.80, and 0.90,
respectively

Figure 3 The results of the optimized matched subgraphs by NGSA-II when pop = 100
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and the corresponding effect is better. The coordinate axes of the three-dimensional graph are
the values of the objective functions f1, f2, f3.

4.2 Experimental results and analysis

On the one hand, there is no existing method to consider that one attribute value of a subgraph
is slightly lower than the given corresponding threshold value, but the other attribute values are
obviously better than the given corresponding threshold value; this subgraph may be a better
subgraph, so this paper compares our proposed one with the no fuzzy graph pattern matching
(i.e., reliability-based multi-objective graph pattern matching, named as RMO-GPM) in a
comparative experiment. On the other hand, as there is no existing method to consider the
failure state of some nodes in matched subgraph, this paper sets up an unreliable graph pattern
matching algorithm (named as MFO-GPM) to conduct a comparative experiment. The
experimental results validate the effectiveness of the proposed RMFO-GPM algorithm.

The uncertainty of the direction of graph search results in that the results of matched
subgraphs are not exactly the same each time. Hence, for the sake of generality, we conduct

Figure 4 The results of the optimized matched subgraphs by NGSA-II when pop = 120

Figure 5 The number of matched subgraphs under three different confidence levels
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three groups of experiments with the same confidence level. The information of matched
subgraphs obtained in RMFO-GPM and RMO-GPM algorithms is shown in Figure 5 and
Table 2. Specifically, Figure 5 shows the average number of matched subgraphs with confi-
dence level of 0.10, 0.20 and 0.30 respectively under RMFO-GPM and RMO-GPM algo-
rithms. In addition, we can observe that RMFO-GPM algorithm with fuzzy numbers can select
more matched subgraphs. Table 2 lists the attribute information of the matched subgraph
obtained under RMFO-GPM and RMO-GPM when the confidence level is 0.1, wherethe
second column in Table 2 shows the number of matched subgraphs. By analyzing Table 2, we
can see that although the number of matched subgraphs is different under the same conditions,
the attributes of matched subgraphs are basically the same. Therefore, we can determine the
relationship between the confidence level and the reliability value RLM by discussing the
change of the average value of the best matched subgraph in NSGA-II. It can also be seen from
Table 3 that each attribute value of the better matched subgraph obtained under the RMFO-
GPM algorithm is larger than the corresponding attribute value obtained by the RMO-GPM.
Therefore, by analyzing Figure 5, Table 2, and Table 3, it can be concluded that RMFO-GPM
can get more matched subgraphs and the matched subgraphs have better attribute values,
which means that RMFO-GPM can select a certain attribute value is slightly lower for a given
corresponding threshold value, but other attribute values are significantly better than the
matched subgraph of the given corresponding threshold value .

Table 3 reflects the attribute values obtained under three different graph pattern
matching algorithms with confidence levels of 0.10, 0.20, and 0.30, respectively. Accord-
ing to the analysis of RMFO-GPM and MFO-GPM in Table 3, the reliability value of the
matched subgraph obtained by RMFO-GPM is larger. Because MFO-GPM does not
consider the reliability of matched subgraphs, subgraphs are selected with less reliable
matched subgraphs. The matched subgraph obtained by MFO-GPM needs to optimize

Table 2 The optimized attribute values of the matched subgraphs with confidence level 0.10 in NGSA-II

The number of matched subgraphs T R RLM

RMFO-GPM 13,962 0.1519 0.2406 0.4952
14,027 0.1440 0.2525 0.5240
11,661 0.1451 0.2450 0.5147

RMO-GPM 8603 0.0878 0.1804 0.4949
7721 0.0943 0.1823 0.5128
7791 0.0963 0.1816 0.5052

Table 3 The attribute values of matched subgraphs under different matching algorithms

α = 0.10 α = 0.20 α = 0.30

T R RLM T R RLM T R RLM

RMFO-GPM 0.1470 0.2460 0.5113 0.1417 0.2518 0.4656 0.1451 0.2496 0.4604
MFO-GPM 0.0785 0.1576 0.3679 0.0682 0.1448 0.3949 0.0963 0.1735 0.4006
Increment (%) of RMFO-GPM

from MFO-GPM
87.37 56.06 38.98 107.72 73.86 17.90 50.69 43.88 14.93

RMO-GPM 0.0928 0.1814 0.5043 0.0931 0.1857 0.4550 0.0943 0.1861 0.4404
Increment (%) of RMFO-GPM

from RMO-GPM
58.44 35.59 1.39 52.14 35.59 2.33 53.85 34.13 4.54
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multiple objectives in NSGA-II, and the value of reliability is large, but other attribute
values are not good or other attributes are good enough but reliability is not good, so each
attribute value of the matched subgraph is smaller than the attribute value of the preferred
matched subgraph of RMFO-GPM. This experiment fully demonstrates the effectiveness
of reliability.

Epinions 1–1 in Figure 6 represents the results of the first matched subgraph set obtained at
a confidence level of 0.10. Specifically, Figure 6 shows the relationship between s∗ and n∗ in
Epinions1–1, where n∗ is the minimum integer value of the total number of experiments for all
nodes in a matched subgraph, and s∗ is the product of the probability of a matched subgraph
working normally P and n∗. Because there are many n∗ values in many matched subgraphs,
and the probability of a matched subgraph working normally is not unique, which leads to the
existence of several n∗ values corresponding to the value of s∗. The larger the value of n∗, the
larger the value of s∗, while the probability of normal operation of the matched subgraph
remains unchanged (Figure 7).

Figure 6 The relationship between s∗ and n∗ in Epinions1–1

Figure 7 The relationship between s∗, n∗ and RLM in Epinions1–1
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For the sake of generality, we conduct three experiments with RMFO-GPM algorithm at
confidence of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively, and then select the best
subgraphs for the matched subgraphs with NSGA-II. The average attribute values of the best
subgraphs obtained from the three experiments are shown in Table 4, where the last column

R sð Þ
LM denotes the true values that should be taken when the parameters are rounded to s∗ and

n∗. Through the analysis of Table 4, we can see that the values of T, R and Pathlength of each
matched subgraph are basically the same, and the values of s∗ and n∗ of the selected better
matched subgraph are not much different. Under the same confidence level, the mean value of

reliability represented by RLM is basically consistent with the true value represented by R Sð Þ
LM.

Therefore, we can regard the mean attribute value of the better matched subgraph listed in
Table 4 as the results of the same matched subgraph under different confidence levels. Figure 8
describes the relationship between confidence and matched subgraphs. Particularly, Figure 8
shows that the reliability of matched subgraph decreases as the increase of confidence. In the
same subgraph, the values of s∗, n∗, T, R and Pathlength should be fixed, and the reliability
value of matched subgraph decreases as the decrease of confidence (Figure 9).

Table 4 The attribute values of matched subgraphs with different confidence levels

T R s∗ n∗ RLM Pathlength
R Sð Þ
LM

0.1 0.1470 0.2460 38.0385 84.5500 0.5113 6.0135 0.5111
0.2 0.1417 0.2518 36.2438 84.8867 0.4656 5.9941 0.4661
0.3 0.1451 0.2496 36.9023 84.2433 0.4604 5.9941 0.4620
0.4 0.1538 0.2500 36.7307 83.8100 0.4461 5.9844 0.4453
0.5 0.1526 0.2484 36.2546 84.1700 0.4256 6.0103 0.4260
0.6 0.1503 0.2398 36.8792 84.9367 0.4155 6.0071 0.4148
0.7 0.1465 0.2389 35.6614 84.6600 0.3894 6.0523 0.3863
0.8 0.1483 0.2461 35.9511 84.2733 0.3782 6.0232 0.3777
0.9 0.1425 0.2409 37.6161 84.5600 0.3736 6.0329 0.3693

Figure 8 The relationship between P and RLM in Epinions1–1

World Wide Web (2020) 23:649–669666



5 Conclusion

In this paper, with the definition and principle of reliability, we can calculate the reliability of
matched subgraphs, which is the probability that matched subgraphs work normally. The better
matched subgraphs can affect people’s decision-making attitude to a certain extent. We can
evaluate the probability of completing a specific task according to the attributes of subgraphs,
including reliability, trust and social relationship. In this paper, a multi-objective genetic
algorithm NSGA-II is used to solve the problem of how to select the best matched subgraph
considering reliability, trust and social relationship, in many sets of matched subgraphs.
Finally, a reliability-based multi-fuzzy-objective graph pattern matching (named as RMFO-
GPM) is proposed. The experimental results show that the proposed RMFO-GPM is effective
comparing with other state-of-art methods.
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