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Abstract
We coin the term geoMobile data to emphasize datasets that exhibit geo-spatial features
reflective of human behaviors. We propose and develop an EPIC framework to mine latent
patterns from geoMobile data and provide meaningful interpretations: we first ‘E’xtract
latent features from high dimensional geoMobile datasets via Laplacian Eigenmaps and
perform clustering in this latent feature space; we then use a state-of-the-art visualization
technique to ‘P’roject these latent features into 2D space; and finally we obtain meaning-
ful ‘I’nterpretations by ‘C’ulling cluster-specific significant feature-set. We illustrate that
the local space contraction property of our approach is most superior than other major
dimension reduction techniques. Using diverse real-world geoMobile datasets, we show the
efficacy of our framework via three case studies.

Keywords GeoMobile · Data mining · Latent patterns · Epic · Regional patterns ·
Feature distributions

1 Introduction

The wide proliferation of various kinds of (physical or virtual) sensors in the physical
and/or cyber worlds has enabled us to collect a whole gamut of (spatial-temporal) data,
e.g., voice calls between users at various locations in a cellular network, human commuting
behaviors across different locations in a transport network such as buses, subways, taxicabs
or car sharing services, check-ins and social interactions among users at diverse locations
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in a location-based online social network such as Foursquare. We use the term geoMo-
bile to refer to such datasets collected from these networks, as they are characterized with
two salient features: they are associated with geo-locations (e.g., gathered at cell towers or
tagged with location information), and more often they capture user actions on-the-move.

With abundance of diverse geoMobile datasets, mining them is an important activity
that has wide applications, from cellular network traffic engineering to urban transportation
management, smart city planning, social behavior analysis and cyber-physical world secu-
rity. For example, one can ask questions such as: can geo-locations and user actions (e.g.,
making phone calls) at these locations capture and reflect certain underlying community
structures? In other words, can one classify regions into various communities based on their
associated human-actions at certain geo-locations? More broadly, how user mobility and
behavior are associated with geo-locations? Unfortunately, gleaning meaningful and action-
able knowledge from geoMobile data are non-trivial. We list several reasons why mining
geoMobile datasets is a challenging task. First, there is huge heterogeneity in (user) activi-
ties associated with different geo-locations, which leads to very skewed data distributions.
This is partly due to the fact that there are often very disparate factors driving user mobil-
ity and behavior at various geo-locations; geoMobile data is thus likely to more closely
mirror user relations and interactions in the real “physical” world (than mere the “cyber”
world). Second, depending upon the spatial and temporal resolutions, geoMobile datasets
are often high-dimensional. Underlying patterns, if present, may either be a linear or a
non-linear combination of a varying subset of features. Therefore, judicious feature engi-
neering is paramount. However, without prior knowledge of the problem domain coupled
with high pattern diversity in geoMobile datasets, feature selection or extraction from high-
dimensional data becomes difficult. Third, even once we have appropriate representative (or
latent) features and can obtain clusters, it is hard to make sense out of the clusters without
the aid of a visualization technique. Lastly, the factors which cause the formation of (latent)
clusters in the feature space are not always easily understood. It is important to relate and
map a cluster back to its “raw” feature set (rather than the latent feature set) that are critical
to its formation. Such information can help to naturally interpret the results.

We combine some of the popular algorithms with state-of-the-art machine learning tools
to develop a framework to extract, visualize and interpret latent patterns arising from geo-
Mobile datasets. We address the challenges discussed earlier and summarize our central
contributions as follows:

1) Instead of directly working on observed features, we take into account the feature
distribution of every data point and derive a new (symmetric) similarity matrix. This
amounts to transforming the data points into a high-dimensional feature space. We apply
the Laplacian Eigenmap (LE) method to extract latent features and “clusters” data points
lying in certain lower-dimensional (non-linear) sub-manifolds (see Section 3.1).

2) We show that a state of the art visualization technique t-SNE [21] is a density preserv-
ing algorithm. This provides a theoretical justification for its success in practice. To get
insights about the structure of geoMobile data and visualize clusters in the feature space,
we further project latent features into a 2-dimensional space using Lt-SNE – a proposed
approach that uses t-SNE in conjunction with LE which is an improvement over standard
t-SNE (see Section 3.2). To show the effectiveness of Lt-SNE, we provide justification
by studying and comparing its local space contraction property with other prominent
dimension reduction techniques (see Section 4.2).
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3) Taking cue from information theory, we supplement our framework by designing an
algorithm to further cull a set of raw (i.e., observable) features that are most significant
in contributing to the cluster’s formation (see Section 3.3) so as to obtain meaningful
interpretations of extracted latent patterns.

4) We evaluate our framework based on the performance of its individual compo-
nents specifically clustering and visualization component (see Section 4) and show its
empirical superiority over other state-of-art baselines.

5) Finally to demonstrate the efficacy and generality of ourv proposed framework in real
world, we share our experience of analyzing geoMobile datasets under multiple settings
using several case studies (see Section 5). We employ two real-world geoMobile datasets: i)
amobile call detail record (CDR) dataset consisting of more than 500 million voice calls and
SMS messages between users collected at cell-tower levels spanning a couple of months
from a nation-wide cellular service provider in Africa, and ii) a subway transit dataset
collected over a week from Shenzhen, China with more than 2.7 million passengers.
Despite very different nature of these two datasets, the results look promising.

1.1 Related work

In literature, there exist multiple methods to extract latent patterns from geoMobile-based
datasets. One of the classical approach is principal component analysis (PCA). PCA-based
methods have been successfully applied to traffic matrix estimation, network tomography
and anomaly detection [10, 23, 26] using origin-destination (OD) matrices derived from
Internet traffic. As discussed earlier, user actions and behavior are often driven by dis-
parate factors leading to high diversity and skewed data distributions in geoMobile datasets
rendering classical linear methods such as PCA and latent semantic indexing (LSI) ineffec-
tive. Hristova et al. [6] further provides a detailed analysis of measuring social diversities
from mobility datasets and reveals the large diverse nature of such datasets. Another matrix
factorization approach is non-negative matrix factorization NMF (e.g., [27]) developed to
address the interpretability issue associated with the low-rank matrix approximations. A
fundamental premise of NMF is that the entities lies in lower linear subspaces of the origi-
nal higher-dimensional matrix which may not hold for geoMobile datasets. Fan and Zhang
[5, 28] adopt tensor factorization, the generalization of NMF, to study city basic life pattern
and analyze urban transportation.

Many other methods such as hidden Markov models (HMMs) and Gaussian mixtures
models (GMMs) have also been developed to analyze and predict urban dynamics [2, 7, 24].
Unfortunately, inference in HMMs and GMMs suffer severe performance degradation in the
high-dimensional setting due to overfitting and constraints (e.g. covariance matrices should
have simple structure, say diagonal). These models have large number of free parameters
that lead EM algorithm to converge to poor clustering results [9, 20].

Latent Dirichlet Allocation (LDA) models are also employed for extracting latent pat-
terns for tasks such as identifying regions of different functions in urban areas and urban
topic analysis [8, 25]. In general, LDA models have the capability to handle high dimen-
sional data, however choice of hyper-parameters is not apparent [22] and relies upon
approximate inference algorithms such as Gibbs sampling for efficiency.

Deep learning frameworks such as discussed in [1, 11] have also been developed to
extract latent features and can be seen as a complement to our work. But we go beyond to
include visualization and interpretation as an important step for aiding and justifying the
data analysis part and provide theoretical and empirical evaluations with respect to other
popular techniques.

World Wide Web (2019) 22:2771–2798 2773



Figure 1 Distribution of ALL, IN, OUT, and SELF calls, with a fixed order of towers (x-axis) ranked by the
ALL calls (i.e. total number of calls)

2 geoMobile datasets & its characteristics

In this paper, we primarily focus on two geoMobile datasets representing different appli-
cation domains; 1) a mobile call detail record (CDR) dataset collected from a nationwide
cellular network; and 2) a subway transit record dataset from a large city in China. We pro-
vide the description of the datasets and show the diversity in patterns inherent in them. Note,
the nature and user population of both datasets are completely different from each other.

2.1 Dataset 1: Mobile call detail records

Dataset 1 is a call detail record (CDR) dataset that comes from a national cellular service
provider of a developing African nation. Every record of this dataset contains information such
as <timestamp, source base station, destination base station>
associated with a voice call or a SMS message (both of which we will refer to as calls in
this paper). The dataset spans over a couple of months. This dataset consists of over 1,000
towers (or base stations) covering the entire country, with over 500 million call records.

We refer to a cellular base station as a tower. When Bob (caller), connected to tower
A, makes a call to Alice (callee) who is connected to tower B, tower A is the origin tower,
whereas tower B is the destination tower. In other words, this call will be considered as an
outgoing call for tower A, and an incoming call for tower B. However, if both Alice and Bob
are connected to the same tower C, i.e., both the origin and destination towers are the same,
then we refer to such a call as a “local1” call. Geographic coordinates of all the towers
are known a priori.

1Although calls involving two neighboring towers semantically qualify to be local, our reference of a call
being local is solely from the tower’s perspective where both the caller and callee of a call are associated
with the same tower.
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Terminologies: We use call direction to define four aggregated metrics associated with
every tower i, 1) SELF calls: the total number of local calls for tower i, 2) IN calls: the
total number of incoming calls received by tower i excluding SELF calls, 3) OUT calls: the
total number of outgoing calls made by tower i excluding SELF calls, and, 4) ALL calls:
the total number of calls seen at tower i (IN + OUT + SELF).

Dataset Characteristics: In Figure 1, we fix the rank of the towers based on the average
number of ALL calls seen per hour, and plot their distributions based on the total volume
(ALL calls) as well as the call directions, IN, OUT, and SELF calls. We see that the dis-
tributions are highly skewed, with call volumes varying significantly among towers. Some
cell towers experience significantlly more calls (either ALL, IN, OUT or SELF calls) than
others. Due to their larger population size, we would expect that as a whole, towers in urban
cities would have higher call volume than the towers located in rural areas. While the capi-
tal city of this nation captures more than 25% of the entire call volume, we observe that the
towers with the highest ALL calls are not just from the capital city but also from some of the
tier-2 cities of the nation. Moreover, we also observe certain towers in the city do not have
high ALL call volumes at all. For each individual cell tower (especially those with high call
volumes), we also see that there are high variances in terms of calls to or from other cell
towers; there are no discernible patterns across cell towers, suggesting there is high diversity
among cell towers.

We now investigate the proportions of SELF, IN and OUT calls over ALL calls at the
towers. In Figure 2, we fix the rank of towers the same as in Figure 1 and plot the distribu-
tions of call proportions – SELF over ALL (% of local calls), IN over ALL (% of incoming
calls), and OUT over ALL (% of outgoing calls). We observe that in general SELF over ALL
call ratios dominate compared to IN over ALL and OUT over ALL call ratios, implying peo-
ple tend to make more SELF calls than IN or OUT calls. However, Figures 1 and 2 show no
clear linear relationship between call volume distributions and call proportion distributions.
To further investigate, we fix the rank of the towers based on SELF over ALL call ratio

Figure 2 IN, OUT, and SELF call ratio distributions with a fixed order of towers (x-axis) ranked by the ALL
calls (same as in Figure 1)
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Figure 3 Plot similar to Figure 2, only difference being, the x-axis is now ranked by SELF over ALL ratio

(decreasing order), and plot all the call ratio distributions (see Figure 3). We observe there
is still high variance in the call proportions. For example, the SELF over ALL call propor-
tions vary between 30% to 55%. This implies certain towers tend to make more SELF calls
than others.

Diversity in Locality Effects: For every tower i in this dataset, we find its N geographically
closest (or neighboring) set of towersGi and compute tower i’s geo-distance defined as: gdi

=
∑

j∈Gi
dist (i, j)

/|Gi | , where dist (i, j) is the geographic distance in kilometers (KM)
between towers i and j. Similarly, we identify another N set of towers Ci with whom tower
i communicates the most (or makes the most numbers of calls to). We then compute tower
i’s call-distance defined as: cdi =

∑
j∈Ci

dist (i, j)
/|Ci | , where dist (i, j) has the same

semantics as before. To compute geographic distance between towers using their geographic
coordinates (which is known a priori), we use the Haversine formula [18]. In this paper,

Figure 4 Relation between (geo-distance) and (call-distance) of towers
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value of k is set to be 5. We compute both gd and cd for all the towers, and show the results
in Figure 4. We can clearly see that overall there is slight correlation between both gd and
cd values of towers. In other words, majority of the localities (or towers) tend to make more
calls to towers that are geographically closer to them, there by exhibiting certain “locality”
effect. However, as seen in the plot, there is high diversity in such locality effects. While
this maybe a side effect to choosing N=5, our objective was to show the diversity in these
relations. All in all, this gives us an intuition of the existence of certain communities of
people (i.e. collection of towers) that tend to talk with each other more than others. However,
as evident from the plot, geographic distances between such towers vary significantly. Later,
we describe an approach (see Section 3) to identify such communities and show the results
obtained in the form of a case study (see Section 5.1).

All of these observations suggest that there are strong dependency relations between
call volumes at tower levels, human activities of either “local” and “mobile” users around
these towers. However, these relations are highly varied and non-linear, as evidenced by
the eigenvalue plot of a call-volume based origin-destination (OD) matrix derived from the
CDR dataset shown in Figure 5. We see that eigenvalues decrease slowly, requiring more
than 100 eigenvalues to account for 90% of the variance in the OD matrix. This indicates
that PCA is ill-suited for extracting patterns inherent in the OD matrix.

2.2 Dataset 2: Subway transit data

Our second dataset represents commute patterns in a subway transit system in Shenzhen,
China. The dataset contains information such as – (timestamp, smart card ID,
direction (entry/exit), station ID), collected for an entire week in March 2014.
More than 2.7 million users traveled over this period. Shenzhen Metro has 5 subway lines
(see Figure 15) comprising a total of 118 stations.

Data Preprocessing & Categorization: We first construct trips by using the direction field
of the record – ENTRY indicates a user entering the station while EXIT indicates leaving.
We match an ENTRY record with an EXIT record for the same user if both the records
satisfy the following three conditions, 1) both records should have occurred on the same day,
2) ENTRY timestamp is earlier than EXIT timestamp, 3) if there are multiple EXIT records,
then we consider the one with the earliest timestamp. Matching user-specific ENTRY with
EXIT records helped construct trip information. Next, we categorize users as regular or
adhoc. A user is labeled as a regular user if they satisfy the following two conditions: 1)
seen on all the working days of the week (Mon. to Fri.), 2) take at least 2 trips per day. We
consider regular users to be of the working class population who use the subway system

Figure 5 Results of PCA from Dataset 1
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for their everyday commute between home and work. Finally, we consider users to be as
adhoc if they are seen for not more than a day or if they just had a single trip for the entire
week. We assume that the adhoc users are either visitors or users who take random trips. All
remaining users were excluded from our study. More than 10% of the users were categorized
as regular and ∼80% as adhoc users. For gaining insights into temporal patterns, we create
three intervals of 2 hours representing different periods of the day: 1) Morning: 7-9am, 2)
Mid-day: 11am-12pm, 3) Evening: 3-5pm. We label records that fell in these intervals and
excluded the rest from our analysis.

Dataset Characteristics: There is high diversity in the traveling patterns across stations;
the distributions of number of passengers boarding and alighting from subway trains at
each station are also skewed. We use the subway transit dataset to illustrate the temporal
variations and latent patterns therein. Figure 6 is a bubble map showing volume of regular
users entering and leaving the subway stations at different time intervals of the day. For
example, during the morning rush hours, we see a large number of commuters entering at
certain stations and exit in and around downtown area. This suggests, such stations with
higher volume of entries correspond to residential areas, i.e. people board the train to go for
work. An opposite pattern is seen during the evening rush hours. Volume of traffic during
mid-day hours is drastically low compared to the rush hours. However, there are certain
subway stations that have relatively higher volume of users entering and leaving. Thus, we
observe diversity in the trip patterns seen over time between subway stations.

In summary, we observe both datasets contain highly diverse and skewed data distribu-
tions, rendering classical linear dimension reduction or clustering techniques ineffective.
As characteristics differ depending upon what dataset is being analyzed, it is nontrivial to
come up with a formal definition for diversity. Nonetheless, we assume there are latent fac-
tors driving human mobility and user behavior across various geo-locations and over time,
as suggested by certain “locality” and “time-of-day” effects. For instance, peak usage hours
of public transit systems depend on the general working hours associated to that region. In
a similar vein, humans are more likely to interact with others (e.g. by making a voice call)
who reside within their local community. Extracting meaningful (latent) patterns from such
geoMobile datasets requires us to go beyond classical linear methods to effectively account
for the inherent high variability and diversity (thus strong non-linearity). In the next section
we present such an approach.

3 EPIC framework

geoMobile datasets (e.g. human mobility data) are rich in both spatial and temporal
aspects. The underlying structures of such datasets are complex. Since the data is high-
dimensional, extracting features manually is not feasible. Instead, EPIC framework relies
on ML-algorithms to judiciously extract relevant features (or latent features) which may be

Figure 6 Effect of time-of-day over travel patterns. Bubble size is proportional to the volume of users
entering (or exiting) a station
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a linear or non-linear combination of a subset of features from the full set of raw features.
We favor feature extraction over selection because the latter does not exploit the power of
feature combination that could identify non-linear patterns in the data. EPIC derives set(s)
of latent features from observable features such as traffic volume density, peak traffic hours
etc. However, it is quite likely that these sets of latent features give rise to low-dimensional
sub-manifolds forming various kinds of clusters in the data. This results in having each clus-
ter formed by few latent factors which are a (nonlinear) function of the observable features.
Based on this intuition, we are interested in an approach that find clusters while accounting
for possible latent features in the data. For this purpose, we consider Laplacian Eigen-
maps (LE) [3] – a theoretically sound non-linear dimension reduction technique and provide
justification about its suitability in our case. As mentioned earlier, standard clustering tech-
niques such as K-means and linear dimension reduction techniques such as PCA or NMF
are not appropriate, due to the curse of high dimensions and strong non-linearity, respec-
tively in geoMobile data. Although, other non-linear dimension reduction techniques like
Deep Autoencoders, Hessian Locally Linear Embedding, Local Tangent Space Alignment
or Kernel PCA can also be employed but we show (theoretically as well empirically) that
LE in conjunction with t-SNE technique produces superior visualization maps over these
dimension reduction techniques based on interesting local space contraction properties in
latent feature space. Figure 7 depicts a schematic overview of our framework.

3.1 Extracting latent features from geoMobile datasets

We propose a simple but effective enhancement of LE. This enhancement comes from care-
fully accounting for skewed data density distribution while computing the similarity matrix.
LE extracts the latent features associated with each data point x ∈ R

D , where D is a feature
dimension, by performing eigenvalue decomposition of graph Laplacian L. We execute the
following carefully devised algorithm, so that standard clustering algorithms can be applied
on the newly obtained features which are then free from curse of dimensionality and data
density skewness.

Handling the Skewness: The most crucial component for computing L is similarity matrix
W. Since the set of features are large, we take the exponential of euclidean distance in fea-
ture space to counteract the curse of dimensionality. More precisely, we adopt the following
form of Gaussian kernel:

Wij = exp (−‖xi − xj‖2/2σ 2
i ) (1)

Figure 7 Overview of EPIC Framework
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which is suitable under this condition, though more theoretical motivation can be found in
[3]. Wij can also be seen as a conditional probability pj |i of picking data point xj as the
neighbor of xi .

In particular, σ is kept same of each data point but we stress on computing specific σi

at each data point xi to handle the skewness in the data density. We choose σi based on our
belief that the entropy of density distribution p(xi , σi) given as,

p(xi , σi) = −
∑

j

pj |i logpj |i (2)

remains constant at each data point and equal to log k. Here k is a user defined parameter
which physically represents a smooth measure of effective number of neighbors. We finally
perform a binary search over the value of σi which gives log k entropy for each data point.
Turns out that the similarity matrix is robust for different values of k and its typical value
lies in the range of 5 − 50.

Justification: We adopt LE for two main reasons. First, it can handle non-linearity in the
data as shown in [3] and ensures that the new reduced latent features obtained are similar
if their respective feature distributions are also similar. This can be confirmed by looking at
the LE objective function given as:

min
y

1

2

∑

i

∑

j

Wij‖yi − yj‖2 (3)

subjected to scaling constraints, where yi ∈ R
d(d << D) is a new latent feature vector for

xi data point. Secondly, it helps in producing superior visualization maps (see Section 3.2,
Section 4.2). LE enforces two similar data points xi and xj to have similar latent features
according to the weightWij which itself depends upon the original feature distribution. For
computing L, we adopt a symmetric normalized graph Laplacian proposed in [14]:

L = D−1/2WD−1/2 (4)

as it is less susceptible to bad clustering when different clusters are connected with varied
degree. where D is the diagonal degree matrix whose elements are the sum of rows of the
similarity matrix. From eigen decomposition of L, d largest eigenvectors are stacked as
columns in a Y matrix which is renormalized to yield latent features of points projected on
a hypersphere in Rd . Graph Laplacian implicitly provides a way to estimate d by examining
drop in eigenvalues of L but more approaches can be also found in [12]. For our datasets LE
approach was sufficient enough to yield faithful results. We observed there is an eigenvalue
drop (see Figure 8) with 15 components pointing to the existence of 15 intrinsic dimensions
in OD matrix which earlier PCA could not estimate correctly (see Figure 5). We choose
DBSCAN clustering algorithm to be applied on obtained latent features due to its robustness
against outliers. Next, we present our powerful Lt-SNE visualization algorithm.

3.2 Lt-SNE visualization algorithm

Density Preserving Maps: According to Gauss Theorema Egregium [16], manifolds with
intrinsic curvature cannot be mapped to the R

2 plane (as it has zero Gaussian curvature)
without distorting distances. However, no such obstruction exists for density preserving
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Figure 8 Laplacian Eigenvalue Decomposition

maps (see Moser Theorem [15]). Hence, we seek a method that preserves (probability)
density maps rather than distances below intrinsic dimensions for visualization purpose.

Success of t-SNE: t-SNE [21] is a state-of-art technique for visualizing clusters inherent
in the data by mapping latent features to R

2 (or R3) space. But its theoretical justification
remains somewhat a mystery. Here, we prove that the objective function of t-SNE upper
bounds the loss function in kernel density estimation (KDE) (see Proposition 1). This makes
t-SNE a density preserving mapping algorithm which provides a theoretical justification for
its success as compared to other dimension reduction techniques which tend to preserve
(geodesic) distances.

Proposition 1 t-SNE is a density preserving algorithm which upper bounds the estimated
kernel density loss function.

Proof KDE is a non-parametric way to estimate probability density function; it leverages
the chosen kernel in the input space for smooth estimation. Given sub-manifold density
estimates p(yi ) for data points yi ∈ R

d ∀i, we want to find a representation zi ∈ R
p ∀i

a Usingt-SNE b Lt-SNE (also shows contraction ratio contour lines)

Figure 9 Lower dimension mapping results on WINE dataset
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such that the new density estimates q(zi ) agree with the original density estimates. Here
KH , and KL denote the kernel in higher and lower dimension respectively, where h is the
kernel bandwidth, y ∈ R

d , z ∈ R
p , p < d , and N is the number of data points. KDE in

higher and lower dimensions (assuming bandwidth remains the same) are given by:

p(y) = 1

N

N∑

j=1

1

hd
KH

( ||(y − yj ||d
h

)

q(z) = 1

N

N∑

j=1

1

hp
KL

( ||z − zj ||p
h

)

, s.t.
∫

K(u)du = 1 (5)

The KL divergence loss for KDE can be computed as follows:

L = min
z

KL(p||q) = min
z

N∑

i=1

p(yi ) log
p(yi )

q(zi )

= min
z

1

Nhd

N∑

i=1

�jKH (yi , yj ) log

∑
j KH (yi , yj )

∑
j KL(zi , zj )

+ c1

≤ 1

Nhd
min
z

N∑

i=1

N∑

j=1

KH (yi , yj ) log
KH (yi , yj )

KL(zi , zj )

︸ ︷︷ ︸
J

+c1

≤ c2 × J + c1 (6)

J is the objective function of t-SNE (with specific kernels) which upper bounds (with a
multiplicative scale and an additive constant) the estimated kernel density estimation loss
function. See Appendix for details.

Superiority of Lt-SNE: Instead of directly applying t-SNE on raw features, we feed latent
features obtained via LE to t-SNE. This results in more superior maps (see Proposition 2,
Figure 9 and Section 4.2 for justification) and called as “Lt-SNE”. In Lt-SNE, we employ
the same kernel functions as in t-SNE, i.e. normalized gaussian kernel in higher dimen-
sions and heavy tailed kernel (a student t-distribution with one degree of freedom) in lower
dimensions as follows.

KH (yi , yj ) = pij =
exp

(

−‖yi−yj ‖2
2σ 2

i

)

∑
k �=l exp

(

−‖yk−yl‖2
2σ 2

k

) and

KL(zi , zj ) = qij = (1 + ‖zi − zj‖2)−1
∑

k �=l (1 + ‖zk − zl‖2)−1
(7)

such that KH (yi , yj ) and KL(zi , zj ) sum to 1. Hence, Lt-SNE has the same final objective
function as t-SNE which matches the expressions given in (6):

J = min
z

N∑

i,j=1

pij log
pij

qij

(8)

The above optimization problem is non-convex, but the gradient descent method yields
reasonable results. Although it is possible to directly apply t-SNE on the original data
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matrix, we demonstrate that Lt-SNE produces much better visualization maps in R
2 than

t-SNE, theoretically in case of finite mixture of nonparametric distributions (Proposition
2) and empirically in comparison with other major dimension reduction techniques (see
Section 4.2).

Proposition 2 Assume that the data points are i.i.d. samples generated from a finite mixture
of nonparametric distributions. Let (i, j) be any pair of data points belonging to different
distribution. Then the mapping of Lt-SNE yields a larger separation distance as compare to
t-SNE in the lower dimensions (with high probability) i.e.,

‖y′
i − y′

j‖2 ≥ a1‖yi − yj‖2 + a2,

where y′
i , y

′
j and yi , yj are lower dimension feature vectors of Lt-SNE and t-SNE respec-

tively. a1, a2 are positive constants.

Proof The proof relies on the “Finite-Sample Angular Structure” theorem [19] shown for
kernelized spectral clustering. The above proposition shows that if a1 ≥ 1, which is gener-
ally the case, different clusters in Lt-SNE are mapped farther to each other as compared to
t-SNE with high probability. See Appendix for details.

3.3 Culling Cluster-Specific Significant Feature-Set

To help characterize and interpret the relations among different clusters, we define the term
significant feature-set of a cluster as a set of observable features that are most critical to the
cluster’s formation (as opposed to latent features based on which interpretation is difficult).
We take cue from information theory and device an algorithm to fit in the framework of our
analysis to cull cluster-specific significant feature-sets for meaningful interpretations.

After applying our extraction and projection steps, suppose we have obtained C clusters
from some data matrix, say M , of size N × D. Note that every cell in the data matrix M

represents the relation between the data point and the observed feature. We slice the data
matrix M horizontally into cluster-specific sub-matrices {mc}c∈C , where rows represent
only those data points that are part of cluster c, and columns represent the feature set D. We
therefore obtain |C| sub-matrices, where every sub-matrix {mc} is of size nc×D, where nc is
the number of data points in cluster c ∈ C. Our goal is to inspect each of the sub-matrix mc

individually, and cull a subset of features Sc (or significant set) from the entire observable
feature set D, such that the features selected are most critical to cluster c’s existence.

We now explain our approach to cull this cluster-specific significant feature set. For
easier readability of equations, we refer sub-matrix mc as m and its associated notations
nc, Sc as n, S, respectively. N remains unchanged. From some cluster-specific sub-matrix
m, we first build a weight vectorW defined by:

W =
⎧
⎨

⎩
xi =

⎛

⎝
∑

j

mij

/
∑

k

∑

l

mkl

⎞

⎠∀j, k, l

⎫
⎬

⎭
i∈D

(9)

Every ith element in W is an aggregated value that quantifies interactions between the ith

observed feature and all the data points belonging to cluster c. Using W vector, we check
if any of its values stand out and are significantly different from others. An easy way to
verify this would be to sort vector W, say in decreasing order, and observe the fall in the
distribution.
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a Cluster 8 b Cluster 18

Figure 10 Step-by-step illustration of culling significant feature-set from Clusters 8 & 18 (also discussed
in case study 1 Section 5.1 - Dataset 1). |Cluster set x|: number of data points in cluster x; |Sx |: number of
features in significant set of cluster x;

Black curves in Figure 10a and b show the values of weight vectors W for clusters 8
and 18, respectively. These clusters were obtained as part of a case study discussed later in
Section 5.1. We observe that cluster 8’s slope drops relatively slower than that of cluster 18.
In other words, data points of cluster 8 collectively state that more number of features are
vital to its formation than cluster 18. In order to account and quantify these differences, we
introduce a notion of relative uncertainty R̃U(W) defined as H̃(W)/ log |W|, where H̃(W) is
the “entropy-like” measure used to quantify the unpredictability of the values in vector W.
|W| is the support (or size) of the vector W or the number of observed features. The degree
of uniformity (or relative uncertainty) ofW is given by:

R̃U(W) = H̃(W)

log |W| =
− ∑

i

wi log wi

log |W| (10)

If R̃U(W) is close to 1, it implies the induced distribution is uniform. In other words, nothing
is interesting that stand out, hence all the features in W vector have close to similar values.
On the other hand if R̃U(W) is less than some threshold, say β, there are high chances of
certain distinguishable features. We are interested in the latter case as they are significantly
different from others. In order to cull such significant features, we use a second parameter
α that acts as a “cut-off” threshold to decide if an element in W is significant. All elements
that satisfy the α threshold are removed from W and put in S (i.e. significant feature set).
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We then perform the second iteration with the newW vector and make parameter α slightly
relaxed. We keep repeating the process till the relative uncertainty exceeds β. Once the loop
terminates, S contains the significant feature-set of cluster c. For the complete pseudo-code
of our approach, see Algorithm 1. β parameter decides the threshold of relative uncertainty.
Setting β to lower value would cause the significant sets to be larger compared to setting
it to higher values. In general, value of β parameter for our case studies were set between
0.87 and 0.95. Initial value of α depends on the initial distribution ofW. Based on our expe-
rience, a good starting point would be to set it to min[W]. Line 7 in Algorithm 1 indicates
the decreasing factor (or relaxing factor) of α that one may have to tune for subsequent
iterations. Value of α and the decreasing factor assert a trade-off between faster run time
versus better results. Figure 10a and b illustrate the results of applying our algorithm over
sub-matrices of cluster 8 and 18, respectively. The portion to the left of every vertical blue
line indicates the number of features that were part of the significant set (for intermediate
iterations). The red line however indicates the iteration when our algorithm terminated. It is
also evident from our results that the right portion of red line (which were not part of the
significant set) are close to being uniform with not just very low weights but are also nearly
indistinguishable. Hence, such features are deemed unimportant.

4 EPIC framework evaluation

Before we apply EPIC framework to real-world geoMobile datasets, we first briefly evalu-
ate and compare the performance of our framework with other existing methods. Since our
framework consists of multiple components such as clustering and visualization, we com-
pare each of these components individually with state-of-the-art baselines. The evaluation
is conducted from two perspectives: performance of i) LE+DBSCAN clustering perfor-
mance in comparison with other major clustering algorithms, and 2) Lt-SNE visualization
algorithm based on local space contraction property.

4.1 Clustering performance

Table 1 shows the performance of clustering on case study 1’s data matrix with respect to
different algorithms under three clustering evaluation criteria: CalinskiHarabasz, Silhouette,
DaviesBouldin – ↑ indicates higher values show better performance, similarly ↓ indicates

Table 1 Clustering performance evaluation on dataset 1 (see Section 5.1)

Algo./Eval. CalinskiHarabasz ↑ Silhouette ↑ DaviesBouldin ↓

Kmeans++ 31.4021 0.1494 1.2768

Agglomerative 39.0319 0.3692 1.0714

Bi-Clustering 29.6709 0.4036 3.9815

LE+DBSCAN 274.132 0.7082 0.5998

DE+DBSCAN 305.5648 0.6899 0.6111

LLE+DBSCAN 25.4858 0.4413 1.0377

ISOMAP+DBSCAN 144.9113 0.5642 0.7481

LTSA+DBSCAN 116.2911 0.6081 0.9301
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Figure 11 Contraction curve of Lt-SNE have highest contraction ratio on two benchmark datasets

otherwise (bold text indicates the best performing algorithm for a given evaluation criteria).
LE+DBSCAN’s clustering performance dominates on two evaluation criteria and is reason-
ably good on the other one, showing the efficacy of our clustering approach. Similar results
are also hold for dataset 2.

One may wonder about the lower performance of LLE+DBSCAN on CalinskiHarabasz
in comparison with other DBSCAN-related methods. This results possibly due to the com-
bination of the following two factors. First, it has the lowest contraction ratio compared to
other reduction methods as can be observed in Figure 11. Secondly, LLE tends to perform
very poorly on non-uniform sample data and might have spread the data points far from
each other in a cluster leading to a very low CalinskiHarabasz measure.

4.2 Best local space contraction property

Local Space Contraction Property: We provide justification for adopting LE approach in
conjunction with t-SNE by analyzing the local space contraction effects in the (low dimen-
sional) latent feature space. Building upon the work of [17], we define the contraction ratio
as the ratio of distance between two points in the input space and the distance mapped in
the low dimensional feature space. Contraction ratio helps illustrate the deformation of the
latent feature space in local regions. To measure this isometric property, we compute the
average distance ratio of a point x randomly generated on a sphere of radius r centered at
a fixed point x0 in the input space over its corresponding distance in the feature space as a
function of r . This function yields a curve called the contraction curve.

Best Results: We compute the contraction curves on two benchmark datasets: WINE-
dataset2 andMNIST-dataset3 and compare them (see Figure 11) with other major dimension
reduction techniques: Deep-Autoencoder (DE), Local Linear Embedding (LLE), Local Tan-
gent Space Alignment (LTSA), ISOMAP, Hessian LLE (H-LLE). These results also holds
for other contraction curves such as Maximum Variance Unfolding (MVU), Kernel PCA
and Probabilistic PCA which we do not show here.

The process for generating contraction curves is as follows: x0 is picked at centroid of
a random cluster (using class label information) in the input space in order to study the

2https://archive.ics.uci.edu/ml/datasets/Wine
3http://yann.lecun.com/exdb/mnist/
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propagation effects of contraction ratio from the center of a cluster. A random point x is
generated at distance r on a sphere centered at x0 and is included in the dataset. On this
appended dataset, we apply dimension reduction techniques. In this process, we first reduce
the input dimensions of the data (13 for WINE and 784 for MNIST datasets) to its intrinsic
dimensions (3 and 12, respectively). Next, we apply t-SNE to embed the intrinsic data into
a two dimensional space. An alternative and less expensive way to compute contraction
curves is to implement “out of sample extension” methods [4].

Figure 11 shows the contraction curves for major dimension reduction techniques. For
both the datasets, Lt-SNE produces the highest contraction ratio, yielding low-dimensional
maps with tighter clusters. Further, the strength of contraction gradually decreases with
radius – until the effect vanishes marking the end of cluster radius size. Intuitively, Lt-
SNE encourages contraction of neighborhood data points in the map since LE places data
points on mutually orthogonal axes which, upon further applying t-SNE, helps produce tight
clusters. Thus, Lt-SNE is capable of creating more distinguishable gaps between the clusters
and in visualization. The same effect can be observed in the case of Deep-Autoencoder (with
a depth of four layers), but with less contraction strength than Lt-SNE. On the other hand,
t-SNE in one-shot reduction (i.e. directly reducing from the input dimension to R

2) can
produce a slightly lower contraction ratio than DE. Interestingly, applying LE in conjunction
with DE (LE+DE) significantly boosts up the contraction ratio of DE but still remains lower
than the Lt-SNE. This further indicates that the amalgam of LE and t-SNE are well suited
to achieve high contraction ratio. Lastly, LLE produces the smallest ratio, suggesting that
the resulting mapping contains more loose clusters as compared to others.

Hidden Physics Behind the Dimension Reduction: A close analogy can be made between
the contraction ratio and the strength of an electric field around a charged point. Just like
the electric field strength propagates inversely proportional to square of radius, in the vein
the strength of contraction ratio decays non-linearly as an inverse function of the radius.
However, unlike an electric field where the strength is equal in all directions, in the case of
contraction ratio, the strength varies along the tangent space directions of the manifold on
which the data is embedded non-linearly. For instance, Figure 9b depicts the contour lines
corresponding to the same level of contraction ratios in the low dimensional feature space.
As expected, the shape of contour lines are not necessarily spherical but elongated along the
dense regions of data points and falls off along the orthogonal direction which corresponds
to the drop in the density of data points. These contraction curves reveal the internal feature
transformation made by dimension reduction techniques along with their field strength (i.e.,
contraction ratio) & range (i.e., radius where contraction ratio becomes a constant). Such
a comparison intuitively aids in the choice of the best dimension reduction technique in
accordance with the application domain.

5 Case studies

We primarily focus on analyzing two geoMobile datasets: i) a mobile call detail record
(CDR) dataset collected from a nation-wide cellular network; and ii) a subway transit record
dataset from a large city in China. The goal of this section is two-fold: 1) show the efficacy
and generality of EPIC framework to wheel out interesting latent patterns from the datasets
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under multiple settings, 2) show tactical results and provide their interpretations. We share
our experience in the form of three case studies.

5.1 Case study 1: Revealing communication patterns

In this case study, we use dataset 1 to extract communication patterns (driven by user actions
such as making a voice call) between different origin and destination towers. Earlier in
Section 2, we observed a locality effect prevailing in communication patterns between tow-
ers in this dataset, suggesting people tend to call others more often who are geographically
closer to them. In this case study, we try to find such communication patterns, and to do
so, start by representing this geoMobile dataset in the so-called form of origin-destination
(or data) matrix. Mobile voice (and SMS) calls between users data in the cellular network
as captured at cell tower levels are represented as OD matrices where origins are the cell
towers calls originating from, destinations are cell towers these calls terminating at, and
the entries in the OD matrix represent the number of calls between an origin-destination
pair during some fixed time interval (in our case, average hourly calls). We formulate our
problem using an input OD matrix of size N × D, where the set of origins (or rows) and
destinations (or columns) correspond to the set of unique towers, i.e. N = D. Each cell
value xij in the square-OD matrix correspond to the average number of hourly calls made
from the origin tower i to the destination tower j . Cell value xij will represent the number
of local calls for tower i when i = j .

In this data matrix, origins act as data points where as the destination towers act as the
feature vector. Therefore, our clustering approach will group origin towers based on their
call patters driven by human actions. In other words, two origin towers will be in the same
cluster if both their outgoing call distributions to destinations towers are similar. It is impor-
tant to note that the input data matrix has no information about the geographic coordinates
or distances between towers. Results obtained by applying EPIC on this data matrix are
shown in Figure 12a. There are a total of 21 well-separated clusters, representing 21 distinct
communication patterns in the dataset. Using GPS coordinates, in Figure 12b we overlay
the cellular-towers from these 21 clusters over a geographic map of the nation. Except for
cluster , all other clusters represent regional communication patterns of varying local-
ities and sizes. Since these communication patterns are driven by human behavior, these
distinct patterns capture social interactions in this African nation. We look more closely at
the regional patterns in the capital city of the nation (see Figure 12c) as it comprises of

a Data points mapped over a
low-dimensional space R2.

b Cluster results overlaid over a
geographic map of the nation.

c Cluster results overlaid over
a geographic map of the capital
city & its close vicinities.

Figure 12 Results showing 21 clusters (or distinct communication patterns) obtained from Dataset 1 (best
viewed in color)
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over 300 out of the 900 towers of the nation. It is interesting to observe that the city itself
is divided into five distinct communication “zones” driven by user interaction (in this case,
call or message) and behavior: cluster which is the largest in the city, cluster , cluster

, cluster and cluster . Finally, the towers in cluster are sparsely distributed
across the nation, most of which have relatively low overall call volumes and many are
located along major transportation networks. This suggests that cluster represents call
activities of users in transit across the nation. Although this approach is clustering origin
towers, the same observations would hold true from the destination towers’ perspective –
this is because we observed that our OD data matrix is approximately symmetric.

In the context of this case study, each significant set of a cluster captures a particular kind
of human behavior. In other words, each cluster’s significant set are a set of features (or
destination towers) that were most critical to that cluster’s formation. Using the algorithm
discussed earlier in Section 3.3, we cull the significant sets for each of the 21 clusters,
and visualize them in Figure 13 using a Venn diagram. Each circle (labeled using cluster
number) in the Venn diagram represents a significant set of the corresponding cluster; size of
the circle indicates the size of its significant set. Two circles intersect if their significant sets
share common features (or destination towers). Metrics such as “jaccard similarity” can be
used to quantify the similarity of human behavior among two intersecting significant sets.

From Figure 13 and by further investigating the geographical features of the capital city,
we find that cluster 2 (the mainland part of the capital city) not only has the largest signifi-
cant set, but also intersects with a diverse set of other clusters. This suggests that the capital
city is likely a hodgepodge of residents and a mobile population that originally come from
other parts of the nation who still maintain strong social, commercial or other interactions
with the rest of the nation. A similar (but to a less degree) pattern holds for cluster 1 which
represents towers in a second-tier city in the nation. We see strongest similarities in commu-
nication patterns between clusters 18 and 19, as well as between clusters 2 and 8, reflecting
their highly localized and close-knit communication patterns. Despite its towers distributed
across the nation, cluster 21 intersects mostly with clusters 2, 8 and 17 representing towers

Labels indicate cluster numbers
Circle size proportional to set size

Figure 13 Venn diagram of cluster-specific significant sets
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in either the capital city or its suburbs, implying its communication pattern is due to users
from the capital city and its vicinities travel across the nation.

5.2 Case study 2: Temporal communication patterns

In this case study, we use the same dataset as in the previous case study to investigate if
different hours of the day across the week have any similarity in their call patterns. For
instance, do calling behaviors differ between morning and evening hours? How about week-
ends? Obtaining such insights would assist cellular operators to profile different hours (and
days) based on user demands and usage to deploy, manage energy requirement and provide
other personalized and value-added services.

To extract such latent patterns, we treat every data point to represent a day of the week
and an hour. Therefore, we have 168 data points xi for i = 1, 2, .., 168 (7 days of a
week × 24 hours in a day). Every data point is represented by a N-feature vector fj for
j = 1, 2, .., N , where N is the number of towers. Each feature in the vector represents a
tower and the value represents the non-local calls recorded by that tower, aggregated for
the entire data set. In other words, given a data point xd=MON,h=08 (i.e. day=Monday and
hour=08:00 to 09:00 hours), each feature of the data point xd=MON,h=08 would represent
the average number of non-local calls recorded by that tower every Monday from 08:00 to
09:00 hours over a period of around 3 months. We now represent our data points and fea-
ture vectors as a data matrix X of size 168 × N such that rows represent the data points
and columns represent the N towers. Figure 14 shows the results by applying EPIC frame-
work over X. In the R

2 map (see Figure 14a), we clearly see two well-separated regions,
one that captures data points representing usual sleeping hours (22:00 to 06:00) while the
other represents non-sleeping hours. Looking more closely at the non-sleeping region, we
observe some interesting patterns. The right half of this region seems to capture data points
representing working hours, whereas the left half captures hours when people are at home.
A complete list of the intuitively inferred “latent” patterns are listed in Figure 14b. We also
see some outliers (anomalies) in the results indicating certain hours in the week have unique
patterns. Although we considered hourly intervals for illustrating temporal communication
similarities, one could also opt for intervals with smaller/higher temporal granularity. Intu-
itively, the extracted patterns suggest that the underlying reasoning behind the formation of
clusters are related to human behavior, community interactions, social features, geographic
features, etc. All in all, we show that EPIC framework is able to find some very interesting
patterns in this case study.

Figure 14 Temporal similarities in communication patterns (Dataset 1)
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5.3 Case study 3: Temporal variations in humanmobility

In the third case study, we use Shenzhen Subway System’s dataset (dataset 2) to gain
insights about temporal variations in human mobility. As discussed earlier, we preprocessed
the data to extract trip information. We also categorized users (as regular/adhoc) and their
trips (as morning/evening/midday).

In order to investigate “if” and “how” EPIC is able to extract temporal variations in
human mobility, we apply our framework to multiple data matrices, where each data matrix
represents a particular time of the day (morning/evening/midday). We aggregated our pro-
cessed dataset to obtain the number of trips between every pair of origin-destination subway
station. We then build an OD matrix of size N × D, such that every cell in the matrix
represents the number of trips from the origin subway station to some destination subway
station. As there are 118 unique subway stations in Shenzhen Metro, we have a matrix of
size 118 × 118, i.e. N = D = 118.

Labeling the records and users enable us to generate a number of OD matrices. For
example, an OD matrix could represent trips made by regular users during morning hours.
Note, rather than just looking at similarities between individual origin-destination pairs, our
approach groups together origin data points based on the similarity in the distribution of
the number of trips with all other destinations. Shenzhen Metro has 5 subway lines (see
Figure 15). If we assume that each subway line is independent of each other without the
possibility for commuters to transfer from one line to another; applying our framework
to such a dataset should ideally extract at least 5 clusters, where each cluster represents
a particular subway line. This is because all possible pairs of origin-destination stations
(representing a trip) are limited by the set of stations that are part of a particular subway
line, owing to our assumption that people cannot transfer to other subway lines. Therefore,
the probability of a commuter entering subway line A and exiting at subway line B is 0.
Likewise, if the user enters and exits on subway stations that are part of the same subway
line A, it is very likely that the probability of such trips will be greater than 0. However this
assumption does not hold true for Shenzhen metro, as there are multiple subway stations

Figure 15 Shenzhen Metro Subway Station and Line Map
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Table 2 Comparison of results

OD Ma OD Mb OD Mc OD Md

User label Regular Regular Regular Adhoc

Time interval Morning Evening Mid-day Mid-day

# of clusters 6 5 4 8

# of outliers 2 5 5 3

Pattern 1 � � �
Pattern 2 � � � �
Pattern 3 � � �
Pattern 4 � � � �
Pattern 5 � �
Pattern 6 � �
Pattern 7 � � �
Pattern 8 �
Pattern 9 �

that act as transfer points between different subway lines. But it is fair to assume that in the
interest of reducing travel times, transit operators would design the subway lines so as to
minimize transfers.

We construct four different ODmatrices –Ma ,Mb,Mc, andMd . For instance, ODmatrix
Ma is built using trip information of regular users observed during the morning rush hours
(construction details of other OD matrices is depicted in Table 2).

Figure 16 shows the results rendered by our framework in low-dimensional space, which
are then further overlaid over Shenzhen’s geographic map (see Figure 17). The first clear
pattern we see is that certain clusters correspond to a particular subway line. For example,
all the red-colored clusters represent Subway Line 4 suggesting users traveling on this line
have more localized traveling patterns who reach their destination with minimal transfers.
Since this line also did not break into multiple clusters, it suggests that the trip volume
distribution between any two subway stations are close to similar. A similar observation
is observed with the dark blue clusters, which represents Subway Line 5. Therefore, by
quick visual inspection of Figures 16 and 17, we are able to find probable patterns, which
we list in Table 2. We consider a “pattern” to be a set of clusters, one from every OD-
matrix if present. For example, we refer to one of our earlier observation regarding red

a Ma: Regular user;
Morning;

b Mb: Regular user;
Evening;

c Mc: Regular user;
Mid-day;

d Md: Adhoc user;
Mid-day;

Figure 16 Output for four OD matrices (obtained from Dataset 2) categorized using temporal
(morning/evening/mid-day) and user (regular/adhoc) labels. Numbers besides data points represent cluster
dentifiers. Gray data points indicate outliers
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a Ma: Regular user;
Morning;

b Mb: Regular user;
Evening;

c Mc: Regular users;
Mid-day;

d Md: Adhoc users;
Mid-day;

Figure 17 Results from Figure 16 mapped over Shenzhen’s geographic map (obtained from Dataset 2)

clusters as “Pattern 4”. Table 2 shows Pattern 4 is observed in all the OD matrices Ma ,
Mb, Mc, and Md . From our earlier discussion regarding trip volumes, we observed large
number of morning rush hour trips for regular users originate from suburban areas and end
near Shenzhen’s central (or downtown) region. Pattern 1 represents such trips for regular
commuters (i.e. home → workplace trip). We also observe that the compactness of pattern
1 (green clusters) in Ma and Mb clearly differ. Note, this pattern represents majority of the
trips during morning and evening rush hours.

One plausible reason for this diversity in compactness could be that during the morning
hours, all the trips end near the downtown area. On the other hand, evening trips appear to
be dispersed. This could be due to the fact that while people travel back home, majority
of the trips start from the downtown area but end at different regions around Shenzhen.
Hence, we see an increased degree of spatial dispersity in the low-dimensional map for Mb

in Figure 16b. Patterns seen during mid-day hours and evening hours for regular users seem
to be almost the same. Even though the trip volumes during mid-day hours are significantly
lesser than the rush hours, our approach is able to obtain the clusters. The interesting part
in OD matrices Mb and Mc is that the green cluster contains many subway stations from
multiple Subway Lines L1, L2 and L5. This indicates all those subway stations have a higher
degree of similarity in the travel patterns, thus suggesting dependency among each other. A
possible side effect of such dependencies is increase in line transfers between subway lines.
This may be the reason why one of the future plans of Shenzhen metro is to establish a new
track connecting Lines L1 with L5 (see Figure 15) [13]. For OD Md representing adhoc
users, we obtained relatively more number of clusters compared to regular users, where
certain subway lines are partitioned. One probable reason could be that adhoc users (i.e.
visitors, tourists, etc.) tend to take shorter trips within the central region of the city.

EPIC framework yields very interesting results for all the three case studies. Visualizing
clusters in a low-dimensional (R2) map and further relating raw features to the cluster’s
formation adds different perspectives to interpret the clusters.

6 Conclusion

In this paper, we used the term geoMobile datasets to emphasize data that exhibit geo-spatial
and human-behavioral features. To effectively handle high dimensional and skewed feature
distributions inherent in geoMobile data, we developed EPIC framework to extract latent
structures by combining and improving upon existing non-linear kernel clustering methods.
We also uncover a theoretical reason for t-SNE’s success and enhance it further to develop
a visualization technique called Lt-SNE. In conjunction, we provide justifications on the
effectiveness of our approach by studying & comparing contraction curves with other major
dimension reductions techniques. Further, we developed a novel method to characterize the
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clusters based on raw features to aid in natural interpretation of the latent patterns. The
tactical results obtained from our geoMobile datasets are very interesting. In this regards,
our work yields an important tool in aiding data scientists to analyze diverse geoMobile
datasets and uncover useful actionable knowledge embedded in them.
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Appendix

Proof of Proposition 1

Proof KDE is a non-parametric way to estimate probability density function; it leverages
the chosen kernel in the input space for smooth estimation. Given sub-manifold density
estimates p(yi ) for data points yi ∈ R

d ∀i, we want to find a representation zi ∈ R
p ∀i,

p < d , such that the new density estimates q(zi ) agrees with the original density estimates.
Here KH , KL denote the kernel in higher, lower dimensions, h is the kernel bandwidth and
N is the number of data points. KDE’s in higher and lower dimensions (assuming bandwidth
h remains the same) are given by:

p(y) = 1

N

N∑

j=1

1

hd
KH

( ||(y − yj ||d
h

)

, q(z) = 1

N

N∑

j=1

1

hp
KL

( ||z − zj ||p
h

)

such that
∫

K(u)du = 1. The objective function of KL divergence loss for KDE can be
computed as follows:

L = min
z

KL(p||q) = min
z

N∑

i=1

p(yi ) log
p(yi )

q(zi )

= min
z

1

Nhd

N∑

i=1

�jKH (yi , yj ) log

∑
j KH (yi , yj )

∑
j KL(zi , zj )

+ c1

Using log-sum inequality, we can show that,

≤ 1

Nhd
min
z

N∑

i=1

N∑

j=1

KH (yi , yj ) log
KH (yi , yj )

KL(zi , zj )

︸ ︷︷ ︸
J

+c1

≤ c2 × J + c1

J is the objective function of t-SNE (with specific kernels) which upper bounds (with
a multiplicative scale and an additive constant) the estimated kernel density estimation loss
function.
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Proof of Proposition 2

Schiebinger et al. [19] studied normalized Laplacian embedding for i.i.d. samples gener-
ated from a finite mixture of nonparametric distribution. When the distribution overlap is
small and samples are large, then with high probability they showed that the embedded
samples forms a orthogonal cone data structure (OCS). Figure 18 shows that (1 − α) frac-
tion of two clusters are accumulated in a cone form of θ angle around e1 and e2 orthogonal
axis.

Theorem 1 (Finite-sample angular structure) There are numbers b, b0, b1, b2, δ, t satisfy-
ing certain conditions such that the embedded data set {φ(Xi), Zi}ni=1 has (α, θ) − OCS

with

|cosθ | ≤ b0
√

ϕn(δ)

w3
mint − b0

√
ϕn(δ)

, α ≤ b1

wmin1.5
ϕn(δ) + ψ(2t) (11)

and holds with probability at least 1 − 8K2 exp( b2nδ4

δ2+Smax(P)+B(P)
).

Proof of Proposition 2: Our strategy is to exploit the OCS structure of the input data. Let
X ∈ RN×D be the normalized data with unit norm, corresponding to pij , qij as higher,
lower dimensional kernel densities and Z1, Z2 as normalization constant respectively. Let
X′ ∈ RN×d , d < D,be the normalized data obtained after LE dimension reduction and have
similar corresponding variables p′

ij , q
′
ij , Z

′
1, Z

′
2. Let β ∈ (0, π

2 ) and β ′ are angles between
input feature vectors < xi , xj > and < x′

i , x
′
j > respectively. Constant are denoted by

c1, c
′
1, c2, c3, a1, a2 ≥ 0. Also σ and σ ′ are the kernel bandwidth of the estimated kernel

Figure 18 Visualizing (α, θ)-OCS [19]
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densities in the X and X′ input data respectively. Let ith cluster has Ni samples out of K

clusters. For our analysis, we will focus on this ith cluster.
Since t-SNE preserves kernel density in lower dimensions, we will have pij = qij and

p′
ij = q ′

ij . Some t-SNE related expressions that we will use for the proof are as follows,

pij =
exp

(
−‖xi−xj ‖2

2σ 2

)

∑
k �=l exp

(
−‖xk−xl‖2

2σ 2

) ; qij = (1 + ‖yi − yj‖2)−1
∑

k �=l (1 + ‖yk − yl‖2)−1

Z1 =
∑

k �=l

exp

(

−‖xk − xl‖2
2σ 2

)

; Z2 =
∑

k �=l

(1 + ‖yk − yl‖2)−1

Similar expressions can be obtained for p′
ij , q

′
ij , Z

′
1 and Z′

2. From these equations, we
can show that,

(1 − cosβ)

σ 2
i

= log

(
1

pij

− 2

)
1

log
∑

k �=l;k,l �=i,j

exp
(
−‖xk−xl‖2

2σ 2

) (12)

‖yi − yj‖2 =
(

1

qij

− 2

)
1

∑

k �=l;k,l �=i,j

(1 + ‖yk − yl‖2)−1
− 1 (13)

Let,c1 = ∑

k �=l;k,l �=i,j

(1 + ‖yk − yl‖2)−1. Now according to Theorem 1, β ′ is bounded in

( π
2 − 2θ, π

2 + 2θ) with high probability, if (i, j) belongs to different class labels. In general
for small θ , we can assume that the different clusters form a separation angle (with respect
to origin) such that π

2 − 2θ > β i.e β ′ ≥ β for all pairs of (i, j). Then according to (12),
pij ≥ p′

ij and therefore qij ≥ q ′
ij , if (i, j) belongs to different class labels. Equation (13)

further yields,

log
c′
1(1 + ‖y′

i − y′
j‖2) + 2

c1(1 + ‖yi − yj‖2) + 2
= log

qij

q ′
ij

= log
pij

p′
ij

≥ 0

This shows that Lt-SNE always provide better mapping than t-SNE for c′
1 ≤ c1 which is

generally the case. For small θ , we expect pkl > p′
kl (⇒ qkl > q ′

kl) for (k, l) belonging
to different class and pkl ≈ p′

kl (⇒ qkl ≈ q ′
kl) for (k, l) belonging to the same class. This

leads to c′
1 ≤ c1 since qkl ∝ (1+ ‖yk − yl‖2)−1. Next, we establish an lower bound on this

mapping ratio using this expression,

log
c′
1(1 + ‖y′

i − y′
j‖2) + 2

c1(1 + ‖yi − yj‖2) + 2
= 1 − cosβ ′

σ ′2 + log
Z′
1

Z1
+ cosβ − 1

σ 2
(14)

For fixed β, (
cosβ−1

σ 2 − logZ1) term is constant. Now normalization constant Z′
1 is the

sum of kernel densities between samples within cluster itself and across other clusters. From
Theorem 1, we know that (1−α) fraction of a cluster belongs to a orthogonal cone structure
with θ ∈ (0, π

4 ) angle with high probability. Ignoring α samples (which add positive values
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to Z′
1), we can provide a lower bound on Z′

1 with the same probability bound as given in
Theorem 1 for θ, α.

Z′
1 ≥

K∑

k=1

(1 − α)2NK(Nk − 1)e− (1−cos 2θ)

σ ′2

︸ ︷︷ ︸
sum of densities within clusters

+
∑

k �=l

(1 − α)2NkNle
− (1+sin 2θ)

σ ′2

︸ ︷︷ ︸
sum of densities across clusters

Z′
1 ≥ (1 − α)2

e
(1−cos 2θ)

σ ′2

⎛

⎝
K∑

k=1

NK(Nk − 1) +
∑

k �=l

(1 − α)2NkNle
−√

2 cos( π
4 −2θ)

⎞

⎠

Finally, we can plug Z′
1 in (14) and putting β ′ = π

2 − θ for getting lower bound, we
obtain our final expressions.

c2 = cosβ − 1

σ 2
− logZ1 + log

⎛

⎝
K∑

k=1

NK(Nk − 1) +
∑

k �=l

(1 − α)2NkNle
−√

2

⎞

⎠

log
c′
1(1 + ‖y′

i − y′
j‖2) + 2

c1(1 + ‖yi − yj‖2) + 2
≥

√
2 sin( π

4 − 2θ)

σ 2′
+ 2 log(1 − α) + c2

=⇒ ‖y′
i − y′

j‖2 ≥ a1‖yi − yj‖2 + a2

Here, c3 = exp(
√
2 sin( π

4 −2θ)

σ 2′
+ 2 log(1 − α) + c2) ≥ 1, a2 = c3+c3c1−c′

1−1
c′
1

≥ 0 and

a1 = c3c1
c′
1

≥ 1, if c1 ≥ c′
1 which is the case for small θ . This completes the full proof.
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