World Wide Web (2020) 23:289-311
https://doi.org/10.1007/511280-019-00696-8

®

Budget-aware online task assignment in spatial Check for
crowdsourcing updates

Jia-Xu Liu'2 . Ke Xu'

Received: 7 August 2018 / Revised: 1 March 2019 / Accepted: 15 May 2019/
Published online: 25 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

The prevalence of mobile internet techniques stimulates the emergence of various spatial
crowdsourcing applications. Certain of the applications serve for the requesters, budget
providers, who submit a batch of tasks and a fixed budget to platform with the desire to
search suitable workers to complete the tasks in maximum quantity. Platform lays stress
on optimizing assignment strategies on seeking less budget-consumed worker-task pairs
to meet the requesters’ demands. Existing research on the task assignment with budget
constraints mostly focuses on static offline scenarios, where the spatiotemporal informa-
tion of all workers and tasks is known in advance. However, workers usually appear
dynamically on real spatial crowdsourcing platforms, where existing solutions can hardly
handle it. In this paper, we formally define a novel problem called Budget-aware Online
task Assignment(BOA) in spatial crowdsourcing applications. BOA aims to maximize
the number of assigned worker-task pairs under budget constraints where workers appear
dynamically on platforms. To address the BOA problem, we first propose an efficient
threshold-based greedy algorithm called Greedy-RT which utilizes a random generated
threshold to prune the pairs with large travel cost. Greedy-RT performs well in the adver-
sarial model when compared with simple greedy algorithm, but it is unstable in the random
model for its random generated threshold may produce poor quality in matching size. We
then propose a revised algorithm called Greedy-OT which could learn near optimal thresh-
old from historical data, and consequently improves matching size significantly in both
models. Finally, we verify the effectiveness and efficiency of the proposed methods through
extensive experiments on real and synthetic datasets.

Keywords Budget constraint - Online task assignment - Threshold - Greedy - Spatial
crowdsourcing

B4 Jia-Xu Liu
livjiaxu @buaa.edu.cn

Ke Xu
kexu@nlsde.buaa.edu.cn

State Key Laboratory of Software Development Environment, Beihang University, Beijing, China

College of Software, Liaoning Technical University, Huludao, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-019-00696-8&domain=pdf
mailto: liujiaxu@buaa.edu.cn
mailto: kexu@nlsde.buaa.edu.cn

290 World Wide Web (2020) 23:289-311

1 Introduction

The pervasion of mobile phones has caused the rapid emergence of various of spatial crowd-
sourcing applications such as Uber, Gigwalk, and Waze etc. in the last decade. Part of these
applications feature with budget constraints and usually fit with the occasions like data
acquisition [25] and sampling survey [18]. For instance, Gigwalk provides an inspection ser-
vice for international cosmetics companies to investigate how their products are displayed
in supermarkets and stores. This platform recruits workers to arrive at a number of geo-
graphically dispersed cosmetics counters to check the placement of their products on main
shelves, end shelves, island cabinets and ground stacks etc., take photos from various angles
and upload them to the platform. Once the uploaded photos are verified as valid and timely,
the workers will earn corresponding remuneration from the platform. In this real applica-
tion, a batch of tasks are released by a single requester who as well provides a fixed budget
for rewarding workers. The requester expects the platform could expend the fund efficiently
so that more tasks are able to be assigned even if the spatiotemporal information of work-
ers is unknown util they appear on the platform. That is, the platform is required to conduct
online task assignment to maximize the number of total assigned pairs under a fixed budget.

Previous studies on the problem of online task assignment can generally be divided into
two categories: non-guidance and guidance. The majority studies lay in the scope of non-
guidance matching. Multiple-armed bandit [4, 25] and random-threshold greedy [22, 27] are
prevalently adopted to solve the problem. However, neither of them could approach optimal
solution since the global spatiotemporal information cannot be acquired in advance to guide
online matching. Tong et al. proposed a guided matching solution for the problem with
prior knowledge which could be estimated from the historical traces of workers and tasks
[28]. Higher performance can be achieved on the condition that the real spatial-temporal
distributions of workers and tasks are highly similar with their historical distributions. Once
the condition is broken when emergent events occur, a great deviation will be produced
between historical and real data. As a result, much more inferior matching results are gen-
erated and even worse than the non-guidance methods in performance. Unfortunately, the
deviation between real-time and historical distribution in the real world is frequently non-
negligible over a brief period of time, even if the spatiotemporal distribution of workers can
keep periodic similarity in the magnitude of long period. Thus, many unsuitable matching
pairs will emerge if fine-grained historical information is directly utilized to guid real-time
task assignment. Besides the hardness in usage of historical data, another obstacle is that
existing online assignment algorithms have defects in improving matching size. For exam-
ple, greedy is a simple and efficient algorithm in solving online task assignment problem
[26]. However, its performance is sensitive to the arrival order of workers, especially fragile
in the adversarial model. We go through the following toy example to illustrate it.

Example 1 David submits six tasks to platform with the desire that platform helps him
assign as many workers as possible to his tasks while the payment does not exceed the
budget 10. All the tasks share the same release time 0 and expired time 10 while the appear-
ances of workers may differ in time. Here, we deploy that any worker w; appears at time
i. Platform performs one-to-one matching between workers and tasks, where each task is
completed by one worker and each worker is assigned to one task at most. The initial loca-
tions of the tasks and workers are labeled in the 2D space(X, Y) in Figure 1a. We assume
the reward for workers equals to their travel cost, and the total travel cost of workers can
not beyond 10. The optimal matching is shown in Figure 1b while the result of the sim-
ple greedy algorithm is shown in Figure 1c. Here, the greedy solution is {(wy, t1), (w2, 1)}

@ Springer



World Wide Web (2020) 23:289-311 291

waLE t3§,7) w2(1,8) Wﬁw' Ggi) wa(1) Wil 13(67)
7 b 7 b 7 b
W4(1,6) 16(5,6) 15(7,6) W4(1,6) 16(5,6) 15(7,6) W4(1,6) 16(5,6) 15(7,6)
s & é ] 6 Q\\ @ é é st 2 é y
¢ ©2(3,6) ng,s; % ©2(3,6) ug,sy ® ©2(3,6) ug,s;
1(2,5) 1(2,5) t1(2)5)
4 4t s
W6(6,4) W6(6,4) W6(6,4)
3t 3 b 3t
2T wsqs,z& 2T ws@ 2@ 2 [ qus,za
wi(a,1) wia,1) (4,1)
1r 1+ 1k
0 0 0
o 1 2 3 4 5 6 7 8 o0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
(a) Initial locations (b) OPT result (c) Greedy result

Figure 1 The matching results of the offline optimal algorithm and simple greedy algorithm

whose matching size is merely 2 and used budget is 10. There are two reasons for the
unsatisfactory result: 1) bad arrival order of workers, which causes the budget is exhausted
by those early arrival workers with large travel cost. 2) the greedy algorithm has no prior
knowledge on the optimal matching which can be estimated from historical data and used
to guid the real-time task assignment.

Motivated by the above example, we first formulate a novel problem called Budget-aware
Online task Assignment(BOA). To address the BOA problem, we propose two greedy vari-
ants to amend the two defects of the simple greedy algorithm mentioned above. In order to
economize budget, the first variant utilizes a random generated threshold to filter out those
serious budget-expended matchings. The random thresholds cannot guarantee the quality
of results since small thresholds maybe filter out those eligible matchings. Another variant
ameliorates the former by learning a near optimal threshold from historical data. The main
contribution of this work are summarized as follows.

— Inspired by certain emerging spatial crowdsourcing applications, we propose and for-
mulate the BOA problem which is a problem of online task assignment in real-time
spatial data with budget constraints.

— To address the BOA problem, we propose a greedy variant, called Greedy-RT, which
filters out those bad matchings with large expensive cost by a random generated thresh-
old, whose performance is superior than the simple greedy algorithm in the adversarial
model.

—  We then propose another variant, called Greedy-OT, which extracts a near optimal
threshold from the offline optimal solution based on the spatiotemporal information of
historical workers and released tasks. It can significantly improve the matching perfor-
mance compared with Greedy-RT and the simple greedy algorithm both in the random
model and adversarial model.

—  We verify the effectiveness and efficiency of our algorithms on both synthetic dataset
and large-scale Uber pickups dataset.

In the rest of this paper, we formulate the BOA problem in Section 2 and provide its
offline optimal solution in Section 3. We present a greedy variant based on a random
generated threshold and analyze its competitive ratio in Section 4.1, and then present a
revised greedy variant based on a near optimal threshold and analyze its competitive ratio

@ Springer



292 World Wide Web (2020) 23:289-311

in Section 4.2. Section 5 presents the performance evaluations, Section 6 reviews related
worker and Section 7 concludes this paper.

2 Problem statement

In this section, we first introduce the basic concepts, and then formally define the Budget-
aware Online task Assignment (BOA) problem.

Definition 1 (Worker) A worker is denoted by w =< Iy, by, ey, vy >. [, is the location
of w in a 2D space. b, and ey, is the arrival time and departure time from platform. vy, is
the velocity of w.

It is notable that b,, equals to e,, in our BOA problem, that is, when a new worker w
arrives, platform will make an assignment determination for w instantly. Once w fails in
matching, platform will not take him into consideration in subsequent assignments.

Definition 2 (Task) A task is denoted by t =< I;, r;,d; >. I; is the location of ¢ in a 2D
space. ry, and d; is the release time and deadline of 7.

Definition 3 (Task requester) A task requester is denotedbyr =< T, B >. T = {t, ..., t,,}
is a batch of tasks released by a single requester. B is the budget that requester supplies to
reward workers who can complete any task of 7.

Definition 4 (Travel Cost) The travel cost, denoted by cost(w, 1), is the travel distance for
w to arrive at the location of ¢, that is, the distance between [, and /,.

Definition 5 (BOA Problem) Given a task requester r, and a set of workers W where work-
ers dynamically appear on platform one by one at any time. The goal of BOA is to find an
assignment scheme M between W and r.T to maximize the number of assigned pairs. That
is, max Sum(M) = ZweW’tE,_T I(w,t), where I (w,t) = 1 if the pair (w, #) is matched
in the assignment M, and otherwise I (w, t) = 0. Such the following constraints should be
satisfied.

— Budget constraint. We assume the reward that platform supplies for a worker is propor-
tion to his travel cost at the ratio of 1, then the total rewards paid for workers in M are
less than or equal to B. (i.e.,Z(w‘t)eM cost(w,t) < B).

— Deadline constraint. For any worker-task pair (w, ¢), w must arrive at the location of ¢
before its deadline. (i.e.,by, + cost(w, t) /vy < d;).

— Invariable constraint. Once a task ¢ is assigned to a worker w, the assignment of (w, ?)
cannot be revoked.

The theoretical guarantee on online algorithms is usually measured by competitive ratio,
which describes the differences between the output of an online algorithm and its offline
optimal result. In this paper, two different arrival orders of workers are simulated by the
adversarial model and the random order model, which represent the worst case and the

@ Springer



World Wide Web (2020) 23:289-311 293

general case, respectively. The corresponding competitive ratios of the two online models
are defined as follows.

Definition 6 (CR in the adversarial order model) The competitive ratio of an online algo-
rithm for the BOA problem in the adversarial model is the minimum ratio between the
online algorithm and the optimal result over all possible arrival orders of workers.

Sum(M)

CR = min D ——
YG(W,T),YocO Sum(OPT)

Where G (W, T) is an arbitrary input of tasks and workers, O is the set of all possible input
orders, o is one order in O, Sum (M) is the matching size that the online algorithm achieves,
and Sum (O PT) is the matching size of the offline optimal scheme.

Definition 7 (C R in the random order model) The competitive ratio of an online algorithm
for the BOA problem in the random order model is

. E[Sum(M)]
CR = min D ——
YG(W,T),YocO Sum(OPT)

Where E[Sum(M)] is the expectation of the matching size produced by the online
algorithm over all possible arrival orders.

3 Offline optimal solution

In this section, we introduce the optimal solution for the BOA problem, which can be solved
in offline scenarios, where platform has acquired the entire and determined spatiotemporal
information of workers and tasks before matching.

Theorem 1 The optimal solution for the BOA problem is reducible to the minimum-cost
maximum-flow problem.

Proof Given W = {wq, ws, ...} as the set of online workers, and T = {t1, t2, ...}as the set
of tasks to be assigned. Let G = (V, E) be the flow graph with V as the set of vertices, and
E as the set of edges. The set V contains |W| + |T| 4 2 vertices includeing worker vertices
denoted by Vy,, i € [1, |W]], task vertices marked by V;;, j € [0, |T'[] and two additional
vertices, source vertex Vy and destination vertex V, respectively. The set E contains |W| +
|T|+ |W|-|T| edges, each of which has a capacity of 1. We associate the cost of edge from
vertex Vy,; to V,j with their travel distance, and the one of other edges with 0. Thus, given
a fixed budget, we may obtain the maximum matching in quantity by running the min-cost
max-flow algorithm in G. O

We next describe the steps to obtain the optimal solution of the BOA problem. Accord-
ing to Theorem 1, we first utilize the offline spatial-temporal information of workers and
tasks to build a bipartition graph, and then run traditional min-cost max-flow algorithm on

@ Springer



294 World Wide Web (2020) 23:289-311

the graph to get the optimal matching M*. Finally, we sort the matching pairs in M* in
ascending order of their cost, and then choose them one by one until the total cost beyonds
the budget. The whole procedure is depicted in Algorithm 1.

Algorithm 1 OPT algorithm.

Require: W, T, B
Ensure: matching scheme M*

I: M* <~ @,c <0

2: create source vertex s, sink vertex e

3: for all worker node w € W do

4: add_edge(s, w,1,0)

5. end for

6: for all task noder € T do

7: add_edge(z, ¢,1,0)

8: end for

9: for all worker node w € W do

10: for all task node t € T do
11: if by, + cost(w, t) /vy < d; then
12: add_edge(w, t, 1, cost (w, 1));
13: end if

14: end for

15: end for

16: M < Min-Cost_Max-Flow(s, ¢)

17: sort worker-task pairs in M by cost in ascending order
18: for all sorted worker-task pair (w, 1) € M do

19: if ¢c + cost(w, t) < B then

20: insert (w, t) into M*
21: c < ¢+ cost(w,t)
22: end if

23: end for

24: return M*

Example 2 Backing to our running example in Example 1. As shown in Figure 2, four flows
are picked out by running the min-cost max-flow algorithm, which are

f1:8— > w3— > th— > e with cost 1,

f2 18— > ws4— > t;j— > e with cost 2,

f3 15— > ws— > t5— > e with cost 5,

fa:5— > wg— > t4— > e with cost 1.

The total used budget is 9. The worker and task vertices are eventually extracted out from
each flow, and then form the final pair set M* = {(ws, 1), (wa, 1), (ws, t5), (we, 14)}.

Complexity Analysis The time complexity of the OPT algorithm is O (V2 x |M|), where

= (|W|+|T|+2). The Min_Cost_Max _Flow algorithm invokes the Dijkstra algorlthm
Wthh expends O(V?) time cost to seek a new flow from s to e in each invocation. |M | is
the total flows found by the Min_Cost_Max_Flow algorithm.

@ Springer



World Wide Web (2020) 23:289-311 295

Weight  Weight Weight

N> ©

7

L
4
B

KRRRI
P

X/
N
0
ZaW
&

N

i//jl\’/ /)
&
’?@

N
0 %
//‘%r’///"«r// X
&‘f
\ //AL\/{/A /
.
;fe 9

‘ @@ ‘ . :\
(10) (Leostiwit)) (1,0) O
(a) Build graph (b) Min-cost max-flow (c) Matching pairs

Figure 2 The key steps to solve the offline optimal solution in Example 2

4 Online assignment algorithms
4.1 Greedy-RT algorithm

Greedy is a simple and efficient method for most online task matching problems, but its per-
formance is susceptible to the order of workers’ appearance. Its competitive ratio achieves
the worst m [26] when workers’ appearance follows the adversarial model. In
order to alleviate the impact of the order, random-threshold greedy(Greedy-RT) [22] is more
competent than the simple greedy method for its threshold, which is randomly generated,
could feasibly filter out those extremely bad matching pairs. Specifically, Greedy-RT first
produces a random threshold 7, and then the pair whose travel cost exceeds 7 is denied, so
that the abused budget which caused by early workers in the adversarial model is restrained.
In this section, we utilize the random-threshold greedy algorithm to solve the BOA problem.

Algorithm 2 Greedy-RT algorithm.

Require: B, c;qx
Ensure: matching scheme M
I: M <@ c<«0
2: choose x randomly from the set {0,1,...,[In(cinqax + 1)1} with the probability Pr(x =
D) = Tt T
T <« ef
: for all new arrival worker w do
T’ «{Vt|by + cost(w, 1) /vy < d; Acost(w,t) <T Ac+cost(w,t) < B}
if T’ # () then
t = mincost(w, t)
teT’
M <~ MU(w,t)
c < c+cost(w,t)
end if
11: end for
2: return M

R e B A O S

=

—_

The whole procedure of Greedy-RT is illustrated in Algorithm 2. In line 1, the result set
M and the used budget c are assigned with initial values. In lines 2-3, Greedy-RT randomly
chooses a threshold ¢ on travel cost according to the estimated maximum cost ¢;,,5; Which

@ Springer



296 World Wide Web (2020) 23:289-311

can be learned from the scope that workers and tasks appear. In lines 4-5, when a worker w
arrives, Greedy-RT filters a task subset 7’ where each task satisfies three conditions: 1) w
could arrive before t’s deadline; 2) the travel cost between w and ¢ is not greater than the
specific threshold ¢*; 3) the used budget ¢ after adding the cost d(w, t) cannot exceed the
total budget B. In lines 6-9, if T’ is not empty, Greedy-RT chooses the nearest task from
T’, adds it into M and updates the used budget c. In line 12, the algorithm returns the final
matching scheme M when all the workers have already appeared or the budget has been
used up.

Example 3 Backing to our running example in Example 1, workers and tasks appear in the
8x 8 square region where the maximum travel cost does not exceed the manhattan distance
16. According to the upper bound [In(c;uqx + 1)7, Greedy-RT divides the whole travel cost
into four grades whose associated thresholds are ¢, ¢!, ¢? and 3 respectively. The matching

schemes based on various thresholds are listed as follows:

eo:{(w3, 1), (we, t4)}, matching size:2, used budget:2

e! {(ws, 1), (w4, t1), (we, t4)}, matching size:3, used budget:4
e2:{(w1, t1), (wa, 1)}, matching size:2, used budget:10

e {(wr, 1), (w2, 0)}, matching size:2, used budget:10.

Greedy-RT randomly chooses one threshold, so the expectation of the matching size is
E(Greedy — RT) = % + % + % + % = 2.5, which outperforms than the simple greedy
algorithm.

We next analyze the competitive ratio of Greedy-RT. Let O be the optimal matching
with the limited budget B. Define O(¢’, ¢/t = {(w, 1) € Olcost(w, t) € (¢', ¢t} to be
the subset of @ with the cost in the interval (¢’, ¢! *1]. For any i > 0, let M_,i denote the
matching scheme returned by Greedy-RT whose threshold 7 equals to ¢, or equivalently,
K =1i.

|0, e i = 1

L 1 Fi | > M_,| > . .
emmal Foranyi 20, | fel—{w(o,eou i=0

Proof When i = 0, matching pattern M_ o is achieved with the budget B while 0(0, €]
is done with budget B(0,¢0- Since B(O 0 < B, then [M_,0| > |O(0, eo]|. Wheni > 1, we

have [M_,i| = |M(0 0] | + Z, | |M(2/ o] |, where Z’, _oBj =B and B; is determined

by the Greedy-RT algorithm. Since |M(0 O]| > |M(e, 1e]l and |M (/ le/]| > M (- 1el]l
for any j € [1, i], we have
Mo = 1M, |+Z|M<€, Loyl = 1M - (1)

Similarly, O(ei_l, '] is achieved with the budget B(ei—l il and B(ei—l < B, we have

.ei]

IM_yi| > 10!, €. ()

The lemma is proved. O

@ Springer



World Wide Web (2020) 23:289-311 297

Theorem 2 The competitive ratio of the Greedy-RT Algorithm is not less than
1
[in(cmax+11+1"

Proof Let n = [In(cmax + 1)]. Since the exponential part of threshold is chosen evenly
from a set of integers between 0 and n, we have

n n
1
E(M)) = Z|Mse,—|pi = mz IM_il. 3)
i=0 i=0
According to Lemma 1,
1 - 1
E(IM|) > ——(]O(0, ¢° O, e) = ——|0|. 4
( I)_n+1(| ( e]I+|l;| (Camra|)] n+1| | C)]
That is,
E(M) 1
. . 5)
|O| [n(cmax + D1+ 1
The theorem follows. O

Complexity Analysis For each new arrival worker, the time complexity of the Greedy-RT
algorithm is O(|T).

4.2 Greedy-OT algorithm

Greedy-RT is unstable due to its random selected threshold. Specifically, certain rational
pairs will be neglected if the chosen threshold is too small, which causes its performance
turns even worse than the simple greedy algorithm. It is crucial for threshold-based algo-
rithms to choose an appropriate threshold. In this section, we propose a superior greedy
variant, called Greedy-OT, which can generate a near optimal threshold.

There are periodic similarities on human daily movements and travel traces. For instance,
we arbitrarily extract six-days samples from Uber dataset in May 2014, each of which com-
prises the detailed pickup records happened in Manhattan, New York city. Figure 3 depicts
the distribution of the pickups happened between 0 o’clock and 12 o’clock with heat mapps.

We can observe that the spatiotemporal distributions of the pickups are similar each
day. Although there is a large deviation in the quantity of the pickups, the distributions of
travel cost in optimal matching schemes for these days remain similar if pickups represent
workers in matching with same batch of tasks. The main reason is that distribution plays
crucial roles rather than quantity in budget-constraint matching problem, and superfluous
workers would not produce significant impact on the final optimal matching scheme. Thus,
it is feasible to utilize historical optimal matching scheme to guide the online assignment
for the other days. In this section, we propose another greedy variant, called Greed-OT,
which utilizes historical information to obtain proper threshold. Specifically, Greedy-OT
first runs the offline optimal algorithm based on workers’ historical traces, and then from the
offline scheme extracts the maximum travel cost as target threshold. The detail description
on Greedy-OT is listed in Algorithm 3.

@ Springer



298 World Wide Web (2020) 23:289-311

Algorithm 3 Greedy-OT algorithm.

Require: B, M*
Ensure: matching scheme M
I: ¢ <~ 0,7 < max_cost(w,?)
(w,n)eM*
2: for all new arrival worker w do
3 T’ «{Vt|by + cost(w, 1) /vy < d; Acost(w,t) <T Ac+cost(w,t) < B}
4: if T’ # () then
5: t = mincost(w, t)
teT’
6 M <« MU(w, t)
7: c < ¢+ cost(w,t)
8: end if
9: end for
10: return M

Example 4 Backing to our running example in Example 1, we assume historical data has the
same spatiotemporal distribution with this case. Greedy-OT first utilizes maximum travel
cost of the optimal matching pairs as the threshold, here, the maximum pair is (ws, t5)
with cost 5, and then prunes bad pairs whose cost exceeds 5. In this way, we obtain the
final matching solution: 5:{(w3, #1), (w3, 2), (w4, t5), (ws, t4)}, matching size:4, used bud-
get:10. In this example, Greedy-OT and OPT achieve the same score in matching size, but
OPT is more frugal in budget expenditure for only 90 percent budget is spent, while all the
budget is spent by Greedy-OT.

We next deduce the competitive ratio of Greedy-OT. Suppose n; is the number of pairs
with travel cost ¢; in the optimal set O which owns N unique cost values. That is, the size

(a) May 6(Tue) ” (b) May 7(Wed) (c) May 8(Thu)

(d) May 10(Sat) (e) May 11(Sun) (f) May 14(Wed)

Figure 3 Similarity on the distribution of Uber pickups for different days in May, 2014

@ Springer



World Wide Web (2020) 23:289-311 299

of pairs |O| = ZlN: 1 ni. The travel cost of any pair from w to ¢ in O can be denoted by
Cw,op where (w, t)op; € [1, N]. Wo is the worker set and T@ is the task set in O. The
maximum travel cost of pairs in O is denoted by ¢, ., and ¢} . + ¢ is the threshold that
Greedy-OT adopts to prune inferior matching pairs.

max? max

Lemma 2 [f there exists a pair(w, t) chosen by Greedy-OT with its cost little than c;
then it must be w € Wp ort € Tp.

max’

Proof Suppose there exists a pair (w, 1) ¢ O with its cost little than c};,, ., and its two ends,
w and t, follows w ¢ Wp and t ¢ Tp, then by replacing the maximum cost pair with
(w, ), we would obtain a new optimal solution, which is contradict with the fact that O is
the genuine optimal solution. The lemma is proved. O

Lemma 3 If a pair p chosen by Greedy-OT is overlapped with a pair p* in O at least one
point (w or t), then cost(p*) < cost(p) < cpq + &

Proof Since Greedy-OT selects c},,, + € as threshold, the cost of any chosen pair can not
beyond cmax + &. Assume the cost of p is little than p*, then p should be added into O
instead of p*, which is contradict with the fact that p* is the genuine pair in O. Thus, the
assumption that cost(p) < cost(p*) is false and alternatively cost(p) > cost(p*). The
lemma is proved. O

N o
Theorem 3 The competitive ratio of Greedy-OT is not less than M
(C;Fnax'i_s)'Zi:I ni
Proof For the case ¢ > 0, according to Lemma 2 and 3, the cost of pair (w, #) chosen by
Greedy-OT affiliates with either of the following cases:

Dcost(w,t) € [ci, ¢y + €], where w € Wp, cost(w,)opr = ¢ ort € To,
cost(, opr = Ci;

2)cost(w, 1) € [c* + e], where w ¢ Wp and t ¢ To.

max> max

For both of cases, any pair (w, t) that Greedy-OT chooses can be mapped to an optimal
pair in O, which inflates the cost from optimal value ¢ to cost(w,t) € [c, ¢}, + €] or
[c)axs Chax + €] and consequently decreases the matched number of Greedy-OT. Specifi-
cally, for the case 1, pair (w, t) is bound to be mapped to a optimal pair whose worker entry
is w or task entry is ¢, and for the case 2, pair (w, t) is mapped to a random optimal pair
which will never be selected by the end of Greedy-OT. Suppose &;; is the travel cost of cho-
sen pair which is mapped to the j-th pair among n; optimal pairs with the same cost ¢;, then
the lower bound of &;; is either ¢; (case 1) or ¢}, (case 2) while the upper bound are both

+ ¢. The worst expectation of Greedy-OT is

max

E(Greedy — OT)

1
E(—) =B E(—)
cost

-yt 5

lln’zl/l

— ¢
Z, 11 lzl: max+8

B
= ©)

ok
Coax T &

v

@ Springer



300 World Wide Web (2020) 23:289-311

Since B > ZlNzl cin;, we have

E(Greedy — OT)
[
YLy cini
(Char +) - 21y ni-

For the case ¢ < 0, any chosen pair (w, t) by Greedy-OT is bound to be overlapped with
O according to Lemma 2. The travel cost of (w, ¢) only affiliates one case, that is

CR(Greedy — OT) =

v

(M

Dcost(w,t) € [c;,chae + €l, where w € Wp, cost(w,)opr = ¢; ort € To,
cost(, )opr = ¢;.

Suppose cx < ¢} + & < ck+1 < cn, then we have

E(Greedy — OT) = (Z Z
ni 1 1 %_U
i=1 j=
~ (Z ni - E( ). @)
Z =1
where &;; € [¢;, cjh, + €] Here

max+€ 1 1
e e
gl] ci %_ij C;knax +e—¢ Y

In(c} . +¢€) —Inc

= . 9
C;Fnax +e—c ( )
Since B > Z,N=1 cin;, we have
E(Greedy — OT
CR(Greedy — 0T) = £Greedy )
@]
In (e +e)—Inc
(Zz lclnl) (Z, 1n %)
> — . (10)
Doimi M =y Ni
On the ground that f x) = ln(fi’“*%_xlm is a decreasing function on x, and
limyex 4o f(x) = + ~» we have
N . .
CR(Greedy — OT) > Lizi o 1)
(Cmax +e)- Zi:l ni
The theorem follows. (I

Complexity Analysis Similar to the Greedy-RT algorithm, the Greedy-OT algorithm also
has a time complexity of O(|T|) for each new arrival worker.

@ Springer



World Wide Web (2020) 23:289-311 301

5 Experiments
5.1 Experiment setup

Synthetic Dataset We generate 10000 workers and 10000 tasks on a 500x 500 2D square
where all positions are generated randomly. The value of ¢4y is set to 1000, which is the
maximum Manhattan distance in the specific area. The appearance of workers follows the
adversarial model and random model separately, and in either of the models, the arrival time
of workers and the release time of tasks scatter randomly between 0 and 99. To simulate
the random order model, we sort the arrival time of all workers in ascending order to obtain
their arrival sequence. For the design of the adversarial order model, we first calculate the
travel cost for each worker to reach his nearest neighbor task, then sort all travel cost in
ascending order to obtain the adversarial sequence, and finally exchange workers’ arrival
times to ensure that the arrival sequence conforms to the adversarial model. The measure-
ment on a worker’s travel cost equals to the Manhattan distance between his present and
target location. For simplicity, we set all workers’ velocity to 1, so that time cost is equiva-
lent to distance cost. Platform expends budget to reward any assigned worker according to
his travel cost. The statistics and configuration of synthetic data are illustrated in Table 1,
where the default settings are marked in bold.

Real Dataset We choose Uber Trip Data [29] as our real dataset, which contains data
on over 4.5 million Uber pickups in New York City from April to September 2014, and
14.3 million more Uber pickups from January to June 2015. Based on the raw data of the
second week in May 2014, we select the rectangle area from the position(Lat:40.5998, Lon:-
74.0701) to the position(Lat:40.8998, Lon:-73.7701) as investigative area whose maximum
distance ¢4y is 41.7027km, which equals to the Euclidean distance of its diagonal. Any
pickup appeared from 0 o’clock to 12 o’clock in the area plays as a worker and the velocity
of the workers are set to the same value 40km/h. Due to the lack of task information in UTD
dataset, we randomly generate 6000 tasks whose location is limited in the area, release time
randomly scatters from 0:00 to 12:00 and 180 minutes survival time before deadline. We
extract the optimal threshold from the pickups data in May 7(Wed), 2014, and then utilize it
to guide the online matchings for the other days of this week. In our case, the requester sup-
plies budget in amount of 300 to reward workers, which means the total travel cost (distance
cost) of chosen workers can not beyond 300km.

We compare Greedy-RT, Greedy-OT with the baseline greedy and the offline optimal
OPT in terms of total matching size, running time and memory cost, and then study the
effect of varying parameters. In each experiment, we repeatedly test 20 different online
arrival orders of workers and report the average results. All the algorithms are implemented
in C++, and run in a machine with Intel(R) Core(TM) i5-2400 CPU and 4GB main memory.

Table 1 Synthetic dataset

Factor Setting Notes

W] 2000,4000,6000,8000,10000 No. of workers
|T| 2000,4000,6000,8000,10000 No. of tasks

B 1000,2000,3000,4000,5000 total budget

d; 20,40,60,80,100 Deadline of task

@ Springer



302 World Wide Web (2020) 23:289-311

5.2 Adversarial model

Effect of |W| The first row of Figure 4 shows the results when |W| varies from 2000 to
10000. We can observe that for all the algorithms except the simple greedy, the quantity
of successful matched pairs increases as |W| increases, which is natural as there are more
competent pairs that can be matched when more workers are available. Only the curve
of the simple greedy algorithm declines when |W| increases since the pairs with larger
cost keep growing in quantity and have prior in matching in the adversarial model. Among
all online algorithms, Greedy-OT performs the best, followed by Greedy-RT and simple
greedy. The reasons are as follows: 1) Greedy-OT can achieve a proper threshold from
a set of offline optimal pairs; 2) part of thresholds have poor performances in matching
and thus the expected performance of Greedy-RT is correspondingly affected; 3) simple
greedy is seriously trapped in local optimal solutions in the adversarial model. Note that
Greedy-RT maybe perform worse than simple greedy when less workers are available, on
the ground that large number of proper pairs are filtered out by excessively small thresholds.
As for the running time and travel cost, OPT expends much than online algorithms for the
reason that the min-cost max-flow algorithm needs much time and storage consumption on
repetitively running the Dijkstra algorithm and keeping running states. Other algorithms are
subordinate to the greedy algorithm family so that they are similar in terms of time and
storage cost. Moreover, they are usually unrelated to the number of workers for the reason
that the algorithms will terminate in advance when budget is drained rather than when all
workers have appeared.

Effect of | T| The second row of Figure 4 presents the results when we vary | T | from 2000 to
10000. In terms of the quantity of matched pairs, we observe that the curves of all algorithms
ascend when |T'| increases since more competent pairs can be matched. Greedy-OT still
performs much better than Greedy-RT and simple greedy. Due to the number of workers,
here is 6000, is abundant enough to prevent the decline in quantity that excessively small
thresholds bring about. Thus, Greedy-RT could keep higher in quantity than simple greedy
when |T'| increases. The results on time and memory cost have similar patterns to those of
varying |W|, and we omit the detailed discussion.

Effect of budget The third row of Figure 4 shows the results when we vary B from 1000
to 5000. We can observe that the matching quantity rises when budget increases. The max-
imum value of optimal pairs grows when budget increases, which leads the threshold of
Greedy-OT increases as well. Since the feature that workers with large cost appear early in
the adversarial model, the ratio between Greedy-OT and OPT in matching size decreases
when budget increases. The running time of OPT rises with the increase of budget. The rea-
son is that additional budget would cause optimal pairs grow in quantity. For each pair, OPT
will run the Dijkstra algorithm in a huge graph which needs expensive time cost. As for
online algorithms, their running time is still tiny even can be ignored when compared with
OPT. The memory cost of OPT has no related to the budget since they run on the identical
graph structure with same vertices and edges.

Effect of deadline The fourth row of Figure 4 depicts the results of varying tasks’ deadline
from 20 to 100. All algorithms except simple greedy increase in matching size with the
increase of deadline. This is because that long deadline represents more candidate tasks for

@ Springer



303

World Wide Web (2020) 23:289-311
2000 300
~ -& Opt
e 250 t-e-Greedy

° 1600 PPE- 1 ~—Greedy-RT
2 a7 200 {{-*+Greedy-OT
21200f .-~ & Opt 3 .
£ ~ -e-Greedy Z150 -
| T .
S 800 —-—Greedy-RT E Pt
| -+ Greedy-OT)| =100 .-

B S sof -

1000

-& Opt
-6-Greedy
-—Greedy-RT -
+-Greedy-OT a”

23
S
3

=
S
3

Memory size(MB)
IS
=]
S

)
=3
S

0
208

00 4000 6000 8000 10000
W]

(a) Matching size of varying

W]

2000

1600

IS
S
S

%
S
S

Matching size

400

0
2000 4000 6000 8000 10000

0
2000 4000 6000 8000 10000
wi

(b) Time of varying |W|

0
2000 4000 6000 8000 10000
W]

(¢) Memory of varying |W|

300 1000
. -= Opt - Opt
e 250{{©-Greedy 800 || & Greedy .
— -~ Greedy-RT A o -*-Greedy-RT LT
= ot g 200 [|-%Greedy-OT] s - EE 00 % Greedy-OT e
-o-Greedy 2150 g =5 =
- Greedy-RT § s = 400 .-
=+ Greedy-OT 100 .a” E _e”
B £ -
%/&/f—_e/( sop _.-® 200

T

(d) Matching size of varying

7|

2400
2000

N 1600

g size
% D
S S
s 3

Matchin;

400

2000 4000 6000 8000 10000
7]

(e) Time of varying |T|

0
2000 4000 6000 8000 10000
7|

(f) Memory of varying |T|

300 1000
-= Opt - Opt -= Opt
-©-Greedy T 250 {{-©-Greedy 800 -©-Greedy
--Greedy-RT . , ><Greedy-RT = - Greedy-RT
- Greedy-OT 200 [|*Greedy-OT| =3 % Greedy-OT]
$ g 600
g 150 B z B -~ - o----- o----- o----- 4
8 B S 400
=100 PP £
Lo =
508" 200

0
1000 2000 3000 4000 5000
B

(g) Matching size of varying

1000 2000 3000 4000 5000
B

(h) Time of varying B

1000 2000 3000 4000 5000
B

(i) Memory of varying B

B
2000 300 1000
- Opt - Opt
»»»»»» 4 250 {-e-Greedy -©-Greedy
1600 - ~ 800
o --ET ——Greedy-RT E —-Greedy-RT
N _.--g 200 | Greedy-OT . 1< Greedy-OT
2 12004 -~ = Opt F Y - S 600 -*Greedy.
£ -o-Greedy Z150 .o @ b Bonmmnn B PR
S %00 ~-Greedy-RT! £ L7 2 400
= = a-
g =+~ Greedy-OT =100 T 5
- =
400, sob -7 200
0 0 0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

d

(j) Matching size of varying

di

d
(k) Time of varying d

d

(1) Memory of varying d:

Figure 4 Results on varying each specific parameter in the adversarial model

a new arrival worker to match with, which leads to less travel cost and correspondingly a
larger matching size. The simple greedy algorithm keeps invariable in matching size for the
reason that the travel cost of all matched pairs is little than 20, which means any worker can
reach his nearest task before deadline. The results on time and memory cost have similar
patterns to those of varying budget, and we omit the detailed discussion.

@ Springer



304 World Wide Web (2020) 23:289-311

5.3 Random model

In this section, we will analyze the performance of all algorithms run in the random model.
As Figure 5 depicts, all algorithms perform highly similar to the adversarial model in terms
of matching size, so we merely analysis the discrepancies between Figures 4 and 5. First,

2000 — 300 1000
gt = Opt & Opt
g 250 [i-©-Greedy -o-Greedy §
o 1600 = Opt - Greedy-RT! ,,'1 ) 800 ~Greedy-RT I
i -S-Greedy =200 f{+Greedy-OT] = % Greedy-OT a”
512000~ > Greedy-RT g s T 60
£ % Greedy-OT 2150 z -
2 800 ——— S g & 400
= > =100 . E -8B
-2 = -7
400 sof .- 200
0 o
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
W] W W]

(a) Matching size of varying (b) Time of varying |W| (¢) Memory of varying |W|
W]

2000 - 300 1000
g -z Opt -5 Opt
g 250 |-o-Greedy . -o-Greedy .
R 1600 - Greedy-RT 2 3097 Greedy-RT
= - 200 f-*Greedy-OT g = *-Greedy-OT a”
Z 1200} g A T 600
£ 3 150 » z o
2 800 E e § 400
s -G Opt 100 é -8
-©-Greedy -2 -
4004 > Greedy-RT S0p -7 200
o [ Greedy-OT o
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
[l T [l
(d) Matching size of varying  (e) Time of varying |T| (f) Memory of varying |T|
|T|
2400 300 1000
< G = Ont = Opt
2000 G or 250 -©-Greedy 500 o-Greedy
2 - Greedy OT [~ Greedy-RT a ~Greedy-RT
£ 1600 y-OT] | 5200 [|#-Greedy-OT =) -+ Greedy-OT|
S g g T 600
£ 1200 2150 [P ; b oo R [P PR 4
e E T § 400
= 8004 =100 e £
=
400, 50 200
0 0
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
B B B
(g) Matching size of varying (h) Time of varying B (i) Memory of varying B
B
2000 300 1000
-z Opt = Opt
1600 _oogo-o-—§  250[-o-Greedy A 400 o Greedy
o (' & Opt -%-Greedy-RT ’ o - Greedy-RT
| -o-Greed 2 200 f|-*Greedy-OT =) =% Greedy-OT:!
Z 1200 Y g . T 600
2 =Greedy-RT 2 -a N
= 2% Greedy-OT) E 150 Pt = Boom oo IR Bl Bomeef
2 800, ————— £, e g 400
s T E
400 S0k --" 200
0 0]
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
dy dy dy
(j) Matching size of varying (k) Time of varying d; (1) Memory of varying di
dy

Figure 5 Variation of matching size on each specific parameter in the random model

@ Springer



World Wide Web (2020) 23:289-311 305

we can observe that the curve of Greedy-OT in the random model is more asymptotic to the
optimal curve than in the adversarial model, which means Greedy-OT performs better in
the random model. Since the adversarial model has the feature that high cost workers have
prior in appearance, workers Greedy-OT chooses have larger travel cost which consumes
budget rapidly and consequently decreases matching size. Second, the gap of matching size
between Greedy-RT and simple greedy is more narrow in the random model. The main rea-
son is that simple greedy improves more significant than Greedy-RT in the random model
in terms of matching size. Third, compared with Greedy-RT, simple greedy may perform
better in certain conditions such as less available workers or sufficient budget. Specifically,
as Figure 5a shown, simple greedy works well when |W| equals 2000 and 4000. The rea-
sons are as follows: 1) small thresholds Greedy-RT selects decrease the matching size; 2)
simple greedy performs better in the random model than adversarial model. We also find
that simple greedy outperforms than Greedy-RT when budget exceeds 4000 from Figure 5g.
The reasons are as follows: 1) small thresholds still filter out many proper pairs even if the
budget is sufficient; 2) those well-performance thresholds promote matching size slowly, or
even reach the limit of matching size. The results on time and memory cost in the random
model are similar to the adversarial model, and we omit the detailed discussion.

5.4 Real dataset

We next present the experiment results on the real dataset.

As Figure 6 shows, Greedy-OT is still the best in matching size among all online algo-
rithms, followed by Greedy-RT and simple greedy. Greedy-OT achieves approximately 70
percent of matching sizes compared with OPT, which is at least 1.5 times than other greedy
algorithms. As for the time and memory cost, OPT is still the most heavyweight algorithm.
Especially in our case, the velocity of a new arrival worker is high enough that he can reach
most of the tasks before their deadline. Consequently, a large number of edges is added
when building flow graph and time cost increases dramatically. Compared with OPT, the
other algorithms have tiny time and memory cost. Table 2 illustrates the quantity of pick-
ups(workers) has no significant impact on the optimal threshold. The optimal thresholds
during the whole week fluctuate less than 15 percent even if the number of pickups varies in
a large magnitude from 9349 to 4851, which demonstrates Greedy-OT we propose is robust.

Discussion It’s worth mentioning that there are no public or shared real datasets available
for our BOA problem whatever in the fields of academic research or real applications, so we
resort to the Uber dataset provided by a famous but another type of spatial crowdsourcing
application without budget constraints. In order to make the dataset compatible with our
problem, we artificially processed it by simulating workers with pickup records, manually
generating task sets, and specifying workers’ moving speeds.

Although Greedy-RT can improve the matching size compared with the simple greedy
algorithm, its performance is still unstable due to the random generation of thresholds, espe-
cially when the generated thresholds are inaccurate, it performs even worse than the simple
greedy algorithm.

Greedy-OT can greatly improve its matching performance by extracting a near optimal
threshold from history records and using the appropriate threshold to filter out those bad
matching pairs. Compared with the method of dividing whole region by grids and guiding
online task assignment based on the predicted probability distribution of available workers
in each grid and each time period, Greedy-OT has the advantages of simplicity and effi-
ciency. In addition, the algorithm is less affected by the fluctuation of workers’ historical

@ Springer



306 World Wide Web (2020) 23:289-311

IOPT Ml Greedy Ml Greedy-RT Il Greedy-OT

Matching size

Mon Tue Wed Thu Fri Sat Sun
(a) Matching size

1200 T T T
OPT! Greedy -Greedy RT-Greedy oT]

1000 -

800 -

600 - =
400 - 9
200 b
0 Il
Thu

(b) Time

Time(secs)

900 T T T T T T T

%00 [EoPTMGreedy Ml Greedy-RT Il Greedy-OT]

700 -

=] - 4
s 600
8500+ -
2400 - 4
S5
< 300 =
200 =
100 -1
0 ) ) " " ) ) "
Mon Tue Wed Thu Fri Sat

(¢) Memory

Figure 6 Performance evaluation on the Uber dataset during the second week of May 2014

distribution, so it has strong robustness. Meanwhile, for spatial crowdsourced applications
with budget constraints, the improvement in matching size means that the expenditure
of budget is more economical, and platform could provide requesters with better service
quality.

The daily activities of workers have certain spatial and temporal patterns. It can be found
from the real dataset that the travel cost distributions of workers in the optimal match-
ing schemes generated from daily records are similar. Figure 7 shows the distribution of
matching size under different travel cost from the raw optimal matching data in May 6 (the
previous day), 7(current day), 8(the next day) and 14(Wed in the next week). All curves
share the similar trend with the increase of travel cost, which dramatically rises up to their
peaks and then gradually drops in the nadir. Further, We separate the whole travel cost into
several segments, each of which spans 0.01km, and then we can find that matching size dur-
ing each cost segment is similar. Therefore, we can obtain an appropriate threshold based

@ Springer



307

World Wide Web (2020) 23:289-311

LLTLO T9€L°0 TLLO 8¥8L°0 95€8°0 06280 956L°0 (wyp) proysayL, 3do
9LTS 168+ LLEL LYE6 $909 818¢ 789¢ (s1ox10m) sdnyd1d “ON
(ung) 1 Ke]y (es) 01 AeN (1) 6 ke (nyp) § Ke]y (Pom) L Ke]N (en1) 9 ke (uoN) S AeN areq

102 KRN JO Yoom puodas ay) JuLnp Jasejep 1) Y) U0 UONOBNXH PlOYSAIY], g d|qelL

pringer

A's



308 World Wide Web (2020) 23:289-311

IS
=)

May 6
——May 7 |1
——May 8
——May 14

[9%]
wn
T

(%)
(=)

[N
W

[\
(=]

Matching size

—
W

10

0 01 02 03 04 05 06 07 08 09
Travel cost (Km)

Figure 7 Similar distributions on travel cost for different days

on the four thresholds with multiple choices, such as selecting any one, mean, maximum or
minimum among the thresholds to guide the online assignment for the other days.

The threshold-extraction method we propose can not only solve the BOA problem, but
also be applied to some crowdsourcing applications which have no budget constraints. Tak-
ing Uber for example, we can obtain the optimal matching schemes from daily vehicle and
passenger data, extract the waiting time threshold of workers and the dispatching distance
threshold of vehicles for various regions and time periods according to the optimal schemes,
and use them as important references to make real-time car scheduling decisions.

6 Related work

In this section, we review related work from two aspects which are task assignment with
budget constraints and online task assignment.

Task assignment with budget constraints Many studies lay stress on the budget con-
strained assignment problem in Web crowdsourcing. Most of them take worker’s reputation
or reliability into consideration, and aim to achieve truthful and guaranteed answers. Karger
et al. [6] takes account the confidence of answers that crowd workers submit, and aims to
minimize the budget to meet certain reliability target. Li et al. [11] aims to maximize the
number of labeled instances that achieve specified quality requirement under a tight budget.
Khetan, Lahouti and Liu et al. [9, 10, 12] aim to find an adaptive task scheme to achieve the
best trade-off between budget and accuracy of aggregated answers. Other research focuses
on obtaining optimal task assignment which maximizes tasks’ completion rate under bud-
get constraint or provides maximum profit for requesters. Biswas et al. [2] improves the
number of successful assignment by exploring and exploiting high-qualify workers with
budgeted multi-armed bandit mechanism. Wu et al. [30] proposes linear programming based
algorithms to maximize the expected profit of assignment. As for the field of spatial crowd-
sourcing, certain studies on the budget constrained assignment problems have also been
sparked. To and Zhao [25, 32] focus on the online maximum task coverage problem which

@ Springer



World Wide Web (2020) 23:289-311 309

aims to select a set of workers to maximize task coverage under budget constraints. Miao
and Yu [14, 31] take workers’ reputation and geometrical proximity into account, and aim
to maximize the expected quality of the assignment with a limited budget. Cheng [3] for-
mulates the maximum quality task assignment problem with the optimization objective to
maximize a global assignment quality score under a traveling budget constraint. The afore-
mentioned literatures in spatial crowdsourcing stress on the worker selection and quality
assurance, which differ from our optimization goal on matching size.

Online task assignment The task assignment problem is one of core issues in spatial
crowdsourcing. In offline scenarios, a large number of studies have obtained substantial
achievements on fundermental assignment problem [7, 24] and complicated assignment
problems which consider additional constraints such as reliability [8], spatiotemporal diver-
sity [15], multi-skill coverage [16], conflict resolution [19] and privacy protection [17, 23].
Presently, the research on the task assignment problem has been transferred to online sce-
narios which are more practical for real applications. According to whether both of workers
and tasks appear on platform dynamically, existing research can be divided into two cate-
gories: one-side and two-sides online assignment. Hassan, She and Tong [4, 20, 26] focus on
one-side online assignment. Tong et al. [26] presents a comprehensive experimental compar-
ison of representative algorithms [1, 5, 13] on online minimum bipartite matchings. Hassan
and Curry [4] maximizes the number of successful assignments as spatial tasks arrive in an
online manner. She et al. [20] extents bipartite matching to social network, and solves the
event-participant arrangement problem with conflicting and capacity constraint when users
arrive on platform dynamically. Song, Tong et al. [21, 27, 28] focus on two-sides online
assignment. Tong et al. [27] devotes to allocate micro-tasks to suitable crowd workers in
online scenarios, where all the spatiotemporal information of micro tasks and crowd work-
ers are unkown. Tong et al. [28] guides workers’” movements based on the prediction of
distribution of workers and tasks to optimize the online task assignment. Besides the tradi-
tional bipartite online matching based on workers and tasks, Song et al. [21] presents the
trichromatic online matching in real-time spatial crowdsourcing which comprise three enti-
ties of worker, tasks and workplace. Our solution for BOA attaches to one-side online task
assignment problem since platform acquires tasks’ spatiotemporal information in advance
while be unaware of workers’ until they appear. Different from aforementioned one-side
assignment, we consider budget constraint and receive the guidance provided by historical
data.

7 Conclusion

In this paper, we formally define a dynamic task assignment problem, called budget-aware
online task assignment (BOA) in real-time spatial crowdsourcing. We first prove the opti-
mal solution of BOA can be solved with min-cost max-flow algorithm, and then propose
two greedy variants to solve the approximate solutions. The first variant named Greedy-RT,
which has the competitive ratio of e FTT> generates a random threshold to aban-
don those large cost pairs to reduce the abuse of budget. In order to improve the stability
of Greedy-RT, we further propose another variant called Greedy-OT, which learns a near
optimal threshold from historical spatiotemporal information of workers and achieves the
YL cini
(Chax+e) Xic 1
the proposed methods through extensive experiments on both synthetic and real datasets.

competitive ratio of . Finally, we verify the effectiveness and efficiency of

@ Springer



310 World Wide Web (2020) 23:289-311

References

1. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.: A randomized o(/ ogzk)-competitive algorithm for metric
bipartite matching. Algorithmica 68(2), 390-403 (2014)

2. Biswas, A., Jain, S., Mandal, D., Narahari, Y.: A Truthful Budget Feasible Multi-Armed Bandit Mecha-
nism for Crowdsourcing Time Critical Tasks. In: International Conference on Autonomous Agents and
Multiagent Systems, pp. 1101-1109 (2015)

3. Cheng, P, Lian, X., Chen, L., Shahabi, C.: Prediction-Based Task Assignment in Spatial Crowdsourcing.
In: IEEE International Conference on Data Engineering, pp. 997-1008 (2017)

4. Hassan, U.U., Curry, E.: A multi-armed bandit approach to online spatial task assignment. In: Proceed-
ings of the 11th IEEE International Conference onUbiquitous Intelligence and Computing, pp. 212-219
(2014)

5. Kalyanasundaram, B., Pruhs, K.: On-Line Weighted Matching. In: Acm-Siam Symposium on Discrete
Algorithms, pp. 234-240 (1991)

6. Karger, D.R., Oh, S., Shah, D.: Budget-optimal task allocation for reliable crowdsourcing systems. Oper.
Res. 62(1), 1-24 (2013)

7. Kazemi, L., Shahabi, C.: Geocrowd: Enabling Query Answering with Spatial Crowdsourcing. In:
International Conference on Advances in Geographic Information Systems, pp. 189—-198 (2012)

8. Kazemi, L., Shahabi, C., Lei, C.: Geotrucrowd: Trustworthy Query Answering with Spatial Crowdsourc-
ing. In: Acm Sigspatial International Conference on Advances in Geographic Information Systems, pp.
314-323 (2013)

9. Khetan, A., Oh, S.: Achieving Budget-Optimality with Adaptive Schemes in Crowdsourcing. In:
Advances in Neural Information Processing Systems 29, pp. 48444852 (2016)

10. Lahouti, F., Hassibi, B.: Fundamental Limits of Budget-Fidelity Trade-Off in Label Crowdsourcing. In:
Thirtieth Annual Conference on Neural Information Processing Systems, pp. 5059-5067 (2016)

11. Li, Q., Ma, F,, Gao, J., Su, L., Quinn, C.J.: Crowdsourcing High Quality Labels with a Tight Budget. In:
ACM International Conference on Web Search and Data Mining, pp. 237-246 (2016)

12. Liu, X., He, H., Baras, J.S.: Trust-Aware Optimal Crowdsourcing with Budget Constraint. In: IEEE
International Conference on Communications, pp. 1176-1181 (2015)

13. Meyerson, A., Nanavati, A., Poplawski, L.: Randomized Online Algorithms for Minimum Metric
Bipartite Matching. In: Seventeenth Acm-Siam Symposium on Discrete Algorithm, pp. 954-959 (2006)

14. Miao, C., Yu, H., Shen, Z., Leung, C.: Balancing quality and budget considerations in mobile
crowdsourcing. Decis. Support. Syst. 90(2), 56-64 (2016)

15. Peng, C., Xiang, L., Zhao, C., Lei, C., Han, J., Zhao, J.: Reliable diversity-based spatial crowdsourcing
by moving workers. Proc. Vldb Endowment 8(10), 1022-1033 (2015)

16. Peng, C., Xiang, L., Lei, C., Han, J., Zhao, J.: Task assignment on multi-skill oriented spatial
crowdsourcing. IEEE Trans. Knowl. Data Eng. 28(8), 2201-2215 (2016)

17. Pournajaf, L., Li, X., Sunderam, V., Goryczka, S.: Spatial Task Assignment for Crowd Sensing with
Cloaked Locations. In: IEEE International Conference on Mobile Data Management, pp. 73-82 (2014)

18. Restuccia, F., Das, S.K.: Fides: a Trust-Based Framework for Secure User Incentivization in Participatory
Sensing. In: World of Wireless, Mobile and Multimedia Networks, pp. 1-10 (2014)

19. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-Aware Event-Participant Arrangement. In: IEEE
International Conference on Data Engineering, pp. 1629-1643 (2015)

20. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrangement and its variant for
online setting. IEEE Trans. Knowl. Data Eng. 28(9), 2281-2295 (2016)

21. Song, T., Tong, Y., Wang, L., She, J., Yao, B., Chen, L., Xu, K.: Trichromatic Online Matching in Real-
Time Spatial Crowdsourcing. In: IEEE International Conference on Data Engineering, pp. 1009-1020
(2017)

22. Ting, H.F.,, Xiang, X.: Near optimal algorithms for online maximum edge-weighted b -matching and
two-sided vertex-weighted b -matching. Theor. Comput. Sci. 607(P2), 247-256 (2015)

23. To, H., Ghinita, G., Shahabi, C.: A framework for protecting worker location privacy in spatial
crowdsourcing. Proc. Vldb Endowment 7(10), 919-930 (2014)

24. To, H., Shahabi, C., Kazemi, L.: A server-assigned spatial crowdsourcing framework. Acm Trans. Spatial
Algorithm. Syst. 1(1), 1-28 (2015)

25. To, H., Fan, L., Luan, T., Shahabi, C.: Real-Time Task Assignment in Hyperlocal Spatial Crowd-
sourcing under Budget Constraints. In: IEEE International Conference on Pervasive Computing and
Communications, pp. 1-8 (2016)

26. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching in real-time spatial data:
experiments and analysis. Proc. Vldb Endowment 9(12), 1053-1064 (2016)

@ Springer



World Wide Web (2020) 23:289-311 311

27.

28.

29.

30.

31.

32.

Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online Mobile Micro-Task Allocation in Spatial
Crowdsourcing. In: IEEE International Conference on Data Engineering, pp. 49—60 (2016)

Tong, Y., Wang, L., Zhou, Z., Ding, B., Chen, L., Ye, J., Xu, K.: Flexible online task assignment in
real-time spatial data. Proc. VIdb Endowment 10(11), 1334-1345 (2017)

Uber Trip Data: https://www.kaggle.com/fivethirtyeight/uber- pickups-in-new-york-city

Wu, K.L., Wu, K.L., Wu, K.L., Wu, K.L.: Budgeted Online Assignment in Crowdsourcing Markets:
Theory and Practice. In: Conference on Autonomous Agents and Multiagent Systems, pp. 1763—-1765
(2017)

Yu, H., Miao, C., Shen, Z., Leung, C.: Quality and budget aware task allocation for spatial crowdsourc-
ing. In: Proceedings of International Conference on Autonomous Agents and Multiagent Systems, pp.
1689-1690 (2015)

Zhao, D., Li, X.Y., Ma, H.: Budget-feasible online incentive mechanisms for crowdsourcing tasks
truthfully. IEEE/ACM Trans. Netw. 24(2), 647-661 (2016)

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

	Budget-aware online task assignment in spatial crowdsourcing
	Abstract
	Introduction
	Problem statement
	Offline optimal solution
	Complexity Analysis

	Online assignment algorithms
	Greedy-RT algorithm
	Complexity Analysis

	Greedy-OT algorithm
	Complexity Analysis


	Experiments
	Experiment setup
	Synthetic Dataset
	Real Dataset


	Adversarial model
	Effect of |W|
	Effect of |T|
	Effect of budget
	Effect of deadline


	Random model
	Real dataset
	Discussion


	Related work
	Task assignment with budget constraints
	Online task assignment


	Conclusion
	References




