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Abstract
Trajectories between the same origin and destination (OD) offer valuable information for
us to better understand the diversity of moving behaviours and the intrinsic relationships
between the moving objects and specific locations. However, due to the data sparsity issue,
there are always insufficient trajectories to carry out mining algorithms, e.g., classification
and clustering, to discover the intrinsic properties of OD mobility. In this work, we pro-
pose an efficient and robust trajectory augmentation approach to construct sizeable qualified
trajectories with existing data to address the sparsity issue. The high-level idea is to con-
catenate existing trajectories to reconstruct a sufficient number of trajectories to represent
the ones going across the OD pair directly. To achieve this goal, we first propose a transi-
tion graph to support efficient sub-trajectories concatenation to tackle the sparsity issue. In
addition, we develop a novel similarity metric to measure the similarity between two set of
trajectories so as to validate whether the reconstructed trajectory set can well represent the
original traces. Empirical studies on a large real trajectory dataset show that our proposed
solutions are efficient and robust.

Keywords Trajectory sparsity · Trajectory concatenation · Trajectory augmentation ·
Trajectory set similarity

1 Introduction

With the proliferation of GPS-enabled devices, a significant increasing volume of trajec-
tories have been collected, which record the mobility of moving objects, e.g., vehicles.
Trajectory data offers valuable information for us to better understand the moving objects
and the intrinsic relationship between the moving objects and specific locations. This fos-
ters plenty of applications in location-based social networks and intelligent transportation
systems, e.g., personalised routing service. Given an origin and a destination, in general,
most existing online navigation services, e.g., Google Map, only provide the shortest path or
the fastest route from o to d . But the personalised routing service will mine the trajectories
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between the same origin and destination, and further helps offer valuable information on
the options that travels might be interested in, e.g., the quiet route, the route with fewer
humps/traffic lights. In the literature, there exists a plethora of work [2, 13, 26] focusing on
how to do trajectory mining given OD pairs.

However, most of these mining algorithms only focus on the mining part and do not
consider the data sparsity issue. To explain, given an origin and a destination, the number
of trajectories could be found from a trajectory dataset might be notably small, even though
the volume of the entire trajectory set is considerably huge, which hinders the effectiveness
of the mining algorithms. From a statistic on a real dataset containing 190K location points
(190K ×190K pairs) and 2000K trajectories, only 1.5% pairs of points contain trajectories
passing from one point to another. Figure 1a summaries how many OD pairs have a number
x of trajectories going across the OD pair. As we can see, the number of OD pairs drops
sharply with the increase of the number x of trajectories traversing the OD pair, and only a
small number of OD pairs contain large sets of trajectories passing by.

In particular, data sparsity is a typical issue in data mining, which will significantly
affect the performance of corresponding mining algorithms. In the literature, the research
studies [5, 6, 27, 28] on trajectory mining mainly apply trajectory concatenation to address
the sparsity problem. They augment OD trajectories with existing sub-trajectories, namely,
if there is no/insufficient trajectory directly traversing over an OD pair, they join multiple
sub-trajectories to represent the traces from the origin to the destination. For example, in
Figure 1b, suppose that there are only four historical trajectories T1, T2, T3, T4 on this por-
tion of the road network in a dataset, where the OD pair is set to be p1 and p14. Clearly,
there is no trajectory starting from p1 to p14 that can be directly extracted from this dataset.
A notable solution is to concatenate the trajectory (T2) traveling from p1 to p11 with the one
(T4) traveling from p11 to p14 to represent the one from p1 to p14. Here, p11 is identified
as the intermediate transition node (ITN) for trajectory concatenation. As we can see, the
concatenation is a straightforward and feasible solution for trajectory augmentation.

Nevertheless, the major challenge is how to form the concatenation of trajectories,
which further consists of threefold issues. 1) Firstly, the retrieval of possible ITN could be
complicated. Particularly, the number of intermediate transition nodes required for specific
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Figure 1 illustration of the sparsity issue and an example of trajectory concatenation

World Wide Web (2020) 23:361–387362



OD pairs to generate concatenation varies according to the location relationship between the
OD pairs. For instance, in Figure 1b, given the OD pair p5 and p14, we can obtain the OD
trajectory T3 which directly traverses from p5 to p14 with zero ITN, or we can concatenate
the trajectories from p5 to p7 (T3), from p7 to p11 (T2) and then from p11 to p14 (T4), with
2 ITNs (p7, p11). 2) Besides, when given a fixed number of ITNs, there could be multiple
possible ITNs for trajectory concatenation. For example, in Figure 1b, by setting the OD
pair as p1 and p14, and the number of ITN as 1, the possible ITNs for concatenation could
be p6, p7, p8, and p11. Concatenate trajectories according to all possible ITNs is consider-
ably time-consuming and unnecessary. Thus a challenging issue is to identify which points
should be chosen to form the concatenation. 3) Furthermore, after the trajectory concate-
nation, whether the concatenated trajectories are qualified to represent the one traversing
directly from the origin to the destination is unclear, and no existing work on trajectory
concatenation provides a robustness validation for the concatenated trajectories.

In our previous work [9], we proposed a novel similarity measure for trajectory sets,
which to the best of our knowledge was the first to explore the similarity between two
sets of trajectories. All existing trajectory similarity measures only focus on two individual
trajectories rather than on two trajectory sets. In this paper, we propose an efficient and
robust trajectory augmentation approach to address the data sparsity issue by concatenating
the existing sub-trajectories to represent the trajectories over specific OD pairs. In order
to retrieve the possible ITN w.r.t. a given OD pair efficiently, we build a transition graph
based on the trajectory data, which indicates the connectivity relationship between transition
nodes. After obtaining the ITNs candidates, we provide a few criteria for the selection of
ITNs to concatenate trajectories. For validating the quality of the concatenated trajectories,
we apply our EMD-based trajectory set similarity measure [9] to validate the robustness of
our concatenation approach, compared with two existing strategies: sweep-and-expand [6]
and popularity-based [5]. The contributions of our work can be summed up as follow:

– We propose a novel and robust similarity measure [9] for two sets of trajectories,
derived from the Earth Mover’s Distance [19] (EMD), which measures the distance of
the spatial hits distribution between two trajectory sets. We further extend the EMD so
as to cover the spatial, temporal, and sequence properties of trajectory sets.

– We develop a transition graph based on existing trajectory data on account of efficient
retrieval of eligible intermediate transition nodes regarding to a specific OD pair to
form the concatenation set of trajectories.

– We propose effective heuristic solutions for intermediate transition nodes selection,
which not only accelerates the intermediate transition nodes retrieval but also guarantee
the quality of the concatenation set of trajectories.

The remainder of this paper is organised as follows. In Section 2, we introduce the related
work and their limitations on our studied problem. Next, in Section 3, we present the pre-
liminary concepts and the overview of our framework. The technical details of our approach
will be demonstrated in Sections 4 and 5, followed by the experimental study in Section 6.
Finally, we conclude and present potential future studies in Section 7.

2 Related work

In this section, we present the existing research work related to our study. In Section 2.1,
we present existing work on the similarity measures for spatial-temporal data, followed by
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the similarity measure for distributions in Section 2.2. Finally, we present existing work
on dealing with trajectory sparsity in data mining area and the corresponding solutions in
Section 2.3.

2.1 Trajectory similarity measures

Measuring the similarity or the distance between two entities is a crucial and fundamental
procedure in data mining and knowledge discovering. As for trajectory data, a plethora of
research work [3, 4, 17, 20, 23, 30] has studied how to define similarity measures on trajec-
tory data for over decades. Several surveys [21, 24] have provided precise and systematic
classification on similarity measures according to diverse concerns on the characteristic of
trajectories. In particular, Euclidean Distance (ED) [20] is a straightforward and intuitive
similarity measure with low calculation cost, which computes the distance between the cor-
responding matched points from two trajectories. However, the ED measure is sensitive to
noise. Vlachos et al. introduced the The Longest Common Subsequence (LCSS) measure
[23], to measure the similarity of two trajectories, which is much robuster to noise than the
ED measure. Chen et al. proposed two versions of similarity measure for two trajectories
based on Edit Distance: Edit Distance on Real Sequences (EDR) [3] and Edit Distance with
Real Penalty (ERP) [4], which are widely used in trajectory similarity measure. Kruskal et
a. [11] and Kassidas et al. [10] proposed to use Dynamic Time Warping (DTW) [30], tra-
ditionally applied on time series analysis since decades ago, as a trajectory measure. Apart
from the above similarity measures, there are many other measures introduced for trajectory
dateset, e.g., Dynamic Time Warping (DTW) [30], One Way Distance (OWD) [14], etc.

Nevertheless, all the aforementioned similarity measures mainly focus on individual tra-
jectory. No existing similarity measure is introduced for two sets of trajectories. A naive
extension from individual trajectory similarity measure to the trajectory set measure is to
calculate the pairwise distances between each pair of trajectories from two different sets
respectively. However, such similarity measure is not only time-consuming, but also inef-
fective. For two identical sets of trajectories it might result in a large distance value by
calculating the pairwise distances, while intuitively the distance should be zero.

2.2 Distribution similarity measure

By extracting some representative features from the corresponding sets and transforming
them into distributions, the distribution similarity measure can be easily extended to mea-
sure the similarity between two sets of objects. In measuring the similarity between two
distributions, which are usually represented by histograms, the Mankowski-Form Distance
[22] is the most straightforward one, by simply calculating the L1-norm distance between
each pair of bins. Kullback-Leibler Divergence [12] and Jeffrey Divergence [18] are two dis-
tribution measures derived from information theory, that measure how inefficient on average
it would be to code one histogram using the other as the code-book. Most of the distribu-
tion measures require that the number of bins in two histograms to be the same, and they do
not consider the ground distance between each pair of bin. The Earth Mover’s Distance [19]
is a well known distribution similarity measure, which is proposed for the image retrieval.
Informally, interpreting the distributions as two different ways of piling up a certain amount
of dirt over the region, the Earth Mover’s Distance is the minimum work flow of moving
one pile into the other. It takes the ground distance between different bins into account and
the numbers of bins in two histograms are unnecessary to be the same. Thus, we derive the
EMD to develop our set-based trajectory similarity measure.
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2.3 Trajectory sparsity problem

Trajectory data usually spans across a geographical area such as a city, which renders the
data concerning a specific region probably to be very sparse. Likewise, although given a
trajectory database recording trajectories distributed over an extended period, e.g., one year,
trajectories existing within a short period, e.g., one hour, are also likely to be rare. Trajectory
sparsity problem would significantly reduce the effectiveness and efficiency of many trajec-
tory applications, e.g., destination prediction [28], travel time estimation [29], and popular
route discovery.

Destination prediction aims to find out the potential destination of a user while gives
only part of trajectory information. A universal solution is to derive the probability of a
location being the destination based on building a Hidden Markov Model (HMM) [7] on
top of historical trajectory data [1]. However, data sparsity is an inevitable problem for
the general technique. Xue et al. [28] proposed a Sub-trajectory Synthesis (SubSyn) algo-
rithm to address the sparsity problem with the HMM for destination prediction, which first
decomposes trajectories into sub-trajectories between two neighbour locations and then
concatenates the sub-trajectories into ”synthesised” trajectories. The corresponding sparsity
issue differs from our work as we take destination as one of the input, while destination is
the output of this problem. Regarding the traveling time estimation, which strives to evalu-
ate the time cost of a path from one location to another based on historical trajectory data,
the sparsity issue of the trajectory is also a challenging problem. Wang et al. [25] propose
an efficient and effective model to estimate the travel time of a path with sparse trajecto-
ries. This model uses context-aware tensor decomposition approach to fill the missing data
and find out the most optimal concatenation of trajectories for time estimation. The sparsity
problem is solved by employing tensor factorization to fill the empty fields (traveling time)
based on features of trajectories, which is unsuitable for the scenario that requires retrieving
the actual trajectories.

The problem of data sparsity also appears in applications such as popular route discovery
[5], which attempts to return the popular route concerning a pair of origin and destina-
tion. To solve this problem, it first builds a transfer network based on the trajectory data,
and then retrieves the popular route based on the transfer network, which is formed by a
sequence of edges whose multiplication popularity is maximum. There is a similar approach
to address the sparsity issue (i.e., there is no reference trajectory in between a given OD
pair) in personalized routing [6], which builds a global reference graph by concatenating the
intermediate edges from the origin to the destination. Then it discovers a route from the ref-
erence graph that to the largest extent satisfies the user’s preference. In general, the existing
strategies for the sparsity problem in trajectory applications mainly focus on concatenat-
ing the sub-trajectories along the specific paths and filling up the sparsity with conceptual
trajectory based on probability or popularity of the sub-paths. However, no existing work
gives the robustness validation for their reconstructing trajectories, i.e., how qualified the
reconstructed trajectories are to represent the potential mobility.

3 Overview

In this section, we first illustrate some formal concepts and definitions. Then we introduce
the problem statement and the framework overview. The frequently used notations in this
paper are shown in Table 1.
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Table 1 frequently used
notations Notation Description

G A road network

T A trajectory

Tpj ,pk
The sub-trajectory from pj to pk

Spopd
An origin-destination set of trajectories

IT N The intermediate transition node

k The number of ITNs in one concatenation

Sc(po, pd , k) A concatenation set of trajectories

sh(p) The spatial hit of road segment p

S The spatial hit signature

δ The average delta duration

α The percentage of spatial character in EMDT

Gt A transition graph

λ The parameter for Gt construction

ASL The accumulative spatial length

τ The threshold of ASL for ITNs retrieval

3.1 Preliminary concepts

Definition 1 (Road network) A road network is defined as a graph G = (V ,E), where
V is a set of intersection nodes on the road network and E is a set of road segments r ∈
E, such that r = (ps, pe) with ps, pe ∈ V being the two end nodes of r , denoted by
< latitude, longitude >.

Definition 2 (Trajectory) A raw trajectory of a moving object is usually recorded by
a sequence of spatial-temporal points. Given a road network G = (V ,E), each spatial-
temporal point from a trajectory can be mapped onto a intersection node of the road network
appended with corresponding timestamp. Thus, a trajectory T can be represented by a
sequence of time-ordered road network nodes, i.e. T = {(p1, t1), (p2, t2), . . . , (p|T |, t|T |)}.
Note that pi here indicates the i-th nodes the trajectory T mapped onto the road network.
The length of a trajectory T is the number of constituted nodes, notated as |T |. A sub-
trajectory of T is a subsequence of road network nodes from T , denoted by Tpj ,pk

=
{(pj , tj ), . . . , (pk, tk)}, where 1 ≤ j < k ≤ |T |.

Definition 3 (Origin-destination set) Given a trajectory database D and a pair of origin
and destination nodes (po, pd), the set of trajectories/sub-trajectories traversing from po to
pd are notated as Spopd

. Formally, we have Spopd
= {Tpj ,pk

|T ∈ D ∧pj = po ∧pk = pd}.

Definition 4 (Concatenation set) Given a sequence of k nodes on the road network
{pc

1, p
c
2, . . . , p

c
k}, denoted as Intermediate Transition Nodes (ITNs), and a pair of origin and

destination nodes, po and pd , we concatenate the sets of trajectories/sub-trajectories travel-
ing from po to pd by passing the intermediate transition nodes consecutively into a hybrid
set Scon of trajectories. Formally, we have Sc(po, pd, k) = Spop

c
1

‖ Spc
1p

c
2

‖ · · · ‖ Spc
k−1p

c
k

‖
Spc

kpd
, where Spop

c
1

�= ∅, Spc
i p

c
i+1

�= ∅ (1 ≤ i ≤ k − 1) and Spc
kpd

�= ∅.
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The origin-destination set is the set of trajectories/sub-trajectories starting from po and
ending at pd , which is equivalent to the concatenation set of trajectories in the case of k = 0.
Given an origin and a destination, to efficiently retrieve the trajectories going across the OD
pair, a widely applied index structure is the inverted list, defined as follows.

Definition 5 (Trajectory inverted list [8]) Each entry in the trajectory inverted list corre-
sponds to a road intersection nodes, with the form of < pid, Tlist >, where pid indicates
the intersection node and Tlist is the trajectory position list that contains the trajectories
occur on that node. The trajectory position list is formed by a list of < Tinf o, pos >, where
Tinf o consists of both trajectory id and the trajectory address indicating the block where T

is stored and the position is the occurrence of the corresponding node on that trajectory.

Note that the Tlist is sorted by the trajectory id and the entry list is sorted by the pid

for efficient search. Besides, all the trajectory sequences are stored consecutively in the
ascending order of the trajectory ids on the disk. Also, the inverted index can be built by
a single scan on the trajectory dataset. For each road intersection node that occurs on a
trajectory, we create an entry consisting of the occurrence and trajectory information and
append this entry to the corresponding trajectory position list of that node.

Problem Statement: The Trajectory Augmentation Approach (TAA) takes as input an
origin po, and a destination pd . It then returns sizeable Concatenation Sets Sc(po, pd), of
trajectories, to augment the moving traces traversing from po to pd .

3.2 Framework overview

Figure 2 demonstrates the framework of our trajectory augmentation approach, consist-
ing of three components: trajectory retrieval, trajectory concatenation and similarity-based
validation.

In the trajectory retrieval stage, raw trajectories are transformed into sequences of
time-ordered road network intersection nodes by map matching [15], associated with the
underlying road network data. Afterwards, an inverted index (Ref. Definition 5) is built
based on the mapped trajectories, which develops the linking between road network nodes
and trajectories traversing through. When given an OD pair of spatial nodes (if they are arbi-
trary points, find the nearest intersection nodes respectively), trajectory retrieval is to obtain
a set of trajectories/sub-trajectories that start from po and end at pd . With the inverted index,
we can efficiently return a set of trajectories that traverse across the nodes po and pd . Firstly,
we load the corresponding trajectory position lists of po and pd in the memory and scan both
synchronously to find out each intersecting trajectory T (i.e. {T ∈ Tlist (po)

⋂
Tlist (pd)).

Further, the occurrence of po on the intersecting trajectory T should be earlier than that

Figure 2 Framework Overview
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of pd (i.e. T (po).pos < T (pd).pos). This helps find out the Origin-Destination Set of
trajectories for the given OD pair with the inverted index.

In our trajectory concatenation component, we construct a directed transition graph based
on the trajectory data for intermediate transition nodes retrieval. Each edge on the graph
indicates the connectivity relationship by the trajectory between two nodes. In order to
improve the efficiency and reduce the redundancy, we eliminate some unnecessary edges
of the graph. Employing the transition graph, we retrieve the eligible candidates of inter-
mediate transition nodes. Further, we propose several criteria, which are based on the
experimental study, to filter unnecessary intermediate transition nodes for concatenation
formation.

In the similarity-based validation component, borrowing the idea of the Earth Mover’s
Distance, we propose an effective and robust similarity measure to calculate the similarity
between two trajectory sets. Our proposed measure captures most characteristics of tra-
jectories, e.g., spatial-temporal property, sequence (i.e., oder and direction) information in
individual trajectories. After obtaining the concatenation set of trajectories, we extract the
features of the origin-destination set and each concatenation set respectively, followed by
the signature generation for the corresponding feature. Note that the origin-destination set
of trajectories is temporarily removed from the database before concatenation formation.
Afterwards, we calculate the distance between the two trajectory sets according to our pro-
posed trajectory set similarity measure. In terms of the computation of the Earth Mover’s
Distance, we utilise the algorithm proposed in [16], which is the fastest in the state of the art.

Next, we present the details of our framework component. We omit the discussion of our
trajectory retrieval component, since it mainly applies existing solutions. Also, for the ease
of exposition, we first present our similarity-based validation component assuming that two
trajectory sets are given, which is the principle content of our previous work [9]. Then, we
present the details on how to do trajectory concatenation aiming at finding eligible ITNs to
reconstruct concatenation trajectory sets.

4 Similarity-based validation

Unlike other existing work that concatenates trajectories without any robustness validation
and guarantee, in our work, we provide a trajectory set similarity measure to evaluate the
similarity between the concatenated trajectories and the origin-destination ones. The con-
catenated trajectories with high similarity to the origin-destination set are verified as the
ones with good quality to represent the potential traveling mobility from the origin to the
destination. In this section, we first introduce a similarity measure to calculate the distance
between two set of trajectories based on the EarthMover’s Distance (EMD). Then we extend
the EMD-based measure to a more robust and effective measure which considers more tra-
jectory characteristics, i.e, temporal and sequence information. In our paper, we use the
solution proposed in [16] to calculate the Earth Mover’s Distance.

4.1 EMD

The Earth Mover’s Distance [19] is widely used in image retrieval, which measures the
similarity for the distributions of features from two different sets of objects. Given two sig-
natures, EMD calculates the minimum cost to transform one signature to another with the
ground distance between each bin into consideration. To consider the similarity of two tra-
jectory sets, intuitively, two similar sets of trajectories (i) have higher probability traversing
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across the same or near locations, (ii) go across the same node with similar probabilities.
This motivates us to apply the spatial hits defined as follows to consider the similarity of
two trajectory sets.

Definition 6 (Spatial hit) Given a set of trajectories T and a node p, the spatial hit of p

w.r.t. T, notated as sh(p), is defined as the number of occurrence of p in T. Correspond-
ingly, we build the spatial hit signature denoted by S = {(p1, w1), (p2, w2), · · · , (pn,wn)},
where {p1, p2, ..., pn} is the union set of road network nodes in T, and wi is the hit ratio for
node pi , formulated by

wi = sh(pi)
∑n

i=1 sh(pi)
(1)

The spatial hits captures the above mentioned intuition, and for two similar trajectory
sets, the minimum cost to transform one spatial hits signature to another should be small.
Hence, based on the spatial hit signature, we introduce the measurement of the distance
between two sets of trajectories based on Earth Mover’s Distance as follows.

Definition 7 (Earth Mover’s Distance (EMD) [19]) Let two spatial hit signature
Sa and Sb be notated as Sa = {(pa,1, w1), (pa,2, w2), · · · , (pa,n, wn)} and Sb =
{(pb,1, u1), (pb,2, u2), . . . , (pb,m, um)}, with pa,i (resp. pb,j ) and wi (resp. uj ) being the
node from the set Sa (resp. Sb) of trajectories and the corresponding hit ratio. Let D = [dij ]
be the ground distance matrix where dij is the ground distance between pa,i and pb,j . We
aim to find a flow F = [fij ] that minimizes the cost to match Sa to Sb, formulated as below:

EMD(Sa, Sb) = min

⎧
⎨

⎩

n∑

i=1

m∑

j=1

dij fij

⎫
⎬

⎭
(2)

subject to the following conditions:

fij ≥ 0 1 ≤ i ≤ n, 1 ≤ j ≤ m (3)

m∑

j=1

fij ≤ wi,

n∑

i=1

fij ≤ uj (4)

n∑

i=1

wi =
m∑

j=1

uj = 1 (5)

dij =
{

d(pa,i ,pb,j )

dmax
, d(pa,i , pb,j ) < dmax

1, otherwise
(6)

Here, d(pa,i , pb,j ) usually refers to the Euclidean distance or the road network distance
between two nodes. According to the experiment, the Euclidean distance is sufficient to
display the spatial difference between trajectory sets. For simplification and efficiency, we
set the default ground distance measure as the Euclidean distance. In addition, we set a large
distance value dmax for normalisation, s.t. the EMD is bounded by [0, 1].

The flow F = [fij ] is a matrix representing the hit ratio flowing from one
signature to another for matching two spatial hit signatures. Constraint (3) confines
the amount of pa,i matched to pb,j to be nonnegative. Constraint (4) limits the
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total amount in Sb matched from pa,i does not exceed wi , and the total amount
in Sa matched to pb,j does not exceed uj . Take the two spatial hit signatures in
Figure 3 as example, where Sa = {(p1, 0.2), (p2, 0.3), (p3, 0.2), (p4, 0.3)} and Sb =
{(p1, 0.3), (p2, 0.2), (p3, 0.3), (p4, 0.2)}. Given the ground distance matrix dij shown as
Figure 3, we can obtain the flow with f11 = 0.2, f21 = 0.1, f22 = 0.2, f33 = 0.2,
f43 = 0.1, and f44 = 0.2, such that the EMD(Sa, Sb) is minimum. Eventually, in this case,
EMD(Sa, Sb) = 0.1.

However, since a trajectory set is a set of spatial-temporal sequences rather than a multi-
set of spatial nodes, simply taking EMD as the measure is insufficient. It will discard the
temporal / sequence information, and may result in biased results. Take an extreme case as
example. Consider two set of trajectories where the first set S1 contains trajectories going
from o to d and the second set S2 contains trajectories going from d to o. For each trajectory
Ti in S1, there exists a trajectory T ′

i such that the nodes going across in Ti are the same
as the one in T ′

i , and vice versa. In this case, the EMD between these two sets should be
zero. However, it is clear that the two sets of trajectories differ significantly and the EMD
score cannot capture the difference as it ignores the temporal / sequence (i.e., the order and
direction of the spatial nodes) information.

4.2 EMDT

To capture the temporal / sequence information of trajectories, we further propose the Earth
Mover’s Distance on Trajectory, an improved version of the EMD to capture more charac-
teristics of trajectory set. In particular, we take into account the time duration information
and add it into the signatures. More formally, we define the average delta duration for a
node as follow.

Definition 8 (Average delta duration) Given a signature S = {(p1, w1), (p2, w2), · · · ,

(pn,wn)} w.r.t. a set of trajectory T, for each node p, we define the average delta duration

Figure 3 EMD Example
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of p, denoted as δ, to be the average time duration of p to the time of the first node in each
trajectory in Tp (where Tp ⊂ T is the set of trajectories containing p), formulated by

δ = 1

|Tp|
|Tp |∑

i=1

(tTi
(p) − tTi

(p1)) (7)

where Ti ∈ Tp is the trajectory traversed through p, p1 is the first node in Ti and tTi
(p) is

the corresponding time stamp of p on trajectory Ti .

Note that the average delta duration indicates not only the temporal information
of a signature but also reflects the sequence characteristic of trajectory nodes. This
is because the delta duration represents an accumulative time used from the starting
node of the trajectory to the corresponding node. For example, given 3 trajectories
T1 = {(p11, 1), (p12, 3), (p13, 6)}, T2 = {(p21, 2), (p22, 5), (p23, 7), (p24, 9)} and T3 =
{(p31, 1), (p32, 5), (p33, 8)}. Suppose p = p12 = p22 = p32. Then the average delta dura-
tion of p in these 3 trajectories equals (2 + 3 + 4)/3 = 3. With the average delta duration
information on the signature, we propose the Earth Mover’s Distance on Trajectory (EMDT)
as follow.

Definition 9 (Earth Mover’s Distance on Trajectory (EMDT)) Given two trajec-
tory sets Sa and Sb, we have the corresponding spatial hit histograms notated as
Sa = {(pa,1, δa,1, w1), (pa,2, δa,2, w2), · · · , (pa,n, δa,n, wn)} and Sb = {(pb,1, δb,1, u1),

(pb,2, δb,2, u2), · · · , (pb,m, δb,m, um)}, with δ representing the average delta duration. We
define the distance between Sa and Sb as the Earth Mover’s Distance on Trajectory (EMDT)
formulated by the following:

EMDT (Sa, Sb) = min

⎧
⎨

⎩

n∑

i=1

m∑

j=1

Costij fij

⎫
⎬

⎭
(8)

with

Costij = α × dij + (1 − α) × d(δa,i , δb,j ) (9)

d(δa,i , δb,j ) =
{

dist (δa,i ,δb,j )

distmax
, dist (δa,i , δb,j ) < distmax

1, otherwise
(10)

where the dist (δa,i , δb,j ) is defined as the l1-norm between δa,i , δb,j and α is an adjustable
linear combination parameter, (which can be defined according to the users’ preference, i.e.,
how to allocate the proportion of the spatial and temporal characteristics in measuring the
similarity). Similarly, a large value distmax is set for normalisation.

The EMDT differs from the EMD in trajectory set similarity measure by the calculation
of the cost for transforming one signature to the other, while the computation of the distance
value is similar. As we will see in the experiments in Section 6, by capturing the temporal
/ sequence characteristics of the trajectories, the proposed EMDT is a more robust and
effective measure in distinguishing the difference between trajectory sets.
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5 Trajectory concatenation

In this section, we propose the algorithms to generate the concatenation set of trajectories
based on existing data. Firstly, a transition graph is built for candidate Intermediate Tran-
sition Nodes (ITNs) retrieval, followed by the details of the corresponding algorithm and
strategies to obtain ITNs for trajectory concatenation. Intuitively, in order to form the con-
catenation, it requires to identify the ITNs such that there exist a sizeable set of trajectories
between the origin to an ITN, between two consecutive ITNs, and between an ITN to the
destination. Moreover, the number of ITNs to form the concatenation could be various, i.e.,
a different number of transition nodes can form different concatenations of trajectories. A
naive approach (intersection-based) to identify the ITNs is to recursively check from the
inverted index that whether the nodes are eligible to form the concatenation. For example,
given an OD pair po and pd , by setting the number of ITNs to be 1, an eligible ITN p1
must suffice: there exist a sizeable set of trajectories from po to p1 and trajectories from p1
to pd , which can be determined by the intersection retrieval of the corresponding trajectory
position lists from the inverted index.

However, with the increase of the number of transition nodes, the number of intersection
retrieval operations grows exponentially since such ITNs retrieval approach runs in a recur-
sive manner. Clearly, the computational cost would be considerably high as for each node
traversed in an iteration, we need to invoke the intersection retrieval to determine whether
it is eligible to be one of the ITN. Hence, for the purpose of efficiency, we preprocess the
intersection retrieval in advance to build a parameter based transition graph over the trajec-
tory data set. In such way, we can identify the ITNs directly from the transition graph rather
than invoking the intersection retrieval constantly.

5.1 Transition graph

Given an OD pair, in order to generate the corresponding ITNs candidates, we need to iden-
tify the reachability from the origin to the destination and how this OD pair is connected
according to the existing trajectories. Thus, we build a transition graph based on the trajec-
tory dataset, such that, all the nodes from the graph are made up of nodes from the road
network that contain a certain number of trajectories traversing on. And if there exist a
sizeable set of trajectories/sub-trajectories from one node pa to another pb, then there is a
directed edge between pa and pb. Formally, we define the transition graph as follow.

Definition 10 (Transition graph) The transition graph, denoted by Gt(Vt , Et , λ), is a
directed graph derived from a trajectory database D that suffices:

– Vt is formed by the union of the road network nodes occurring on the trajectories in D,
where each node is traversed by at least λ trajectories;

– If there is an edge (u, v) ∈ Et directed from u to v, there must exist at least λ

trajectories/sub-trajectories traversing from u to v.
– There is no redundant edge. Given an edge (u, v), we say (u, v) is redundant, if there

exists a node w ∈ Vt , such that (u,w) ∈ Et and (v,w) ∈ Et , and the underlying sets
of trajectories (i.e. the ids of trajectories) traversing on the three edges (u, v), (u,w),
(v, w) are completely the same.

The transition graph is a parameter-based graph, where the variable λ determines the size
and the precision of the graph. In particular, a smaller λ indicating a denser graph but more
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connectivity relationships between two nodes recorded, while a larger λ depicting a portable
graph but only prosperous connectivity relationships reserved (i.e., edges with enough tra-
jectories traversed in between). The λ parameter can be adjustable based on the application
demand or according to the density of trajectories on the specific road network. Intuitively,
without such a setting, an edge traversed by very few trajectories will also be recorded, while
it provides little information on the diversity of traveling behaviours between two nodes.
In the definition of the graph, the first condition demonstrates the deriving of the nodes to
build the transition graph, and the second condition indicates the connectivity relationships.
The last condition, not only guarantees the efficiency in the graph traversal, but also reduces
the redundancy for concatenation generation.

Figure 4 shows an example of the transition graph with λ = 1, derived from the trajec-
tories in Figure 1b. The transition graph indicates the reachability from one node to another
by trajectory. For instance, there are 2 nodes reachable from nodes p1, since there exist two
trajectories T1 and T2 starting from p1 and ending at p8 and p11 respectively. Given two
arbitrary nodes pa and pb, we can check from the transition graph to see whether there
are trajectories/sub-trajectories from pa to pb by checking the out-neighbour list of pa to
observe whether pb is one of pa’s out-neighbours. Further, we can find out the interme-
diate transition nodes by traversing the graph in a depth-first-search manner. For example,
to obtain the ITNs for concatenating trajectories from p2 to p14, we first get the elements
from the out-neighbour list of p2, which only contains p8. And then we check the neigh-
bour list of p8. Since p14 is one of p8’s out neighbours, p8 is an eligible ITN to form the
concatenation, which is the concatenation of sub-trajectories from T1 and T3, to represent
the trajectories from p2 to p14.

With the transition graph, when given an OD pair (po, pd) and a transition parameter k,
the algorithm to get the candidate ITNs, which works as follow. Line 1: Get the elements in
the adjacent list of po from the transition graph. Line 2−5: If k = 0, check if the neighbours
contain pd . If yes, add the current transition nodes sequence to the result set Ck . Line 6−10:
Otherwise, for each p in the neighbour list, the algorithm recursively executes IT NR with
po = p and k = k − 1. Line 11: Finally, the algorithm returns all ITNs sequences, each of
which contains k nodes. Take the Figure 1b as example with OD pair (p1, p14) and k = 1.
IT NR first gets the neighbours of p1 which are p8 and p11. Then for each neighbour,
IT NR checks its out-neighbour list to see whether p14 is included. Since p14 is in the out-
neighbour list, p14 is an eligible ITN. Similarly, p8 is also a ITN. The computational cost

Figure 4 Example of transition
graph
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can be analysed in a top-down manner. The execution can be formed into a tree. On the root,
it is the point po, and the fanout is the number of its out-neighbours. On level 1, each node is
from the out-neighbours of the root and the fanout is the number nodes in the corresponding
out-neighbour list. There are in total k + 1 levels, and the execution flow follows a DFS
from the root to each node. Thus, in conclusion, the complexity is bounded by O(dk+1),
where d is the maximum out-degree in the transition graph.

Compared with the naive approach, to retrieve the ITNs based on the transition graph, we
can not only improve the efficiency (since there is no need to perform intersections between
two inverted lists), but also reduce the redundancy of concatenation on trajectories. We anal-
yse how the redundant edge can generate the redundant concatenation set of trajectories to
verify the importance of the third condition in the definition of the transition graph. For
example, from Figure 1b, we can identify that (p1, p6), (p1, p7) are both redundant edges.
If we keep these edges, by setting OD pair as (p1, p14), and k = 1, the ITNs returned by
IT NR are p6, p7, p8, p11. However, after retrieving the concatenated trajectories based on
these ITNs, we note that taking the p6 and p7 as the intermediate transition node respec-
tively, the concatenated trajectories are the same, which are the sub-trajectory from T2 and
T3 in both cases. Moreover, setting k = 2, one of the ITNs will be {p6, p7}, such that the
concatenated trajectories are the same as the aforementioned ones with k = 1. In addition,
according to the complexity analysis of the ITN retrieval algorithm, the computational cost
mainly depends on the average out-degree of each node in the transition graph. Thus, the
elimination of redundant edges is both efficient and effective for trajectory concatenation.

Next we introduce the construction of the transition graph consisting of two major steps:
the basic graph generation and redundant edge reduction. The basic transition graph is the
graph that satisfies the first two conditions in the definition, which can be constructed in a
straightforward manner. In particular, for each trajectory T = (p1, p2, · · · , pj ), we add an
edge (pi, pj ) with weight 1 if i < j and there does not exist edge (pi, pj ) yet. Otherwise,
we increase the weight of the edge by one. Finally, we remove all the edges with weight no
larger than λ. This can be finished in O(n · l2) time where n is the number of trajectories,
and l is the maximum number of nodes among all the trajectories. After constructing the
basic transition graph, we reduce the redundant edges by a traversal of the current graph and
eliminate the redundant edges based on a particular strategy. Before the introduction of that
strategy, we first illustrate a lemma that is important to edge reduction.
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Lemma 1 Let Tuv be the set of trajectories traversing from u to v and |Tuv| = Auv . If
edge (u, v) is redundant, there must exist a node, such that Auv = Auw = Avw holds. In
addition, if Auv = Auw = Avw holds and any two sets of trajectories from Tuv,Tuw,Tvw

are the same, then the other set is the same as the two.

Proof The first portion of Lemma 1 is obvious. It indicates that if the quantities of trajecto-
ries traversing on these three edges are not the same, the exact trajectories/sub-trajectories
can not be from the same set of trajectories. As for the second part, given three nodes u, v, w

with edges (u, v), (u,w) and (v,w), shown as Figure 5, we assume that Tuv = Tvw , then
Tuv ⊂ Tuw holds. Since Auv = Auw , we have Tuv = Tuw.

Based on Lemma 1, we introduce the strategy to eliminate the redundant edges, shown
in Algorithm 2. Before that, we generate an inverted transition graph by scanning the basic
transition graph once, where each neighbour list stores the in-neighbours and the weights
of the corresponding node. The Redundant Edge Elimination algorithm works as follow.
Line 1 − 2: The algorithm traverses the basic transition graph node by node. For each
node pi , it first gets the out-neighbour list, denoted by Lpi

. Line 3 − 5: For each node pk

in the out-neighbour list, it checks the inverted in-neighbour list of pi from the inverted
basic Transition Graph IBT G, to see if there exists a node pj , such that the numbers of
trajectories traversing these three edges are the same , i.e. Apj pi

= Apj pk
= Apipk

. Line 6:

Figure 5 Trajectory quantity relationship
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If so, it retrieves the trajectories with respect to two edges (pj , pk), denoted as Tpj pk
, and

get the corresponding spatial hit sh(pi) of pi in Tpj pk
. Line 7 − 8: If sh(pi) is equal to

Apj pk
, namely, all the trajectories traversing from pj to pk go through pi . Since Apj pi

=
Apj pk

= Apipk
, the trajectories traversing this three edges must be the same. Then we

confirm that (pj , pi) is a redundant edge, and delete it from the graph. Line 13: Finally, we
return the reduced basic transition graph.

5.2 Concatenation strategy

The transition graph provides the support to efficiently retrieve the candidate ITNs, i.e., the
nodes connecting the origin and the destination by a sizeable set of trajectories. However,
it is obvious that not all the candidate ITNs can form the concatenated trajectories that are
able to well reveal similar mobility over an OD pair. In this subsection, we introduce the
strategies to select the ITNs that the concatenation sets of trajectories are supposed to be
similar to the origin-destination ones. We propose several heuristics that can effectively
prune the ITNs whose constructed trajectory sets are with high probability dissimilar to the
origin-destination set. Hence, it can save the running time of the trajectory concatenation
phase, and also guarantee the robustness.

Pruning with accumulative spatial length Our first intuition is that if the ITNs can form
trajectory set similar to the original-destination set, then if we take the shortest distance
from the origin to the ITNS and then to the destinations should be similar to that from the
origin to the destination. Hence, we first define the accumulative spatial length as follow,
using it as the first pruning parameter.

Definition 11 (Accumulative spatial length) Given an OD pair (po, pd) and a corre-
sponding intermediate transition node sequence IT N = {p1, p2, . . . , pk}, we define the
Accumulative Spatial Length (ASL) of ITNs as follow:

ASL(po, pd, IT N) = dist (po, p1) +
k−1∑

i=1

dist (pi, pi+1) + dist (pk, pd) (11)

where dist (p, p′) refers to the Euclidean distance between two nodes p and p′.

Thus the first criterion is defined as follow.

– Given a sequence of ITN w.r.t. an OD pair (po, pd), it is a qualified candidate if it
satisfies the below inequality, where τ is a tunable parameter (τ > 0).

ASL(po, pd, IT N)

dist (po, pd)
− 1 < τ (12)

Pruning with direction Further, we introduce the direction criterion. The intuition of the
direction criterion is that the trajectories traversing from the origin to the destination follow
the direction towards from the origin and destination. We choose the ITNs that the direction
of the sub-trajectories is close to the ideal direction from the origin to the destination. Thus
we define the second criterion as follow.

– Given a sequence of ITN w.r.t. an OD pair (po, pd), denoted as {p1, p2, . . . , pk}, the
projection points of the intermediate transition nodes regarding the line segment popd

must be on the line, ∠pipi−1pd ≤ 90◦, and ∠pip
′
i−1pd ≤ 90◦, where 1 ≤ i ≤ k (Note
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that when i = 1, pi−1 refers to the po.) and p′
i−1 is the projection point of pi−1 on

popd .

Figure 6 shows an example of how to choose the ITNs based on the direction criterion.
Here, the number of transition nodes is set to be 2, and the first node can only locate in the
area of the spanning region of angle , α, i.e., on the right side of the vertical line cross po.
After the selection of p1, the second node can only lie on the sector regarding angle β.

Pruning with the number of ITNs Finally, the last pruning criterion refers to the number
of ITNs required to form the concatenation. Intuitively, the more ITNs we have, the more
chances we have that it goes away from the expected route from the origin to the destination.
Hence, we set an integer threshold k as the maximum ITNs to form the concatenation. As
we will see in our experiments, on average when we enlarge the number of ITNs to form the
concatenation, the similarity between the concatenation set and the origin-destination set
decrease. In addition, according to the complexity analysis of the ITN retrieval algorithm,
the computational cost increases exponentially on the number of intermediate transition
nodes. Thus, a limitation on the maximum ITNs to form the concatenation is necessary.

From the above, the overall strategy to select the ITNs works as follow. We augment the
criteria verification in the ITN Retrieval Algorithm to filter the unnecessary nodes directly.
For each node in the neighbour list we visit in an iteration, shown in Algorithm 1, both on
Line 3 and 7, we first check whether this node satisfies the direction criterion and compute
the current ASL to see whether it exceeds the desired threshold. Only if the node satisfies
both requirements, will it be kept for the further processing. We invoke k times to generate
k sets of ITNs. Eventually, we extract the corresponding concatenation set of trajectories for
each ITN sequence. The concatenation strategy can not only guarantee the robustness of the
concatenated trajectories but also can accelerate the retrieval of the intermediate transition
nodes. This is because if a candidate node is unqualified, the retrieval of the further nodes
can be early terminated in the corresponding iteration.

6 Experimental study

In this section, we conduct the experimental study to evaluate the efficiency and effective-
ness of the proposed framework. Firstly, we present the experimental settings in Section 6.1.
Afterwards, we evaluate the effectiveness of our proposed EMDT on trajectory similar-
ity measure in Section 6.2. Next, we further examine the efficiency of our trajectory
concatenation component in Sections 6.3 and 6.4. Finally, we demonstrate that the ITNs

Figure 6 Direction criterion
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generated in the trajectory concatenation component indeed derive concatenation set simi-
lar to the origin-destination set, and derives better result and is more robust than both the
sweep-and-expand and the popularity-based strategies in Section 6.5.

6.1 Experiment setup

The trajectory dataset we use in the experiment is collected from 50K taxis in Beijing for
5 days, which consists of more than 2 million trajectories, each of which is represented
by a sequence of GPS records. A map-matching [15] algorithm is employed to transform
the raw trajectories into a sequence of time-order road segments (the mapped trajectory
set is about 1.6 GB), where the time is estimated by the first GPS point assigned on the
corresponding road segment. We consider the road network of Beijing city that composes
of 302,364 intersections and 387,588 road segments (60MB).

The constructions of the inverted index and transition graph are executed off-line, and
the transition graph is maintained by adjacency lists. We vary the important parameters used
in the experiment, which is listed in Table 2, where the default values are shown in bold-
face. The parameter k is the number of ITNs in one concatenation. A larger k results in
smaller similarity between the concatenation set and the origin-destination set of trajecto-
ries. Beside, from a statistic on the given dataset, over 85% OD pairs can be concatenated
with less than 3 intermediate node, while only 1.5% OD pairs contains trajectories directly
traversing in between. Thus, we set that k is no larger than 3. The λ is a parameter for tran-
sition graph generation, which indicates the number of trajectories traversing across each
edge. Parameter τ is the threshold for the accumulative spatial length of a sequence inter-
mediate transition node. The smaller τ makes, the tighter restriction on the candidate ITNs
is returned. The parameter α denotes the percentage of spatial characters for trajectory set
similarity measure in EMDT, where α = 1 indicates only the spatial distance is considered
for the cost computation, while α = 0 indicates that only average delta duration is taken
into account. In the calculation of similarity measure, we follows the algorithm proposed
in [16].

All of our algorithms are implemented in Java, and we run all the experiments on a Dell
R720 PowerEdge Rack Mount Server with two Xeon E5 − 2690 2.90GHz CPUs, 192GB
memory running Ubuntu Server 14.04 LTS operating system.

6.2 Rationale of EMD

In this subsection, we design a series of experiments to verify the rationality of the
EMD-based trajectory set similarity measure. The experiments contain three perspectives.
First, we evaluate multiple distribution similarity measures for spatial hit histogram, which
include Murkowski Form Distance (MFD) [22], Jeffrey Divergence Distance (JDD) [18],
and EMD. We aim to verify that among those distribution measures, EMD is the most

Table 2 Parameter settings
Parameter Values

k 1, 2, 3

τ 0.001,0.01,0.1

α 1,0.95, 0.5,0.05,0

λ 4,16,64,128
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suitable one for trajectory similarity measure. Secondly, we evaluate the EMD with two dif-
ferent ground distances, Euclidean distance, and road network distance, in order to show the
different impact by utilizing different ground distances. Finally, we discover the difference
between EMD and EMDT to show that how EMDT can capture the temporal / sequence
information.

For the comparison of different distribution similarity measures, we randomly select mul-
tiple pairs (100 pairs) of OD points, extract the corresponding set of OD trajectories as the
sample dataset, and estimate the average distance values. We first compare different distri-
bution similarity measures for the same set of OD trajectories, where each set is divided into
two subsets based on different strategies. In particular, we have the self comparison which
compares two identical sets, partial comparison that arbitrarily divides a set into two parts,
and noise augmentation test which adds noise into a set and compare the noise-added set
with the one without noise. In addition, to measure the distance between two different sets
of OD trajectories, we divide the sample dataset into 4 subsets and in each subset we arbi-
trarily pick two OD sets for multiple rounds, calculate the distribution distance, and show
the average distance scores. In self-comparison, as the contrastive two subsets are derived
from the same set, the distance scores are supposed to be very small. From Figure 7, we
can observe that these three distribution similarity measures are robust to noise in self-
comparison, as the distance scores are all very small. Also, the self-self distances are all
zero, which is superior to the pairwise individual trajectory similarity measure (discussed
in Section 2.1). However, when comparing the similarity between two different sets of tra-
jectories, as shown in Figure 8 apart from the EMD, the other two distribution similarity
measures cannot distinguish the difference between two different sets of trajectory, as the
distance scores of the MFD and JDD are both identical in different sets’ comparison, which
is in line with our analysis, since the EMD will take the ground distance of the signatures
into consideration.

Regarding the different ground distance comparison, we use the Euclidean distance and
road network distance respectively in the calculation of the EMD. The data settings in this
part are the same as the one for the comparison of different distribution similarity mea-
sures. From the Figure 9, we can find out that, the variation of two ground distances is
insignificant, which indicates that changing the ground distance from road network distance
to Euclidean distance exert little effect on the measurement of EMD. Thus, for the rest of

Figure 7 Self comparison
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Figure 8 Different set
comparison
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our experiment, we use the Euclidean distance as the ground distance for EMD calcula-
tion. Applying the Euclidean distance, we can either reduce the time on ground distance
calculation or eliminate the space consumption to store the ground distance matrix for road
network distance.

Finally, we test the parameter α for EMDT calculation. The datasets used in this exper-
iment are from a single set of trajectories (i.e., the trajectories from the same origin to the
same destination). We evaluate the average distance scores from 100 OD pairs, where each
pair corresponds to a set of trajectories. For each set, we divide the trajectories into two
subsets as follow. We first reverse the sequence of trajectories (as discuss in Section 4) and
compare it with the origin set (denoted as reverse). Furthermore, we partition the set of tra-
jectories based on temporal information, namely peak time (7:00–9:00am, 5:00–7:00pm)
and off-peak time, weekday and weekend. We compare the peak (resp. weekday) set with
the off-peak (resp. weekend) set, denoted as peak (resp. day) in Figure 10. And the param-
eter α varies from 1 − 0 indicating the spatial character contribution for cost computation.

Figure 9 Ground distance
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Figure 10 Temporal contribution
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The result is shown in Figure 10. As we can see, when α = 1, which means we only con-
sider the spatial character, the distance between the reverse set and origin set is zero. When
the contribution of temporal character increases, the EMDT values also increase. For the
comparison between the reverse set and the original set, taking the spatial and temporal
/ sequence evenly results in largest distinction since considering only one type of charac-
teristics, the difference between reverse set and original set of trajectories is insignificant.
In terms of the other two scenario, the distance scores increase with the higher proportion
of the temporal characteristics. By intuition, the speed of trajectory during the peak (resp.
weekday) time might be lower than the one during the off-peak time (resp. weekend). Thus,
we can infer that EMDT can capture the speed information of trajectories sharing the same
spatial routes, as the distances between peak set and off-peak set, weekday set, and weekend
set, are notable. Consequently, we conclude that 1) EMDT can display the sequence infor-
mation since the original set is different from the reversed set. 2) EMDT can distinguish the
difference between two set of trajectories with different speed, and indicates the temporal
feature in trajectory sets.

6.3 Transition graph study

To retrieve the intermediate transition nodes efficiently, we build a parameter-based transi-
tion graph on top of the trajectory dataset, which consists of two procedures: the basic graph
construction and redundant edge reduction. In this set of experiments, we provide a study
on the properties of the transition graph with various parameters, as shown in Table 3.

Table 3 Transaction graph properties

λ Number of nodes Maximum degree Average degree Size

Basic Reduced Basic Reduced Basic Reduced Basic Reduced

4 216954 216954 9519 7332 475 395 963.16MB 807.95MB

16 151504 151504 3336 3290 190 188 291.11MB 288.88MB

64 104673 104673 1171 1171 76 76 87.01MB 86.89MB

128 82116 82116 671 671 48 48 46.21MB 46.20MB
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We evaluate four basic properties of the transition graph: the number of nodes (each
refers to the road segment on the road network), the maximum degree (the degree indicates
the number of out neighbours of a node), the average degree, and the size. We record the
properties of different transition graph with parameter λ to be 4,16,64,128 and show the
differences between the basic graph and the reduced one. As we can see, the values of
those 4 properties decrease gradually with the increase of λ, which is expected, since the
parameter λ indicates the minimum number of trajectories traversing on the edges. After the
redundant edge elimination, mostly the number of nodes are still the same, but the maximum
and average degree decrease by 23% and 17% for λ = 4, 1.4% and 1.1% for λ = 16
respectively. As for λ = 64 and λ = 128, the differences between the basic graph and
reduced graph are insignificant (difference shown by the size). Hence, the redundant edge
elimination can significantly reduce the degree and size of the graph with a small parameter.

Besides, we calculate the number of concatenation options (i.e., the number of ITN
sequences) retrieved over different parameters. From Figure 11a, we observe that, on aver-
age, the number of ITN sequences w.r.t. a specific OD pair can be retrieved from different
transition graphs decrease significantly with the increase of parameter λ. Thus, a moder-
ate value of λ is more desirable for concatenation generation considering various factors,
including the size of the graph, concatenation options, and the efficiency (discussed in the
next subsection). The number of ITN sequences returned based on the transition graph can
be affected by the parameter τ , which is the threshold parameter for the accumulative spa-
tial length of the ITN sequence. Figure 11b shows the number of ITN sequences increase
correspondingly to the increase of τ , which is reasonable as the larger τ offers a looser
restriction on the candidate ITN sequence to be returned.

6.4 Efficiency of ITN retrieval

In this subsection, to study the efficiency of the ITN retrieval algorithm based on the transi-
tion graph, we compare the computational time of the graph-based algorithm with the basic
intersection-based one. In addition, we analyse the running time of graph-based algorithm
with different parameters and conditions.

The intersection-based algorithm retrieves the candidate ITN sequences by recursively
checking whether there is a sizeable (equals to the parameter λ) set of trajectories traversing
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Figure 11 Impact of λ and τ to ITNs
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from one node to another, where the intersection operation scans the two trajectory posi-
tion lists from the inverted index belonging to the corresponding nodes. In order to compare
the computational cost of these two algorithms, we vary the number of ITNs in one con-
catenation sequence, k from 1 − 3 to observe the execution time of different algorithms.
We randomly select 100 OD pairs and measure the average running time for each algo-
rithm to retrieve the candidate ITN sequence. As shown in Figure 12a, the computational
cost of each algorithm increases correspondingly with the increase of k, which is in line
with the complexity analysis. Moreover, apparently, the cost of the graph-based algorithm
is dramatically smaller than that of the intersection-based algorithm. The comparison of the
computational cost of these two algorithms shows the importance of the employment of the
transition graph in concatenation formation, since the running time of the intersection-based
algorithm is considerably huge.

In terms of the graph-based algorithm, we first evaluate the running time to retrieve the
candidate ITNs without the consideration of our proposed concatenate strategy. For each
transition graph with different λ, we randomly pick multiple 50 pairs of nodes to execute the
ITN Retrieval algorithm with k rising from 1−3, and show the average computational time.
Figure 12b illustrates the running time varying according to different parameter settings.
The result suggests that, on average, the computational cost grow significantly with the
increase of k, while the larger λ leads to the smaller running time in each case regarding
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Figure 12 Experimental evaluation on ITN Retrieval
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k. The variation regarding to k is consistent with the complexity analysis in Section 5. The
reason for the variation as for λ is that the smaller λ generates a larger transition graph, thus
it gives rise to more concatenation options that require more retrieval time.

Furthermore, we also compare the running time in graph-based ITN Retrieval with and
without our proposed concatenation strategy. On the one hand, we retrieve all possible ITNs
candidates, recording the number of ITN sequences and the corresponding running time
(denoted as the overall scenario). On the other hand, we retrieve the ITNs based on our
concatenation strategy which filters the unnecessary ITNs based on the accumulative spatial
length threshold and direction criterion (denoted as filtered scenario). Figure 12c and d,
show both the number of ITN sequences and the running time for the overall scenario are
in excess of the ones for the filtered scenario. From this result, we verify the effective-
ness of the concatenation strategy that it can filter a large number of the unnecessary ITN
candidates, and correspondingly reduce the computational time.

6.5 Robustness analysis

In this subsection, we focus on the robustness analysis of the trajectory concatenation based
on the proposed trajectory set similarity measure. To begin with, we study the variations of
distances between the concatenation set of trajectories and the origin-destination set based
on the number of ITNs (i.e., k) and the parameter for accumulative spatial length (i.e., τ ).
Further, we compare the robustness between our approach and two other concatenation
strategies: sweep-and-expand [6] and popularity-based [5].

Without special concatenation strategy, we perform a statistic study by retrieving all the
possible ITNs w.r.t. to the sample OD pairs, along with the computation of the distance
between corresponding concatenation sets and the origin-destination sets. In that way, we
can gain an overall understanding of how distance varies by different settings of important
parameters. Figure 13a suggests that the distance between the concatenation and origin-
destination sets goes up with the increase of k, which supports the claim that the number
of ITNs to form the concatenation set is unnecessary to be large. Similarly, we evaluate the
variation of distance according to the accumulative spatial length of the ITN sequence. The
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results are reported in Figure 13b. For all the candidate ITNs we retrieved w.r.t. a specific
OD pair, we calculate the corresponding accumulative spatial lengths. By setting the τ to
be 0.001, 0.01, and 0.1, we observe that the average distance appears a linear growth trend.
This also indicates that the distance between the concatenation set and the origin-destination
set increases with the rise of the accumulative spatial length. Next, we estimate the average
distance regarding different parameters for the transition graph. Figure 14a shows that with
the smaller λ, the similarities between the concatenation sets and the origin-destination set
tends to be higher, and grow with the increase of k.

Finally, we evaluate the robustness of our proposed approach. For comparison, we
implement two concatenation strategies. The sweep-and-expand strategy concatenates the
intermediate transition nodes with a sweeping from the origin to the destination on a grid
index, and it does not matter how many transition nodes needed to form the concatena-
tion. We compare the sweep-and-expand strategy with our graph-based one and record the
average trajectory sets distance, as well as the cases with minimum and maximum distance
values. Figure 14b shows that on average our graph-based strategy defeats the sweep-and-
expand one, and it is more reliable since the sweep-and-expand strategy may result in
large distance between the concatenation trajectories and the origin-destination ones. The
popularity-based strategy considers only the popularity of the edges to form concatenation,
which selects the ITN sequence that tends to maximise the product of popularity on each
edge (where the popularity represented by the number of trajectories traversing on it). In
terms of our approach, by setting the parameters to be the default ones, we obtain the ITNs
returned by our concatenation algorithm. For each result w.r.t. to a specific OD pair, we pick
up the one with the minimum distance, the one with the highest popularity, and calculate
the average distance, followed by the computation of the average values on these three dis-
tances for all OD pairs. Then we compare these three categories of distance obtained by our
approach with the one only considering the popularity. Figure 14c shows the result which
suggests that the robustness of our approach is superior to the one only considering the pop-
ularity. Moreover, even the one obtained by our algorithm that with the highest popularity
reveals a lower robustness. Consequently, concatenating trajectory only based on the pop-
ularity probably leads to a result that is ineligible to represent the mobility from the origin
to the destination, and our approach can provide both robustness guarantee and sufficient
number of concatenated trajectories for further mining.
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7 Conclusion

In this paper, we propose an efficient and robust trajectory augmentation approach to
address the sparsity issue prevalent in trajectory mining applications that aim to find out
the intelligence of the moving behaviours w.r.t. a specific origin and destination pair. The
basic idea of the proposed framework is to concatenate the existing sub-trajectories to rep-
resent the ones traversing across the OD pair. We first develop a transition graph to support
efficient sub-trajectories concatenation. Then, we further propose efficient and effective
heuristics to identify good intermediate transition nodes which provide concatenation trajec-
tory set similar to the ones going across the OD pair. We also provide a novel trajectory set
similarity measure for the robustness evaluation. The experimental study shows the superi-
ority of our approach. In future work, we will consider the sparsity issue regarding to origin
and destination regions.
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