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Abstract
Nowadays, with the development of cyber-physical systems (CPS), there are an increasing
amount of applications deployed in the CPS to connect cyber space with physical world
better and closer than ever. Furthermore, the cloud-based CPS bring massive computing
and storage resource for CPS, which enables a wide range of applications. Meanwhile, due
to the explosive expansion of applications deployed on the CPS, the energy consumption
of the cloud-based CPS has received wide concern. To improve the energy efficiency in
the cloud environment, the virtualized technology is employed to manage the resources,
and the applications are generally hosted by virtual machines (VMs). However, it remains
challenging to meet the Quality-of-Service (QoS) requirements. In view of this challenge,
a QoS-aware VM scheduling method for energy conservation, named QVMS, in cloud-
based CPS is designed. Technically, our scheduling problem is formalized as a standard
multi-objective problem first. Then, the Non-dominated Sorting Genetic Algorithm III
(NSGA-III) is adopted to search the optimal VM migration solutions. Besides, SAW (Sim-
ple Additive Weighting) and MCDM (Multiple Criteria Decision Making) are employed
to select the most optimal scheduling strategy. Finally, simulations and experiments are
conducted to verify the effectiveness of our proposed method.
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1 Introduction

In recent years, cyber-physical systems (CPS) which emerge as a novel computing system
have gained a lot of popularity in many critical areas such as health care, manufacturing and
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traffic control [29]. Plenty of enterprises utilize CPS to implement distributed computing
resources. In CPS, physical systems work as sensors to collect information of real-world
and send the sensory information to computation platforms for further analysis. Computa-
tion platforms analyze and process the information and then return a feedback or command
to physical systems [16]. The real-time information brought by CPS is critical to make effi-
cient decision. With the development of mobile devices, the integration of CPS and mobile
devices bring more opportunities to attain more information. However, the complex appli-
cations in CPS (i.e. industrial applications and monitor applications) often require massive
storages and computing resources to meet the performance requirements of users. Due to
the storage and computing capacity limit of mobile devices, the performance of CPS appli-
cations is not capable of filling the bill. To meet the resource and storage requirements of
applications in CPS, cloud computing emerges as a novel computing paradigm to provision
rich computing resources [2, 20].

By virtue of the resource-rich cloud, cloud-based CPS improves the computing capacity
of CPS to conduct resource-hungry applications. In order to provision the physical resources
dynamically, virtualized technology is extensively used for resource management in the
cloud platforms [13], which provides an effective manner to improve the resource efficiency
of the cloud-based CPS. Running applications on the virtual machines (VMs) makes it pos-
sible for high resource utilization and low energy consumption. By virtue of integrating
cloud with CPS, numerous systems like cloud-integrated vehicles which are unachievable
due to the resources limit are able to be deployed efficiently [36].

With the aim of providing better service experience of cloud-based CPS, reasonable
scheduling strategies are necessary to migrate applications to cloud more efficiently [3, 7].
Despite the advantages of VMmigration, the VMmigration operations also generate certain
transmission delay, and the transmission of VM images leads to additional energy con-
sumption of the switches in the datacenter [26]. Therefore, it is necessary to consider both
the negative and the positive aspects of the VM migrations and determine the reasonable
scheduling strategy due to the different requirements of users. Currently, the energy con-
sumption of cloud-based CPS has received wide concerns since it not only augments the
operating cost of the cloud providers, but also dramatically decreases battery life [4]. Thus,
how to reduce energy consumption of the cloud datacenters becomes a key restrict for better
user experience of resource intensive applications in cloud-based CPS [22, 27].

Meanwhile, owing to the rapid growth of multiple service demands, it remains challeng-
ing to meet the quality-of-service (QoS) requirements with the data traffic increasing [30].
It is troublesome to meet the global QoS requirement by virtue of the different users’ pref-
erences for a certain QoS. In view of this challenge, a QoS-aware VM scheduling method is
proposed in this paper. By offloading various applications to other physical machines (PMs),
the workloads on some under-load physical servers are migrated out, and these servers could
be set to idle mode for energy saving [8, 14]. By reasonable offloading method, the requisite
computing resources are provisioned and the QoS of applications in CPS can be ensured at
the same time. Our work is to find an optimal VM scheduling strategy in cloud-based CPS
with QoS enhancement. In view of this, a QoS-aware VM scheduling method for energy
conservation, named QVMS, in cloud-based CPS is proposed. The main contributions are
as follows.

– First, we define some basic concepts and present the system model. Then, we formalize
the objective function and present the constraints.

– Besides, Non-dominated Sorting Genetic Algorithm (NSGA-III) is adopted to find the
optimal VM scheduling strategies and achieve the goal of QoS enhancement including
energy consumption, downtime and resource utilization.
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– SAW (Simple Additive Weighting) and MCDM (Multiple Criteria Decision Making)
are adopted to select the most optimal scheduling strategy.

– Finally, we conduct the extensive experimental evaluations to verify the effectiveness
of our proposed VM scheduling method.

The rest of this paper is organized as follows. Section 2 presents the problem definition.
Section 3 elaborates our proposed method. In Section 4, performance evaluation is illus-
trated. Section 5 summarizes the related work. Section 6 concludes the paper and presents
the future work.

2 Problem definition

In this section, we introduce some formalized concepts in the QoS-aware VM scheduling
method in cloud-based CPS. Quality of Service (QoS) includes a group of nonfunctional
requirements like energy consumption, response time, availability, resource utilization, and
throughput, etc. We analyze and quantify the energy consumption and resource utilization,
and model the QoS-aware problem as a multi-objective optimization problem. Some key
notations and descriptions used in the paper are listed in the Table 1.

2.1 Basic concepts

Suppose there are N PMs in the cloud environment used during the application execu-
tion, denoted as P = {p1, p2, . . . , pN }. Besides, there are M CPS applications running
on the PMs in P , denoted as V = {v1, v2, . . . , vM }. We model the applications as spe-
cial VMs which consist of multiple VM instances. Besides, we model the QoS indicators
of the VM scheduling like energy consumption, downtime, resource utilization rate to
quantify the QoS requirements. Let X = {x1, x2, . . . , xM } be the VM scheduling policy
for the VMs in V , where xm ∈ P (m = {1, 2, . . . , M}) is the PM which the VM vm is
migrated to. Let Y = {y1, y2, . . . , yM } be the VM original deployment for the VMs in V ,
where ym ∈ P (m = {1, 2, . . . , M}) is the PM which the VM vm is originally deployed
on.

Table 1 Key notations and
descriptions Notations Descriptions

P The PMs in cloud P = {p1, p2, . . . , pN }
V The application in CPS V = {v1, v2, . . . , vM }
X The VM scheduling policy for the VMs

Y The VM original deployment

E(X) The total energy consumption

AE(X) The energy consumption of active VMs

IE(X) The energy consumption of idle VMs

BE(X) The PM basic energy consumption

SE(X) The total switch energy consumption

D(X) The downtime in the VM migration operation

RU The resource utilization rate
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2.2 Energy consumption analysis

The VMs which are occupied by tasks are running, and let AE(X) be the VM execution
energy consumption caused by the task execution with the scheduling policy X. The energy
consumption of active VMs with X for the m-th VM vm in V is calculated by

AE(X) =
M∑

m=1

θm · am(X) · Tm(X) (1)

where θm is the requested number of VM instances for vm, am(X) is the energy consumption
rate of running VM instances, and Tm(X) is the running time of vm.

In
m(X) is a binary variable to determine whether vm is placed on pn with policy X, and

its calculation expression is

In
m(X) =

{
1, if xm = pn,

0, otherwise.
(2)

According to the condition of vm, we calculate the energy consumption of idle VMs by

IE(X) =
N∑

n=1

M∑

m=1

In
m(X) · θm · (τn(X) − Tm(X)) · βm(X) (3)

where βm(X) is the energy consumption rate of vm in idle mode, τn (X) isthe maximum of
VMs running time.

The PM in operation has basic energy consumption regardless of whether it is idle or
running. The calculation expression of PM basic energy consumption is

BE(X) =
N∑

n=1

τn(X) · γn(X) (4)

where γn (X) is the basic energy consumption rate of pn.
Faced with the emergence of network hotspots and problem of overloading, the switches

and hosts are arranged by the fat-tree topology in the cloud data center. Owing to the fat-
tree topology, the loads that aggregate at the core layer are processed and diverted timely by
the multiple links to the core layer.

The switches in the fat-tree topology are classified in three layers including core, aggre-
gation and edge. The fat-tree topology is displayed in Figure 1. The topology rules of fat-tree
are as follows: the number of pods contained in the topology is k, the number of connected

server per pod is
(

k
2

)2
, the number of edge switches and aggregate switches within each pod

is k
2 , the number of core switches is

(
k
2

)2
, and the number of ports per switch in the network

is k.
Let pa be the source PM and pb be the goal PM. Denote la,b as a binary variable to judge

whether pa needs to access pb, which is measured by

la,b =
{
1, if pa needs to access pb,

0, otherwise.
(5)

Let fa,b be the frequency for pa to access pb, and the total access time is denoted by

K =
N∑

a=1

N∑

b=1

la,b · fa,b, (6)
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Figure 1 The fat-tree topology

In the fat-tree topology, the access time between PMs depends upon the distributed loca-
tions among the PMs. LetES(X),AS(X) andCS(X) be the corresponding switch that need
to be accessed according to the scheduling strategy X in the edge layer, aggregation layer
and core layer respectively. The accommodating situations in the fat-tree are classified into
four conditions. First, The application is processed in the same PM due to the scheduling
strategy, which is denoted as ya �= xa . Then, xa and ya are linked to the same edge switch
and different hosts, which is denoted as ya �= xa, ES(ya) �= ES(xa). Besides, xa and ya

are connected to the same aggregation instead of the same edge switch and host, which is
denoted by ya �= xa, ES(ya) �= ES(xa), AS(ya) �= AS(xa). At last, xa and ya are linked
to the same core switch instead of hosts, edge and aggregation switch, which is denoted by
ya �= xa, ES(ya) �= ES(xa), AS(ya) �= AS(xa), CS(ya) �= CS(xa). After analyzing all
the possible accommodating situation, the access time for xa to access yb is calculated as

ta,b(X) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, ifxa = ya,

2 Dm

BSE
· l

a,b
, ifES(xa) = ES(ya),

2
(

Dm

BSE
+ Dm

BEA

)
· l

a,b
, ifAS(xa) = AS(yb), ES(xa) �=ES(ya),

2
(

Dm

BSE
+ Dm

BEA
+ Dm

BAC

)
· l

a,b
, ifCS(xa) �=CS(ya), AS(xa) �= AS(ya),

ES(xa) = ES(ya).

(7)

where Dm is the memory used by vm, and BSE is the available network bandwidth between
hosts and edge switches, BEA is the available network bandwidth between edge switches
and aggregation switches, andBAC is the available network bandwidth between aggregation
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switches and core switches. The number of switches for pa accessing pb in the topology is
denoted by

ta,b(X) =

⎧
⎪⎪⎨

⎪⎪⎩

0, ifxa = ya,

1, ifES(xa) = ES(ya),

3, ifAS(xa) = AS(yb), ES(xa) = ES(ya),

5, ifCS(xa) = CS(ya), AS(xa) �= AS(ya), ES(xa) = ES(ya).

(8)

During the scheduling process, each switch employed in the fat-tree has a base energy
comsumption SEbase which is calculated by

SEbase(X) = 5

4
k2 · τn(X) · β, (9)

Then, the transmission energy consumption is calculated by accommodation situation in the
above analysis. Based on the different scheduling strategy, the transmission energy SEex

consumption is calculated by

SEex(X) =
N∑

a=1

N∑

b=1

la,b · fa,b · ta,b(X) · δa,b(X) · γ , (10)

Then, the switch energy consumption is calculated by

SE(X) = SEbase(X) + SEex(X), (11)

where β is the baseline energy consumption rate for each switch, and γ is the energy con-
sumption rate for each port, ta,b(X) is the access time for pa to access pb, and δa,b(X) is
the total number of switches in the topology.

In this way, the total energy consumption denote as E(X) is calculated by

E(X) = AE(X) + IE(X) + BE(X) + SE(X). (12)

2.3 Downtime analysis

The downtime in the VM migration operation contains switch time and the access time
of the log file. Suppose in the migration operation of vm with X, the memory image is
transmitted Im(X) times. Let the access time of all the remaining log files be MT

im
m (X)

when the log file transfers at im(X) time. The downtime when vm is migrated from pn with
X is calculated by

MT im
m (X) =

N∑

n=1

M∑

m=1

In
m(X) · Mn

m(X)·D
im
m (X)

Bm,n

, (13)

whereD
im
m (X) is the size of dirty page transferred by vm, andBm,n is the bandwidth between

ym and pn. In order to keep the consistency of VM memory condition before and after the
migration, the dirty pages produced in the process of memory transmission are sent to the
goal PM during the next transmission. Hence, the size of dirty page transferred by vm could
be calculated by

Dim
m (X) =

{
Sm(X), if i = 0,
Rm(X) · MT

im−1
m (X), otherwise.

(14)
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where Sm(X) is the size of the mirror memory of vm, and Rm(X) is the producing rate of
memory dirty page. The switch time of vm is calculated by

OTm(X) =
N∑

n=1

M∑

m=1

In
m(X) · Mn

m(X) · 2ζm(X), (15)

Similarly, the computation latency is dismissed because of the same number and
computing rate of occupied VMs. Then, the total downtime is calculated by

D(X) =
Im∑

im=1

MT im
m (X) + OTm(X). (16)

2.4 Resource utilization analysis

In the cloud data center, multiple VM instances are created to allocate resources. The
resource requirements could be quantified by the number of VM instances. Let cn be the
capacity of n-th PM. The resource utilization with X un(X) is calculated by

un(X) = 1

cn

·
M∑

m=1

θM · In
m(X). (17)

Let Kn be the flag to judge whether the pn is running, which is measured by

Kn =
⎧
⎨

⎩
0, if

M∑
m=1

In
m(X) · Lm = 0,

1, otherwise.
(18)

where Lm is a binary variable to determine where vm hosts a load, and its calculation
expression is

Lm =
{
1, if vm hosts a load,
0, otherwise.

(19)

So, the total number of running PMs is calculated by

MP =
N∑

n=1

Kn. (20)

The resource utilization rate is calculated by

RU(X) = 1

MP
·

N∑

n=1

un(X). (21)

2.5 Problem definition

In this paper, we focus on the QoS-aware VM scheduling method to reduce the energy
consumption, downtime and the resource utilization, and the VM scheduling problem is
defined by

min(E(X)),min(D(X)),max(RU(X)). (22)
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s.t .xm ∈ P, (23)

M∑

m=1

θM · In
m(X) ≤ cw, (24)

M∑

m=1

In
m(t) · Lm ≤ M . (25)

3 A QoS-aware VM schedulingmethod for energy conservation in
cloud-based CPS

As we discuss in the Section 2, the QoS-aware VM scheduling problem is a multi-objective
optimization problem. NSGA-III is adopted for its efficient and accurate performance when
solving optimization problem with multiple objectives ranging from three to fifteen. First
in this section, the VM scheduling strategies are encoded and the fitness functions are
given. Then, NSGA-III algorithm is adopted to find the optimal solution. Finally, a method
overview is described.

3.1 Encoding

In this section, we encode for the VM scheduling strategies. In the genetic algorithm (GA),
a gene represents a scheduling strategy of an application. A chromosome which represents
a set of scheduling strategy of VMs is composed of a group of genes. The value of the
scheduling strategy which is the location of PMs encodes as 1, 2, 3,. . . , N . An encoding
example of scheduling method for VMs in V with N PMs is displayed in Figure 2. As is
shown in Figure 2, v1 is migrated from p1 to p2, and v2 is migrated from p3 to p1, and v3
is migrated from pN to p4, and vm is migrated from p4 to pN .

Figure 2 An instance of encoding
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3.2 Fitness function

In GA, fitness function is used to determine whether a solution is efficient. A chromosome
is the scheduling strategy of all the VMs in a schedule. In the paper, the NSGA-III algorithm
utilizes the energy consumption and resource utilization as the fitness functions to find
the optimal scheduling strategies. The fitness functions are given by (11), (15) and (21)
respectively.

The energy consumption is the first fitness function, Algorithm 1 specifies the procedure
of calculating the total energy consumption. In this algorithm, we input the fat-tree network
topology, the number of VMs M , the number of PMs N , the encoding result of VM schedul-
ing strategy cs , the VM original deployment Y and the scheduling strategy X. We calculate
the total energy consumption including the energy consumption of active VMs, the energy
consumed by the idle VMs, the basic energy consumption of PMs, and the switch energy
consumption in the algorithm. Finally, the outputs are the total energy consumption for the
scheduling strategy.

The downtime of VM migrations is another fitness function, Algorithm 2 specifies the
procedure of calculating the downtime of VM migration. In this algorithm, the inputs are
the number of VMs M , the number of PMs N , the VM scheduling strategy X, and the VM
original deployment Y . The downtime in the VM migration operation contains switch time
and the access time of the log file. The access time of the log file is calculated (Lines 1-5),
and the switch time is calculated (Lines 6-10).Then we get the total downtime (Line 10).
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The resource utilization of PMs is also a fitness function, algorithm 3 specifies how
to calculate the average resources utilization of PMs used. The inputs are M VMs to be
scheduled, N PMs, the VM scheduling strategy X, and the VM original deployment Y . In
this algorithm, we first calculate the total resource utilization, then calculate the resource
utilization rate of PMs used.

According to what we discuss in the Section 2, in order to achieve QoS enhancement, we
are supposed to reduce the energy consumption and downtime and optimize the resource
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Figure 3 An instance of crossover

utilization with the constraints given by (23), (24) and (25). The fitness function optimiza-
tion problem is a multi-objective optimization problem, and NSGA-III algorithm is used to
select the best scheduling policy in the paper.

3.3 Optimize the VM scheduling strategy using NSGA-III algorithm

First, the parameters of the GA are initialized, such as the size of the population The
crossover is to combine the two parental chromosomes in the population, trying to get better
spring chromosomes., the number of iterations IT , the possibility of crossover and muta-
tion are denoted by Pc, Pd .Each chromosome consists of the VM scheduling policies which
are denoted by cs . The chromosome in the s-th schedule is denoted as Cs,e = {cs,e | 1≤ s ≤
Npop , 1≤ e≤ M}.

The parent population Pt of sizeNpop is randomly initialized in the specified value range,
and then an offspring population Qt which has a size of Npop is generated by crossover and
mutation operators. The crossover is to combine the two chromosomes in the parent popu-
lation to generate new pair of chromosomes. As is shown in Figures 2 and 3, the crossover
point is determined firstly, and the genes around the crossover points are changed.

The mutation is to modify some genes of chromosome and generate new individuals with
the aim of preventing early convergence. Figure 4 shows a instance of mutation operation
in one schedule strategy.

Figure 4 An instance of mutation
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Then, populations Pt and Qt are combined as population Rt of size 2Npop. Similar
to the basic framework of the NSGA-II algorithm, the non-dominated sorting is used to
divide the population Rt by non-domination levels. Then, each chromosome is added to
a new population St , until the size of St is equal to Npop . For further selection, the ideal
points and extreme points are determined first to normalize the objective value, and compute
the reference points accordingly. The ideal points are calculated by the minimum for three
fitness functions (Emin,Dmin,RUmin) in St . The objective value is translated by subtracting
the minimum from the fitness function and then the ideal points of St become a zero vector.
The process could be denoted by

Ea(Xi) = E(Xi) − Emin(Xi ∈ St ) (26)

Da(Xi) = D(Xi) − Dmin(Xi ∈ St ) (27)

RUa(Xi) = RU(Xi) − RUmin(Xi ∈ St ) (28)

The extreme points are identified by the solutions that make the achievement scalariz-
ing function minimum. Let εE , εD and εR be the extreme values of energy consumption,
downtime and resource utilization. The extreme values are calculated by

εE = max
Ea(Xi)

WE

(Xi ∈ St ) (29)

εD = max
Da(Xi)

WD

(Xi ∈ St ) (30)

εR = max
RUa(Xi)

WRU

(Xi ∈ St ) (31)

where WE , WD and WRU are the weight factors of the three fitness functions. For each
objective function, we could get an extreme vector to construct a hyper-plane. Hence, the
intercept of each objective axis could then be computed as aE , aD , aRU . The objective
functions are normalized as

En(Xi) = E(x) − Emin

aE

(Xi ∈ St ) (32)

Dn(Xi) = D(x) − RUmin

aD

(Xi ∈ St ) (33)

RUn(Xi) = RU(x) − RUmin

aD

(Xi ∈ St ) (34)

According to the new constructed hyper-plane, the reference points are simply placed onto
the normalized hyper-plane. Each axis has an intercept of 1 and is divided into g parts along
each objective. The total number of reference points is C

g

2M+g−1.
After normalizing each objective function adaptively, we need to associate population

individuals with reference points. We count the number of population members are associ-
ated with reference points. The solutions in the non-dominated front Fl are sorted by the
number of reference points associated with solutions. A solution is selected randomly from
the solutions that associated with the maximum reference points each time. The selection
procedure is repeated until the size of St is equal to Npop for the first time. Finally, the Npop

strategies for the child population are selected.
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3.4 Selecting scheduling strategy usingMCDM and SAW

Our method is aimed at realizing the trade-off among energy consumption, downtime and
resource utilization. Each child population selected above contains Npop chromosomes
which represent scheduling strategies of VMs. To select the relatively optimal scheduling
strategy, MCDM and SAW are employed. The higher energy consumption of scheduling
strategy means the solution is worse. Therefore, energy consumption is a negative criterion
for our scheduling strategy. We normalize the energy consumption as

F(E(Xi)) =
{

Emax−E(Xi)

Emax−Emin , Emax − Emin �= 0,

1, Emax − Emin = 0,
(35)

where Emax and Emin are the maximum and minimum of energy consumption of Xi

scheduling strategy. Similarly, the downtime and resource utilization can be normalized by

F(D(Xi)) =
{

Dmax−D(Xi)

Dmax−Dmin ,Dmax − Dmin �= 0,

1,Dmax − Dmin = 0,
(36)

F(RU(Xi)) =
{

RUmax−RU(Xi)

RUmax−RUmin , RUmax − RUmin �= 0,

1, RUmax − RUmin = 0,
(37)

In addition, to calculate the utility value of each solution, the weight of each objective
function requires determination. The utility value in the scheduling strategy Xi is calculated
by

V (Xi) = wE · F(E(Xi)) + wD · F(D(Xi)) + wRU · F(RU(Xi)), (38)

where V (X) represents the utility value of the X scheduling strategy and wE , wD , wRU

are the weight of three objectives relatively. After calculating all the utility values of Npop

solutions, the maximum utility value is calculated by

Vop = Npop

max
i=1

V (Xi). (39)

The solution Xop with the maximum utility value Vop is selected as the most optimal
scheduling strategy.

3.5 Method overview

Our goal is to minimize the downtime and the energy consumption in this paper. The VM
scheduling problem is defined as a multi-objective optimization problem and NSGA-III is
utilized to find the optimal scheduling strategy. The overview of our method is displayed in
Algorithm 4. The input of the algorithm 4 are the initial population Pt and the number of
iterations IT . The algorithm outputs the optimal VM scheduling strategy. We generate the
population Rt of size 2Npop by combining Pt and Qt . (Lines 2 and 3). Then, we primarily
select the child population by non-dominated sorting (Lines 4 to 9). Moreover, we select
the strategies further by reference points. (Lines 10 to 15) Finally, we obtain the optimal
scheduling strategy Xn.
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4 Experimental evaluation

4.1 Simulation setup

In our simulation, four datasets with different scales of the applications are applied, and the
number of applications is set to 50, 100, 150 or 200. The specified parameter settings in this
experiment are illustrated in Table 2.

4.2 Performance analysis of QVMS

As displayed in Figure 5, when the number of applications is 50, 100, 150, or 200, the
number of generated solutions by QVMS is 3, 3 ,3 and 4 respectively. After comparing
the utility value given in (36), we obtain the most optimal schedule strategy among all the
generated solutions. The solution with the maximum utility value is regarded as the most

Table 2 Parameter settings

Parameter description Value

The number of applications M 40

The number of PMs N 400

The number of pods in fat-tree topology k 24

The baseline energy consumption rate of n-th PM γn (X) 342W

The active energy consumption rate of m-th VM αm (X) 23W
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Figure 5 Comparison of utility value of the solutions generated by QVMS with different application sets

optimal schedule strategy. For example, the solution 2 in Figure 5b has a obviously higher
utility value than the other two solutions and is the optimal solution in all 3 solutions.

4.3 Comparison analysis

In this subsection, the comparisons before and after employing our proposed QVMSmethod
with the same experimental context are analyzed in detail. The resource utilization, the
downtime and the energy consumption are the main metrics for evaluating the performance
of the VM scheduling method. To analyze the advantage of QVMS, several scheduling
methods are employed to contrast with. The contrast methods are introduced as follows.

– Benchmark: The applications are scheduled to the nearest PM by the shortest path algo-
rithm until the current PM cannot satisfy the resource requirement of the application to
be scheduled. Then, the remaining applications are offloaded to the next close PM. The
process is repeated until all the applications are offloaded.

– ESM (Energy-aware VM scheduling method): ESM is an energy-aware dynamic VM
scheduling method in clouds presented by Dou et al. [8]. The method includes two VM
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offloading phases where applications are offloaded with lower energy consumption or
higher performance.

4.3.1 Comparison of resource utilization

Figure 6 shows the comparison of the resource utilization of the PMs among Benchmark,
ESM and QVMS with different application scales. It is intuitive from Figure 6 that our pro-
posed strategy QVMS achieves high and stable resource utilization. That is, QVMS reduces
the number of idle VMs and wastes less resources.

4.3.2 Comparison of energy consumption

In the experiment, the energy consumption consists of four parts, active energy consumption
of VMs, the idle energy consumption of VMs, the basic energy consumption of PMs and the
energy consumption of switches. The energy consumption of VMs, PMs and switches are
displayed in Figures 7, 8 and 10 relatively. As is shown Figure 7, the energy consumption of
VMs of all the three method is nearly the same. Besides, QVMS has an obvious advantage in
the energy consumption of switches. Figure 8 shows that QVMS consume less energy than
Benchmark and ESM. Figure 9 shows the comparison of running PMs, our QVMS only has
fewer than half of PMs in Benchmark, which means QVMS save more energy consumption
and the basic energy consumption of PM is illustrated in Figure 10. The difference between
QVMS and ESM in energy consumption of PMs is nearly the same as the number of running
PMs. Finally, Figure 11 displays the total energy consumption. With the increase of the
application scale, the gap between with or without the employment of QVMS is enlarged,
which may because the QVMS employs less PMs and reduce the basic energy consumption
of PMs, which save the total energy consumption to a great extent. ESM takes the better
performance into consideration at times, which lead to a little bit higher energy consumption
than QVMS on some conditions.

Figure 6 Comparison of average resource utilization with Benchmark and ESM
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Figure 7 Comparison of the energy consumption of running VMs with Benchmark and ESM

4.3.3 Comparison of downtime

To improve the resource utilization, VM migrations are necessary between PMs, which
results in the cost of downtime. According to the model, network topological distance is the
key factor affecting the cost of downtime. We calculate the downtime consumption of all the
migration compositions, based on the four application scales. From Figure 12, simulation
results show that the downtime fluctuates around 35 seconds in the simulation environment
and the downtime of ESM and Benchmark is a little longer than QVMS.

Figure 8 Comparison of the energy consumption of switches with Benchmark and ESM
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Figure 9 Comparison of the number of running PMs with Benchmark and ESM

5 Related work

With the development of manufacturing industry, CPS are systematically utilized to monitor
and process the information between the physical factory layer and the cyber comput-
ing layer [1, 19, 21, 34]. In [19], a CPS architecture is proposed as an implement of
CPS to improve efficiency, reliability and quality. The proposed CPS structure consists
of two components including advanced connectivity and intelligent data management.
Besides, to address the complexity, heterogeneity and multidisciplinary nature of indus-
trial CPS, Akkaya et al. using aspect-oriented modeling to segregate aspects of expertise
and manage the complexity [1]. In [34], Yu et al. analyze the potential of CPS that makes

Figure 10 Comparison of the energy consumption of running PMs with Benchmark and ESM

World Wide Web (2020) 23:1275–12971292



Figure 11 Comparison of the total energy consumption with Benchmark and ESM

contributions to the development of smart grid. By virtue of CPS, the efficiency of mon-
itoring, controlling and communication is advanced. However, CPS are lack in real-time
performance and dynamic conditions which pose great challenges to monitor industrial
applications successfully. Lu et al. surveyed advances in real-time wireless network for
industrial CPS including real-time scheduling algorithm, wireless cyber-physical simulation
and cyber-physical co-design of wireless control systems [21].

Furthermore, offloading resource intensive applications to cloud has been a popular
method to overcome the capacity limit of mobile devices [31, 33]. When offloading the
applications, the characteristics of applications and quality of network should be taken

Figure 12 Comparison of the downtime with Benchmark and ESM
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into consideration. In [38], Zhou et al. presented an offloading framework which is called
mCloud consisting of nearby cloudlets and remote public cloud. By offloading to the
mCloud, the context of mobile devices is used to provide an adaptive code offloading deci-
sion. However, when many users offloading their tasks to the cloud, they could produce
interference to each other and cause long latency. Zheng et al. present a multi-user dynamic
computation offloading method using game theory to make efficient and reasonable offload-
ing decision [37]. Similarly, Hong et al. improved the Quality of Experience (QoE) from
the perspective of users’ context. To solve the problem of scheduling the offloaded data and
selecting offloading services, a energy-latency-price trade-off is presented [15].

Combining CPS with cloud computing is an alternative approach for enhancing per-
formance of CPS applications [9, 11, 18, 25, 35]. In [9], to address the challenge of
resource management in cloud system, Gai et al. proposed a smart cloud-based optimiz-
ing workload model to assign tasks in heterogeneous clouds taken the sustainable factors
into consideration. To reply to the emerging ”Industry 4.0”, the integration of cloud com-
puting and CPS becomes significant. In [35], Yue et al. present a service-oriented industrial
cyber-physical model. With the support of cloud and service application, the CPS enable a
sustainable system and environmental friendly business. However, as the number of applica-
tions increasing, there are operational risks that CPS being attacked. Rahman et al. proposed
a forensic-by-design framework for cloud-based CPS to protect CPS cloud system from
being attacked [25]. Moreover, with the propose of addressing the lack of applications sup-
porting monitoring and analysis of dynamic human activity in cloud-based CPS, Gravina
et al. proposed activity as a service to support human activity recognition [11]. Kumar et
al. proposed an intelligent and energy-efficient scheme in smart grid CPS by cloud-based
control using game theory to realize efficient energy management [18].

In recent years, many researches focus on efficient approaches to reducing cloud data-
centers’ energy consumption [7, 23, 32, 39]. To address this problem, Chiang et al. proposed
an efficient green control (EGC) algorithm which solves constrained optimization problems
to improve the performance [7]. Zhu et al. proposed an energy-aware scheduling method
named EARH for real-time and independent tasks [39]. EARH utilizes a rolling-horizon and
is able to be integrated with other scheduling method. In [23], an energy and monetary cost-
aware task scheduling model is proposed to offload multiple tasks to cloud. The scheduling
model first find the optimal scheduling strategy for tasks, and then offer a reduction in the
cost.

Dynamic VM integration is also a way to reduce energy consumption. A feasible way
proposed by Chen et al. to handle this problem is reducing search space by selecting a
suitable VM composition in the first step, and then abandoning on worse compositions.
What’s more, it can ensure optimality of VM integration [5, 20, 24].

In many cases, cloud data centers need service composition mechanisms because single
VM can hardly meet all users’ needs [6, 10, 12, 17, 28]. Jiang et al. proposed to choose
the top k service composition because it can avoid the emergency such as the unavailabil-
ity of best service composition [17]. Chen et al. think that QoS-aware service composition
need to be formulated as a multi-objective optimization problem due to the requirements
of QoS attributes. To find the optimal composition solutions, Chen et al. also proposed an
approach based on Pareto set model which adjust the weight of different QoS attributes [6].
In [28], Shah et al. analyze the challenge of realizing QoS of health care service, and
using CPS to combine real-time patient monitoring with data processing to enable QoS
requirement.

To the best of our knowledge, there are few investigations, focusing on preserving QoS
requirement as well as optimizing energy consumption when combining CPS with cloud
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computing. The efficient VM scheduling method is needed to meet the QoS requirement
when offloading CPS applications to the cloud.

6 Conclusion and future work

In this paper, a QoS-aware VM scheduling method for energy conservation in cloud-based
CPS is proposed. First, we construct a systematic model with parameters such as downtime,
resource utilization and energy consumption. Then, we see this model as a multi-objective
optimization and solve it based on NSGA-III. Furthermore, the most optimal scheduling
strategy is selected by MCDM and SAW. The method can be used to minimize downtime,
energy consumption and maximize resource utilization. Through experimental evaluation,
our method is proved to be effective. In the future, more QoS standards will be taken into
consideration to meet multiple users’ requirements. Furthermore, our proposed method will
be adjusted ulteriorly to make it more practical for real life scenario.
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