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Abstract
Point-of-Interest recommendation is a task of personalized ranking prediction on a set of
locations for users. The problem of data sparsity is much severe in POI recommendation,
as users usually visit only a few POIs concentrated on a limited number of types, relative to
the enormous whole POIs. However, he/she has different personalized favors on each type.
Based on this phenomenon, we assume the user-POI matrix is locally low-rank instead of
globally low-rank, then we put forward to utilize local collaborative ranking (LCR) for POI
recommendation, which could mitigate the sparsity of check-in data. Especially, POIs vis-
ited by a user always scatter on limited spatial areas, and POI is usually popular in a local
scope. There exists spatial local property in users’ check-in behavior. Moreover, to repre-
sent the spatial local property, we propose spatial similarity in the first time. With spatial
similarity, LCR can find more latent neighborhoods in its local matrices and construct the
local matrices much accurately. Besides, user’s preference to POI includes not only general
favor but also spatial favor. So spatial favor is introduced in our model. We utilize spatial
similarity and spatial favor to mix geographical information into local collaborative ranking
seamlessly, proposing our model MG-LCR (Mix Geographical information into Local Col-
laborative Ranking). Experiments show that, MG-LCR model can reflect users’ preference
to POIs more accurately and outperform the state-of-the-art methods.

Keywords Local collaborative ranking · Spatial similarity · Spatial favor ·
Point-of-Interest recommendation

1 Introduction

In recent years, we have witnessed the increased development of location-based social net-
working (LBSN) services, such as Foursquare, Twitter, Yelp and Sina Weibo. LBSNs allow
users to explore their surrounding places through the sharing check-in data. The check-in
data contains rich knowledge which can be used for various recommendation problems, e.g.,
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Point-of-Interest (POI) recommendation. The task of POI recommendation is to provide
personalized recommendations of places of interest to a user, and it returns his/her unvisited
places that he/she may be interested. In this paper, we focus on POI recommendation.

Considerable research efforts [4, 12, 15, 20, 37] have been devoted to develop models for
providing accurate locations. The existing POI recommendation methods can be categorized
into memory-based and model-based systems. Memory-based systems [27, 34] compute the
missing rates of user-item pairs from similar users (user-based systems [27, 34]) or simi-
lar items (item-based systems). Compared to memory-based systems, model-based systems
[2, 4, 12, 14] learn a model based on the patterns recognized from the check-in data.
Although successes, a widely acknowledged challenge of POI recommendation is data spar-
sity. The check-in data is very sparse due to a majority of users only visited a very small
number of POIs. When we make personalized recommendation for users, the sparse data
may cause low accuracy of recommendation system.

Many researchers exploit to use the context information, e.g., geographical coordinates of
POIs, for solving the data sparse problem. Lian et al. [12] incorporated the spatial clustering
phenomenon [27] into the weighted matrix factorization model and proposed activity area
vectors of users and influence area vector of POIs to augment user’s and POI’s latent factors
in matrix factorization model. Li et al. [15] proposed a ranking based geographical factor-
ization model (Rank-GeoFM) for addressing the data sparsity. Their ranking model used
both the with and without check-in data, thus the data sparsity can be alleviated. Zhang et
al. [37] proposed to exploit the geographical correlations, social correlations and categorical
correlations among users and POIs. Wang et al. [20] utilized multi-fold context information
to solve the data sparsity problem. In the pipelines of most existing POI methods that use
the geographical information, all assume that the matrix of user-POI is globally low-rank.
However, since most of the entries in the user-POI matrix are unknown, it is hard to com-
plete the matrix, and it will give suboptimal solutions of the users’ and POIs’ latent factors
in the factorization model. The assumption of globally low-rank thus still has limitations.

Although the check-in data is very sparse, fortunately, the check-in data always has the
local structure for the users who live nearly, that is “everything is related to everything else,
but near things are more related than distant thing” [27]. This motivates us to recover more
unknown values in user-POI matrix by using the local geographical constraint. In this paper,
we propose to recommend the unvisited POIs for a user based on three local properties. 1)
Local low-rank matrix. Instead of assuming that the user-POI matrix is globally low-rank,
we explicitly enforce that the user-POI matrix is locally low-rank [10, 11], which the locality
is defined in the vicinity of certain row-column combinations. We construct several low-
rank sub-matrices, each sub-matrix corresponds to a local region in the user-POI matrix.
To calculate the similarity, the anchor point is used as representation for local region. In
the local low-rank model, user-POI sub-matrices are much denser than the original matrix.
Thus, the sparsity problem can be relieved. 2) Spatial similarity. In the real world, there
exists spatial locality in users’ behaviour, that is people living in the neighbourhood would
have the similar behavior. For example, there are two usersA andC. They live closely. Since
there are limited number of check-ins for each user, they have no common check-in. This
doesn’t mean they are not similar with each other any more. As their active areas overlap,
maybe a nearby POI visited by A will also be visited by C in the future. To represent the
spatial locality, we propose a new similarity: spatial similarity. The corresponding method
is proposed for calculating the spatial similarity between users (the same to POIs). With
the spatial similarity, we can calculate the similarity more accurately between user-POI
point with anchor point, then we can find more similar user-POI points undiscovered before
and make the local matrix denser. 3) Spatial favor. When a user chooses a restaurant, the
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distance is an important consideration. In this paper, we propose the spatial favor to model
user’s spatial preference. We utilize a personalized geographical model to get the spatial
favor of user to POI. Compared to the existing works [12, 15] that fuse the spatial factor
into their models directly, our model can learn the parameter more accurately. Finally, we
use the local collaborative ranking (LCR) [11] with these three factors and propose to mix
geographical information into local collaborative ranking (MG-LCR) for the sparse data.

Our contributions in this paper can be summarized as follows:

– We propose a local matrix factorization method that explicitly enforces the user-POI
matrix to have a locally low-rank structure. Due to sufficient samples are available in
the small neighbourhoods, the local matrix approximation can relieve data sparsity.

– We propose to mix geographical information into local collaborative ranking, in which
the spatial similarity and the spatial favor are proposed for modelling the geographical
correlations. Our spatial similarity can get more similar user-POI points in the local
region and make the local matrix denser. We also utilize personalized geographical
model to get the spatial favor of user to POI.

– We conduct extensive evaluations on two benchmark datasets for POI recommendation.
The empirical results show that the proposed method outperforms other state-of-the-art
methods, including LCR, GeoMF, Rank-GeoFM.

The rest of this paper is organized as follows: In Section 2, we firstly propose locally
low-rank model to predict users’ rating to POI, then we mix geographical information into
local collaborative ranking. The experimental results are given in Section 3. In Section 4,
we briefly review related work. Finally, we conclude the paper in Section 5.

2 The proposed approach

In this paper, we propose to mix geographical information into local collaborative rank-
ing (MG-LCR) for dealing with small amount of check-in data. The MG-LCR has three
building blocks for solving the sparsity of data: 1) local low-rank matrix factorization; 2)
spatial similarity and 3) spatial favor. In the following, we will firstly introduce the research
problem with required notations, and then we will present the details of these three parts,
respectively.

2.1 Problem definition

Let U be the set of all users, and V be the set of all POIs. In POI recommendation, S is
the observed implicit feedback data, S ⊂ U × V is available. Each POI is associated with
latitude and longitude coordinates (x, y). We denote V+

u as the set of POIs that user u have
visited:

V+
u := {v ∈ V : (u, v) ∈ S}. (1)

Each v in V+
u is also associated with frequency information fv , which indicates the fre-

quency of user u visited POI v. POI recommendation system’s task is to recommend POIs
that user has not visited.

To predict users’ ratings to unvisited POIs, Li et al. [15] and Lian et al. [12] utilized meth-
ods based on matrix factorization, which assumes user-POI matrix is globally low-rank. It
measures users’ preference by their historical check-ins over the entire POI space. They
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used matrix factorization to learn the rating matrix X : U ×V . With matrix factorization, X
is approximated by the matrix product of two low-rank latent matrices

X̂ := UV T , (2)

where U : |U | × r and V : |V | × r and r is the rank of latent matrix.

2.2 Local low-rankmatrix factorization

In fact, as user’s preference includes various aspects, he/she may have a special taste on
restaurants, and another personalized favor on sceneries. Analogously, each POI’s attribute
contains several aspects, it may provide a good service, but its location is remote. In other
words, there exists local property in users’ check-in behavior and POIs’ attribute.

Therefore, we utilize an alternative approach to predict users’ ratings to POIs. By
assuming user-POI matrix is locally low-rank instead of globally low-rank, we apply local
low-rank matrix approximation to estimate ratings in personalized ranking. Thus, X is
approximated by a number of low-rank matrices. Each low-rank matrix represents one
local subgroup, and each of these matrices describes the original matrix for a subgroup of
user-POI points [1, 24].

X̂u,v =
q∑

t=1

wt
u,vX̂

t
u,v, (3)

where q is the number of low-rank matrices. X̂u,v represents the estimation of element
in original matrix X, X̂t

u,v is the estimation obtained from t-th low-rank matrix Xt , wt
u,v

denotes the weight of low-rank matrix element X̂t
u,v in Xu,v . To get X̂t

u,v and wt
u,v , we

operate as follow:

Step 1: Sample q anchor points (ut1 , vt1), ..., (utq , vtq ) ∈ R
|U |×|V| uniformly from the

training set. Each anchor point will be used to construct corresponding sub-matrix. And
it is conceivable that more sophisticated adaptive sample techniques will result in a more
accurate model.
Step 2: Identify neighborhoods surrounding t-th anchor point to form a sub-matrix. If
the similarity between user-POI point (u, v) with anchor point (ut , vt ) is not less than a
threshold, then (u, v) is a neighborhood of t-th anchor point. To calculate the similarity
between user-POI point with anchor point, we use the product of users’ similarity with
POIs’ similarity to represent it. Here we use function s(u, ut ) to indicate the similarity
between users in each point, the same to POIs.

s(u, ut ) = arcos

( 〈Uu,Uut 〉
||Uu|| · ||Uut ||

)

s(v, vt ) = arcos

( 〈Vv, Vvt 〉
||Vv|| · ||Vvt ||

)

s((u, v), (ut , vt )) = s(u, ut )s(v, vt ), (4)

where s(u, ut ) describes user similarity, which can be computed solely based on the par-
tially observed user-POI matrix by cosine similarity. However, the partial observed matrix
is very sparse, leading to poor estimates of similarity. Therefore, we factorize X into latent
factor U ,V firstly, then we calculate the cosine similarity between users, the same to POIs
(omitted here). Moreover, the similarity can also be calculated by other information which
will be introduced in the latter section. As mentioned in [10], we also introduce smoothing
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kernel into the similarity. Since Epanechnikov kernel’s performance is better than uniform
and triangular kernel, we adapt Epanechnikov kernel as smoothing kernel. The similarity
between two users becomes:

Kh1(u, ut ) = 3

4
(1 − s(u, ut )

2)1[s(u, ut ) < h1

K ′
h2

(v, vt ) = 3

4
(1 − s(v, vt )

2)1[s(v, vt ) < h2, (5)

where h1, h2 are bandwidth of smoothing kernel. So the similarity between user-POI point
with anchor point becomes

s((u, v), (ut , vt )) = Kh1(u, ut )K
′
h2

(v, vt ). (6)

Step 3: With the similarity K(·, ·), we can get the weight wt
u,v as following formula

wt
u,v = s((u, v), (ut , vt ))∑q

s=1 s((u, v), (us, vs))
. (7)

where X̂t can be obtained by the local low-rank matrix, in left part of Figure 1, the
sub-matrices are decomposed by matrix factorization:

X̂t
u,v = Ut

uV
t
v

T . (8)

+

+

+

Figure 1 Local low-rank matrix factorization. Original matrix is realigned by the anchor points to form
sub-matrices, there are five sub-matrices indicated by different colors. Black-edged box indicates the anchor
point
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Step 4: Via local low-rank matrix approximation, the estimation rating of user-POI X̂u,v

will be aggregated, as shown in right part of Figure 1:

X̂u,v =
q∑

t=1

s((u, v), (ut , vt ))∑q

s=1 s((u, v), (us, vs))
[UtV t T

u,v . (9)

We calculate the similarity between users (the same to POIs) by latent vector. In fact,
besides the general local property, there exists spatial local property for users and POIs in
the geographical space. In the following, we first introduce the spatial similarity, then we
describe spatial favor in our model. At last, we mix the geographical information into LCR,
and provide corresponding learning algorithm.

2.3 Spatial similarity

Each user may have different favors in different geographical regions. For example, when
user is in Las Vegas, he/she would like casino, having the same favor with local users. While
he/she probably likes Lake Powell, if the user is in Phoenix.

At the same time, there is also spatial local property in POIs. Ye et al. [27] mentioned
“nearby POIs are more related to each other, which exhibits strong geographical influence.”
The adjacent POIs are more or less similar. POIs closed with shopping malls are likely
related to shopping. We use data from Yelp Dataset Challenge, including Phoenix, Las
Vegas et al. Via latent vector obtained from matrix factorization, we calculate the similar-

ity between POIs by cosine (
Vv1 ·Vv2||Vv1 ||·||Vv2 || ), getting the correlation between distance (POI to

POI) and similarity (POI to POI). The x axis means that POI-POI’s distance is not larger
than a corresponding value. In Figure 2, the correlation between distance and similarity is
negative, especially when the distance is 100m, the absolute value of correlation is more
than 0.55. This indicates when POI to POI’s distance isn’t larger than 100m, they are more
likely similar. Thus it can be seen that there exists spatial local property in the geographical

Figure 2 Correlation between sim (v1, v2) and distance (v1, v2) on Yelp. When the POI to POI’s distance
is not large than a certain value, we calculate the corresponding correlation value between similarity and
distance
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space. We can also see when the distance is less than 100m, the absolute value of correla-
tion is not big. This may be because there are not too many POI pairs, of which distance is
less than 100m, and there are many noises in the similarities between POIs.

To represent the local property on geographical space, we will introduce spatial similar-
ity, just as similarity for general local property. Next, we will introduce how to compute
the spatial similarity. The spatial similarity contains two parts: user’s spatial similarity and
POI’s spatial similarity.

User’s Spatial Similarity depicts how similar between the active areas of two users.
This concept is first proposed in POI recommendation. In earlier works, they used the
general similarity to make user-based collaborative filtering recommendation, ignoring
that there exists spatial similarity. Through there already exists spatial similarity in other
domains, such as image retrieval [6] and biogeography [9], but the spatial similarity in these
domains is not same with POI recommendation. Because the check-in data is just some
points in spatial area, and each point is associated with frequency information. And we
concern their spatial active areas’ relationship, not just their overlapped area. Here we pro-
pose a kernel estimation method [13, 34] to calculate it. Defining user a’s check-in set as
La = {(v(a)

1 , f
(a)
1 ), (v

(a)
2 , f

(a)
2 ), ..., (v(a)

n , f
(a)
n )}, where v

(a)
j = 〈xj , yj 〉, xj and yj repre-

sent the latitude and longitude of POI v
(a)
j , which is visited by the user f

(a)
j times. Since

user may visit a POI several times, the frequency information is important to depict user’s
geographical attribute, and it can reflect the probability of a user occurs in somewhere. Each
POI v’s spatial similarity with user a is defined as below:

fs(v|La, h) = 1

|Fa |
n∑

j=1

K ′′
h (v, v

(a)
j ) · f

(a)
j (10)

K ′′
h(v, v

(a)
j ) = 1√

2πh
e
− ‖v−v

(a)
j

‖2
2h2 , (11)

where |Fa | is the sum of all f (a)
j in La , K ′′

h is a kernel function defined in formula (11), h is

the bandwidth of kernel function, ‖v − v
(a)
j ‖2 is the spatial distance between v and v

(a)
j . In

a similar way, user b’s check-in set is Lb = {(v(b)
1 , f

(b)
1 ), (v

(b)
2 , f

(b)
2 ), ..., (v(b)

m , f
(b)
m )}. So

the spatial similarity sp(a, b) between a and b will be:

sp(a, b) = 1

|Fb|
m∑

i=1

fs(v
(b)
i |La, h) · f

(b)
i

= 1

|Fb||Fa |
m∑

i=1

n∑

j=1

K ′′
h(v

(b)
i , v

(a)
j ) · f

(a)
j · f

(b)
i

= 1

|Fa |
n∑

j=1

fs(v
(a)
j |Lb, h) · f

(a)
j

= sp(b, a), (12)

where |Fb| is the sum of all f (b)
i in Lb. From the formula above, we can see the sp(a, b) is

symmetric. So the calculation will be reduced by half.
To prove the assumption that similarity contains general similarity and spatial similarity,

we calculate the correlation between user’s general similarity with user’s spatial similarity.
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Figure 3 Correlation between users’ general similarity and spatial similarity on Yelp. When the user to user’s
spatial similarity is not large than a certain value, we calculate the corresponding correlation value between
general similarity and spatial similarity

In Figure 3, as the spatial similarity increases, the correlation improves synchronously.
This indicates the bigger users’ spatial similarity are, the more similar their preference are.
Besides, we show the heatmap of three users’ check-in in Figure 4. In Figure 4(a), user u1’s
active area is shown in yellow/green-edge area, user u2’s active area is shown in blue-edge
area, their active areas overlap at the center part of the map. Based on the formula of general
similarity and spatial similarity, we get general similarity is 0.68, and their spatial similarity
is 0.27. In Figure 4(b), user u1’s active area is still shown in yellow/green-edge area, user
u3’s active area is shown in blue-edge area. In contrast to u2, user u1’s general similarity
with u3’s is 0. However, they have two overlapped active areas, and their spatial similarity is
0.25. So the spatial similarity can remedy the insufficient of general similarity. By the two
examples, we can see the spatial similarity can depict users’ spatial relationship well. At
the same time, the spatial similarity can also reflect users’ similarity properly when general
similarity doesn’t work.

POI’s Spatial Similarity depicts how similar between two POIs on spatial space. Basi-
cally, the normalized distance between two POIs can be used as the spatial similarity.
However, the spatial similarity is not linear relationship with distance. Ye et al. [27] uti-
lized a power-law probabilistic model between two POIs’ relationship. But it is based on
users’ visited POI set. Here the POI’s spatial similarity is independent with users and is
calculated from POI perspective. To obtain POIs’ spatial similarity from the distance infor-
mation and reflect their non-linear relationship, we use the kernel estimation method, which
is a non-parametric way to estimate the probability density function of a random variable.
Defining the POI vi’s coordinate as vi = 〈xi, yi〉, POI vj ’s coordinate as 〈xj , yj 〉, the spatial
similarity sp(vi, vj ) between vi and vj will be:

sp(vi, vj ) = 1√
2πh∗

e
− (dvi vj

)2

2h2∗ , (13)

where dvivj
is the spatial distance between vi and vj . How to select the bandwidth h∗ will

be introduced in section 2.4.
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Figure 4 Heatmaps of (u1, u2, u3) on Yelp. In Figure 4(a), user u1’s active area is shown in yellow/green-
edge area, user u2’s active area is shown in blue-edge area, their active areas overlap at the center part of the
map. In Figure 4(b), user u1’s active area is still shown in yellow/green-edge area, user u3’s active area is
shown in blue-edge area. There are two overlapped active areas

2.4 Spatial favor

As we know, user visits a POI considering not only personalized preference but also the
distance factor. As the distance between user and POI becomes smaller, user will probably
prefer the nearby POI much more, which we call spatial favor in this paper. To better learn
user’s personalized preference, we obtain user’s spatial favor to POI in advance. Since we
cannot get user’s current position, we use user’s history check-ins to depict user’s active
area, then calculate distance between target POI with the POIs visited by the user. Ye et al.
[27] used power-law distribution to get spatial favor by the distance. However, it needs to
learn the parameter of the power-law distribution firstly. Here, we use kernel function to
depict user’s spatial favor to POI.

fS(v|Lu, h) = 1

|F |
n∑

j=1

K ′′
h (v, vu

j ) · fj (14)

K ′′
h(v, vu

j ) = 1√
2πh

e
−

(d
vvu

j
)2

2h2 , (15)

where v is the POI to calculate, fS(v|Lu, h) depicts user u’s spatial favor to POI v. h is the
bandwidth parameter. Moshe et al. [13] suggested h be the Euclidean distance of the kth
nearest neighbor to vu

j in the training data. However, user’s check-in data is very sparse, this
method works not very well in the individual’s level. Here we utilize fixed h and perform
a grid-search to selecting h by a validation set. We will use log-probability score function
LPu(h) (formula is shown below) and precision of top-k for bandwidth selection.

LPu(h) = 1

nt

nt∑

r=1

log fS(vr |Lu, h), (16)
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Table 1 log-probability scores on validate set, comparing the fixed, adaptive approaches for kernel density
estimation on Foursquare check-in data

Bandwidth AvgLogL Precision@5

Fixed h = 1 −1.348 0.031

h = 0.1 −0.873 0.036

h = 0.05 −0.334 0.040

h = 0.01 −0.748 0.037

Adaptive k = 2 −2.674 0.016

k = 5 −0.956 0.032

k = 8 −0.153 0.027

where the nt is the number of POIs in the validation set. By Table 1, we can see when
h = 0.05, the performance is best.

2.4.1 Mix geographical information into local collaborative ranking

We use local low-rank matrix factorization to predict users’ ratings on POIs. The rating
can only reflect user’s general preference excluding geographical factor. As we know, users
tend to visit the POIs around them. Then the spatial favor proposed before can reflect the
probability of user appearing at the POI in the spatial perspective. Then we fuse the spatial
favor into LCR, getting a new rating of user to POI, which is defined as follows:

X̂u,v =
q∑

t=1

s((u, v), (ut , vt ))∑q

s=1 s((u, v), (us, vs))
[UtV t T

u,v + fS(v|Lu). (17)

At the same time, when calculating the relationship between user-POI point with anchor
points s((u, v), (ut , vt )), we should consider not only the general similarity calculated
between latent vectors but also spatial similarity. The similarity s(u, ut ), s(v, vt ) in formula
(5) between users (and POIs) can be updated by the mixed similarity sm(u, ut ), sm(v, vt )

below:

sm(u, ut ) = (1 − α)s(u, ut ) + α · sp(u, ut )

sm(v, vt ) = (1 − α)s(v, vt ) + α · sp(v, vt )

0 ≤ α ≤ 1, (18)

where α is a parameter to balance the weight of spatial similarity. However, this is a linear
combination of different factors, and there is an extra variable α to be inferred. When facing
new datasets, the variable needs to be recomputed. Here the proposed method utilizes the
proportion of two factors in exponential space to replace the extra variable. As shown below,
it can avoid extra variable to infer, the same to POI.

sm(u, ut ) = exp(s(u, ut ))

Z
s(u, ut ) + exp(sp(u, ut ))

Z
sp(u, ut )

Z = exp(s(u, ut )) + exp(sp(u, ut )). (19)
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2.5 Parameter inference

To optimize parameter in the model, we use bayesian analysis of the problem [18], utilizing
the likelihood function for p(vi �u vj |�) as objective function, and p(�) is the prior prob-
ability of the model. Our model assumes that a user prefers a visited POI than an unvisited
one, and user’s rating to visited POI should be higher than rating to unvisited POI. It learns
the POIs’ ranking for each user, so our proposed method is called local collaborative rank-
ing mixed with geographical information. As a result, we will maximize likelihood function
p(�u |�) for all users

∏

u∈U
p(�u |�) =

∏

(u,vi ,vj )∈U×V×V
p(vi �u vj |�). (20)

In order to get a personalized total rank, we define the individual probability that a user
really prefers item vi to item vj as:

p(vi �u vj |�) = σ(x̂uvivj
(�))

x̂uvivj
(�) = X̂uvi

(�) − X̂uvj
(�), (21)

where σ is the logical function:σ(x) = 1/1+e−x , x̂uvivj
(�) is an arbitrary real function, the

model parameter vector � which captures the special relationship between user u, item vi

and item vj . Here, X̂uvi
(�), X̂uvj

(�) is estimated by local collaborative ranking mentioned
in Section 2.4.1. In order to complete ranking learning task, we introduce a general prior
density p(�), its mean is 0, the variance matrix of the normal distribution is

∑
�. Then to

reduce the number of unknown parameters, we formulate the maximum posterior (MAP)
estimation for the personalized ranking, which is derived below.

MAP = lnp(�| �u)

= lnp(�u |�)p(�)

= ln
∏

(u,vi ,vj )∈Ds

ln σ(x̂uvivj
)p(�)

=
∑

(u,vi ,vj )∈Ds

ln σ(x̂uvivj
) + lnp(�)

=
∑

(u,vi ,vj )∈Ds

ln σ(x̂uvivj
) − λ�‖�‖2

Ds = {(u, vi, vj )|u ∈ U ∧ vi ∈ V ∧ vj ∈ V\V+
u }, (22)

where λ� are model specific regularization parameters.
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2.6 Learning algorithm

We have just derived an objective function for ranking learning. To learn the objective
function, we adopt stochastic gradient descent algorithm. As the objective function is
differentiable, the gradient of MAP with respect to the model parameters is:

∂MAP

∂�
=

∑

(u,vi ,vj )∈Ds

∂

∂�
ln σ(x̂uvivj

) − λ�

∂

∂�
‖�‖2

∝
∑

(u,vi ,vj )∈Ds

−e
−x̂uvi vj

1 + e
−x̂uvi vj

∂

∂�
x̂uvivj

− λ��. (23)

With local collaborative ranking, the target matrix X is grouped by several local matrices
Xt , each is approximated by the matrix product of two low-rank matrices Ut : |U t | × r and
V t : |V t | × r . U t is the user set of local matrix Xt , V t is the POI set of local matrix Xt , r is
the rank of feature matrix.

X̂u,v = wt
u,v · [UtV t T

u,v

wt
u,v = s((u, v), (ut , vt ))∑q

s=1 s((u, v), (us, vs))
, (24)

where wt
u,v represents the weight of local low-rank matrix element X̂t

u,v in X̂u,v . Each row
[Ut

u in Ut can be seen as a feature vector describing a user u in local matrix and similarly
each row [V t

v of V t describes a POI v. Thus the prediction formula can also be written as:

[UtV t T
u,v =

r∑

f =1

[Ut
uf · [V t

vf . (25)

Then we can get:

∂

∂�
x̂uvivj

=

⎧
⎪⎪⎨

⎪⎪⎩

wt
u,v · ([V t

vif
− [V t

vj f ), if � = [Ut ]uf ,

wt
u,v · [Ut

uf , if � = [V t ]vif ,

−wt
u,v · [Ut

uf , if � = [V t ]vj f ,

0, else

(26)

The stochastic gradient descent algorithm is defined as follow:

Step 1: initialize each [Ut ,[V t as Gaussian distribution matrix.
Step 2: choose the triple (u, vi, vj ) randomly (uniformly distributed) from users’ check-
in set, learn the parameters in [Ut and [V t in iteration.

� ← � − α(
e
−x̂uvi vj

1 + e
−x̂uvi vj

· ∂

∂�
x̂uvivj

+ λ��). (27)

Step 3: judge the iteration converged or not. If it converges, then the algorithm finishes,
otherwise turn to Step 2.

3 Experiment and results

In the experiments, we compare MG-LCR with other recommendation models. First, with-
out considering geographical information, we choose three basic models, weighted matrix
factorization (WMF), probabilistic factor model (PFM) and bayesian personalized ranking
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(BPR). We use LCR comparing with them. Second, to show the effect of introducing geo-
graphical information, we compare MG-LCR with LCR. At last, in order to understand the
superiority of our models, we compare MG-LCR with the state-of-art model Rank-GeoFM.

3.1 Data sets

Experiments are conducted on two datasets, One is Foursquare1 check-in data [15], the other
is Yelp2 check-in data. In Foursquare check-in data, there are total 49,062 users, 206,416
POIs and 221,128 check-ins in New York City(NYC). The density of user-POI matrix is
2.1 × 10−5, average number of visited POIs per user is 4.5, average number of check-ins
per POI is 1.07. In Yelp check-in data, there are total 552,000 users, 77,000 POIs and about
2,200,000 check-ins. The density of user-POI matrix is 5.1 × 10−5, average number of
visited POIs per user is 3.98, average number of check-ins per POI is 28.57. We can see that
both of the datasets are sparse, and the user-POI matrix in Foursquare is much sparser than
Yelp.

3.2 Evaluationmetrics

Here we use top-k evaluation criterion, for POIs each user accessed, we randomly selected
70% of check-ins as the training set, and 20% as a test set, the rest as validate set. We
learn model’s parameters from the training set, then we predict where the user may go by
recommendation model. The recommendation model is to rate each POI unvisited and rank
them by the ratings, then it returns the top-k POIs as recommendation list to the user. By
comparing recommendation list and test set, we assess the model’s accuracy. Evaluation
metrics include recall@k and precision@k. The first evaluation metric shows how many
percent of POIs user really visited are in the recommendation list for each user. And the
second evaluation criterion indicates how many percent of POIs in the recommendation list
are really visited by each user. The formulas are defined as below:

recall@k = 1

M

M∑

u=1

|Ru(k) ∩ Tu|
|Tu|

precision@k = 1

M

M∑

u=1

|Ru(k) ∩ Tu|
k

. (28)

where Ru(k) represents the top-k POIs recommended by the model for user u. Tu represents
the POI set really visited by user u. M is the number of users. This process is just an
experiment of one time. The performance of the final recommendation model is through 5
independent experiments and we get the result by average.

3.3 Baselinemethods

For POI recommendation, we compare our model with the following baseline methods.

– Weighted Matrix Factorization(WMF) WMF is especially designed for matrix fac-
torization based on implicit feedback [8, 17]. WMF considers all the unvisited locations

1available at https://pan.baidu.com/s/1dELJfSP
2available at https://pan.baidu.com/s/1hrXOpe8
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as negative examples, and it assigns weights of small value to all negative examples,
while the weights assigned to positive examples are monotonically increasing respect
to frequency.

– Probabilistic Factor Models(PFM) Since the distribution of frequency data doesn’t
obey Gaussian distribution, PFM [2] places Beta distributions as priors on the latent
vectors, then PFM defines a Poisson distribution on the frequency.

– Bayesian Personalized Ranking(BPR) BPR is the most popular ranking-based matrix
factorization, our local collaborative ranking model is also improved based on the
Bayesian Personalized Ranking criterion [18].

For integrated models considering geographical information on POI recommendation,
the following methods are used as baselines.

– GeoMF GeoMF includes geographical factor into weighted matrix factorization, then
it extends the dimensions of latent vectors to learn users’ spatial activity and POIs’
spatial influences [12].

– Rank-GeoFM Rank-GeoFM is the state-of-the-art method on personalized ranking for
POI recommendation [15].

3.4 Parameter setting

Next, we show the parameter values. We set the bandwidth parameter in Epanechanikov
kernel as h1 = h2 = 0.8. Then we compare the performance under different number of
anchor points. In Figure 5, the performance is increasing as more anchor points, and when
the number is bigger than 100, the performance doesn’t increase too much, however, the cal-
culation time will consume more. Then we select 100 anchor points for Foursquare dataset
and 100 anchor points for Yelp dataset. At the same time, we compare LCR with Personal-
ized Ranking (PR, also called BPR) at different rank values, including 5,10,15,20,30. Since
the performance doesn’t increase too much when r > 15, we don’t try any larger ranks.
In Figure 5, LCR gets the best performance at r = 30 on two datasets. However, from
the experiment results, we observe the increase becomes smaller when the rank exceeds
15. Therefore, to balance the costing time for learning parameters and performance, we set
rank as 15 in our models. In the same way, we set the rank of traditional matrix factoriza-
tion as 15. In spatial favor, we set h = 0.05 as fixed bandwidth for individual’s frequency
distribution, which is shown in Table 1. We compare the performance of MG-LCR at differ-
ent values of α and our improved fusing method with softmax function. In Figure 6, when
α = 0.2, α = 0.3, the precision@5 is best on each of two datasets. This indicates spa-
tial similarity is indeed an important factor. And our fusing method in formula 19 can also
obtain nearly best performance, it is robust and not effected by different datasets. At the
same time, it doesn’t need extra calculation to determine the weight parameter, so we adopt
the improved fusing method in our later experiment.

3.5 Results and discussion

In Figure 7, we compare LCR with BPR, WMF, PFM in different number of top-k. LCR is
best all the time. On each number of top-k, WMF is better than PFM. Even through PFM is
optimized for frequency matrix, WMF is more suited to POI recommendation where data of
check-ins in POI recommendation is implicit feedback. And BPR is better thanWMF, PFM.
Not only because it is a ranking-based factorization, but also the train set of BPR consists of
positive examples, negative examples and missing values to be predicted. However, in WMF
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Figure 5 Compare preformance of LCR with PR which considers matrix as global low-rank, at different
value of rank on two datasets, Foursquare and Yelp

and PFM, all the missing values are assumed as negative examples, this would bring some
false negative examples. We can see that LCR is much more better than BPR all the time.
The improvements, in terms of precision@5, are more than 5.10% and 7.20% on Foursquare
and Yelp datasets, respectively. This may be caused by the local property existed in check-in
matrix, and the local low-rank factorization can capture the local property exactly. This can
prove the locally low-rank is much suited than globally low-rank in POI recommendation.

In Figure 8, we compare MG-LCR with LCR+fav, LCR+sim and LCR. LCR+fav is
the model mixed spatial favor into local collaborative ranking, without considering spatial
similarity. LCR+sim is the model mixed spatial similarity into local collaborative ranking,
without considering spatial favor. MG-LCR is the model fused geographical information
into local collaborative ranking, which considers not only spatial favor but also spatial sim-
ilarity in fact. We can see all of MG-LCR, LCR+fav, LCR+sim are better than LCR, this
proves geographical information is important in POI recommendation. Considering preci-
sion@5, in Foursquare dataset, LCR+fav and LCR+sim improve LCR by 14.9%, 4.98%
respectively, in Yelp dataset they improve by 17.5%, 8.30% respectively. The experiments
also show LCR+fav is a little better than LCR+sim. This can indicate spatial favor is a lit-
tle more important than spatial similarity. Then we compare them with MG-LCR, which is
the model mixed both spatial favor and spatial similarity into local collaborative ranking.
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Figure 6 Compare precision@5 at different value of α and softmax method on two datasets, Foursquare and
Yelp

Figure 7 Compare the performance of LCR with others approaches on two datasets, Foursquare and Yelp
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Figure 8 Compare the performance of our proposed model MG-LCR with Rank-GeoFM and GeoMF on two
datasets, Foursquare and Yelp

We can see that, considering precision@5, MG-LCR is superior to LCR+fav and LCR+sim,
improving LCR by 20.6% in Foursquare, 25.4% in Yelp.

At last, we compare them with Rank-GeoFM (the state-of-art method), GeoMF. We
can see that MG-LCR, LCR+fav and Rank-GeoFM are all better than GeoMF, this may
be caused by that they are optimized for ranking. Further more, LCR+fav is better than
Rank-GeoFM, by 4.85% and 5.48%, in terms of precision@5 on each dataset. MG-LCR
is much better than Rank-GeoFM, by 11.0% and 11.9%, in terms of precision@5 on each
dataset. Maybe because MG-LCR supposes the user-POI matrix is locally low-rank and
includes spatial similarity to make sub-matrix more denser, which relieves the sparsity
greatly. Moreover, the spatial favor of user to POI can characterise users’ geographical
attribute better.

4 Related work

POI recommendation is a very important research topic in location-based service. The
researchers’ works mainly focus on predicting users’ ratings to locations. In these works,
there are mainly two kinds of Collaborative Filtering (CF). One is memory-based CF, such
as user-based CF and item-based CF, including Ye et al. [27], Zhang et al. [34] and so on.
As social networks and mobility devices become popular, a large number of location-based
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data can be achieved, [27, 34] got user similarity from the friendship of users, besides the
check-in data, to improve the accuracy of prediction. The other is model-based CF, such
as Probabilistic Factor Models (PFM) [2], non-negative matrix factorization (BNMF) [14],
matrix factorization (MF) [4], weighted matrix factorization(WMF) [12].

The methods mentioned above are designed for approximating the absolute ratings of the
locations. However, POI recommendation is actually optimizing for locations ranking. Tra-
ditional ranking-oriented CF algorithms directly generate a preference ordering of items for
each user, including CoFiRank [23], ListRank-MF [19]. However, these ranking-oriented
CF methods are based on explicit feedback, such as rating. In POI recommendation, the
data we possess is implicit feedback, i.e. check-in data. Li et al. [15] used Rank-GeoFM to
optimize POIs’ rank, they ranked POIs for user by the frequency of check-in. On one hand,
it works better for implicit feedback data, and on the other hand, the sparsity problem can
be alleviated to some degree. Because both visited(positive examples) and unvisited POIs
will contribute to the learning of a ranking function.

Besides the check-in data we can utilize to make POI recommendation, there are many
other sources of data can be used to improve the accuracy of ranking.

Above all, the geographical information is proved to be very important in POI recom-
mendation [27]. Ye et al. [27] argued that the geographical proximities of POIs have a
significant influence on users’ check-in behavior. The probability of POIs visited by user
is closely related to the distance between user and POIs. They proposed that each user’s
check-in activities exist geographical clustering phenomenon. Then they used the power-law
distribution to fit the check-in probability. Different from [27], Cheng et al. [2] captured the
multi-center characteristics of individual check-in POIs and used the multi-center model for
encoding the spatial clustering phenomenon. To make personalized recommendation, not
model users’ check-in behavior in a universal way, Zhang et al. [34] used a kernel density
estimation approach to personalize the geographical influence on users’ check-in behaviors.
Moreover, to learn individual spatial density model, Lichman et al. [13] proposed a mixture
kernel density estimation to interpolate between an individual’s data and broader patterns
in the population as a whole. Besides, to make use of collaborative filtering to learn users’
spatial activity, Lian et al. [12] augmented users’ and POIs’ latent factors to users’ spatial
activity factors and POIs’ spatial influence factors, then they used weighted matrix factor-
ization to incorporate the clustering phenomenon into human mobility behavior for POI
recommendation.

Other types of context utilized in POI recommendation include text [5, 7, 14, 20, 26],
time [3, 22, 25, 31, 33, 36], friendship [34] and so on [21]. Yin et al. [28, 32] focused on
solving out-of-town problem with content information. Yin et al. [29] proposed geographi-
cal locality from users’ and POIs’ perspectives. Even though it considers spatial similarity,
it is still based on global low-rank. Besides, to complete the online recommendation, Yin
et al. [30, 31] proposed a clustering-based branch and bound algorithm to prune the POI
search space and facilitate fast retrieval of the top-k recommendations.

Different from them, for the first time in this article we introduce local collaborative rank-
ing for POI recommendation, which assumes user-POI matrix is locally low-rank instead
of globally low-rank and is more suited for the local property existed in the check-in data.
Even though they [10, 11, 16, 35] also considered the locally low-rank exists in user-item
matrix, other useful information is ignored, such as geographical information. Unlike them,
we introduce the geographical information systematically by the forms of spatial favor and
spatial similarity, then we mix them into local collaborative ranking to improve the recom-
mendation accuracy. From theoretical analysis, our model can also work on out-of-town

World Wide Web (2020) 23:131–152148



recommendation scenario. Since the estimated value of user’s preference to POI is con-
structed by the corresponding values of the related local low-rank matrices, we can utilize
spatial and content information to find more potential related local low-rank matrices, which
are constructed by the out-of-town users and POIs. Therefore, our model can utilize local
low-rank matrices of out-of-town to relieve data sparsity in out-of-town recommendation
scenario. Besides, it also needs to do more experiments to prove the real effect, and this is a
significant work we would conduct in future.

5 Conclusions

There are the following differences between our work and the existing works.
First, we put forward to utilize local collaborative ranking for predicting user’s rating

to POI, which assumes the user-POI matrix is locally low-rank instead of globally low-
rank. The local collaborative ranking can relieve the sparsity of data. The experiment also
reflects that local collaborative ranking is indeed superior to global low-rank factorization
algorithms on POI recommendation.

Second, we analysis geographical relationship between user with POI, user with user,
POI with POI systematically in POI recommendation, and mix geographical information
into local collaborative ranking seamlessly. By geographical information, we model users’
spatial favor to POIs (spatial favor) and spatial similarity between users (and POIs). We
consider users’ preference to POIs includes general favor and spatial favor. And the geo-
graphical influence to users varies greatly. We utilize personalized geographical model to
get the spatial favor of user to POI. By experiment, we can see LCR+fav is much better than
LCR. Besides, the similarity between users (the same to POIs) includes traditional similarity
(obtained by latent factor) and spatial similarity. We make use of kernel density estima-
tion to calculate the spatial similarity between users (and POIs). By spatial similarity, we
can get more similar users (and POIs) in subgroup, and make the local matrix denser. The
experiment also reflects LCR+sim is indeed better than LCR which only considers general
similarity.

Third, experiment shows MG-LCR is much better than state-of-the-art method. At the
same time, with good scalability, MG-LCR can incorporate more different types of context
information, such as review text. By review text, we can obtain topic similarity ts(u, ut )

between users (and POIs) and find more potential similar users and POIs with anchor points,
making the local sub-matrix much denser. This is a future work we will go on studying.

sm(u, ut ) = (1 − α − β)s(u, ut ) + α · sp(u, ut ) + β · ts(u, ut )

α = exp(sp(u, ut ))

Z

β = exp(ts(u, ut ))

Z
Z = exp(s(u, ut )) + exp(sp(u, ut )) + exp(ts(u, ut )). (29)

Acknowledgments This work is supported by the National Natural Science Foundation of China
(61472453, U1401256,U1501252,U1611264), and This work was financially supported by 2016 Charac-
teristic Innovation Project (Natural Science) of Education Department of Guangdong Province of China
(2016KTSCX162),and Foshan Science and Technology Bureau Project(2016AG100382).

World Wide Web (2020) 23:131–152 149



References

1. Beutel, A., Ahmed, A., Smola, A.J.: ACCAMS Additive Co-Clustering To Approximate Matrices Suc-
cinctly[C]// Proceedings of the 24th International Conference on World Wide Web International World
Wide Web Conferences Steering Committee, pp. 119–129 (2015)

2. Cheng, C., Yang, H., King, I., et al.: Fused matrix factorization with geographical and social influence
in location-based social networks[C]// Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

3. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: User movement in location-based social
networks. In: SIGKDD (2011)

4. Gao, H., Tang, J., Hu, X., et al.: Exploring temporal effects for location recommendation on location-
based social networks[C]// Proceedings of the 7th ACM conference on Recommender systems, pp. 93–
100. ACM (2013)

5. Gao, H., Tang, J., Hu, X., et al.: Content-Aware Point of Interest Recommendation on Location-Based
Social Networks[C]// AAAI, pp. 1721–1727 (2015)

6. Gudivada, V.N.: Design and evaluation of algorithms for image retrieval by spatial similarity[J]. Acm
Trans. Inf. Syst. 13(2), 115–144 (1995)

7. Hu, B., Ester, M.: Spatial topic modeling in online social media for location recommenda-
tion[C]//Proceedings of the 7th ACM conference on Recommender systems, pp. 25–32. ACM (2013)

8. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback Datasets[C]// 2008 Eighth
IEEE International Conference on Data Mining, pp. 263–272. IEEE Computer Society (2008)

9. Jokimki, J.: Spatial similarity of urban bird communities: a multiscale approach[J]. J. Biogeogr. 30(8),
1183–1193 (2003)

10. Lee, J., Kim, S., Lebanon, G., et al.: Local low-rank matrix approximation[C]// Proceedings of The 30th
International Conference on Machine Learning, pp. 82–90 (2013)

11. Lee, J., Bengio, S., Kim, S., et al.: Local collaborative ranking[C]//Proceedings of the 23rd international
conference on World wide web, pp. 85–96. ACM (2014)

12. Lian, D., Zhao, C., Xie, X., et al.: GeoMF: joint geographical modeling and matrix factorization for
point-of-interest recommendation[C]// Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 831–840. ACM (2014)

13. Lichman, M., Smyth, P.: Modeling human location data with mixtures of kernel densities[C]// Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
35–44. ACM (2014)

14. Liu, B., Fu, Y., Yao, Z., Xiong, H.: Learning geographical preferences for point-of-interest recommen-
dation. In: Proceedings of KDD13, pp 1043C1051. ACM (2013)

15. Li, X., Cong, G., Li, X.L., et al.: Rank-geoFM: A Ranking based Geographical Factorization Method for
Point of Interest Recommendation[C]// Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 433–442. ACM (2015)

16. Mackey, L.W., Jordan, M.I., Talwalkar, A.: Divide-and-conquer matrix factorization[C]// Advances in
Neural Information Processing Systems, pp. 1134–1142 (2011)

17. Pan, R., Zhou, Y., Cao, B., et al.: One-Class Collaborative Filtering[J]. IEEE Int Conf Data Min
.icdm08.ghth 29(5), 502–511 (2008)

18. Rendle, S., Freudenthaler, C., Gantner, Z., et al.: BPR: Bayesian personalized ranking from implicit
feedback[C]// Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp.
452–461. AUAI Press (2009)

19. Shi, Y., Larson, M., Hanjalic, A.: List-wise learning to rank with matrix factorization for collaborative
filtering[C]// Proceedings of the fourth ACM conference on Recommender systems, pp. 269–272. ACM
(2010)

20. Wang, W., Yin, H., Chen, L., et al.: Geo-SAGE: A Geographical Sparse Additive Generative Model for
Spatial Item Recommendation[C]// Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1255–1264. ACM (2015)

21. Wang, Y., Yuan, N.J., Lian, D., et al.: Regularity and Conformity: Location Prediction Using Het-
erogeneous Mobility Data[C]// Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1275–1284. ACM (2015)

22. Wang, W., Yin, H., Sadiq, S., et al.: SPORE: A Sequential personalized spatial item recommender
system[C]// IEEE, International Conference on Data Engineering, pp. 954–965. IEEE (2016)

23. Weimer, M., Karatzoglou, A., Le, Q.V., et al.: Maximum margin matrix factorization for collaborative
ranking[J]. Advances in neural information processing systems, pp. 1–8 (2007)

World Wide Web (2020) 23:131–152150



24. Wu, Y., Liu, X., Xie, M., et al.: CCCF: Improving Collaborative filtering via scalable User-Item Co-
Clustering[C]// Proceedings of the ninth ACM international conference on web search and data mining,
pp. pp. 73–82. ACM (2016)

25. Xie, M., Yin, H., Xu, F., Wang, H., Chen, W., Wang, S.: Learning Graph-based POI Embed-
ding for Location-based Recommendation[C]// ACM International on Conference on Information and
Knowledge Management, pp. 15–24. ACM (2016)

26. Yang, D., Zhang, D., Yu, Z., et al.: A sentiment-enhanced personalized location recommendation sys-
tem[C]//Proceedings of the 24th ACM Conference on Hypertext and Social Media, pp. 119–128. ACM
(2013)

27. Ye, M., Yin, P., Lee, W.C., et al.: Exploiting geographical influence for collaborative point-of-interest
recommendation[C]// Proceedings of the 34th international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 325–334. ACM (2011)

28. Yin, H., Sun, Y., Cui, B., et al.: LCARS: A location-content-aware recommender system[C]// ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 221–229. ACM
(2013)

29. Yin, H., Cui, B., Chen, L., et al.: Modeling Location-Based user rating profiles for personalized
Recommendation[J]. Acm Trans. Knowl. Discov. Data 9(3), 1–41 (2015)

30. Yin, H., Cui, B., Huang, Z., et al.: Joint Modeling of Users’ Interests and Mobility Patterns for Point-
of-Interest Recommendation[C]// ACM International Conference on Multimedia, pp. 819–822. ACM
(2015)

31. Yin, H., Zhou, X., Shao, Y., et al.: Joint Modeling of User Check-in Behaviors for Point-of-Interest
Recommendation[C]// ACM International on Conference on Information and Knowledge Management,
pp. 1631–1640. ACM (2015)

32. Yin, H., Zhou, X., Cui, B., et al.: Adapting to user interest drift for POI Recommendation[J]. IEEE Trans.
Knowl. Data Eng. 28(10), 2566–2581 (2016)

33. Yuan, Q., Cong, G., Sun, A.: Graph-based point-of-interest recommendation with geographical and
temporal influences[C]// Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, pp. 659–668. ACM (2014)

34. Zhang, J.-D., Chow, C.-Y.: igslr: Personalized geo-social location recommendation-a kernel density
estimation approach. In: Proceedings of GIS13

35. Zhang, Y., Zhang, M., Liu, Y., et al.: Localized matrix factorization for recommendation based on
matrix block diagonal forms[C]// Proceedings of the 22nd international conference on World Wide Web
International World Wide Web Conferences Steering Committee, pp. 1511–1520 (2013)

36. Zhang, J.D., Chow, C.Y., Li, Y.: LORE Exploiting Sequential influence for location recommenda-
tions[C]// Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 103–112. ACM (2014)

37. Zhang, J.D., GeoSoCa, C.C.Y.: Exploiting geographical, social and categorical correlations for point-
of-interest recommendations[C]//Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 443–452. ACM (2015)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

World Wide Web (2020) 23:131–152 151



Affiliations

Wei Liu1 ·Hanjiang Lai1 · Jing Wang2 ·Geyang Ke1 ·Weiwei Yang1 · Jian Yin1

Wei Liu
liuw56@mail2.sysu.edu.cn

Hanjiang Lai
laihanj@gmail.com

Jing Wang
jingyun wj@163.com

Geyang Ke
kegeyang1991@gmail.com

Weiwei Yang
yangww8@mail.sysu.edu.cn

1 Guangdong Key Laboratory of Big Data Analysis and Processing, The School of Data and Computer
Science, Sun Yat-Sen University, Guangzhou 510006, China

2 Neusoft Institute, Guangdong 5282250, China

World Wide Web (2020) 23:131–152152

mailto: liuw56@mail2.sysu.edu.cn
mailto: laihanj@gmail.com
mailto: jingyun_wj@163.com
mailto: kegeyang1991@gmail.com
mailto: yangww8@mail.sysu.edu.cn

	Mix geographical information into local collaborative ranking for POI recommendation
	Abstract
	Introduction
	The proposed approach
	Problem definition
	Local low-rank matrix factorization
	Spatial similarity
	Spatial favor
	Mix geographical information into local collaborative ranking

	Parameter inference
	Learning algorithm

	Experiment and results
	Data sets
	Evaluation metrics
	Baseline methods
	Parameter setting
	Results and discussion

	Related work
	Conclusions
	References
	Affiliations


