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Abstract
In recent years, peer-to-peer (P2P) lending in China, which is a new form of
unsecured financing that uses the Internet, has boomed, but the consequent credit
risk problems are inevitable. A key challenge facing P2P lending platforms is accu-
rately predicting the default probability of the borrower of each loan using the default
prediction model, which effectively helps the P2P lending platform avoid credit risks.
The traditional default prediction model based on machine learning and statistical
learning does not meet the needs of P2P lending platforms in terms of default risk
prediction because for data-driven P2P lending, credit data have a large number of
missing values, are high-dimensional and have class-imbalanced problems, which
makes it difficult to effectively train the default risk prediction model. To solve the
above problems, this paper proposes a new default risk prediction model based on
heterogeneous ensemble learning. Three individual classifiers, extreme gradient
boosting (XGBoost), a deep neural network (DNN) and logistic regression (LR), are
used simultaneously with a liner weight ensemble strategy. In particular, this model is
able to process missing values. After generating discrete and rank features, this model
adds missing values to the model for self-training. Then, the hyperparameters are
optimized by the XGBoost model to improve the performance of the prediction
model. Finally, compared with the benchmark model, the proposed method signifi-
cantly improves the accuracy of the prediction results. In conclusion, the prediction
method proposed in this paper solves the class-imbalanced problem.
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1 Introduction

As a typical type of Internet finance in China, P2P lending is a form of personal consumption
finance that is made possible by the allocation of funds on the Internet and thus is a novel
financing mode. Compared with traditional financing methods, P2P lending matches the
supply and demand of funds using the Internet without the participation of traditional financial
institutions. Therefore, it is convenient, fast and transparent. P2P lending platforms can assist
the development of direct capital connections between investors and borrowers and can ensure
that both parties can benefit from this process to the greatest extent. Compared with fixed loan
interest rates obtained from banks, P2P lending can reduce the borrowing costs of borrowers
due to reduced intermediary fees. Moreover, compared with investors, P2P lending provides
convenient channels and high returns. However, due to the above characteristics of P2P
lending, traditional default risk prediction methods may not be applicable because the credit
data used for P2P lending platforms are mostly obtained from the Internet, which makes them
have the characteristics of high dimensionalities and sparse and imbalanced classes. The
default risk prediction problem associated with consumer financing, including P2P lending,
can be essentially classified as a binary classification problem. In view of this, an accurate
prediction model of P2P lending default risk with high dimension, sparseness and category
imbalance is the core of P2P lending industry development.

In general, the prediction method used to determine loan default risk includes a statistical
method and a machine learning method, which are used to distinguish good loan applicants,
namely, those able to repay loans within the specified period [20, 34] from other applicants.
Default risk prediction is mainly used to determine the possibility that an applicant will default.
Loan default risk predictions can be visually generated by converting the problem into a binary
classification issue. Although P2P lending platforms evaluate the credit of borrowers using a
complicated assessment mechanism, P2P lenders are more likely to suffer when they issue
unsecured loans. In addition, default may occur because the lenders of many platforms lack the
ability to engage in credit risk management and may be unable to effectively evaluate the risk
level of borrowers when they establish their credit portfolios [10]. Various machine learning-
based loan default risk prediction models, e.g., random forests, decision trees, artificial neural
networks and kernel methods [28, 44], have been used when lenders decide whether to provide
funding for a certain loan and are critical for P2P lending platforms. The assessment of
prediction results relies on accuracy-based measurements, for example, overall accuracy, error
rates and the area under the receiver operating characteristic curve (AUC), all of which are
used to evaluate the performance of the model proposed in this paper [6, 21].

In the real world, the majority of borrowers are “good” customers, and there is only a
small portion of “bad” customers, that is, the sample data used for the prediction model
have an imbalanced distribution. The so-called imbalanced distribution of the sample
data class means that the data are centralized in one or some classes, i.e., there are much
more data in this or these classes than there are in other classes. We call the nondefault
sample class the majority class, and the default sample class, which has a relatively small
amount of data, will be called the minority class. It can thus be seen that prediction errors
may occur because minority samples have so little data that the traditional prediction
model may sometimes predict them as positive samples. Financial institutions, therefore,
will suffer a much greater loss when they mistake a “bad” target customer for a “good”
one while predicting the customer’s default behavior than if they mistake a “good”
customer for a “bad” one [6, 41].
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In previous research, researchers have attempted to optimize prediction performance when
using highly imbalanced datasets. One commonly used method is the sampling method,
which, however, may change the class distribution of the original training set. Oversampling
and undersampling are two sampling techniques, but previous studies on default prediction or
credit scoring have tended to use the random sampling method [41]. Another method is
improving the algorithm by using techniques such as ensemble learning, and cost-sensitive
learning [8, 22, 33], all of which adapt to an imbalance by improving the algorithm, i.e.,
assigning the various samples with different weight values, adjusting penalty coefficients,
changing the probability density, regulating the class boundary, etc. The last strategy is focused
on simplifying uncorrelated or redundant features in data to decrease differences, improve the
classification accuracy of the model and decrease the time complexity [12].

In addition to high-dimensional and class-imbalanced problems in data, data deficiency can
also result in the poor performance of the default prediction model. Therefore, this paper
proposes a more accurate default prediction model for P2P lending that can be used for high-
dimensional data samples with imbalanced classes and missing values. To improve prediction
performance, this paper adopts a new way to address missing values in data processing and
feature engineering; this paper uses this method as a kind of feature and introduces it to
learning model for self-learning. Next, while we address engineering this new feature, we
pretrain the three individual classifiers we select for the benchmark models and compare the
results with those obtained through the original feature training. The machine learning model
with the feature engineering treatment dramatically improves prediction accuracy. For
hyperparameter optimization, the extreme gradient boosting (XGBoost) model has many
parameters that will directly affect the performance of the prediction model. Three
hyperparameter optimization methods are adopted and compared in this paper to obtain the
range of optimal hyperparameter values suitable for the prediction model. Finally, three
individual classifiers are ensembled through linear weighted fusion to acquire the heteroge-
neous ensemble learning-based default prediction model. According to the results of the test,
the heterogeneous ensemble learning-based default prediction model with feature engineering,
which we develop, performs better than other machine learning models and traditional
ensemble learning models.

The remainder of this paper is organized as follows. In Section 2, the relevant literature is
briefly reviewed. In Section 3, the three individual classifiers used in the heterogeneous
ensemble learning-based prediction model and the contents of the model pretraining and
ensemble strategies are introduced. Section 4 describes the analysis and the results of the tests
conducted in this paper. Finally, Section 5 concludes this paper.

2 Literature review

Compared with the extensive literature on risk prediction or the credit scoring of traditional
banks and other financial institutions, research on default prediction or the credit scoring of P2P
lending is limited. Lenders and borrowers, using a P2P lending platform, can engage in fund
allocation and circulation without the help of banks and other financial intermediaries, but
because these loans are unsecured, credit risk is generated, ultimately leading to default.
Therefore, to avoid loss to the greatest extent possible, a random forest is used for the
borrowers’ credit classification to predict the probability of default. However, the performance
of this model declines under a high acceptance level. Although cost sensibility is taken into
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consideration, the ability of this method to distinguish borrowers that will default cannot be
improved greatly [25]. Emekter et al., by establishing logistic regression (LR) and survival-
analyzed credit risk evaluation models, discovered that the debt-to-income ratio (DTI), FICO
score and revolving line utilization are highly correlated with loan default [7]. Guo et al.
established an example-based loan evaluation model with five features (the FICO score, an
inquiry of the last six months, the fund amount, housing ownership and the DTI ratio), which is
able to evaluate the return and risk of every P2P loan [10]. The traditional behavior scoring
model, which relies on the classificationmethod, will generate a static probability of default, but
the repayment of the borrowers varies. Based on the analysis discussed above, Z. Wang et al.
developed a new behavior scoring model with a mixed survival analysis framework to predict
dynamic default probability in P2P lending [37]. Serrano-Cinca and Gutiérrez-Nieto proposed
using a profit scoring method rather than credit scoring in P2P lending: they focused on
expected earning capacity for investing in P2P loans using a famous financial ratio - the internal
investment ratio [29]. Nonetheless, in studies on P2P lending, class imbalance, high dimension,
missing data and other problems associated with credit data have not been effectively solved.

For data with such a high imbalance rate, problems regarding the differences in the size of
the different classes in samples cannot be solved, which means that one class will be far larger
than another class in the sample. Specifically, whether using default prediction or credit
scoring, there are more applications where the prospective borrowers have good credit than
those with bad credit, and applications for which the prospective borrowers have bad credit
should be rejected. Many researchers have exerted great effort to solve that problem and put
forward some effective imbalanced learning methods. The sampling technique is widely
applied to solving imbalanced data problems [2]. This method tries to balance the original
data using a series of sampling algorithms that adjust the number of different classes in
samples and then trains the new “balanced” data using the classification algorithm [6].
Undersampling, which is a common sampling technique, occurs when majority samples are
selected randomly and then included into minority classes to form a new training dataset.
Different from undersampling, oversampling mainly means randomly duplicating minority
samples to increase the sample size of the minority class and then make the minority class
roughly equal to other minority classes in the sample. However, this process may cause
overfitting of the learning classifier, i.e., the classifier performs well in the training set but
badly in the test set. To overcome the weaknesses of random oversampling, a synthetic
minority oversampling technique (SMOTE) is proposed; this is a technique that inserts new
samples in the minority sample and its adjacent samples rather than duplicating the minority
sample directly. Nevertheless, some inevitable problems still exist, e.g., adjacent samples are
selected, and the current sample may be in a different class.

The cost-sensitive learning method can be used by increasing the cost matrix, which is
composed of the penalty coefficient for the class judgment error, to improve the cost weight of
the default sample judgment error. For example, C(+, −) refers to the cost of misjudging a
negative sample as a positive one; by the same token, this variable also stands for the cost of
misjudging a positive sample as a negative one. Using this method, the classification of original
imbalanced data can be simplified into an optimization problem to minimize the classification
error of all data samples. In general, it is more important to identify the default sample than to
distinguish a general sample. Therefore, the cost of misjudging a positive sample as a negative
sample is higher thanmisjudging a negative sample as a positive sample, i.e., a negative sample.
C(−, +) >C(+, −) [24, 38]. B. Krawczyk et al. proposed an original cost-sensitive ensemble
based on a decision tree, which solves the imbalanced classification problem effectively [18]. In
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most traditional loan evaluation models, a balanced misclassification cost is assumed, which is
very different from real-life business. Therefore, Y. Xia et al. developed an improved cost-
sensitive tree-style loan evaluation model to improve the ability to distinguish potential default
borrowers through cost-sensitive learning and extreme gradient boosting [39].

Because loan data have changed remarkably in the last few decades, both in structure and
feature, a single classifier cannot solve the problem effectively [8]. In most previous research,
random sampling was adopted to generate a training subset to establish base classifiers, and
classifier diversity could not be ensured, which might make the overall classification perfor-
mance decline. H. Xiao et al. adopted a monitoring cluster to divide every class of data into
several clusters, combined them into different classes to form a series of training subsets and
established a specific base classifier in each training subset to predict the class tag of the
sample. The output of these base classifiers is based on weighted voting. According to the test,
the method improves credit scoring accuracy [42]. In light of the fact that there are two data
issues: noisy and redundant data occur under the condition of data scoring, two dual-strategy
trees are used, a random search (RS)-bagging decision tree (DT) and a bagging-RS DT, both of
which use two ensemble strategies (bagging and random subspace) to reduce noise data
influence and data redundancy and realize high classification accuracy [23]. Meanwhile, the
ensemble method combining multiple algorithms can combine different assumptions to form a
better assumption, which can usually yield a better prediction result [26]. Y. Xia et al. provided
an original heterogeneous ensemble credit model with an ensemble bagging algorithm with a
stacking method, and the effectiveness of this model was verified as [41]. Lessmann et al. also
conducted a large-scale empirical analysis and determined that a heterogeneous ensemble
usually performs better than individual classifiers [20]. DTs are widely used as a base classifier
in boosting; in some classical ensemble algorithms, the DT is used as a base classifier, e.g.,
AdaBoost, GBDT (gradient boosting DT) and XGBoost [8, 16, 40].

Although many researchers have made many contributions to imbalanced data processing
methods and ensemble learning strategies for default prediction [5, 27, 32, 35], few considered
these together, and missing value problems in data concentration have not been solved effectively
in the relevant literature discussed above. Brown and Mues compared several credit scoring
algorithms for imbalanced data concentration: the random forest and gradient boosting have good
performance, but there is a parameter optimization still exists according to test results [10].
Therefore, in this paper, an original heterogeneous ensemble learning model is proposed to predict
the default of borrowers under P2P lending. We select XGBoost, DNN and LR as the individual
classifiers for training. In data preprocessing and feature engineering, we regard a missing value as
a kind of feature that can be used to better solve the preceding problems. Considering that the
XGBoost model includes many hyperparameters, we fine tune these hyperparameters during the
pretraining to optimize the prediction model more effectively. Finally, this study concludes that the
heterogeneous ensemble learning-based default prediction model improves the predictive effect
dramatically compared to the default model, as shown by the testing results.

3 Methodology

3.1 A heterogeneous ensemble learning framework

By integrating three different individual classifiers, this paper proposes a default risk prediction
method based on heterogeneous ensemble learning, which is used to predict the customers’
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default level under P2P lending. First, three individual classifiers are described: XGBoost, a
deep neural network (DNN), and LR. The most significant characteristic of XGBoost is that it
can automatically use the multi-threading of the CPU for parallelism while improving the
accuracy of the algorithm. By designing different structures, DNN can change the method it
uses to extract the features of the network. This method can also have different effects on the
fitting objective function. Moreover, the features extracted by representation learning have
stronger generalization performance than the specific settings. This model can be applied to
multiple fields. LR is simple, efficient, fast, interpretable and uses a simple calculation.
Therefore, combining these methods into an ensemble classifier that can process complex
data and has good performance of the prediction is practical for technology.

Second, model training includes feature selection and hyperparameter optimization. Because
there are some missing values in the credit dataset used in this paper, to improve the accuracy of
the prediction model, the processing of the missing values is not based on the traditional filling
method, but the information provided by the missing values is retained to the maximum extent.
The feature selectionmethod used by the learning model is regarded as a feature. The rank feature
and the discrete feature are generated based on the original feature and then included in the model
for training. Because the learning of the model and the selection of the features can be performed
simultaneously, the operational efficiency of the predictive model is improved. Then, the feature
ranking method based on the learning model is used to reduce the dimensionality to avoid the
curse of dimensionality. In addition, the XGBoost model has many hyperparameters that need to
be optimized to improve the accuracy of the prediction model. Finally, the ensemble strategy is
described. This paper adopts a simple and transparent linear weighted fusion strategy. A flowchart
of the approach used in this paper to predict default risk proposed is shown in Figure 1.

3.2 Constructing individual classifiers

3.2.1 Extreme gradient boosting (XGBoost)

The XGBoost model is a highly efficient system implementation based on gradient boosting.
On one hand, feature sampling is used to prevent overfitting through the regular terms used to
control model complexity, similar to the random forest. On the other hand, using the self-
defined data matrix class DMatrix, data are preprocessed to improve the efficiency of each
iteration. An approximate algorithm that finds split nodes is used to accelerate and reduce
memory consumption. The problem of insufficient computer memory is solved by using off-

Step1 Constructing individual 
classifiers

XGBoost

DNN

LR

Step 2: Training individual classifiers

Data preprocessing and feature 

engineering

Hyper-parameter optimization

Step 3: Ensemble learning strategy

Prediction model

Benchmark model

Training data Testing data

+

Figure 1 Flowchart of the default prediction model based on heterogeneous ensemble learning
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core computing, and the data are sorted in advance and stored in block form, which is
conductive to CPU multi-thread parallel computing. In addition, this model has strong
expansibility and can be used in combination with other models; as a result, the adaptability
of the model is further improved [3, 4].

In the default prediction model, for a given set of credit data D= {xi, yi} with n samples and m
characteristics, x and y represent feature variables and label variables, respectively; similar to a
gradient lift, XGBoost uses a K additive function and fk(x) to approximate the function (namely,

FK xð Þ ¼ ∑K
k¼1 f k xð Þ; f k∈F , where F ¼ f xð Þ ¼ ωq xð Þ

� �
), andFK(x) represents the prediction of

the kth lift.
The core problem of XGBoost is determining the optimal tree structure. An intuitive search

algorithm is summarized as follows: Enumerate all possible tree structures, calculate the score,
and then find the optimized structure. However, there is an infinite tree structure; therefore, the
calculation cost of enumeration is very high. XGBoost adopts a greedy search algorithm to
find the optimized structure. This algorithm is the so-called exact greedy algorithm for splitting
finding. XGBoost starts from the root note and iterates across the decomposition characteris-
tics. For each node in the tree, XGBoost tries to add a split.

3.2.2 Deep neural network

DNN, which is a typical deep learning model, is the deepest of neural networks. The traditional
single hidden layer of the multi-layer feedforward network already has a very strong learning
ability, but increasing the number of hidden layers is clearly more effective than increasing the
number of hidden layer neurons because adding the number of hidden layers increases the
number of neuron activation functions and increases the activation function of net layers.
Therefore, a typical DNN is composed of an input layer, no less than two hidden layers and an
output layer to form the network topology. The input layer matches the feature space, so there are
as many input neurons as there are predictors. The output layer can be either a classification layer
or a regression layer to match the output space. All layers are made up of neurons as the basic unit
of a model. Using a classic feedforward structure, each neuron in the previous layer L is fully
connected with all neurons in the subsequent layer L + 1 through the directed edge, and each
connection represents a certain weight. Moreover, each nonoutput layer of the network has a bias
unit that acts as an activation threshold for neurons in subsequent layers. Similarly, each neuron
receives a neuron in the previous layer L as an input, which has a weighted combination α of nL,

α ¼ ∑nl
i¼1wixi ð1Þ

where wi represents the weight of the output xi and b represents the bias. The weighted
combination α of equation (1) is transformed by a certain activation function f, so the output
signal f(α) is transmitted to the neurons in the subsequent layers.

This paper uses maxout as the activation function of the DNN. The output expression of the
hidden layer node is:

hi xð Þ ¼ max j∈ 1;k½ �zij ð2Þ

where zij = xTW⋯ij + bij and W ∈ℝd ×m × k. Here, w is 3-dimensional, and the size is d ×m × k,
where d represents the number of input layer nodes, m represents the number of hidden layer
nodes, and k indicates that each hidden layer node corresponds to the nodes of k hidden layers.
The nodes of the k hidden layer are all linearly provided, and each node of maxout takes the
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largest of the k “hidden layer” node output values. Because there is a maximum operation in the
excitation function, the entire maxout network is also a nonlinear transformation.

The ability of maxout to fit is very good, and it can fit any convex function. The most
intuitive explanation is that any convex function can be fitted with a piecewise linear function
with arbitrary precision, and maxout uses the maximum of k hidden layer nodes. These
“hidden layer” nodes are also linear, so under different values, the maximum value can also
be regarded as piecewise linear (the number of segments is related to the k value). The only
exception is the last layer, using ReLU (rectified linear unit) as the activation function [17].

Overfitting is a common problem in the field of machine learning. Dropout [30] combines
the advantages of single and multiple models and is a powerful method that can be used for
overfitting in current depth learning [13]. If you do not consider time complexity, you can
integrate the different network models to integrate the lifting effect. The greater the difference
between the network structures is, the more obvious the lifting effect will be. The idea of
dropout is that during each iteration, some nodes (neurons) of the network are randomly
prevented from participating in the training, and all the edges related to these temporarily
discarded neurons are removed; therefore, the corresponding weights will not be used this time
[14]. The weights are updated in the iteration, and this operation is repeated for each iteration
of the training. It should be noted that these discarded neurons are only temporarily not
updated and will re-participate in the randomized dropout in the next iteration.

In addition, deep learning using DNNs has become a hot topic in the field of artificial
intelligence research and application, andmany excellent deep learning frameworks have emerged.
The Keras framework used in this paper has been favored since its inception due to its good
modularity, minimal design and rapid prototyping. Keras is a high-level neural network API
(application program interface). Keras is written in pure Python and is based on TensorFlow and
Theano; it is a highly modular neural network library that supports CPU and GPU acceleration.

3.2.3 Logistics regression

LR, which is a typical classification method in machine learning, is a model based on statistical
learning that has a solid statistics foundation and high interpretability. In this paper, the output
variable is binary, and only two values are obtained: Y = 1 (loan defaulted) or Y = 0 (loan not
defaulted). In addition, more approximate values can be obtained through LR, and a regression
model can be used to predict the probability of the specific event default. The general form of the LR
model is shown below:

logit P Y ¼ 1ð Þð Þ ¼ β0 þ β1X 1 þ β2X 2 þ…þ βkX k

where β0 is nodal increment Y- intercept, β1, β2,… , βk are regression coefficients, and logit(P(Y=
1)) is called the logarithm of probability.

3.3 Training individual classifiers

3.3.1 Feature selection

For the feature selection method, the learning model-based feature ordering method is adopted
in this paper. Because the credit dataset has many features, including 1138 dimensions,
redundancy feature, for the prediction model, redundancy exists and must be eliminated.
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Similar to other tree-based models, XGBoost can output a feature importance score using
tree boosting techniques, which is a standard way to measure feature importance in a split. A
feature variable with a higher score is more significant in the tree structure. In addition,
XGBoost provides three feature importance scores to choose from: “weight”, “gain” and
“cover”. In particular, “weight” means how many a feature has been used in a split; “gain”
is the average error reduction when a feature is split; and “cover” is the average number of
samples influenced by a split. Thus, all features in the initial model have a “gain” score
because the model is consistent with the original features of CART. A feature with a high
importance score will be regarded as a key variable. A sequential forward search (SFS) is used
for feature selection; a series of feature subsets is generated by adding important features into
the subset and putting the remaining features in the subset on an iterative basis. Although the
tree-based model can select important features automatically, there are two reasons for using
the feature selection as an independent step, according to the partitioning criterion. First,
feature selection improves XGBoost performance. This likely occurs because the redundancy
feature is removed from feature selection. The features may be used for splitting during the
building of the model. Second, feature selection ensures that there is a fair comparison of the
different methods, as support vector machine (SVM), neural network and other reference
models are highly dependent on feature selection.

3.3.2 Hyperparameter optimization

Most machine learning algorithms, including classification algorithms, have almost no param-
eters, and therefore, they take considerable time to train, while some variables need to be
configured in advance of the training. These variables have a great influence on the training
result, but there is no group of variables that is applicable to every dataset; therefore, the
variables should be configured according to the specific application. The variables that need to
be configured are called hyperparameters, e.g., an SVM involves a kernel function, regular-
ization coefficient and other hyperparameters; a DT includes tree building and a pruning
strategy. Furthermore, many hyperparameters are applied in neural networks. These
hyperparameters, which are able to greatly influence model accuracy, are highly necessary
for fine tuning. Hyperparameter optimization refers to searching for a group of parameters
from the value range of the variables to realize satisfactory machine learning. Nevertheless,
optimization, which is often seen as a type of “black art”, mainly relies on subjective judgment,
experience and the use of trial-and-error methods.

For some machine learning models, it is very boring and difficult to tune the
parameters to optimize the end-to-end machine learning algorithms. There are two
basic methods used for parameter selection: manual selection and automatic selection
[40]. Manual selection requires an understanding of what the parameters do and how
machine learning models can be generalized effectively. The automatic selection of the
hyperparameter algorithm decreases the requirement of understanding these issues, but
its calculation cost is higher [40].

Manual parameter tuning is usually adopted to obtain experience in practical operating, but
the common hyperparameter search method used is grid search (GS) [15] when there are three
or fewer hyperparameters. The user should select a small limited value set to search every
hyperparameter, and these hyperparameters, through the Cartesian product, will form a group
of hyperparameters. The GS uses every group in the hyperparameter training model [43]. The
smallest validation set error is used to form the optimal hyperparameter set.
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When there are many hyperparameters (e.g., more than 5), the effect of this parameter
tuning method will be inferior to that of RS. In RS, a marginal distribution (e.g., a Bernoulli
distribution, category distribution or uniform distribution at a logarithmic scale) will be defined
for every hyperparameter. For different GS, the hyperparameter values do not need to be
dispersed. Therefore, the search is allowed to be implemented in a larger set, without an
additional calculation cost. Bergstra and Bengio [1] conducted a detailed study and discovered
a RS; which can decrease the validation set error faster than a GS, in terms of test times,
foreach model.

In this paper, the RS hyperparameter optimization method is used to optimize the
hyperparameters of the XGBoost model to obtain the hyperparameter configuration space of
this model. Therefore, the hyperparameters that need to be parameterized are as follows: the
learning rate, maximum tree depth, gamma, number of boosts, subsample ratio, column
subsample ratio and minimum child weight.

3.4 Ensemble strategy

The fusion advantage of individual classifiers can be shown from the three aspects described
below. First, the assumption space of the learning task is very large in terms of statistics, and
using multiple assumptions may lead to performance similar to that of the training set. Poor
generalization performance may be caused by a false drop if a single classifier is used at this
time, and this risk can be lowered by combining multiple individual classifiers. Second, in
terms of the calculation, the learning algorithm usually suffers from local minimization, and
the corresponding generalization performance of some local minimal points may be very poor.
The combination achieved after multiple operations can lower the risk of the poor local
minimal point. Finally, at the level of expression, the true hypothesis of some learning tasks
may not be in the hypothesis space that the current learning algorithm considers, and the result
must be invalid if a single classifier is used at this time. By combining multiple classifiers, a
more effective approximate value may be acquired, as the corresponding consumption space is
expanded [31, 36, 42].

Based on the analyses above, we use the linear weighting method as a fusion strategy for
individual classifiers because it is simple, transparent and easy to implement and performs well

in empirical applications [9]. The mathematical form is H xð Þ ¼ ∑T
i¼1wihi xð Þ, where wi is the

weight of the individual classifier hi. In general, ∑T
i¼1wi ¼ 1 when .

4 Experiments and results analysis

4.1 Data description

The testing data used in this paper were obtained from a P2P lending enterprise in China, and
the credit dataset is the credit transaction data of the enterprise’s loan customers. In addition,
the dataset includes 1138 features and 15,000 data points with a tag that indicates whether the
customer is expected to default. The data are characterized by missing values, class imbalance
and high-dimensional feature. In a prediction model, class imbalance can cause prediction
inaccuracy, and high-dimensional sparse data can cause the dimensionality problem [11].
Finally, to verify the effectiveness and accuracy of the prediction model mentioned in this
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paper, we apply 80% of the credit dataset to the training and the rest to the testing, and in the
testing, we adopt 10-fold cross validation.

To improve robustness, we circulate the test 30 times while using the XGBoost model for
pretraining to acquire the feature importance scores of data concentration and complete
ordering. Then, we make 36 iterative loops for individual classifiers, using XGBoost, DNN
and LR, and the reference models are used for contrastive analysis. In addition, we average the
prediction results of these tests to alleviate the influence of the separate divisions.

4.2 Data preprocessing and feature engineering

This section mainly focuses on addressing missing values. The analysis indicates that the
majority of samples used for data concentration have missing values, and the number of
samples is large; even worse, some samples are missing thousands of values. The frequently
used treatment for missing values is missing data imputation, i.e., imputing the average and
middle values of the same form of data. However, because there are also many missing values
in the testing set, we adopt a new method for treating missing values as the feature.

We calculate the statistic for the number of missing values in every sample in the training
set and sequence samples and rank the number of missing values from high to low to
determine the number distribution of data missing values in the training set (as shown in
Figure 2) using the ID number for the X-coordinate and the number of missing values for the
Y-coordinate. In Figure 2, the black curve is a scatter plot of missing values, and the blue curve
(rather than a straight line) is the cumulative number of negative samples (i.e., the default
samples), showing the strong relevance between the sample class and the number of missing
values.

As shown in Figures 2 and 3, regular ladder-like diagrams are formed; in particular, the
distribution of the number of missing values in the training set and test set are highly

Figure 2 Distribution of the number of missing data values in the training set
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consistent. Therefore, we divide the dispersed missing values into five ranges to obtain a
representational discrete number of missing values (value within 1–5), as shown in Figure 4.
We regard this number as a feature here and let the model learn the process.

Furthermore, we delete data that includes more than 194 missing values from the training
data, namely, the corresponding sample with a discrete number feature of missing values, as
shown in Figure 5. We do this because if the samples include many missing values, model
learning becomes difficult and even generates noise and overfitting.

Figure 3 Number distribution of missing data values in the testing set

Figure 4 Discrete feature
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Data preprocessing is closely followed by the feature engineering treatment. There are 1045
dimensions of numeric feature variables in the original data, and 1045 dimensions of rank
features are obtained after ordering the data from large too small. The rank features, since they
have strong robustness for outliers, make the model steadier, and thus, the risk of overfitting is
lowered. We continue to disperse the features after sequencing them. Feature discretization is
generally conducted in one of two ways: equal value division (dividing equally as per the value
field) and equal size division (dividing equally across the sample size). We adopt an equal size
division method to disperse the numeric features: we divide every dimension of features from
large to small according to its value and then divide these dimensions into 10 equal ranges; the
discretization is 1–10. In addition to the 1045 dimensions of the numeric feature variables,
there are also 93 dimensions of categorical feature variables in the original dataset, and many
algorithms can only be applied to numeric features. Therefore, we need to code those
categorical features. In this paper, one-hot encoding is adopted to obtain 0–1 features, and
thus, the problem that the classifiers cannot treat the categorical features is solved.

The rank and discrete features generated based on the original features exceed 3000
dimensions after adding them up. On one hand, having these many features may cause a
dimensionality problem but, on the other hand, it may make overfitting easier; therefore, the
dimensionality reduction is required. Common dimensionality reduction methods include
principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-
SNE) (with high computer complexity). For this project, PCA dimensionality reduction did
not had a good effect. The reasons are as follows: Most of the features of data concentration
include missing values, and there is a large number of missing values. PCA requires the data to
have a Gaussian distribution, and the testing dataset does not meet this condition [19]. In
addition to the dimensionality reduction algorithm, feature selection can be used to decrease
the number of features. Commonly used feature selection methods use the maximum infor-
mation coefficient (MIC), the Pearson correlation coefficient (measuring linear correlation
among variables), the regularization method (L1 and L2) and the model-based feature ranking

Figure 5 Deletion of incomplete samples
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method [11]. The latter is the most efficient method. One advantage of using this approach is
that model learning and feature selection are synchronous. We therefore choose to use this
method. A DT-based algorithm (e.g., random forest and boosting tree) can output feature
importance after model training has completed. In this paper, we adopt XGBoost, which a
boosting tree that is highly efficient and accurate and is widely used for diverse data mining
competition, for feature selection.

In Table 1 and Figure 6, we list the top 20 original features trained using theXGBoost model.
The column heading “Feature” refers to the name of the feature (there are 1138 dimensions of
features in the dataset, of which, 1045 are numeric features, and the rest are categorical
features). The feature score indicates the score of the trained feature (in this paper, the first 20
features are shown from high to low). The minimum value is has the lowest score (−1 stands for
missing value), and the maximum value has the highest score. The column heading “Number of
null values” reflects the number of missing values, and “Type” indicates whether the feature is
numeric or categorical (note: in this paper, we only sequence the numeric features).

4.3 Evaluation metric

With respect to classification, particularly regarding the imbalance of the dataset class distri-
bution, a reasonable prediction result cannot be obtained without using an appropriate
evaluation standard and a prediction model. In default prediction, one commonly used
evaluation criterion is average accuracy (ACC), which is defined as the ratio of the samples
and test samples for correct classification. ACC is not the optimal evaluation to use in this
paper because it cannot effectively distinguish between good and bad applicants. This occurs
because when using an imbalanced dataset, the prediction model may predict all the default
customers as nondefault customers when ACC is used as an evaluation criterion, and conse-
quently, default customers cannot be accurately distinguished.

Table 1 Ranking of feature importance

Feature Score Min Max Number of null values Type

×29 2810 −1 88.8 62 numeric
×148 2769 −1 22.45 15 numeric
×2 2657 −1 56.41 15 numeric
×486 2372 −1 2,028,938 16 numeric
×554 2356 −1 312 533 numeric
×767 2227 −1 302,150 15 numeric
×171 2135 −1 22.41 15 numeric
×53 2083 −1 100 71 numeric
×951 2010 −1 14,748.62 105 numeric
×944 1993 −1 3,223,695.97 218 numeric
×137 1933 −1 100 62 numeric
×226 1917 −1 24.62 15 numeric
×168 1906 −1 24.11 15 numeric
×606 1888 −1 62,745 15 numeric
×193 1845 −1 50.32 15 numeric
×6 1814 −1 18 15 numeric
×82 1805 −1 86.59 71 numeric
×114 1757 −1 34.79 15 numeric
×791 1720 −1 29,982 15 numeric
×10 1689 −1 78.23 15 numeric

World Wide Web (2020) 23:23–4536



The area under the ROC (AUC) is determined by an alternative capacity judgment
measurement based on the receiver operating characteristic (ROC) curve. The ROC curve is
the complete sensitivity/specificity report used for model evaluation. In the ROC curve, the
FPR (false positive rate) is the horizontal axis, and the TPR (true positive rate) is the vertical
axis; FPR ¼ FP

FPþTN ; and TPR ¼ TP
TPþFN.For one classifier, obtain a group (FPR, TPR) for the

previously mentioned coordinate by adjusting the threshold value of the classifier; then,
connect these points to form an ROC curve. The threshold value of the classifier is obtained
from the probability output of the classifier. Because the ROC curve fails to evaluate the
classifier on a quantitative basis, the AUC score in the area below the ROC curve is usually
used as an evaluation standard. The AUC score ranges from 0 to 1, and a higher value
indicates a better classification effect. In alignment with the discussion above, the AUC score
is used as the evaluation criteria of the prediction model.

4.4 Results and analysis

This section compares the proposed model with different reference models using an actual P2P
lending credit dataset. The credit dataset is divided into two parts for verification, i.e., a
training set and a testing set; 80% of the data will be used for training, and the remaining 20%
will be used for the testing method described in this paper. In addition, to improve robustness,
we adopt 10-fold cross validation in the model training and use 30 circulations for
hyperparameter optimization. During the testing, the open-source programming language
Python (Version 3.6.4) is used. Python is an object-oriented computer programming language
that has a rich and powerful library. We use the NumPy and Pandas packages for Python for
data preprocessing and feature engineering, and we use the Scikit-learn, Keras, Matplotlib
packages for the hyperparameter optimization and model training. All experiments were
performed on a notebook computer with a 2.8 GHz Intel i7 CPU, 16 GB RAM, and Windows
10 operating system.

Figure 6 Feature importance scores
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4.4.1 Hyperparameter optimization

Nearly all machine learning algorithms used for default risk prediction are designed with
parameters, and these parameters must be optimized to improve the prediction capacity of the
algorithms. In a default risk prediction model with hyperparameters, GS and RS are two
common parameter optimization strategies that can be used, as well as optimization methods
(MS) manual parameter tuning. RS, which was discussed by Bergstra and Bengio, is a random
trial-and-error process that is more effective than GS. The GS-based hyperparameter optimi-
zation method is adopted in this paper, and the preceding hyperparameter MS and GS are used
for the baselines.

This comparison is mainly aimed at evaluating the effectiveness of the RS hyperparameter
optimization method relative to that of the other two methods. The RS optimizer is an iterative
process, and in this study, the number of iterations is set to 30 (CV = 5) to realize a favorable
balance between accuracy and complexity. The hyperparameter optimization method will be
evaluated from two aspects: prediction accuracy after optimization (measured as per AUC
score) and optimization speed (measured as per time (in seconds)). The details on the search
space are summarized in Table 2.

In regard to prediction accuracy after optimization, Figure 7 shows the accuracy of using
different classifiers for the credit dataset. The X-axis represents the method adopted, and the Y-
axis represents accuracy. As shown in Figure 7, greater accuracy is obtained by using RS,
which is a method that calculates extreme points through using a random number and then
obtaining the optimal solution of function approximation. RS is superior to the other two
methods. Table 3 shows the optimization results of the five largest groups of parameters in
order; these groups are obtained using RS and GS methods. According to Tables 2 and 3 and
Figure 6, prediction accuracy is highest after tuning the parameters with the RS method (with a
range of AUC scores for [0.6496, 0.6794]) and a process that lasted 940 s, RS yields the best
results at the lowest cost. Manual parameter tuning requires considerable time and effort, and
the computable space is limited. If every parameter combination is covered, the process will
take a considerable amount of time, and effective optimization will be less likely to be realized.
In summary, RS performs between GS and MS in terms of the parameter tuning effect, but its
efficiency is far higher than those of the other two methods.

4.4.2 Comparison of the experiments

To verify our method and compare it with the current credit prediction model, we compare the
heterogeneous ensemble learning-based default prediction model and various benchmark

Table 2 Search space of the hyperparameter optimization approach

Parameter Symbol Random search Grid search Manual search

learning rate learning_rate (0.001, 0.1) [0.001, 0.01, 0.1] 0.1
maximum tree depth max_depth (1, 12) [6, 21, 41] 8
gamma gamma (0, 0. 5) [0. 1, 0.2, 0.3] 0.1
number of boosts num_boost_round 1000 1000 1000
subsample ratio subsample (0.5, 1) [0.6, 0.7, 0.8] 0.7
column subsample ratio colsample_bytree (0.2, 0.5) [0.2, 0.3, 0.4,] 0.3
minimum child weight min_child_weight (2, 5) [10, 28, 34, 44] 3
time seconds 940 23,600 3900
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models. Nine models were compared, including six benchmark models and three individual
classifiers: the three individual classifiers are XGBoost, DNN and LR; the three traditional
machine learning models are SVM, DTand KNN (k-nearest neighbor); and the three ensemble
learning-based models are AdaBoost (adaptive boosting), GBDT and RF (random forest). The
prediction results are summarized in Table 4, which shows that the heterogeneous ensemble
learning-based credit prediction model proposed provides an excellent prediction result for the
credit dataset.

Figure 7 Boxplot of AUC for three hyperparameter optimization approaches

Table 3 Tuning performance of the RS and GS methods

Method Rank Mean
score

Std Parameter combination

RS 1 0.6794 0.0067 {‘subsample’: 0.9, ‘min_child_weight’: 2, ‘max_depth’: 3, ‘learning_rate’:
0.069, ‘gamma’: 0.3, ‘colsample_bytree’: 0.4}

RS 2 0.6786 0.0109 {‘subsample’: 0.9, ‘min_child_weight’: 4.5, ‘max_depth’: 4, ‘learning_rate’:
0.054, ‘gamma’: 0.4, ‘colsample_bytree’: 0.3}

RS 3 0.6772 0.0101 {‘subsample’: 0.8, ‘min_child_weight’: 2, ‘max_depth’: 5, ‘learning_rate’:
0.03, ‘gamma’: 0.3, ‘colsample_bytree’: 0.3}

RS 4 0.6731 0.0093 {‘subsample’: 0.9, ‘min_child_weight’: 2.5, ‘max_depth’: 2, ‘learning_rate’:
0.065, ‘gamma’: 0.2, ‘colsample_bytree’: 0.2}

RS 5 0.6726 0.0083 {‘subsample’: 0.5, ‘min_child_weight’: 4, ‘max_depth’: 5, ‘learning_rate’:
0.04, ‘gamma’: 0.4, ‘colsample_bytree’: 0.3}

GS 1 0.6688 0.0057 {‘colsample_bytree’: 0.3, ‘gamma’: 0, ‘learning_rate’: 0.1, ‘max_depth’: 6,
‘min_child_weight’: 5, ‘subsample’: 0.7}

GS 2 0.6663 0.0090 {‘colsample_bytree’: 0.3, ‘gamma’: 0.1, ‘learning_rate’: 0.1, ‘max_depth’: 6,
‘min_child_weight’: 5, ‘subsample’: 0.7}

GS 3 0.6649 0.0095 {‘colsample_bytree’: 0.5, ‘gamma’: 0, ‘learning_rate’: 0.1, ‘max_depth’: 6,
‘min_child_weight’: 5, ‘subsample’: 0.7}

GS 4 0.6645 0.0119 {‘colsample_bytree’: 0.4, ‘gamma’: 0.3, ‘learning_rate’: 0.01, ‘max_depth’:
8, ‘min_child_weight’: 4, ‘subsample’: 0.6}

GS 5 0.6641 0.0116 {‘colsample_bytree’: 0.4, ‘gamma’: 0.2, ‘learning_rate’: 0.01, ‘max_depth’:
8, ‘min_child_weight’: 4, ‘subsample’: 0.6}
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In the first group of comparison tests, the prediction result, shown in the second column of
Table 4, is obtained after using the original features to train the three individual classifiers and the six
benchmark models. The XGBoost model yields the best prediction result, with the AUC score
predicted reaching 0.7038. This result shows that the predictionmodel will yield a better result using
ensemble with gradient boosting. This occurs because the feature’s value undergoes incomplete
sample treatment and XGBoost can learn to its split direction automatically. In addition, the other
three ensemble learning-based models AdaBoost, GBDT and RF have prediction results that are
higher than 0.65, which reflects good performance and shows that they have a high adaptive ability
to addressmissing values. TheKNNmodel, which includes the untreated original feature, has a very
poor prediction result that is only slightly better than a random guess. This result occurs because
when there is class imbalance in the sample, large-capacity samples will be in the majority among
the k adjacent samples, as in this sample; this model inputs a new sample if the default sample size is
very small and the nondefault size is very large. Moreover, the DNN and SVM models perform
poorly in terms of addressing the missing values and abnormal values, and these models require a
feature engineering treatment to adapt to new data.

In the second group of comparison tests, the prediction result, shown in the third column of
Table 4, is obtained after using the ordered feature to train the nine models. The XGBoost
model still has the best prediction result, and this result is not very different from the prediction
result of the first group of XGBoost models (using raw features). The reason for this result is
that upon treating a missing value, the XGBoost model will treat the missing value of an
incomplete sample as a sparse matrix. Missing values that are not considered upon a node split
are divided into a left subtree and a right subtree to calculate the value, and the superior f will
be selected. The tree-base model is less sensitive to missing values, and it is mostly used in
cases of missing data. Missing data will become more significant if the distance between two
points is calculated when the distance measurement is calculated. This occurs because when
the concept of “distance” is involved, the effect will become very small if the missing value is
treated inappropriately, e.g., the KNN and SVM models perform very poorly in this aspect.
The distance calculation that the loss function of the linear model usually uses involves a
different calculation for the prediction value and the actual value and can easily establish
effective substitutes for the missing values. Therefore, in the second group, the prediction
effect of the LR model is superior to that of the first group. The three ensemble learning-based
models AdaBoost, GBDT and RF do not differ much in terms of performance.

Table 4 Predicting performance

Models AUC score using raw
features

AUC score using ranked
features

AUC score using feature
engineering

Basic
algorithm

Ensemble – – 0.7256 –
XGBoost 0.7038 0.7035 0.7169 ensemble
DNN 0.5284 0.6614 0.7041 neural network
LR 0.6356 0.6896 0.7005 linear model
AdaBoost 0.6616 0.6672 0.6688 ensemble
GBDT 0.6664 0.6776 0.6955 ensemble
RF 0.6522 0.6514 0.6742 ensemble
DT 0.6525 0.6508 0.6660 tree
KNN 0.5029 0.6041 0.5899 tree
SVM 0.5143 0.6898 0.6781 kernel function

0.7256 is the final best predicted AUC score; 0.7038 is the optimal predicted AUC score of XGBoost for using
raw features; 0.7035 is the optimal predicted AUC score of XGBoost for using ranked features
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Finally, we retrain the nine models after engineering treatment for the original, rank and
discrete series of features to obtain the prediction result, which is shown in the fourth column of
Table 4. The prediction performance of the three models (XGBoost, DNN and LR) is 0.7169,
0.7041 and 0.7005, respectively. Then, we complete a heterogeneous ensemble for the three
individual classifiers using a linear weighted fusion strategy and using 0.70: 0.10: 0.20 as the
ensemble weights of the models. The final predicted AUC score is 0.7256, which represents good
prediction performance. In this way, we verify the applicability of the prediction model men-
tioned in this paper for credit data after feature engineering treatment. Additionally, the other three
ensemble learning-based models AdaBoost, GBDT and RF have good prediction ability accord-
ing to their prediction results. After feature engineering, the DT model performs better than those
in the first two groups, which shows that the tree-based DT model has good adaptive capacity.
The KNN and SVM models have worse prediction performance than those in the second group
with ordered features, which means that KNN and SVMmodels cannot adapt to discrete features
well after adding this feature. Figure 8 presents the ROC curve of the prediction result of the
heterogeneous ensemble learning-based default prediction model, as well as those of the
XGBoost model, the DNN model and the LR model. Figure 9 compares the ROC curves of
the above four models. Figure 9 compares the ROC curves of the above four models.

4.5 Discussion

The analysis and credit risk modeling in this paper show that the ensemble learning approach
has become a popular modeling technique. The XGBoost algorithm was introduced to enhance

Figure 8 ROC curve for the ensemble, XGBoost, DNN, and LR prediction models
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the robustness of the default risk prediction method. The XGBoost model includes tree-based
boosting, and at the same time, it adds a regularization term in the loss function and makes
some engineering modifications according to GBDT. However, the XGBoost algorithm
contains various hyperparameters, and it is very easy to affect the prediction performance if
it is not optimized by hyperparameters. To prevent this situation, this chapter adopts the RS
hyperparameter method to adjust these hyperparameters.

Risk control is an important part of credit management. Data-driven risk control is a type of
quantitative risk control. The development of an information society, an explosion in big data and
the Internet have greatly promoted the development of data-driven quantitative risk control.
Judging the credit risk of borrowers based on big data is more dependent on technical approaches
than traditional risk control methods. At the same time, a large amount of data has characteristics
of class imbalance, scarcity and high dimensionality, which further indicates that the machine
learning algorithm should be the core method used because it can address these issues.

Future research works should consider ensemble learning modeling based on sequential
approaches. At the same time, exponential loss, square loss and other user-defined loss
functions should be considered to check how these loss functions are performed, and a more
novel hyperparametric optimization method should be applied. The above machine learning
algorithm also performs tuning.

5 Conclusion

This paper presents a default risk prediction model based on a heterogeneous ensemble
learning strategy and uses three different individual classifiers: XGBoost, DNN and LR. In
this heterogeneous ensemble prediction model, a simple and transparent linear weighted fusion
strategy is adopted to predict the credit risk of borrowers of P2P loans in China, and an

Figure 9 Comparison of the ROC curves
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excellent prediction result is obtained. This paper verifies the validity and accuracy of the
heterogeneous ensemble default model with feature engineering for high-dimensional, sparse
and class-imbalanced credit datasets.

First, in data preprocessing and feature engineering, addressing missing values is usually done
through imputation or simple deletion. However, this paper does not adopt these traditional
methods because they may lead to information loss or prediction bias but rather this paper treats
missing values as a kind of feature: Ranked and discrete features are generated on the basis of the
original feature and these features are treated using a learning model-based feature selection
method to ensure that model learning and feature selection are performed simultaneously.

Second, this paper starts model pretraining after the operation above is completed. We train
the three individual classifier models XGBoost, DNN and LR first, and then, three traditional
machine learning models SVM, DT and KNN are trained. Then, three machine learning
models based on traditional ensemble learning AdaBoost, RF and GBD are trained. Because
there are many parameters in the XGBoost model, hyperparameter optimization must be
completed for the model during the pretraining period.

Finally, this paper uses a linear weighted fusion for the three individual classifier models
XGBoost, DNN and LR and then compares the prediction result with other reference models after
36 loop iterations. The default predictionmodel we propose yields the best prediction performance.

Funding This work was funded by the National Natural Science Foundation of China under Grant Nos.
91846107, 71571058 and Anhui Provincial Science and Technology Major Project under Grant Nos.
16030801121 and 17030801001.
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