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Abstract
Malicious behavior detection is a key topic that has been a focus in the field of intrusion
detection. Current intrusion detection systems are primarily based on single-point monitoring
and detection and cannot detect attack modes with a hidden attack frequency. The idea
presented in this paper is the incorporation of API call sequence software into the analysis
and the construction of behavior chains to express the behavior patterns in software. This paper
introduces related definitions of behavioral points and behaviors and proposes a depth-
detection method for malware based on behavior chains (MALDC). The method monitors
behavior points based on API calls and then uses the calling sequence of those behavior points
at runtime to construct a behavior chain. Finally, we use depth detection method based on long
short-term memory(LSTM) to detect malicious behavior from the behavior chains. To verify
the performance of the proposed model, we conducted a large experiment on 54,324 malware
and 53,361 benign samples collected from Windows systems and used those samples to train
and test the model. Comparative verification by using various classifiers showed that the
behavior points extracted based on the above method and the constructed behavior chains can
be used to recognize malicious behavior at a high recognition rate. The method achieved an
accuracy of 98.64% with a false positive rate of less than 2% in the best case, which is a
satisfactory recognition rate for detecting malicious software behavior.
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1 Introduction

Current mainstream and practical methods for antivirus and malicious behavior detection
determine whether behavior is malicious based on virus signature databases. However, this
approach has limitations, and the employed virus signature databases are derived from manual
analysis and extraction, leaving open the possibility for the development of future malicious
behaviors. Existing solutions to this problem rely on human experts to define features and
often miss many vulnerabilities (i.e., incurring a high false negative rate). Moreover, because
network technology is updated continuously, malicious behavior variants are also increasing
rapidly; consequently, feature libraries must be continuously updated, resulting in low detec-
tion accuracy and high labor costs. Furthermore, the only malicious behavior these approaches
can detect is behavior that exists in the feature database, whereas they are unable to detect new
malicious behavior variants. In this study, we describe an approach that uses deep learning-
based malware detection to relieve human experts from the tedious and subjective task of
manually defining features and we specifically aimed to lower the false negative rate(FNR)
and the false positive rate(FPR). By mining relationships in the data, the error rate of human
experts is reduced, and the accuracy of the detection models is improved.

The behavior-based malicious behavior detection methods proposed by researchers can
mainly be divided into static behavior detection and dynamic analysis detection. Among these,
early malware detection efforts employed static analyses [10, 16], and static behavior detection
has been the main technique used in code analysis to acquire information concerning software
behavior; however these approaches are unable to detect files that adopt techniques such as
packing or reverse decompression [15]. Dynamic behavior analysis refers to analysis that
occurs while the software is actually running, capturing its behavior for analysis. This
approach can effectively address problems that cannot be solved by static detection. Many
experts in the field currently use dynamic behavior techniques to detect malicious behavior [3,
22]. Classification techniques are generally used to classify unknown malware into known
types [25]. By considering the extracted malicious code behavior as a detection feature, this
method avoids problems resulting from code obfuscation because it focuses on the actual
behavior of malicious code. However, this behavior-based feature is still limited to grammat-
ical features and is easily confused by equivalent behavior substitution. Interference such as
that caused by the technique proposed by Sekar et al. [23], which involves a confusing attack
that injects garbage behavior while allowing the attack to simulate a normal behavioral
sequence, can bypass detection systems. Other researchers have used various APIs and other
dynamic fields to detect certain types of malware [11] or use API function calls, API function
parameters, and a collection of paired features to calculate detection sets based on the concept
of information entropy. Identifying malicious information by distinguishing the differences in
information gain between benign and malicious behavior was proposed in [27]. Although the
above methods can detect most malicious behaviors, some of these methods are complex, or
their analysis processes are extremely complex; others rely on a specific feature library for
analysis, or the applied algorithm considers only problems with large probabilities but does not
consider the occurrence of hidden events, making them impractical in real-world situations.

The rapid development of neural networks and deep learning has led many researchers to
apply these models to malware detection because they are adept at recognizing complex and
abstract patterns from large numbers of malware samples. There is always a certain probability
of detecting malicious behavior—even in instances with frequent mutations [21, 28, 34, 35];
considering this aspect, deep learning offers some advantages. Nevertheless, deep learning itself
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is vulnerable to what is known as “adversarial samples” [2, 26], whichmeans that these systems
can be easily deceived by dangerous manipulation [8]. Recent research has already demon-
strated that a malware author can leverage feature amplitude inequilibrium to bypass malware
detectors powered by deep neural networks [1, 9]. To address this problem, this paper monitors
API call sequences at program runtime and proposes a malware depth detection method based
on behavior chains. Current operating systems provide a large number of APIs; essentially all
programs must call the APIs that correspond to specific tasks. In this paper, we analyze the API
call sequence and study how to perform feature extraction and implement detectionmethods for
malicious behavior. Next, a method for describing behavior that uses the behavioral associa-
tions based on the program’s API call sequences is established to construct corresponding
behavior chains. Then, the behavior chains are used to train a long short-term memory (LSTM)
model. Finally, the trained model can be used to detect malicious behavior. The presented
experiments demonstrate that this method corresponds to improved detection ability.

The remainder of this paper is organized as follows. In Section 2, we discuss the relevant
background information concerning malicious behavior detection and the LSTM model.
Section 3 describes the proposed work and the methodology in detail. Section 4 presents the
experiments and an analysis of the results, and Section 5 concludes the paper and proposes
directions for future work.

2 Background

The main contribution of this paper is a method for constructing behavior chains based on
malicious behavior and their use in a detection method. To construct a behavior chain, the first
step is to analyze the malicious behavior in a running process. Based on this analysis, the
behavior and its descriptive characteristics are extracted, and a corresponding behavior chain is
constructed that can be used for malicious behavior detection based on the LSTM model.

2.1 Literature survey

Behavior-based malicious behavior detection can be generally divided into two types of
approaches: static analysis detection and dynamic analysis detection [31]. Static analysis
involves disassembling malicious code using disassembly tools such as IDA Pro orW32Dasm.
This approach does not require executing the program; instead, it obtains malicious behavior
information is obtained solely through code analysis. For example, Wang [32] proposed a
method for comparing code in a malicious behavior file with related data. First, this approach
determines the code block; then, it compares the data block. However, this method is only
applicable to malicious behavior code that has not undergone large changes. The authors of [7]
proposed a system for detecting malicious Android applications by statically analyzing appli-
cation behavior. This system extracts static features from secure applications to detect malicious
behavior; however, this approach cannot protect devices from transient attacks or modified
malware. Vida Ghanaei [12] presented a static block analysis of the basic block frequencies of
malware samples to classify malware families; however, this study used only static analysis and
did not consider the actual operation of the malware. Dullien [4] analyzed the execution
semantics of malicious behavior programs based on the control flow of the program. This
method improved the accuracy of malicious behavior judgment, but could not deal with
obfuscated code because it only compared the basic program blocks. Because static analysis
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relies on disassembly techniques, some malicious behavior code protects itself through tech-
niques such as compression, encryption [29], and so on. Moreover, because statically analyzed
code does not accurately represent real code that implements real functionality, it is extremely
difficult to judge the true results. Therefore, dynamic analysis methods have emerged.

Dynamic analysis methods generally monitor malicious behavior through system monitor-
ing or debugging tools. The analysis is performed while the program is running to judge
whether its actions represent malicious behavior. This method circumvents interference by
techniques such as packing malicious behavior code or confusion; therefore, it is more suitable
for environments in which malicious behaviors occur. Most recent studies have focused on
dynamic behavior analysis. For example, Wang Rui [33] proposed a semantically-based
approach to extract malware behavioral signatures and perform detection. This approach
extracts critical malware behaviors and the dependencies among these behaviors and then
acquires anti-interference malware behavior signatures using an anti-obfuscation engine to
identify semantically irrelevant and semantically equivalent behaviors, which improves the
ability to recognize malicious code. Compared with any pattern-based approach for detection,
the code similarity-based approach is advantageous in that a single code instance can detect the
same malicious behavior in the target program. However, it can only detect malicious behavior
that identical or almostidentical code clones [24]. To achieve a higher effectiveness of
malicious behavior detection, experts need to define features to automatically select the correct
code similarity algorithms for different kinds of malicious behavior [19]. Zhen Li [20] studied
the used of deep learning-based vulnerability detection to relieve human experts from the
tedious and subjective task of manually defining features. Yujie Fan [6] proposed an effective
sequence-mining algorithm to discover malicious sequence patterns. They performed mali-
cious detection using an ANN classifier, achieving good results. Yanfang Ye [14] proposed a
HinDriod system architecture that first generates smali code through decompilation and then
analyzes the resulting smali code. A complete Android API call list, representing two entity
types and four types of relationship characteristics can be extracted in this manner. Then, the
relationships among the extracted API calls can be further analyzed. The heterogeneous
information network HIN is used to solve the complex relationships, and relationships between
applications are found through the meta-path method. This approach capitalizes on the idea of
using multicore learning to build a classification network that makes binary “safe” or “mali-
cious” judgments concerning applications. In [13] a new dynamic analysis method called
component traversal was proposed. This method also automatically decompiles a given
Android application as much as possible and then analyzes its code to determine whether it
is a malicious program.

However, the above studies did not consider the call sequences of the application, nor was
the overall behavior trajectory of the software operation analyzed, thus, the accuracy of the test
results is not high. Software vulnerabilities are detected in [20], although the method does not
detect whether software with vulnerabilities exhibits malicious behavior, resulting in some
hidden attacks that can escape detection. This paper proposes a new method and using a deep
learning model to detect malicious behavior with the aim of achieving a lower false negative
rate, and ultimately obtaining a higher malware detection efficiency.

2.2 Long short-term memory (LSTM)

On one hand, because malicious behavior code mutations occur quickly and the variants have
multiple styles, many malicious behavior detection software implementations cannot be altered
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in time, resulting in huge losses. On the other hand, because many current malicious attacks
have good latent characteristics, it is imperative to find a way to quickly and accurately detect
malicious attacks.

Traditional neural networks do not consider chronological factors and cannot remember
previous content. To address this problem, the recurrent neural network (RNN) was developed.
The logical architecture of an RNN is depicted in Figure 1. The hidden state ht is obtained from
the input Xt at time t and the from the output ht − 1 at the previous moment. The latter is used to
calculate the model loss of the current layer and to calculate the ht + 1 of the next layer.
However, because an RNN suffers from gradient decay, the hidden structure of its sequence
index position t was improved to avoid the gradient disappearance problem. Thus, a special
RNN model called an LSTM can learn long-term dependency information. An LSTM is
somewhat different from the typical neural network module A of RNNs. In an RNN, the
repeated neural network module A has a very simple structure, such as a tanh layer:

ht ¼ tanh Wh h t−1ð Þ;X t
� �þ bh

� �
:

In contrast, an LSTM has four neural network layers that interact in a special way, as shown
in Figure 2. An LSTM has the ability to delete or add information to memory through a
specially designed structure called a “gate.” The gate is actually the place to select the
operational data information; it contains a sigmoid neural network layer and a multiplication
operation. The sigmoid layer changes the input through the sigmoid function and outputs a
value between 0 and 1, describing how much input can pass through that network part. A “0”
indicates that no data are allowed to pass, while a “1” indicates that all data are allowed to pass.
The gate structure of an LSTM at each sequence index position t generally includes a
forgetting gate, an input gate and an output gate. The output ft of the sigmoid is a value in
the range [0, 1].

The forget gate decides what information to discard or retain from the memory of the
previous moment:

f t ¼ σ W f h t−1ð Þ;X t
� �þ bf

� �
:

The input gate determines the information that should be saved:

it ¼ σ Wi h t−1ð Þ;X t
� �þ bi

� �
:

A tanh layer creates a new candidate value vector:

Ct ¼ tanh Wc h t−1ð Þ;X t
� �þ bc

� �
;

Figure 1 Recurrent neural networks structure
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which will be added to the status. The input gate determines the updating of the candidate
value vector, and the forget gate determines whether the information should be retained or
discarded to construct the final memory:

Ct ¼ f t*Ct−1 þ it*Ct:

Finally, the output gate determines which part of the memory is ultimately output:

ot ¼ σ Wo h t−1ð Þ;X t
� �þ bo

� �
:

Then, the passed data flows into the tanh layer for processing. The output is a value between
[−1, 1], which is multiplied by the output gate. Finally, the output is determined by

ht ¼ ot*tanh Ctð Þ:
All the above methods from the literature survey achieved quite good experimental results,
However, some used only static analysis, which has certain limitations, and some adopted both
static and dynamic analysis methods, but focused on the process of dynamic analysis. Most
existing research pertained to analysis and malware detection for Android applications; these
methods first perform decompilation, then analyze the API calls in the decompiled code, and
then analyze the employed APIs to determine whether the application is malicious. In contrast,
this paper analyzes and detects malware applications under a Windows environment. The
analysis process adopted here is simpler and more convenient than the processes in the
research described above. Here, we avoid the decompilation process; instead, we extract the
corresponding API behavior points from the running process of the monitored program and
build a behavior chain to generate the dataset. Then, using the deep learning LSTM model to
train detection models, higher accuracy can be obtained.

3 Construction of the MALDC model

Malicious behavior detection is actually a binary classification problem. We extract the
behavior analysis from the collected data and divide it into two groups: malicious behaviors
and benign behaviors. We denote the sequence of behaviors that we collect by X = {X1, X2,⋯,
Xn}, where Xi represents one behavior in multiple behavior sets and n represents the number of
behavior sequences. Y = {Y1, Y2} represents the behavior categories, where Y1 and Y2 represent
malicious behavior and benign behavior, respectively. Therefore, our goal is to find a suitable
mapping relationship f(Xi)→ Yj, where i ∈ (1, n),j = {1, 2}, and f is the mapping function of the

Figure 2 Neural network LSTM structure
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classification model. We collected the sample data and trained it using an appropriate LSTM
model and finally judged whether a sample was malicious based on the trained model results.
Figure 3 shows the processing flow of this paper.

3.1 Related definition

3.1.1 Behavior point

All programs are executed to achieve a certain goal. Each operational step constitutes a
“behavior point” in the process of reaching that goal. From the perspective of the operating
system, the behavior points are calls by the program to certain API functions, which can be
represented by the triplet, B = (R, P, Pro), where R is the return value of the behavior point call,
P denotes the input and output of the behavior point, and Pro is an attribute that represents the
purpose of the behavior point, which can be a file behavior point, a registry behavior point, a
network behavior point, and so on.

The elements P{PI(P1 : V1; P2 : V2); PO(P3 : V3; P4 : V4)}in the triplet contain multiple pa-
rameters, where PI represents the input of the behavior point, PO represents the output of the
behavior point, and {P1, P2} and {V1, V2} represent the input parameters and parameter values
of the behavior point, respectively, while {P3, P4} and {V3, V4} respectively represent the
output parameters and parameter values of the behavior point.

3.1.2 Behavior

During a running process, sequences occur between each behavior point. The time and
position of each behavior point can be different, the meaning can be different, and the

Maleware

Benign Vmware WinAPIOverride64 Log Files 

Behavior point 
extrac�on

Behavioral feature 
vector

Behavioral Chain of 
building

Test 
Data

Train 
Data

LSTM Model

Classifica�on

MALDC Model

Figure 3 Overview of the system
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final goal can be different. Therefore, we call a collection of one or more behavior points
a “behavior”. A behavior is represented by an N-tuple A = (B1, B2,⋯, Bn), where B1 indicates
the behavior point of the program running at time t, B2 indicates the behavior point of the
program running at time t + 1 and Bn indicates the behavior point of the program running at time
t + n. Overall, from time t to time t + n, the API call constitutes a behavior.

3.1.3 Description of association behavior

A behavioral relationship involves the relationship between behavior points and acts and
refers primarily to the timing relationship. For example, the behavior point B1 indicates
the first API call when the program is running, and the behavior point B2 indicates the
second API call. The parameters and values of B2 are inherited from the previous
behavior point B1, that is, the output of B1 forms the input for behavior point B2.
Therefore, at the output of behavior point B1, B2 depends on the behavior point B1.
Consequently, the relationship between the two behavior points can be expressed as:
B1→ B2.

3.2 Construction of association behavior

Before a behavior chain can be constructed, it is first necessary to determine the corresponding
behavior point features from the collected data, a process called “behavior feature extraction”.
The collected data will include much useless information that constitutes interference. To
remove the interference, the data must be preprocessed and the required behavior points
extracted. Then, these behavior points are combined into behaviors according to the call
sequence. The behavior chain is composed of these behavior combinations.

3.2.1 Feature extraction

During the course of the experiment, the API call format is relatively standardized; the API
names, parameters and parameter values appear in the regular monitoring log and can be
expressed as follows:

File B1 P1 : V1; P2 : V2; P3 : V3;⋯ð Þ;B2 P3 : V3; P4 : V4;⋯ð Þ;⋯f g

We first need to extract the API, the behavior point, the corresponding parameters and their
parameter values from the collected log files. During the extraction process, because the
irrelevant interference data appear in each log file, it is difficult to extract only the desired
parameters and parameter values. Accomplishing this task requires the use of string processing
techniques from text analysis. The raw data holds three different types of data, API names, API
names and parameters, and API names and parameters along with parameter values. This article
mainly addresses the behavior points and considers only API functions themselves; it ignores
their parameters and parameter values. A behavior point may appear multiple times in a log file,
but number of occurrences is not considered, only the order in which the APIs are called during
program execution and the behavior points with which it has a sequential relationship.

The purpose of behavior extraction is to combine the behavior points obtained through
monitoring into behaviors, such as the monitored behavior points B1, B2, and B3, into obtain
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behaviors, such as A = (B1, B2, B3). When integrating behavior points, only the same types can
be combined; the type of a behavior point depends on behavior point classification. Therefore,
the extracted behavior points must first be mapped to their corresponding behavior categories .
Then, we can address the problem of merging the behavior points in the same category. In this
paper, the corresponding behavior points B and A are extracted by Algorithm 1 (shown in
Figure 4). Based on this process, we can see that behavior extraction actually involves data
extraction. For example, during read-file behavior, the data in the file must be read into
memory; therefore, the application will call APIs such as CreateFile, ReadFile, OpenFile,
WriteFile, and so on.

3.2.2 Construction of the behavior chain

Program execution mainly calls various APIs to achieve a certain purpose, that is, the
relationship between the behaviors is represented by the transfer relationship between the
behavior points; therefore, the relationships can be established through the transmission
relationships between the behavior points.

Assume that the following sequences are extracted in three log files:

File1: {A1(B1, B2), A2(B1, B3, B5), A5(B3, B4, B6),⋯}
File2:{A1(B1, B3, B4),A3(B2, B4, B5),⋯}
File3:{A2(B2, B3), A3(B1, B4, B6),A4(B3, B4, B5),⋯}

In these three files, based on the feature extraction operations mentioned above, we can extract
behavior points and behaviors from the original files to construct a behavior chain that includes
the following three behavior chains:

{A1(B1, B2)→A2(B1, B3, B5)→A5(B3, B4, B6)→⋯}
{A1(B1, B3, B4)→ A3(B2, B4, B5)→⋯}
{A2(B2, B3)→ A3(B1, B4,B6)→ A4(B3, B4, B5)→⋯}

Note that the three behavior chains constructed above do not consider the parameters and
parameter values used when calling the API during program execution; only the behavior point

Algorithm 1: API extraction algorithm
Open Systemlog_file
Declare v
Input all log_files to v
n=size of v
close file
file=Open(API_file.txt).readlines()
for i in file:

begin
if API belong to “.dll”

if the API is equal to the previous API
continue

else
Save the API to API_file.txt

end
Close file
Output API_file.txt

Figure 4 Feature extraction
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APIs are considered: the parameters and their parameter values are ignored. The final
construction result is shown in Figure 5. Each behavior chain consists of different behaviors,
and each behavior contains different behavior points.

Each time the program runs, there will be a series of calls to system APIs until the program
reaches its desired purpose. Therefore, we construct the corresponding behavior chain by
extracting the API function calls.. We construct the behavior chain with temporal character-
istics to express the intrusive malicious behavior process. When a certain program is known to
call an API, a certain behavior is triggered; then the probability of the next behavior being
malicious or benign is determined through the behavior chain, which can be used to prepare
for interception in advance. In this study, we use the dataset collected above and extract the
behavior chain constructed by the features. Then, we combine the behavior chain with the deep
learning LSTM model to predict whether a program exhibits malicious behavior.

3.3 MALDC model construction based on behavior chains

The previous section described extracting the required feature data from the log file and
constructing a behavior chain temporal characteristics. Here, we construct trained models
based on these behavior chains and the deep learning LSTM. Because the anomalous behavior
of latent unknown attacks is quite subtle, attackers often try to obscure their attack behaviors.
Usually, a single behavior appears normal, but when behaviors are related, it is possible to
combine them into abnormal behavior. Therefore, this paper analyzes abnormal behaviors
from the perspective of system API calls. Normal or malicious programs will both make API
calls. Therefore, we establish the API behavior chain and then use the LSTM recursive neural
network model as an effective recognition method. The overall architecture of the algorithm is
shown in Figure 6. The processed behavior chains are input into the LSTM individually for
detection and recognition, and the hidden states obtained at each moment are aggregated.
Averaged pooling is then used to reduce the dimensions to obtain a converted data expression
and finally, the model makes a classification from the converted data using classification
algorithms.

As a simple behavior example, we introduce the cooccurrence feature of behavior points in
behavior actions into the LSTM network design and use it as a parameter learning constraint
for the network to optimize the recognition performance. The purpose of malicious behavior is
often related to some specific set of behavior points, and the interactions of behavior points in
this set are closely related. To judge whether a program is a malicious Trojan virus, behavior
points such as “open port”, “receive remote host connection”, “receive remote host

Figure 5 Behavior chain construction
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information”, “send information to remote host”, “start program”, and “end process”, and
behavior series such as “reading files” and “screening” are very important. Different malicious
programs feature different combinations of such closely related behavior points, but the order in
which they call APIs during execution varies. Generally, malicious programs will call APIs such as
“CreateFile”, “ReadFile”, and “WriteFile”, forming a set of nodes with discriminative properties.
We have designated these behavioral characteristics that can be discriminated into cooccurrences.

In the model training phase, we introduce a constraint on the weight of the behavior point
and the neuron in the objective function; thus, the same group of neurons has a greater weight
connection to a subset containing certain behavior points along with other behavior points.
There are smaller weight connections that reflect the cooccurrences of behavior points. As
shown in Figure 7, an LSTM layer is composed of multiple LSTM neurons. These neurons are
divided into M groups. Each neuron in the same group has a greater connection weight with
certain behavior points (behavior points that are associated with a certain class or with certain
types of malicious behavior constitute a subset of behavior points) but have smaller connection
weights with other behavior points. Different groups of neurons have different sensitivities to
different behaviors, and the subsets of behavior points in different groups of neurons corre-
sponding to larger connection weights are also different.

Figure 6 MALDC model based on behavior chains
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Because various latent unknown attacks exist, the LSTM model is used for analysis and
processing. Using the preprocessed behavior chain data with temporal characteristics as the
training set, a mapping relationship between the input and output is found using the LSTM.
The MALDC model training algorithm is shown in Figure 8. In the behavior chain, the calling
order of the APIs and the context of the API calls before and after an API call are highly
important factors.

4 Experiments and analysis

This paper selects a certain number of benign and malware samples to generate sample data
sets. The benign software is selected from the Windows system and consists of widely used
and well-known software. The malware samples contain viruses, Trojans, worms, etc.; the
main source for the malicious Windows system programs was acquired from https://virusshare.
com/. A selection of 578 benign and 950 malware samples is used as the dataset in this study,

Figure 7 Cooccurrences of behavior points

Algorithm 2

Input Behavior chain data
Output MALDC model
1 Initialization the weight of each network layer

2 While more input data exists do:

3 Forward propagation, calculate output y

4 Calculate the current total error value 

5 Calculate the current hidden layer error gradient 

6 Calculate the current error gradient of hidden cell states 

7 Calculate the weight updates for the forget gate input gate and output gate 

8 Perform weight updates

9 if maximum number of iterations do

10 Save weights

11 end

12 end

13 Save weights

14 end

Figure 8 MALDC model-training algorithm
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and Table 2 shows the different categories of malware samples and the number and percentage
of samples in each category(raw data). Because the dataset provided by the site is relatively
small, we expand the dataset according to each malicious type in the malware dataset to ensure
that all types of malicious features remain intact. Then, we randomly sample 60% of the data
for each type from the malicious sample set and combine these same types of data to expand
the dataset. Similarly, all the other malicious types and 40% of the benign sample data are
expanded by this method, and a total of 54,324 malware and 53,361 benign samples are
acquired. The experiment was executed in a virtual machine, whose configuration is shown in
Table 1:

The log data were obtained by running the sample program in the virtual machine and
monitoring it using the WinAPIOverride64 tool [27, 30]. Each sample is executed until all its
processes terminate or a 90-s timeout period elapses. This timeout value was selected because
90 s is generally to enough time for most malware programs to execute their immediate
payloads. Generally, the monitoring tool ended the process after the monitoring timeout was
reached, generated a corresponding monitoring log, and saved the log. The system was then
reverted to its initial state, and the next program was run and monitored in a clean environment
until all the data were collected (Table 2).

The Windows operating system contains a large number of API calls in the form of
dynamic link libraries (DLLs). If these libraries are monitored, the amount of data collected
would be very large. Moreover, some APIs have no relevance to this research and would
simply be noise during the analysis. By referring to DLLs selected by researchers worldwide
[5, 17, 27], this paper identified six important dynamic link libraries to be monitored; these
DLLs include advapi32.dll, rasapi32.dll, kernel32.dll, ntdll.dll, shell32.dll, and user32.dll.
Each DLL’s functions are demonstrated in Table 3. The APIs in these libraries can create,
delete or open registry keys and set or save values to them; create a process; directory or file;
search, delete or move a file; create a network connection; etc.

An API call situation of the malicious program from the log of the detection tool
WinAPIOverride64 is shown in Figure 9. The Call column specifies the API call, including
the name, parameters, and parameter values. Other columns specify the process ID, thread ID,
address, registration value, and so on.

Table 1 VM configuration

Operating system Windows 7 professional

CPU Intel(R) Xeon(R) CPU E5–2620 v4 @ 2.10 GHz
Hard disk 60 GB
Memory 4 GB
VMware VMware Workstation 12 PRO

Development language and tools Python2, Pycharm

Table 2 The different type of malware samples(raw data)

Type Number of files Sample ratio Type Number of files Sample ratio

virus 50 3.3 hacktool 180 11.7
trojan 100 6.5 P2Pwarm 140 9.2

backdoor 200 13.1 exploit 80 5.2
constructor 200 13.1 Benign 578 37.8
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The collected log files are preprocessed by Algorithm 1, which extracts the features from
the logs. Then, the behavior chain is constructed according to the behavior chain construction
method described earlier. The behavior chain is coded, and finally, the LSTM network is
applied to train the model to determine whether the analysis is malicious.

This paper uses the word2vec continuous bag-of-words (CBOW) to encode and train the
collected sample data, finally generating a 50-dimensional feature vector representation for each
API. Each behavior point in the behavior chain has a strong contextual relationship. If the
traditional word bag model (BOW) were used, the relationship between each behavior point
and other behavior points could not be considered, and the context of the behavior point would be
ignored; therefore, the document encoding version of the word vector is used to encode the
behavior chain, and the vector representation of each API can be obtained by training word2vec.
During the process of training the word vector, we set the word vector to 50 dimensions. The
number of iterations was set to 5 by default, and the size of the training window was 3.

The preconstructed behavior chain is input into the LSTM network for training. The LSTM
consists of a three-layer network: an input layer with 256 input units, a hidden layer with 128
LSTM units, and an output layer. The sigmoid activation function is used in the output layer to
normalize the value as the output of the neural network.

Under the same conditions as the experimental sample, we use the control variable method
to adjust the optimal parameters. First, we fixed the number of units in each LSTM layer and

Table 3 A summary of the selected DLLS

DLL name Description

advapi32.dll Advanced API services library that supports numerous APIs, including many security and registry
calls

rasapi32.dll The Remote Access API (RAS) used by Windows applications to control modem connections
kernel32.dll Contains hundreds of functions for managing memory and various processes
ntdll.dll NT-Layer DLL that controls NT system functions.

shell32.dll A library that contains Windows Shell API functions used when opening web pages and files
user32.dll Contains numerous user interface functions and is involved in the creation of application windows

and their interactions.

Figure 9 APIOVERRIDE64 monitoring data
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then changed the number of samples used for training and for the batch_size and analyzed the
results. The number of training iterations was set to 30, and the batch_size was set to 4, 8, 16,
32, 64, and 128. The final accuracies levels are shown in Figure 10 and Table 4.

Where val_loss and val_acc represent the loss value and accuracy on the test set with 10
iterations, and val_loss_30 and val_acc_30 represent the loss value and accuracy on the test
data with 30 iterations. As Figure 10 shows, the loss value and accuracy obtained by the two
different iteration values are different. In general, when the batch_size has a smaller value, the
loss value and accuracy obtained are relatively stable, but when the batch_size is relatively
large, the loss value and accuracy are unstable, which is highly related to the amount of data.
Because the data set used in this paper is relatively small, considering the overall performance,
a batch_size of 32, at which the loss value and accuracy are relatively stable, was selected as
the experimental condition.

Next, with the batch_size fixed at 32, the number of iterations set to 30, and other conditions
left unchanged, the activation function is changed, and the results are analyzed. In Figure 11,
val_loss represents the loss value on the test set, and val_acc is the accuracy rate on the test set. In
this experiment, a total of six different activation functions were tested. According to the results,
the sigmoid function had the highest accuracy and the smallest loss value under the given
conditions. Therefore, this study used the sigmoid function was used as the activation function.

The above experiments determined the parameters that need to be adjusted, and subsequent
model training was based on these established conditions. Among the sample data collected,
80% were selected as a training set, and 20% were used as the test set. These are input into the

Figure 10 Comparison of different batch-sizes

Table 4 Comparison of different batch-sizes

val_loss val_acc val_loss_30 val_acc_30

4 0.0819 0.9346 0.0843 0.9412
8 0.0699 0.9542 0.0729 0.9423
16 0.0999 0.9412 0.1094 0.9019
32 0.0608 0.9739 0.0586 0.9842
64 0.0856 0.9368 0.0721 0.9477
128 0.2445 0.8542 0.0800 0.8745
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LSTMmodel. The final experimental results are shown in Figure 12, where loss represents the
loss value on the training data, acc represents the accuracy on the training data, val_loss is the
loss value on the test data, and val_acc is the accuracy on the test data. The abscissa shows the
number of iterations, and the ordinate shows percentages.

As Figure 12 shows, the accuracy on the training set stabilizes when the number of
iterations reaches 10. When the number of iterations reaches 15 times, the rate of loss reduction
is also very slow. The accuracy and loss values in Figure 12 and Table 4 show that the
accuracy rate is 98.64%. In the following experiments, we compare the detection results of
using traditional processing algorithms and various deep learning models. In addition, the
experimental results of each model highlight the advantages of the deep learning model and
prove the effectiveness of the behavior chains. Table 5 summarizes the evaluation measures
such as: False Positive Rate(FPR),False Negative Rate(FNR), Precision(P), area under
ROC(AUC), Recall(R) and F1-measure(F1) for each experiment. The experimental results
are presented and discussed in the next paragraphs.

The following observations can be made from Table 5 and Figure 13. First, the deep
learning model substantially outperforms the other traditional algorithms overall, as the CNN
(3.86% and 5.99%), the DNN(4.73% and 6.90%), the GRU(3.17% and 1.71%) and the

Figure 11 Comparison of different activation functions

Figure 12 Accuracy and loss values
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LSTM(1.05% and 3.42%) have much smaller FPR and FNR values than the other traditional
algorithms. Considering the other models, we find that the FRP and the FNR are also relatively
small, for the KNN because the distributions of malware and benign data are not uniform,
which may be due to sample imbalance. Second, for the traditional algorithms, i.e.NB and LR,
low FPRs(4.76% and 1.59%, respectively) are achieved only with high FNRs(58.12% and
88.03%, respectively), which lead to lower F1-measures. Similarly, the P values of the SVM
and MLP algorithms are not high for the following reasons: Traditional algorithms usually
calculate frequency by statistics, do not consider the context of the data, and cannot process
time series data. Therefore, the accuracy will be lowe for data with context and hidden
attributes, which explains why traditional algorithms incur high FNRs.

In contrast, deep learning algorithms can effectively extract feature values based on
powerful nonlinear feature representation. Such algorithms can process time series data using
RNNs with feedback and time parameters. Therefore, the results of the deep learning model
are better than those of the traditional algorithm model overall. Among them, LSTM led to
better results than CNN, DNN and GRU, and LSTM corresponded to a much higher F1-
measure(i.e.,98.01% vs .97.46% for GRU, 97.18% for DNN and 96.96% for CNN) because it
had much lower FNR, we also note that the LSTM model had an FPR of 1.05% and a
Precision of 98.64%.

Table 5 Comparison of experimental results of each model

FPR(%) FNR(%) P(%) R(%) F1(%) AUC(%)

NB [27] 4.76 58.12 79.4 70.36 71.98 78.1
LR 1.59 88.03 81.37 59.51 58.03 61.08
KNN 3.11 5.13 95.61 96.31 95.94 96.42

SVM [18] 3.17 14.53 93.8 91.81 92.06 91.15
MLP 2.65 53.85 83.75 72.07 73.16 71.75

CNN [18] 3.86 5.99 96.13 97.38 96.96 97.01
DNN [18] 4.73 6.90 97.98 96.55 97.18 96.47
GRU 3.17 1.71 97.32 98.01 97.46 97.56
LSTM 1.05 3.42 98.64 97.98 98.01 97.76

Figure 13 Comparison of the experimental results
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Considering previous studies that reported traditional machine learning NB algorithm [27]
and deep learning RNN and CNN algorithm [18] for malware detection, Table 5 and Figure 13
show that the NB accuracy rate is 79.4%, and that the DNN and CNN accuracy rates are
similar. However, these algorithms have accuracy that are lower than that of the LSTM
algorithm and FPR and FNR values that are higher than those of the LSTM algorithm The
LSTM method used in this paper achieved an accuracy of 98.6%, the FPR of 1.05% and the
FNR of 3.42%. However, the results of the entire experiment, indicate that our research still
has much room for improvement. Because the amount of raw data used in this study was
relatively small, the behavior relationships obtained from the mining process may be limited.
Our goal is to find combinations of abnormal behaviors from multiple associations; conse-
quently, only with a larger dataset can we better explore these relationships. Nonetheless, the
experiment demonstrates the effectiveness of our approach.

5 Conclusions and future work

In this paper, we propose a depth-detection method for malware based on behavior chains. The
behavior points required for the experiment are extracted from application monitoring log files
by monitoring API call sequences. Based on these API call sequences, behavior chains with
temporal characteristics are constructed and then input into the LSTM network to train the
MALDC model, which is finally used to make malware or benign software classifications. In
the final experimental results, the model’s accuracy on the test data reached 98.64%. Because
the construction of the MALDC model requires a large amount of training data, the accuracy
of the experiment will likely improve substantially with more train data.

Moreover, this study analyzed only individual APIs; it did not attempt to consider the
impact of the parameters or parameter values that were input to or output by these APIs on
detecting malicious behavior. Therefore, in future work, we plan to continuously collect
malicious data to expand the data set and to consider the API parameters and parameter
values. Through future experiments, we will be able to analyze whether the parameters and
parameter values have a significant impact on malicious behavior judgments and improve
malware identification.
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