
World Wide Web (2019) 22:1447–1480
https://doi.org/10.1007/s11280-018-0648-0

Target oriented network intelligence collection: effective
exploration of social networks

Rami Puzis1 · Liron Kachko1 ·Barak Hagbi1 ·Roni Stern1 ·Ariel Felner1

Published online: 15 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Target Oriented Network Intelligence Collection (TONIC) is a crawling process whose goal
is to find social network profiles that contain information about a given target. Such profiles
are called leads and the TONIC problem is how to minimize crawling costs incurred while
finding them. We model this problem as a search problem in an unknown graph and present
a best-first search approach for solving it. Three key challenges are (1) which profiles to
consider crawling to, (2) how to prioritize the crawling order, and (3) when additional crawl-
ing is not worthwhile. For the first challenge, we propose two frameworks: the Restricted
TONIC Framework (RTF), that restricts the search to immediate neighbors of previously
found leads, and the Extended TONIC Framework (ETF), that extends the scope of the
search to a wider neighborhood. Guidelines for when to choose which framework are pro-
vided. For the second challenge, we propose a set of effective topology-based heuristics that
guide the search towards profiles that are more likely to be leads. For the third challenge,
we propose to use data collected in previously executed crawls to learn when additional
crawling is expected to be useful.

Keywords Artificial intelligence · Heuristic search · Online social networks

� Roni Stern
sternron@post.bgu.ac.il

Rami Puzis
puzis@bgu.ac.il

Liron Kachko
ssliron@gmail.com

Barak Hagbi
barak80@gmail.com

Ariel Felner
felner@bgu.ac.il

1 Department of Software and Information Systems Engineering, Ben-Gurion
University of the Negev, Be’er Sheva, Israel

Received: 7 May 2017 / Revised: 10 June 2018 / Accepted: 1 November 2018 /

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0648-0&domain=pdf
http://orcid.org/0000-0003-0043-8179
mailto: sternron@post.bgu.ac.il
mailto: puzis@bgu.ac.il
mailto: ssliron@gmail.com
mailto: barak80@gmail.com
mailto: felner@bgu.ac.il

1448 World Wide Web (2019) 22:1447–1480

1 Introduction

Web-based online social networks (OSNs) such as Facebook, Twitter, and Google+ are a
part of everyday life for many people around the world. These OSNs are a source of per-
sonal information about their users and even contain sensitive commercial or security related
information. Commercial companies, government agencies, and even individual people
often utilize this abundance of data to extract information about a given person of interest.
For example, it is common practice for most commercial companies to inspect the Facebook
and LinkedIn profiles of candidate employees in order to extract information about past
projects, colleagues, and managers. Government agencies may also explore OSNs looking
for information on terrorists and organized crime.

The process of collecting the information available in an OSN about a given person or
group of interest can be automated using information extraction (IE) techniques [13]. We
refer to such a person or group of interest as the target. Awareness to privacy issues and to
data leakage causes many users to tighten their OSN privacy settings limiting access to their
profiles. Consequently, the target’s profile is inaccessible to third parties and information
about the target cannot be collected from its profile. Furthermore, there might be scenarios
where the target does not even have an OSN profile, but information about the target is still
available in the OSN.

In such cases, an alternative way to collect information about the target is through infor-
mation available in other OSN profiles. For example, information about the target can also
be collected from profiles that contain photos of the target, public posts made by the target
or posts made by other profiles about the target. If the target has a profile in the OSN, then
a likely source of information about the target is in the profiles of its acquaintances, where
acquaintances can be defined using the OSN friendship relationship. It is prohibitively chal-
lenging to conceal information about the target that other profiles expose. A profile that
exposes information about the target is called a lead.

In this paper we address the problem of finding as many leads as possible while mini-
mizing the number of inspected profiles. We call this problem the Target Oriented Network
Intelligence Collection (TONIC). In our model, extraction and analysis of relevant infor-
mation from the OSN is encapsulated in two operators: IsLead which is a light query that
determines whether a profile is a lead or not, and profile acquisition which is a heavy
operation that fully extracts and observes the information of a given profile.

These operators can be carried out by utilizing web scrapping or the OSN application
programming interfaces (API) followed by standard IE techniques [13, 43, 51].

We solve TONIC with Artificial Intelligence techniques, formalizing it as a heuristic
search problem. Profiles and friendship relations form the vertices and edges of a graph, respec-
tively, and we use a best-first search approach to search this graph [44, 52]. We visit profiles
in a best-first order according to heuristic functions that we develop in this paper and apply
the IsLead and profile acquisition operators on the best profile in an intelligent manner.

Two frameworks are proposed for solving TONIC, the Restricted TONIC Framework
(RTF) and the Extended TONIC Framework (ETF). RTF restricts the search to known leads
and their neighbors. Therefore, in RTF profiles that are found to be non-leads are omitted
from deeper exploration. The rationale behind restricting acquisition of non-leads is that the
cost of profile acquisition can be quite high and it may not result in the discovery of new
leads. By contrast, ETF does not restrict acquisition of non-leads and allows the search to
continue through the extended social cycles of a target. As a generic middle ground between
RTF and ETF, we proposed ETF(n), in which non-leads are only explored if they are at most
n steps away from a known lead. Thus RTF=ETF(0) and ETF= ETF(∞).

World Wide Web (2019) 22:1447–1480 1449

Several intelligent heuristics are proposed for both RTF and ETF. These heuristics guide
the search by analyzing the currently known subgraph of the OSN. Importantly, all our
investigated heuristics are based solely on the topology of the OSN being crawled, and are
thus orthogonal to the details of the IsLead and profile acquisition operators.

In some problem settings, it is possible to reach a stage where performing additional
crawling is not worthwhile and even wasteful. This occurs when the expected reward from
obtaining new leads is smaller than the expected crawling costs of getting to them. For
problem settings when this can occur, we propose two learning-based stopping conditions
that use data about past crawls to decide when to stop searching for more leads and halt the
current crawling process.

The proposed heuristics and frameworks are experimentally evaluated on three OSNs:
Google+, Pokec [49], and LiveJournal [6, 35] (an online community that allows member
to maintain journals, blogs, and define friendship between profiles). Results show that each
framework performs best under different circumstances. We found that in general RT F and
ET F(1) are worthwhile, while ETF(n) for n > 1 does not contribute significantly to the
number of leads found. We further analyze the tradeoff between the cost of searching and
the benefit of finding more leads. The results of this analysis show that ET F(1), with the
proposed heuristics, is better than RT F for short searches and when the reward for finding
a lead is high; while RT F , with a proper heuristic, is better suited for a long term search
process with moderate and low rewards.

This paper contains a comprehensive and unifying presentation of material from two
previously published conference papers [45, 48]. This paper also contains several significant
improvements and novel contributions over these conference papers, including:

1) Two algorithms for learning when to stop crawling in order to maximize net gain
(Section 7.2).

2) Added reliability to our experimental results through the evaluation on two additional
OSNs (Section 9).

3 An additional, novel, form of analysis for TONIC, in which TONIC is modeled as an Infor-
mation Retrieval task and the experimental results are analyzed accordingly (Section 8).

4) A significantly more comprehensive related work.
5) Clean description of the proposed algorithm, including additional examples and

supporting figures.

The paper is organized as follows. In Section 2 we formally define TONIC and relevant
terminology. Section 3 contains a review of related works. Section 4 explains how TONIC
can be formalized as a search problem in an unknown graph, and outlines the algorith-
mic framework we use. Section 5 describes the Restricted TONIC Framework (RTF), RTF
heuristics, and presents experimental results to evaluate their performance. Section 6 does
the same for the Extended TONIC Framework (ETF) – present it along with ETF heuristics
and evaluates them. The trade-off between RTF and ETF is discussed in Section 7 in terms
of cost and benefit of the respective search processes. In Section 8 we present an alternative
view of TONIC as an Information Retrieval task. In Section 9 we provide additional sup-
port for our conclusions by reporting on additional experimental results performed on other
OSNs. Then, we summarize the main findings and outline the next steps in Section 10, and
discuss ethical aspects of various TONIC applications in Section 11.

2 The TONIC problem

In this section we formally define the general TONIC problem and its variants as evaluated
in our experiments.

1450 World Wide Web (2019) 22:1447–1480

Definition 1 (profiles) The basic entity in TONIC is a profile, which is associated with
a specific OSN (e.g., Google+). Profiles are connected to each other via a “friendship”
relation. The list of “friends” (LOF) of a given profile p is denoted by LOF(p).

TONIC is defined with respect to a target OSN profile. The target profile can be
associated, for example, with a particular person, group of people, or legal entity.

Definition 2 (Lead and Non-Lead) A profile p is called a lead if it has the target in its
LOF . Otherwise, it is called a non-lead.

TONIC is motivated by situations in which one wants to find information about the target.
Since leads are more likely to have such information, the process we envision is to first find
profiles that are leads, and then extract valuable information from them if such exists. The
information extraction is out of the scope of this paper, since deciding which information
about the target is valuable is application dependent and it may require intervention of a
human analyst. Thus, in TONIC we focus on finding leads (i.e., friends of the target).

Information in general and the LOF in particular can be extracted from an OSN profile
in several ways. For example, by scrapping: parsing the web pages that are exposed by
the OSN services, such as the time-line in Facebook; or via the OSN APIs. Some OSN
APIs provide convenient way to collect information about profiles, including their LOF.
A prominent example of OSN API is the Facebook Query Language (FQL). Information
extraction from OSN profiles is an active field of research [36, 37, 43, 51, inter alia], and
plays an important role in web tracking [10, 22].

In this work we assume that the information extraction aspects are encapsulated in two
possible OSN queries:

• IsLead(v). This is a binary query which checks whether the given profile v is a lead or a
non-lead. In our implementation IsLead(v) checks whether the target is in the LOF of v:

IsLead(v) =
{

T rue target ∈ LOF(v)

False Otherwise
(1)

• Acquire(v). This query downloads all publicly available data from the OSN about the
given profile v, including its LOF as well as all the information in its profile.1

In our model, IsLead() is considered a “light weight” operator with relatively small cost,
while Acquire() is considered a heavy operator. Consequently, our algorithms below use
IsLead() quite often and use Acquire() more conservatively. In particular, in our model,
Acquire() can be applied only to profiles that are known to be either leads or non-leads (i.e.,
not to potential leads), i.e., to profiles that we already performed an Islead() query on.

Some profiles are called initial leads. These profiles are known a-priori to be leads based
on previous knowledge about the target. Initial leads can, for example, be found manually
using traditional intelligence techniques.

For example, consider a scenario where the target is a pedophile and the police is trying
to obtain leads to capture him. It is often the case that the police has additional sources
of information, e.g., by applying classic detective work that allow them to identify several
OSN profiles as related to the target. However, such initial leads are expected to be very
hard to obtain, and we assume that there are only few initial leads for each target.

1Note that the acquire action does not include sophisticated information extraction methods: it simply down-
loads all data and extracts the LOF. As mentioned above, further analysis of this data may be done by a
human analyst.

World Wide Web (2019) 22:1447–1480 1451

If a profile v is not an initial lead, then we assume that its LOF is initially unknown.
Consequently, since the target’s LOF is also unknown, then it is not known if v is a lead
before querying the OSN (by applying Islead(v) or Acquire(v)). We refer to such profiles as
potential leads as they might later turn into leads or into non-leads. Islead() is applied only to
potential leads. Applying IsLead to a potential lead marks it as either a lead or a non-lead.2

Among other things, the heavy Acquire(v) query extracts and examines LOF(v). This
results in the discovery of additional, previously unknown, potential leads as well as the
discovery of links to previously known profiles (which can be leads, non-leads, or potential
leads). A TONIC process is an OSN exploration process that searches the OSN for leads
using the Islead() and Acquire() queries.

A profile that is not an initial lead has the following life cycle in a TONIC process. First, it is a
potential lead. Then, if an isLead() query is applied to it, it is either discovered to be a lead or
a non-lead. Later, a profile (either lead or non-lead) may be acquired, revealing all its LOF.

Definition 3 (TONIC Problem) The input to TONIC is target and a set of initial leads
(denoted by L0). The TONIC problem is to find leads by applying the TONIC process under
different problem settings.

2.1 TONIC problem settings and objectives

Definition 3 defines the TONIC problem in a general way. Informally, all TONIC objec-
tives considered in this work aim at minimizing the number of IsLead() and Acquire()
queries applied while maximizing the number of leads found. Next, we define a number of
objectives that will be used in the paper.

2.1.1 Anytime objective

The first objective we consider is to maximize the number of leads found until the algorithm
is halted.

Definition 4 (Anytime objective) Given a set of initial leads L0 the objective is to find as
many leads as possible until the TONIC process is stopped, assuming that the TONIC process
can be stopped after any number of queries (each of them is either Islead() or Acquire()).

Executing the Acquire() and IsLead() queries requires both computational resources and
network activity. In addition, most OSN services limit automatic web scrapping attempts
as well as massive exploitation of their API. These possible limitations on the number of
executed queries are the main motivation behind the anytime objective of finding as many
leads as soon as possible, i.e., with fewest possible queries.

2.1.2 Max net-gain objective

Next, we consider scenarios in which the cost of Acquire(), the cost of IsLead(), and the
reward of finding a lead, can all be quantified, denoted by CAcquire, CIsLead , and RLead

respectively.3Typically, the reward of finding a lead is larger than the cost of Acquire(),

2In some OSNs, profiles can block their LOF, so that it is not possible to perform the IsLead() query on them.
For our purposes, they will be regarded as non-leads, since we cannot verify that they are leads.
3Sophisticated TONIC applications may assign rewards that decay with time or are dependent on the amount
of information about the target that can be extracted from the lead. We focus on a simpler reward model in
which the reward of finding a lead is constant.

1452 World Wide Web (2019) 22:1447–1480

otherwise there is no point in acquiring any lead. Additionally, it is usually the case that the
cost of Acquire() is much larger than the cost of Islead() due to the storage requirements,
increased interaction with the OSN, and the execution of IE tools. Taking CIsLead , CAcquire,
and RAcquire into consideration, the second objective function we consider is as follows.

Definition 5 (Max net-gain objective) Given a set of initial leads L0, reward RLead ,
CIsLead , CAcquire the objective is to maximize the total net gain (sum of rewards minus sum
of costs) of the TONIC process.

Other problem settings and objectives for TONIC can also be formulated. For example,
finding a fixed number of leads with minimum acquisitions. The algorithm and heuristics
proposed in this paper are expected to be effective for all similar objectives. In this paper,
however, we focus on the two problem settings listed above – anytime (Definition 4) and
max net-gain (Definition 5). The first part of the paper focuses on the anytime objective and
Section 7 deals with the max net-gain objective.

3 Related work

Analyzing and searching the social web was previously addressed in the contexts of intel-
ligent crawling, network completion, and general search in an unknown graph. Next, we
briefly review prior efforts in these related problems and discuss their connection to TONIC.

3.1 Intelligent crawling

In TONIC, we need to explore the social web in an intelligent way in order to extract infor-
mation about the target. This can be viewed as a special case of intelligent web crawling [2,
8, 11]. There is a large body of work on intelligent web crawling, and work in this subject
differ in the techniques being used, the data that is available about the crawled web, and,
importantly, the purpose for which the crawling is performed.

3.1.1 Focused crawling

A very common task for web crawlers is to uncover large portions of the OSN and index
them. This is fundamentally different from our problem – TONIC – in which we wish to
retrieve information about a specific target and avoid further crawling. However, some prior
work also considered the problem of focused crawling, where one wants to find all pages
relevant to a specific topic [20, 40], e.g., for online query answering purposes. We provide
here a non-comprehensive list of the techniques used in prior work for focused crawling and
discuss their applicability to our problem.

Many attributes can be taken into consideration while implementing a focused web
crawler. Example of such attributes that have shown to be helpful is the URLs of the nodes
that were discovered but not visited yet, the different kinds of links encountered (e.g., link
on a picture, link on text) and the number of siblings (i.e., links on the same web page) of
a node that have already been crawled. Naturally, a combination of such features yields the
most effective focused crawling [2]. It was also shown that reusing the learned information
(as a starting point for the next crawl) as well as performing an initial sampling of random
web pages are also beneficial [11].

Most focused crawlers are based on relevance of the webpage content to the topic being
searched. Common measures of webpage relevance are TF/IDF, cosine similarity, and others

World Wide Web (2019) 22:1447–1480 1453

[20, 40]. Some works employ machine learning to classify webpages according to their content
[12]. Wang et al. proposed a focused search approach that is based on the words surrounding
the prioritized hyperlink [53]. Topology-wise these focused crawlers prioritize web pages
using the HITS algorithm [32] and the PageRank centrality measure [3]. All approaches
agree that URLs (pointers to webpages that were not crawled yet) need to be ordered intel-
ligently in order to increase the relevance of obtained documents [16]. Importantly, in this
work we do not consider the textual content of the visited profiles, and thus the approach
we propose does not require preliminary content extraction (neither in form of the webpage
snippet nor in form of the text surrounding the hyperlink). Content and topology analysis are
orthogonal approaches that can complement each other in future developments. Thus, we
could not directly use the techniques used in these works. However, several of the works men-
tioned above employ Bayes rules to aggregate evidence on the relevance of URLs. We
use a similar approach in the BysP heuristic (see Section 5) to aggregate topological
evidence.

Prior work also studied how to perform focused web crawling with several agents in par-
allel. A dynamic search method that have been proposed in such a setting is called Fish
Search [19]. The idea behind Fish Search is to simulate the search to a school of fish: when
food (relevant information) is found, fish (search agents) reproduce and continue looking for
food (other relevant information), but in case that food is not found (no relevant information)
or when the water is polluted (poor bandwidth), they die (stop looking for other relevant
information). Shark Search [29] and Improved Shark Search [14] are improvements of Fish
Search in which additional features were considered, such as topic description, textual rel-
evance, URL and link relevance. In this paper we do not consider a multi-agent version of
the TONIC problem, and leave it to future work.

3.1.2 Network sampling

Another similar task for an intelligent crawler is to sample an OSN in order to estimate
its properties. For example, Gjoka et al. used variants of random walk to estimate Face-
book’s degree distribution and average degree [28], and Kurant et al. used a form of stratified
sampling to estimate the percentage of Facebook users that attended college [34].

Crawling to obtain a representative sample of an OSN is different from our problem in
that we do not aim to estimate a property of the OSN, but to find specific profiles that have a
specific property – are friends of a specific target profile. Moreover, the number of profiles
visited in graph sampling methods is often in the order of hundreds of thousand profiles,
while in TONIC we aim at visiting the fewest possible nodes.

In general, TONIC is different from all prior work on intelligent web crawling on OSNs
mainly in that we wish to retrieve information about a specific target and avoid further
crawling, while only considering network topology. The only exception, to the best of
our knowledge, is our prior work in which we proposed general technique for intelligent
crawling that is based on a unique variant of the famous Multi-Arm Bandit problem [9]. The
technique was applied to two intelligent crawling tasks: finding communities in an OSN
and TONIC. Importantly, the goal of our work there was to propose a general intelligent
crawling method that is not specifically designed for TONIC. Indeed, the results there show
results that are comparable to the TONIC-specific BysP heuristic we present in this paper.
As we show experimentally in Sections 5.2 and 6, BysP can be further improved by the
heuristics and algorithms we proposed.

1454 World Wide Web (2019) 22:1447–1480

3.2 Network completion

Network information that was obtained by crawling is often incomplete. Two relevant
problems that deal with network completion are profile’s attributes prediction and link pre-
diction. Profile’s attributes prediction aims at predicting demographic properties or other
attributes (e.g., college graduation year and major) of profiles in a social network, based on
the topological structure of the social network and a limited set of profiles for whom (at
least some of) the relevant attributes are known [4, 24, 41]. TONIC is reminiscent of pro-
file attribute prediction, in the sense that the attribute that should be predicted in TONIC
is whether a profile contains information about (or linked to) the target. But in TONIC we
aim to find – with certainty – leads while in profile attribute prediction the task is to esti-
mate the existence of various profile attributes. Nonetheless, the heuristics we propose were
inspired by prior work on attribute prediction and specifically the work of Mislove et al.
[41]. Mislove et al. observed that profiles with similar attributes are grouped into commu-
nities – highly connected subgraphs of the social network. Consequently, in order to find
all profiles sharing similar attributes one can crawl the communities that a given profile is a
member of.

Link prediction is a variant of network completion problem where given a partially
known network one should determine whether or not there should be a link between two
given nodes. Fire et al. used a variety of topological features to learn an accurate link
prediction classifier [24, 27]. They also ignored non-topological data like posts, pictures,
keywords and other content related to the social network profiles. The resulting link pre-
diction classifier was evaluated on five social network datasets: Facebook, Flickr, YouTube,
Academia.edu, and TheMarker, and was shown to be very accurate. Indeed, we have found
that one of the features they proposed – the Friends Measure – is also an effective heuristic
for prioritizing profiles that should be crawled in TONIC. See Section 5.1.6 for additional
details on this measure.

Similar to profile attribute prediction, some works (e.g. [50]) focused on predicting the
properties of links in heterogeneous social networks, i.e., networks in which there are more
than one type of connection between two profiles. Unless we need to find specific kinds of
leads (e.g. those that have tagged the target in a photo or commented on his posts but are not
his friends on Facebook) this type of link prediction is not suitable for TONIC. However,
information collected in a heterogeneous network can be used to build stronger classifiers
for link prediction [18, 21]. Since different types of relationships are usually created by
different social processes they carry more information than flat networks.

Li et al. [37] studied how to collect reconnaissance in a partially observed OSN with mul-
tiple crawlers. This means identifying parts of the OSN, where a benefit function associates
a reward to the newly found parts of the OSN.

3.3 Heuristic search in an unknown graph

TONIC can be formalized as a search problem in an unknown graph (see Section 4). A
search problem in an unknown graph is a search problem in which the structure of the
searched graph is not known a-priori, and exploring vertices and edges requires a different
type of resource, that is, neither CPU nor memory. The main challenge when searching in an
unknown graph is to solve the problem while minimizing the exploration cost. TONIC fits
into this category as we want to acquire profiles such that the most information about the
target will be found while minimizing the costs of our IsLead and profile acquisition
operators.

World Wide Web (2019) 22:1447–1480 1455

There are several previous works on developing algorithms for searching in an unknown
graph. Felner et al. [23] proposed the Physical A* algorithm for solving the shortest path
problem in an unknown physical graph. In a physical graph, exploration is done by a phys-
ical agent that needs to physically traverse the graph in order to explore new nodes. The
exploration cost being minimized is the distance traveled by the agent. In contrast, we
deal with exploring an OSN and exploration is done by accessing the OSN, which is not
related to a physical distance measure. A setting that is more similar to searching an OSN
was discussed by Stern et al. [46] that proposed algorithms for finding a k-clique in an
unknown (but not physical) graph and any other specific pattern [47], where the cost of
exploration was constant per node. They employed a best-first approach that is similar to
the one proposed in this work and in fact we were inspired by their approach.

That being said, the problem we address in this work – TONIC – is fundamentally dif-
ferent. First, we do not search for a specific pattern, but for nodes with a specific property –
profiles that are leads to the target. Second, Stern et al. [47] proposed heuristics to guide the
search for the k-clique problem, but these heuristics do not transfer to the TONIC problem
of finding leads. In this paper we present several very effective heuristics that are specifi-
cally designed for TONIC. Indeed, these heuristics exploit the fact that we are searching for
leads and that the search is done over an OSN.

4 TONIC as search in an unknown graph

1456 World Wide Web (2019) 22:1447–1480

Next, we preset a general framework for solving the TONIC problem. The fundamentals
of this framework originate from prior work on solving search problems in unknown graphs
(described in Section 3). The unknown graph being searched in TONIC is the topology of
the OSN, denoted G = (V ,E), where V is a set of OSN profiles and E is a set of links such
that (v1, v2) ∈ E if v1 ∈ LOF(v2).

A best-first search approach is taken, outlined in Algorithm 1. Throughout the search,
the following data structures are maintained:

1) L, NL and PL, which are the leads, non leads and potential leads found so far,
respectively.

2) The currently known subgraph of G (denoted CKG), containing all nodes (profiles) and
edges (friendship relations between profiles) found so far by the search process (line 1)

3) OPEN , a list of profiles considered for either an IsLead() or an Acquire() query.

Initially, all the initial leads are expanded and OPEN is seeded with the potential leads
from their LOFs. Similarly, the CKG is initialized such that its vertices are the initial leads
and their potential-leads neighbors. The edges of the CKG are the links that connect the
initial leads. In every iteration, a single profile (best) is chosen from OPEN (line 6). The
exact choice if best is done via the different ChooseBest() heuristics that we describe in later
sections.

If best is a potential lead, then it is removed form PL and an IsLead(best) query is
performed (line 9) to reveal if it is a lead or a non-lead. If best is found to be a lead, then it
is immediately acquired, as finding leads is always desirable (line 11). Otherwise, if best is
found to be a non-lead, it is reinserted to OPEN to be considered for acquisition at a later
stage (line 15). Thus, OPEN may contain potential leads that are considered for an Islead()
query, or non-leads considered for an Acquire() query. If best is a known non-lead, then
it is acquired (line 17). When best is acquired (lines 12 and 18), CKG, PL, and OPEN

are updated as follows: (1) nodes and edges corresponding to the neighbors of best and the
links to them are added to CKG, and (2) neighbors of best that were not previously part of
CKG are added to PL and to OPEN . The TONIC process is halted either by the user or
when all the nodes in the OSN has been acquired. When this happens the set of found leads
is returned (line 19).

The pseudo encapsulates both RTF and ETF. Lines 15 to 18, which are preceded by
the letter E, are executed only for the ETF framework. As detailed below, RTF will never
choose a non-lead as best so these lines may be deleted in an RFT implementation.

Figure 1 presents an example execution of Algorithm 1. The target is marked by T , and
there is one initial lead a. After acquiring a we reveal b and c as potential leads (step 2). In
the next step, Islead() is performed on b revealing that it is a non lead (step 3). Then, Islead()
is performed on c revealing that it is a lead. c is then immediately acquired, discovering the
potential lead d (step 4).

5 The Restricted TONIC Framework (RTF)

One clear limitation of Algorithm 1 is that in the worst case, it will acquire all the profiles in
the OSN. This can be a serious limitation, as popular OSNs are very large. Moreover, the set
of possible profiles to acquire may grow to be very large, and include many profiles that are

World Wide Web (2019) 22:1447–1480 1457

Figure 1 An example of a run of Algorithm 1. The figure shows the CKG in the different stages

very unlikely to be leads. Previous work showed that OSNs and social networks in general
follow the homophily principle, which means that friends tend to exhibit similar attributes
[5, 25, 39]. Thus, it follows that friends of leads (i.e., profiles that appear in leads’ LOFs),
are more likely to be leads than randomly selected OSN profiles.

The Restricted TONIC Framework (RTF) builds on this understanding, and focuses the
search for leads by only applying the Acquire() query to profiles that are known to be
leads. Non-leads are never acquired. RTF may be implemented with Algorithm 1 setting the
ChooseBest function to never choose a non-lead. In particle, with RTF we may simplify
Algorithm 1 – profiles that are found to be non-lead are discarded and are not re-inserted
into OPEN (line 15). As a result, OPEN only contains potential leads and lines 15–18
are redundant (they are marked with E for extended framework).

Also, a single expand action can be defined, which performs IsLead() on best and
acquires if it is a lead.

5.1 RTF heuristics

We now provide a number of heuristics for choosing which potential lead to expand next in RTF.
A Key to the efficiency of RTF is to choose intelligently which potential lead to expand in

every iteration of Algorithm 1 (line 6). Next, we present several heuristics designed for this
purpose. We refer to these heuristics as RTF heuristics. As a baseline RTF heuristic, consider
expanding profiles in a first-in-first-out (FIFO) manner. This means that the neighbors of
the initial leads are chosen first, then their neighbors and hence forth. Figure 1 illustrates
such an expansion order. T is the target profile and there is a single initial lead a. After
profile a is acquired (Acquire(best) in Algorithm 1 line 6), two profiles are discovered, b

and c. Then, they are expanded according to the order of their insertion into OPEN .
Another baseline is to randomly choose the potential lead to expand next. These base-

lines are denoted FIFO and RND. Both baselines do not consider the CKG (the currently
known subgraph of the OSN). As the search progresses, the CKG grows, containing more
information about the searched OSN. By contrast, the heuristics provided next are based on
analyzing the CKG in different ways.

1458 World Wide Web (2019) 22:1447–1480

5.1.1 Clustering coefficient heuristic

Nodes in OSNs tend to form tightly connected clusters in which most people are friends of
each other. This phenomenon is quantified using the notion of local clustering coefficient
[54].

The local clustering coefficient of a node in a graph is the density of edges between its
neighbors. Formally, it is the proportion of links between the nodes within its neighborhood
divided by the number of links that could possibly exist between them.

Let CC(ni) be the local clustering coefficient of node ni , and let N(x) be the
neighborhood of x, then

CC(ni) = 2|{ejk : nj , nk ∈ N(ni), ejk ∈ E}|
|N(ni)|(|N(ni)| − 1)

. (2)

A profile connected to a cluster of leads is likely to be part of that cluster and thus likely
to also be a lead. An intuitive example of such a case is a small university department
where a member of that department is the target. It seems reasonable that members of that
department form a dense cluster in the OSN and are likely to be leads. Therefore, as more
leads are found in that cluster, profiles in it will have higher local clustering coefficient and
it would be worthwhile to expand them.

Building on this intuition we propose a heuristic that is based on computing the local
clustering coefficient (CC) of each of the potential leads and choosing to expand the poten-
tial lead with the highest CC. More formally, let L(pl) be the set of leads that are friends of
the potential lead pl in the CKG. The CC of pl in the CKG is the number of links between
L(pl) divided by the number of possible links among L(pl) :

CC(pl) = 2 · |{(u, v) ∈ ECKG|u, v ∈ L(pl)}|
|L(pl)| · (|L(pl)| − 1)

(3)

In RTF, the neighborhood of a potential lead consists of only the previously acquired leads.
Thus L(pl) = N(pl) and the above formula is exactly the local clustering coefficient given
earlier. The CC heuristic is the heuristic that chooses to expand the potential lead with the
highest CC.

An example of CC heuristic is provided in Figure 2. White nodes are potential leads,
black nodes are leads, and white nodes with X are non-leads. CC(P 1) = 1, since the
number of links between L(P 1) is 1 (the link between L1 and L4) out of one possible

(a)

L1

L3 L4 L4P1 P2 NL2 NL3

L2

(b)

L1

L3 L4 L4P1 P2 NL2 NL3

L2

(c)

L3 L2 L1

T

P1P2 NL1

Figure 2 Examples used to illustrate the RTF heuristics. a is used for the Clustering Coefficient (CC)
heuristic, b for Known Degree (KD), and c for Friends Measure (FM)

World Wide Web (2019) 22:1447–1480 1459

link among L(P 1). CC(P 2) = 0, since there are no links between L(P 2). Thus, the CC
heuristic will choose to expand node P 1 before node P 2.

5.1.2 Known-degree heuristic

The CC heuristic ignores the number of friends that a potential lead has. In fact, potential
leads with a single friend will have the highest CC score (one). This is a disadvantage of
CC, because it has been shown that degree of nodes in a social networks exhibits a power-
law distribution [7], and previous work has shown that an effective strategy for searching in
such graphs is to direct the search towards nodes with a high degree [1].

The intuition behind this is that high degree nodes are connected to many other nodes,
and thus are better sources for searching than low degree nodes.

Identifying the potential lead with the highest degree, or is connected to the most leads, is
not possible in TONIC, since the problem solver does not know the true degree of potential
leads before they are acquired. However, the degree of a potential lead in the CKG is known.
This is called the known degree (KD) of a node and the corresponding heuristic, denoted
as the KD heuristic, expands nodes in the order of their KD. This heuristic was previously
used to find cliques in unknown graphs [47]. In RTF, the KD of a potential lead pl is the
number of acquired leads that are friends of pl (denoted earlier as L(pl)), since only leads
are acquired. An example of KD is provided in Figure 2b. KD(P 1) = 1 (connected to
L1) while KD(P 2) = 2 (connected to L1 and L2). Thus, the KD heuristic will choose to
expand node P 2 before node P 1.

5.1.3 Promising-leads heuristics

The KD heuristic expands potential leads according to the number of acquired leads that are
connected to them. This is reasonable if all leads have an equivalent effect on the likelihood
that a potential lead connected to them is a lead.

Consider the example presented in Figure 3a. P1 and P2 are potential leads, both con-
nected to one lead. P1 is connected to a lead with 3 lead friends while P2 is connected to a
lead with 3 non lead friends. We believe that P1 is more likely to be a lead than P2 since it is
connected to a more “promising” lead. Following, we explore an alternative approach that
considers not just the amount of leads that a potential lead is connected to, as the KD heuris-
tic, but also how “promising” these leads are in the sense that potential leads connected to
them are more likely to be leads.

The first step in creating such a heuristic is to define a measure of how “promising” a
lead is. An ideal “promising” measure for a lead m would be the probability that a randomly
drawn generated neighbor of m is a lead. This is the ratio of potential leads connected to m

that are leads. We denote this ideal promising measure as pm∗(m).
Unfortunately, pm∗(m) cannot be known before all neighbors of m are acquired. As

a practical alternative, we consider the ratio of leads among the expanded neighbors of
m. Formally, we divided the LOF of an expanded lead m into three sets: leads, non-leads
and potential leads, denoted as L(m), NL(m) and PL(m), respectively. The promising
measure we propose, called the promising factor and denoted by pf (), is computed by
pf (m) = L(m)

L(m)+NL(m)
.4

4Initially, it is possible that L(m)+NL(m) = 0, making pf (m) undefined. To avoid this, we set pf (m) = 0.5
in this case.

1460 World Wide Web (2019) 22:1447–1480

(a)

L1

L3 L4 NL3L5 P1 NL1 NL2

L2

P2

(b)

L1P1 P2 L2 P3 L3 P4

Figure 3 Examples illustrating the Promising Heuristic. a is used to demonstrate how to compute the
Promising Factor and b is used to demonstrate how to aggregate promising factor values

5.1.4 Aggregating promising leads

If every potential lead was connected to a single expanded lead, then a straightforward
TONIC heuristic that considers the promising factor would expand the potential lead that
is a friend of the expanded lead with the highest promising factor. However, a poten-
tial lead may be connected to a set of expanded leads, each having a different promising
factor.

Two simple ways to aggregate the promising factors of the leads is to take their max-
imum or their average. We call the corresponding TONIC heuristics MaxP and AvgP ,
respectively. Formally, MaxP chooses to expand the potential lead pl that maximizes
maxm∈L(pl) pf (m), while AvgP chooses to expand the potential lead pl that maximizes

1
|L(pl)|

∑
m∈L(pl) pf (m).

As an example of these aggregation methods, consider again the graph in Figure 3b.
There are four potential leads, P 1, P 2, P 3, and P 4, and three leads L1, L2, and L3. The
promising factor of leads L1, L2, and L3 is 2

3 , 2
3 , and 1

3 , respectively. The MaxP values
for potential leads P 1, P 2, P 3, and P 4, are 2

3 , 2
3 , 2

3 , and 1
3 , respectively, while the AvgP

values for these potential leads are 2
3 , 2

3 , 1
2 , and 1

3 . Thus, using MaxP will result in choosing
first one of the potential leads P 1, P 2, and P 3 (but not P 4, which has a smaller MaxP of
1
3). In contrast, using AvgP will not allow choosing P 3 first, and either P 1 or P 2 will be
expanded first (since both have AvgP of 2

3 while P 3 and P 4 have an AvgP of 1
2 and 1

3 ,
respectively.

MaxP only considers the lead that is most promising, and ignores all the other leads
in L(pl). AvgP takes into consideration all the leads in L(pl) but may diminish the
effect of a very promising lead in L(pl), if L(pl) contains other less promising leads.
Next, we consider a more sophisticated way to aggregate the promising factors of the
leads.

World Wide Web (2019) 22:1447–1480 1461

5.1.5 Bayesian aggregation

The promising factor pf (m) is designed to estimate pm∗(m), which is the probability that
a potential lead connected to m is a lead. We therefore propose another way to aggregate
the promising factors that is based on a Naı̈ve Bayes approach to aggregate probabilities.

BysP (pl) = 1 −
∏

m∈L(pl)

(1 − pf (m)) (4)

The TONIC heuristic that chooses to expand the potential lead pl with the highest
BysP (pl) is denoted as the Bayesian Promising heuristic, or simply BysP . BysP has the
following desirable attributes. Unlike the AvgP , discovering a new lead m that is connected
to pl is guaranteed to increase (or at least not decrease) BysP (pl), since pf (m) ≤ 1.
Unlike MaxP , any change in the promising factor of each of the leads in L(pl) affects
the BysP (pl): it will increase or decrease according to the increase or decrease of the
promising factor of the leads in L(pl).

As an example of the Bayesian Promising heuristic, consider again the graph in Figure
3b.

The BysP values of the four potential leads are BysP (P 1) = 1 − (1 − pf (L1)) = 2
3 ,

BysP (P 2) = 1 − (1 − pf (L1)) · (1 − pf (L2)) = 8
9 , BysP (P 3) = 1 − (1 − pf (L2)) ·

(1 − pf (L3)) = 7
9 , and BysP (P 4) = 1 − (1 − pf (L4)) = 1

3 . Thus, BysP will choose to
expand first P 2. In contrast, both AvgP and MaxP may expand some other potential lead
first (P 1 for AvgP and P 1 or P 3 for MaxP).

5.1.6 Friends measure heuristic (FM)

The TONIC problem bears some resemblance to the link prediction problem [38], where
the goal is to predict whether two profiles are connected (see Section 3 for more details).
Link prediction algorithms return the likelihood of a link to exist between two profiles. This
suggests the possibility of employing a link prediction algorithms for TONIC, by ranking
nodes in OPEN according to the likelihood of a link to exist between a node and target .5

In fact, a notion very similar to KD was extensively used in link-prediction research, where
it is known as the common-friend concept [38]. Simply put, we expect a potential lead that
has many friends that are leads to also be a lead.

The Friends Measure is a very successful link prediction method that estimates the like-
lihood of a connection between two profiles by counting the number of common friends
and the number of links between the friends of the two profiles [26]. Formally, the friends
measure (f m) between profiles two profiles (u and v) is defined as follows:

f m(u, v) =
∑

x∈N(u)

∑
y∈N(v)

δ(x, y) (5)

δ(x, y) =
{

1 if x = y or (x, y) ∈ E or (y, x) ∈ E

0 Otherwise
(6)

We note that the Friends Measure is a special case of the Katz measure [31] in undirected
graphs, and is somewhat similar to the well-known Jaccard’s coefficient [27].

In RTF, we are interested to predict if a given potential lead pl has a link to target (i.e.,
to predict if pl is a lead). Computing f m(pl, target) requires knowing the neighborhood of

5A more comprehensive discussion on the relation between link prediction and TONIC is given in Section 3.

1462 World Wide Web (2019) 22:1447–1480

pl and target (N(pl) and N(target), respectively). N(pl) is not known before pl is acquired
and N(target) is also unknown, otherwise we would know all the leads. Instead, we use
the neighborhoods of pl and target in the CKG. As only leads are acquired in RTF, N(pl)

in the CKG is exactly L(pl). Since we assume that leads are all neighbors of target, then
N(target) in the CKG is simply the set of known leads (L). Thus, the resulting Friends
Measure of pl and target is:

f m(pl, target) =
∑
x∈L

∑
y∈L(pl)

δ(x, y) (7)

The heuristic that chooses to expand the potential lead pl the highest f m(pl, target) is
called FM.

Figure 2c provides an example of the FM heuristic. P1 and P2 are two potential leads,
and target is denoted by T . P1 has one mutual friend with the target (L1) and therefore
f m(P 1, T) = 1. In contrast, P2 also has one mutual friend with the target (L3), however
the target’s neighborhood and P2’s neighborhood’s contain an additional mutual friend (L2)
and therefore f m(P 2, T) = 2 Therefore, the FM heuristic will choose to expand node P 2
before node P 1.

5.1.7 Runtime complexity

Our focus in this work is to minimize the number of queries performed. Thus, the CPU
runtime of our methods is of lesser importance. Nonetheless, all the proposed RTF heuristics
can be easily implemented in low-order polynomial time. RND and FIFO simply require a
suitable data structure (array or queue) to run in constant time. KD can be implemented by
sorting the potential leads according to their degrees. The CC, FM and Promising heuristics
requires runtime that is linear in the number of edges of the CKG. Thus, we do not expect
computational runtime to be a problem in practice.

5.2 Experimental results

Next, we evaluate the performance of the different RTF heuristics. Most experimental
results presented in this paper are on the Google+, but Section 9 presents highlights from
our research on other other OSNs. Google+ is one of the largest social networks, having
more than 540M registered users and 300M users that are active monthly (according to
Wikipedia).

The data set used in our experiments was obtained from the Google+ network and
included 211K profiles with 1.5M links between them. This data set was collected by Fire
et al. [24] and made available at http://proj.ise.bgu.ac.il/sns/datasets.html. From this data set
we randomly selected a set of 100 profiles having at least 30 friends. These profiles were
used as the targets in our experiments.

Since in RTF only potential leads can be acquired, the CKG for each target can contain at
most the set of leads and their neighbors throughout the search. We call these set of profiles
the relevant neighborhood of the target. In our data set, the size of relevant neighborhood
ranged from 233 to more than 4,000 profiles.

The search for leads for each target was executed using RTF using the following heuris-
tics: RND, FIFO, CC, KD, AvgP, MaxP, BysP, and FM. Three friends of every target were

http://proj.ise.bgu.ac.il/sns/datasets.html

World Wide Web (2019) 22:1447–1480 1463

randomly chosen as the initial leads. The search continued until all potential leads were
expanded.

We analyzed the obtained results and evaluated the different TONIC heuristics with
respect to the anytime objective function (Definition 4). Comparing anytime algorithms is
usually done by comparing their performance profile [55]. The performance profile of an
anytime algorithm is a plot showing the solution quality as a function of the algorithm
runtime. In our case, the solution quality is the number of leads found, and the algorithm
runtime is the number of queries performed. This is shown in Figure 4: the x-axis of is the
percentage of potential leads queried so far (by Islead()) out of the total number of potential
leads reachable from the initial leads, and the y-axis represents the fraction of leads found
out of all existing leads, averaged over all the 100 targets in our data set. We set the x-axis
here as the percentage of potential leads queried so far and not the actual number of queries
for the following reasons. First, to allow averaging over targets with significantly different
number of performed queries. Second, since this experiment is for RTF, we did not count
the number of Acquire() queries as those are only applied to leads (and never to non-leads).
In the figures presented later for ETF, we show the exact number of queries (and not per-
centage) and also consider the Acquire() queries. Note that since RTF limits the search to
only acquire leads, not all leads are reachable from the initial leads, and thus the y-axis does
not reach 100% even after all potential leads are checked.

The result in Figure 4 show that KD, FM and BysP are able to find more leads earlier
during the search process and in general outperform all other heuristics. In particular, BysP
and FM dominate all other heuristics.

6 Extended TONIC framework (ETF)

As seen in the results above, RTF may miss 30% of the leads. These 30% of leads are not
reachable from the set of initial leads by a path which contains leads only. In this section,
we relax the restriction imposed by RTF, allowing non-leads to be acquired. We refer to this

0

10

20

30

40

50

60

70

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0
0

%
 Le

ad
s F

ou
nd

BysP FM

KD MaxP

CC FIFO

AvgP RND

Figure 4 % of leads found vs. % of potential leads checked

1464 World Wide Web (2019) 22:1447–1480

TONIC framework as the Extended TONIC Framework (ETF). The scope of the search in
ETF is larger than RTF, enabling reaching a larger set of profiles and potentially finding
more leads.

To prevent the search from scattering, ETF limits the non leads that may be acquired to
profiles that are at most n edges in the CKG from a known lead, where n is a parameter.
ETF(n) denotes ETF with this parameter. Thus, RTF is actually ETF(0), since only leads
are acquired, while running Algorithm 1 unrestricted is in fact ETF(∞).

6.1 Reachable leads in ETF

The choice of the n parameter in ETF affects the number of leads that can be reached.
Another factor that affects the number of reachable leads is the number of initial leads.
Increasing both parameters (n and the number of initial leads) is expected to increase the
number of reachable leads. This is demonstrated in Table 1, which shows the average per-
centage of reachable leads as a function of these parameters (averaged over all the targets
in our data set). We use the term tier to refer to the set of profiles that are reachable with
ETF(n) for a given number of initial leads. The table columns represent the number of tiers
used, and the rows are the number of initial leads (rows). Note that since the initial leads are
expected to be very hard to obtain (e.g., obtained via manual labor), we focused our analysis
on a relatively small numbers of initial leads.

First, consider the impact of the number of initial leads. From a single initial lead the
TONIC process can reach a significant fraction of all leads (more than 60% in all cases).
Every additional initial lead increases the fraction of reachable leads. The second initial lead
increases the fraction of reachable leads by a margin of 6.6% in tier 0 and approximately
4% in higher tiers. This margin decreases with each additional initial lead, and we observe
only a marginal advantage for adding more than 3 initial leads. As an operational guideline
we suggest obtaining initial leads with different kinds of acquaintances with the target. For
example, one family member, one co-worker, and one blog fan.

With every additional tier the number of profiles in the corresponding tier grows, and the
search will be able to reach more leads. The results in Table 1 show this trend very clearly.
The percentage of reachable leads increases significantly when considering also profiles
from tier 1. For example, with 3 initial leads 70.51% leads are reachable in tier 0, while
an additional 17% of the leads become reachable by considering tier 1 profiles too. Thus,
in ET F(1) we can find more leads than in RT F . However there is not much difference
between the number of leads found in higher tiers (tier 2 and 3). Therefore we focus in the
rest of this paper on ETF(1).

Table 1 % of leads reachable in different tiers from different numbers of initial leads. Note that tier 0 is
actually RTF

Tiers

Initial leads 0 1 2 3

1 61.34% 82.78% 82.78% 83.10%

2 67.94% 86.75% 86.75% 87.07%

3 70.51% 88.28% 88.28% 88.60%

4 72.19% 88.52% 88.52% 88.84%

5 73.81% 88.82% 88.82% 89.11%

World Wide Web (2019) 22:1447–1480 1465

6.2 ETF heuristics

A key difference between RTF and ETF is that OPEN in RTF contained only potential
leads while in ETF OPEN can also contain non-leads. This is because in RTF a potential
lead found to be a non-lead is discarded, while in ETF(n) discovered non-leads are re-
inserted into OPEN . These re-inserted profiles are later considered for expansion if they
are not too far from a known lead (where “too far” is with respect to the n parameter). Note
that the distance of non-leads to known leads can change as the search progresses and new
leads are discovered.

Figure 5 shows an execution of ETF. Stages (1)-(4) are similar to the RTF (see Section 4).
In stage (5) the non lead c is acquired revealing its LOF ({e}). Islead(e) is then performed,
revealing that it as a lead. This search process can continue, finding and acquiring more and
more leads.

Since the number of reachable profiles (and reachable non-leads) with ETF is much
larger than with RTF, ETF can potentially perform worse than RTF. Thus, the benefit of
ETF depends on having an effective heuristic for choosing the best node to expand. In this
section we describe several ETF heuristics.

6.2.1 EFIFO heuristic

This simple baseline heuristic chooses best for expansion in a first-in-first-out (FIFO) order.
If a potential lead was chosen as best and discovered as a non lead, it is removed from the
OPEN and reinserted as non lead at the end of OPEN. Figure 5 illustrates such an expansion
order. Figure 6a shows the performance of EFIFO in our data set (described in Section 5.2)

Figure 5 An example of using ETF to search for leads

1466 World Wide Web (2019) 22:1447–1480

(a)

0

10

20

30

40

50

60

70

80

90

100
1 2 4 5 8

1
1

1
6

2
2

3
2

4
5

6
4

9
0

1
2
8

1
8
1

2
5
6

3
6
2

5
1
2

7
2
4

1
0
2
4

1
4
4
8

2
0
4
8

2
8
9
6

4
0
9
6

5
7
9
2

7
9
5
3

Itera�on number

BysP Hybrid EFIFO

(b)

0

10

20

30

40

50

60

70

80

90

100

1 2 4 5 8

1
1

1
6

2
2

3
2

4
5

6
4

9
0

1
2
8

1
8
1

2
5
6

3
6
2

5
1
2

7
2
4

1
0
2
4

1
4
4
8

2
0
4
8

2
8
9
6

4
0
9
6

5
7
9
2

7
9
5
3

Itera�on Number

EBysP
EFM
Hybrid
EKD
BysP
KDL
EFIFO

%
 Le

ad
s f

ou
nd

%
 Le

ad
s F

ou
nd

Figure 6 Performance of ETF heuristics. The x-axis is number of executed iterations of Algorithm 1. The
y-axis is the percentage of leads found by IsLead() up to that point. a compares Hybrid vs. BysP(0) and
EFIFO(1). b compares all the heuristics together

versus that of BysP, the best RTF heuristic. The x-axis is the number of Islead() calls. The
y-axis is the number of leads found by IsLead() up to that point.6 As can be seen, EFIFO
discovers leads slower than BysP but eventually reaches more leads.

6.2.2 Hybrid heuristic

To enjoy the complementary benefits of BysP, which finds leads fast by effectively focusing
on clusters of leads and the extended reachability of EFIFO, we propose an adaptive hybrid
heuristic that starts with BysP and eventually switches to EFIFO. Ideally, we would like
to switch as soon as BysP exhausted the set of leads it can reach. To determine the exact
switching point we define a bound U which determines the number of IsLead(·) queries
allowed since the last lead was found. If U unsuccessful IsLead(·) queries were done by
BysP, the hybrid heuristic assumes that BysP has discovered the set of leads it can reach
and switches to EFIFO.

We have tried many values for U and have found that the best option is to increment
U dynamically according to the following assignment schedule. Initially, set U to some
constant. Whenever a lead is acquired (with BysP), U is set to be the number of IsLead(·)
queries done so far. For example, if a lead was found in the third IsLead(·) operation then U

is set to 3 and if no lead will be found in the next 3 IsLead(·) operations then we will switch
from the BysP heuristic to FIFO.

Empirical evaluation (see Figure 6a) shows that hybrid is able to outperform both BysP
and EFIFO, suggesting that hybrid switches heuristics when EFIFO starts to outperform
BysP. The x-axis in Figure 6a corresponds to the number of iterations of the main loop in
Algorithm 1 (lines 5–18). In each iteration one node is removed from OPEN and is queried
according to the Algorithm 1.

6.2.3 Variants of the known degree heuristic

KD, described above for RTF, expands the potential lead with the highest degree in the
CKG. Next we discuss how to adapt it to ETF. Let EKD(p) be the degree of p in the
CKG, and let KDL(p) be the number of leads adjacent to p in the CKG. Since only leads

6The exact setting of this experiment is provided below in the experimental section.

World Wide Web (2019) 22:1447–1480 1467

are acquired in RTF, there is at least one lead in every edge of the CKG. Consequently, in
RTF EKD(p) = KDL(p) = KD(p) for every potential lead p. In ETF, EKD(p) and
KDL(p) can be different, as a potential lead may be connected to leads and to non-leads.
This results in two possible ETF heuristics EKD and KDL, each expanding the node (either
potential lead or non-lead) in OPEN with the highest EKD(·) and KDL(·), respectively.

Figure 7a depicts a CKG that demonstrates the difference between EKD and KDL. The
legend for this figure is the same legend shown in Figure 1. There are three profiles that can
be expanded: NL1, P1 and P2. KD will expand P1 since EKD(P 1) = 4, EKD(NL1) = 1,
and EKD(P 2) = 3, while KDL will expand P2 since KDL(P 2) = 3, KDL(P 1) = 2,
and KDL(NL1) = 1.

The intuition behind EKD and KDL differ. EKD is based on the assumption that leads
tend to cluster together, and thus a profile with many adjacent leads suggests that this profile
is itself lead or is adjacent to many other leads. KDL is based on the assumption that a
profile with a high degree in the CKG has a high degree in the underlying graph (the OSN),
and thus expanding it would result in finding many other profiles, some of which would be
leads. Our experiments showed that EKD performs significantly better than KDL in ETF(1)
(as shown in Figure 6b explained in the experimental section).

6.2.4 BysP and FM heuristics for ETF

BysP and FM were the best performing RTF heuristics (see Section 5.2), and they can be
easily adapted for ETF. The key difference between RTF and ETF is that non-leads can
be acquired, and thus while in RTF neighbors of profiles that are considered for expansion
(either Islead() or Acquire()) were leads, in ETF the neighborhood of a profile that was not
acquired yet may also contain non-leads. This requires slight modifications to the BysP and
FM heuristic computation.

For BysP, the BysP score (BysP (p)) of a profile p in ETF would aggregate the promis-
ing factor of all its neighbors, regardless if they are leads or not. For FM, the Friends
Measure would count links between all neighbors of p, non-leads included, and all the
known leads. To distinguish between BysP and FM for RTF and for ETF, we denote the
latter EBysP and EFM, respectively.

Note that both EBysP and EFM expand the profile with the highest score in OPEN

(each according to its scoring function), regardless if it is a potential lead or a non-lead. If
that profile is a potential lead, then an Islead() query is applied to it and it is acquired if it is
found to be a lead. If the best profile is a non-lead, then it is acquired.

To illustrate EBysP, consider Figure 7b. OPEN contains P1, NL1, NL2, and NL3. These
profiles are connected to two acquired profiles, ANL1 and L1, having pf (·) values of 2

3 and

Figure 7 Examples used to illustrate the ETF heuristics. a is used for EKD and KDL, b is used for EBysP,
and c is used for EFM

1468 World Wide Web (2019) 22:1447–1480

1
4 , respectively. As a result, P1, NL1, NL2, and NL have EBysP values of 2

3 , 9
12 , 1

4 , and 1
4 ,

respectively, and therefore EBysP expands NL1.
Figure 7c demonstrates EFM. There are two potential leads P1 and P2. According to

the EFM definition presented, f m(T , P 1) = 2 and f m(T , P 2) = 1 (ANL1 is in P2’s
neighborhood and it is friends with L2 which is in the target’s neighborhood). Thus, P1 will
be acquired prior to P2.

In order to evaluated the performance of ETF(1) with the proposed heuristics we used
the same benchmark set of targets and initial leads as was used in the RTF experiments
earlier (Section 5.2). However now, the relevant neighborhood of each target is larger since
it contains an additional tier.

Figure 6 compares the percentage of leads found (the y-axis) out of all the possible leads
by each of the proposed ETF heuristics as a function of the iteration percentage (the x-axis).

For reference, we also present the results for BysP (which was the best RTF heuristic).
At the very beginning of the search, all heuristics perform similarly because the CKG is
too small to be informative and the search is almost blind. As the search progresses and the
CKG grows, EBysP quickly gets better than other heuristics, finding more leads faster. In
particular, EBysP substantially outperforms BysP throughout the search. For example, after
0.8% of the iterations, BysP found slightly more than 40% of the leads, while EBysP found
approximately 60%. This result demonstrates that intelligent acquisition of non-leads not
only enables reaching more leads eventually (as shown in Table 1), but also significantly
speeds up the acquisition of leads during early stages of the search.

All studied heuristics are computationally efficient as they analyze the neighborhood of
the evaluated profile p only up to two hops away. KD is the simplest heuristic that only
considers the connectivity of p. Surprisingly, its performance is not a lot worse than the
performance of the more sophisticated heuristics EBysP and FM and much better than the
performance of KDL which is more focused toward leads.

7 Maximizing the net gain

Up until now, we focused on the anytime objective (Definition 4 represented by the x-axis).
The experiments showed given B operations, how many leads have we found?

In this section we analyze the proposed TONIC frameworks and heuristics from the
perspective of the second objective function we proposed, which aims at maximizing the net
gain (Definition 5). The net gain is roughly related to the steepness of the slopes in Figure 6b.
A steep slope corresponds to finding many leads with few queries, which means high net
gain, while a flat line means costs of queries are spent but no leads are found, which means
decreased net gain. A trend that is very clear in Figure 6b is that during late stages of the
search the frequency of leads decreases and the slopes become flatter. Therefore, the net
gain may drop to a point where the search process is not worthwhile.

7.1 Net gain results

Figure 8 demonstrates this, showing the net gain (y-axis) as the search progresses (x-axis,
number of Acquire() queries executed) for BysP and EBysP. In this experiment we set the
cost of Islead() to be zero, the cost of Acquire() to one, and the reward of finding a lead is
40.

We chose to evaluate only the BysP and EBysP heuristics because BysP is the best heuris-
tic for RTF(=ETF(0)) and EBysP is the best heuristic for ETF(1). First, observe that the

World Wide Web (2019) 22:1447–1480 1469

0

200

400

600

800

1000

1200

1 8 32 128 512 2048 7953

Ga
in

Itera�on Number

BysP EBysP

Figure 8 Average net-gain as a function of the number iterations for RAcquire=40 and CAcquire=1)

gain of BysP does not decrease throughout the search. This is because RTF only acquires
leads, and thus whenever a cost is spent on Acquire() it is immediately followed by a reward
(of passing this profile to the information extraction phase). Thus, the gain in RTF cannot
decrease unless either CAcquire > RAcquire or CIsLead is not negligible.

ETF(1) allows acquiring non-leads. When a non lead is acquired, its acquisition is not
followed by immediate reward. However, the acquisition of non leads can be viewed as a
long-term investment, leading to higher rewards and gain in the future. Indeed, as shown
in Figure 8 the acquisition of non leads by EBysP results in much more frequent discovery
of leads at the first stages of the search and overall higher gain compared to BysP. How-
ever, when leads are exhausted, EBysP looses the previously accumulated reward on useless
exploration of the network and may eventually reach negative gain. In order to gain the most
from EBysP one needs to determine when the search process should be halted. We propose
a method for choosing when to stop crawling in Section 7.2.

Table 2 shows potential of having a perfect stopping mechanism for choosing when to
stop, showing the maximal gain achievable for BysP and EBysP, for different values of
RAcquire and assuming that CAcquire=1 and CIsLead = 0. For every value of RAcquire

we marked in bold the results for the algorithm that provided the highest net gain. BysP
reaches a maximal gain higher than EBysP when RAcquire ≤ 3, and this reverses when
RAcquire ≥ 4. This is reasonable because larger RAcquire makes the long term investment
of EBysP in acquiring of non-leads worthwhile.

To gain a deeper understanding of the gains of BysP and EBysP throughout the search,
Figure 9 shows the difference between their gains (vertical-axis ↑) as a function of RAcquire

(horizontal-axis ↗) and the number of iterations (depth-axis ↖). For example, the solid line

Table 2 Average net-gain for
different RAcquire values Reward BysP EBysP

100 2529.45 3100.89

10 229.95 250.55

5 102.20 104.96

4 76.65 76.71

3 51.10 49.17

2 25.55 22.50

1 0 0

1470 World Wide Web (2019) 22:1447–1480

3
2

6
41
2
82
5
65
1
2

1
0
2
4

2
0
4
8

4
0
9
6

-1000

0

1000

2000

3000

4000

5000

6000

7000

1

2

4

8 1
6 3
2 6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Itera�on

Ga
in

(E
By

sP
) -

Ga
in

(B
ys

P)

RAcquire

6000-7000 5000-6000
4000-5000 3000-4000
2000-3000 1000-2000
0-1000 -1000-0

Figure 9 The difference in net gain between BysP(0) and BysP(1)

at RAcquire = 40 represents the difference between gains of EBysP and BysP as depicted
in Figure 8. The dashed line represents the relation between RAcquire and iterations where
the gains of both heuristics are equal. EBysP (using ETF(1)) benefits from higher rewards
and suffers for longer executions, while BysP (using RTF) is a valid choice if RAcquire is
not much larger than CAcquire and we expect a long execution. Thus, the choice of between
BysP and EBysP could be determined upfront if one knows the number of iterations the
search will be run, RAcquire, and CAcquire.

7.2 Identifying when to stop

So far, the discussion focused on how to choose the best profile to query in every step.
As illustrated in Figure 8, in order to maximize the net gain (Definition 5) it is extremely
important to know when to stop the TONIC process, since every query incurs a cost and the
rewards are limited.

A baseline stopping condition for a TONIC process is to stop after a fixed number of
queries. However, the maximal net gain as well as the iteration at which it is achieved varies
across different TONIC processes, depending on the total number of leads and the structure
of the social network. Moreover, an optimal stopping condition must consider CAcquire,
CIsLead , and RAcquire. Next, we explore two stopping condition for deciding when to stop
the TONIC process that considers this costs and reward values. These stopping condition
are designed to take advantage of available knowledge about TONIC processes that were
executed in the past.

7.2.1 Learning a zero rule stopping condition

Let T be a set of n TONIC processes that were executed in the past. For every TONIC pro-
cess T ∈ T and every iteration i of that TONIC process, let L(T , i), NL(T , i), PL(T , i),

World Wide Web (2019) 22:1447–1480 1471

Acquire(T , i), and IsLead(T,i) be the number of leads, non-leads, potential leads, Acquire
queries, and IsLead queries, respectively, found/performed during the first i iterations of T .

Given the cost and reward values the net-gain of T at every iteration i is:

NG(T , i, RAcquire, CAcquire, CIsLead) = RAcquire · L(T , i)−(
CAcquire · Acquire(T , i) + CIsLead · IsLead(T , i)

)
When RAcquire, CAcquire, and CIsLead are clear from context, we use the shorthand notation
NG(T , i) to denote the corresponding net gain for stopping in iteration i when running T .

The first stopping condition we propose is called ZeroR and is based on a zero rule clas-
sifier. A zero rule classifier for Binary classification problems is a classifier that ignores all
the features of the classified instance and outputs the class of the majority of instances in the
training set. Similar to a zero rule classifier, ZeroR stops every TONIC process after a fixed
number of iterations, regardless of any knowledge gained during the current TONIC pro-
cess. This fixed number of iterations is computed according to the set of available TONIC
processes (T), such that stopping the TONIC processes in T in that iteration would have
given the maximal net gain, on average. Formally, ZeroR stops at iteration Ibest , which is
defined as follows;

Ibest = arg max
i

∑
T ∈T

NG(T , i)/|T | (8)

The ZeroR stopping condition has a clear limitation: it stops all future TONIC processes
at the same iteration, following a “one size fits all” approach. Importantly, it ignores the
information collected during the TONIC process about the target and its surrounding net-
work. This information includes the CKG, the number of acquired leads and non-leads, and
the number of potential leads. Indeed, we observed empirically that the structure of the CKG
of different targets can be very different.

7.2.2 Learning a dynamic stopping condition

The second stopping condition we propose, denoted as LearnDynamic, models the dilemma
of when to stop as a Binary classification problem and solves it via supervised learning
[42]. Every instance being classified is a pair (T , i), where T is a TONIC process and i is
an iteration. The two possible classes for an instance (T , i) are “stop” and “continue”. An
iteration i in a TONIC process T ∈ T is labeled as “stop” if the net gain of all following
iterations is less than or equal to NG(T , i) (∀j>iNG(T , j) ≤ NG(T , i)) and is labeled as
“continue” otherwise (∃j>iNG(T , j) > NG(T , i)).

To create a training set, we label all the iterations of all the TONIC processes in T .
The resulting training set has therefore

∑
T ∈T |T | instances, where |T | is the number of

iterations in T .
Given this training set, we use Machine Learning algorithms to train a Binary classifier

that accepts a TONIC process and an iteration i and outputs “stop” or “continue”. The
LearnDynamic stopping condition decides to stop according to this output.

In order to apply standard Machine Learning algorithms, we define a set of features to
extract from each instance (T , i). We experimented with a wide range of features and have
found the following to be most effective.

• Leads acquisition rate. This feature is the number of leads found per iteration in the
past X iterations, where X is a parameter. Formally, for an instance (T , i), we define the

1472 World Wide Web (2019) 22:1447–1480

leads acquisition rate feature for parameter X as L(T ,i)−L(T ,i′)
i−i′ where i′ = max(0, i −

X). In our experiments we used two leads acquisition rate features, one with X = 5
and the other with X = 10.

• Leads to non-leads ratio. The ratio between the number leads and non-leads found so
far – L(T , i)/NL(T , i).

• Leads to potential-leads ratio. The ratio between the number leads and potential leads
found so far – L(T , i)/PL(T , i).

When the reward for getting a lead (RAcquire) is not significantly larger than the query
costs, it is worthwhile to stop the TONIC process early. In such cases, most instances in the
trainings set will be labeled as “stop” creating an imbalanced training set. Similarly, when
RAcquire() is very high compared to the query costs and number of profiles in the target’s
neighborhood, most instances will be labeled as “continue”, again creating an imbalanced
training set. Most supervised learning algorithms are designed for balanced datasets and
may perform poorly when given imbalanced training set. Indeed, we observed this in a
preliminary set of experiments (not reported).

We addressed this shortcoming using under-sampling, a known technique for addressing
imbalanced training sets, where instances from the majority class are removed until both
classes have the same number of instances. Instances from the majority class are usually
selected uniformly at random. In this study, we chose the instances of the majority class that
are closer to the decision boundary in order to improve the prediction accuracy. That is, if a
TONIC process has 500 iteration, the first 100 labeled “continue” and the last 400 labeled
“stop”, then we only chose for our training set the first 200 iterations. This TONIC-specific
under-sampling method proved to be effective in our experiments.

Both stopping conditions (ZeroR and LearnDynamic) are designed specifically for the
Max Gain TONIC objective (Definition 5). As such, they are directly affected by the reward
and query costs values (RAcquire, CAcquire, and CIsLead) and adapt to it.

When the rewards or costs change, both models (ZeroR and LearnDynamic) need to
be recomputed: ZeroR updates Ibest and LearnDynamic re-trains its model. However, to
compute Ibest (for ZeroR) or re-train the model (for LearnDynamic) there is no need to
execute new TONIC processes, only to analyze the existing data. In details, to compute
Ibest for ZeroR according to the new reward and costs, one needs to go over the iterations
of the TONIC processes in T , recompute the net gain in each iteration according to the
new reward and costs, and then compute Ibest according to (8). To re-train the model for
LearnDynamic, one needs to go over the iterations of the TONIC processes in T , re-label
them as “continue” or “stop” according to the new net gain, and re-run the machine learning
algorithm to train a new classifier.

7.2.3 Experimental results

We evaluated the proposed stopping conditions experimentally on the same dataset
described earlier, using half of the dataset as the training set and the other half as the test set.
We experimented with RAcquire values 3, 5, 10, 25, 50, and 100; and set CAcquire = 1 and
CIsLead = 0 as in Section 7.1. After experimenting with several Machine Learning algo-
rithms, we chose the XGBoost algorithm [15] as it produced the best overall results. We
tuned its hyperparameters using grid search.

We compared ZeroR and LearnDynamic to the following stopping conditions:

• Fixed X. A stopping condition according to which the TONIC process stops after
exactly X iterations, where X is a parameter.

World Wide Web (2019) 22:1447–1480 1473

• Oracle. The offline-optimal stopping condition, which computes a-posteriori iteration
in which the net gain is maximal and halts there. This stopping condition represents an
upper bound of the net gain that can be achieved by any stopping condition.

We present the net gain obtained by each stopping condition with respect to the net
gain of Oracle since no algorithm can obtain a higher net gain. Specifically, we used the
normalized loss measure, defined as follows. Overloading the previous notation, let A be a
stopping condition, T be a TONIC process, and NG(A, T) be the net gain obtained when
using A to stop T . The normalized loss of using A in T , denoted NL(A, T), is the difference
between the net gain obtained by A and the net gain obtained by Oracle divided by the net
gain of Oracle. Formally, NL(A, T) = (NG(Oracle, T) − NG(A, T)) /NG(Oracle, T).
Lower values of normalized loss are better, and a normalized loss of zero corresponds to
obtaining optimal net gain. Table 3 shows the average normalized loss for LearnDynamic,
ZeroR, Fixed 20, Fixed 50, Fixed 100 and Fixed 250. Different columns correspond to
different values of RAcquire. For every value of RAcquire, we highlighted in bold the best
result over the evaluated stopping conditions. As can be seen, using LearnDynamic yields
the best results for most reward values, always providing a normalized loss smaller than
0.3.

The advantage of LearnDynamic over ZeroR diminishes for larger values of RAcquire,
and for RAcquire ≥ 50 the results of ZeroR are even better than LearnDynamic. To under-
stand this trend, Table 4 shows the precision, recall, and F1 score of the classifier learned
for the LearnDynamic stopping rule for different values of RAcquire. Precision, recall, and
F1 score are standard metrics for evaluating classifiers, and range from 0 to 1, where
1 is a perfect classification. We observe that the quality of our classifier degrades for
higher values RAcquire. This observation is consistent with the weaker performance of
LearnDynamic for high values of RAcquire. This suggests that further improvements to the
LearnDynamic stopping condition may be obtained by improving the underlying learn-
ing algorithm, e.g., by obtaining more data, introducing new features, and using different
learning schemes, and more advanced parameter tuning techniques. Nonetheless, the per-
formance of LearnDynamic is quite robust across all our experiments, often providing the
best results or is at most withing 0.06 normalized loss of the best result.

8 TONIC as an information retrieval task

TONIC can be viewed as an Information Retrieval (IR) task, where the task is to retrieve as
many leads as possible. This allows evaluating TONIC solvers with standard IR metrics. For
example, after performing x IsLead() queries, the Precision is the fraction of leads found

Table 3 Normalized loss for the different stopping condition

RAcquire 3 5 10 25 50 100

LearnDynamic 0.30 0.14 0.17 0.14 0.15 0.15

ZeroR 1.38 0.54 0.25 0.15 0.14 0.09

Fixed 25 0.83 0.49 0.43 0.43 0.44 0.46

Fixed 50 1.40 0.46 0.22 0.18 0.19 0.20

Fixed 100 2.86 0.97 0.32 0.14 0.11 0.11

Fixed 250 8.87 2.71 0.91 0.29 0.14 0.09

1474 World Wide Web (2019) 22:1447–1480

Table 4 Precision, recall, and F1 score for the classifier learned for the LearnDynamic stopping rule

RAcquire 3 5 10 25 50 100

Precision 0.91 0.9 0.86 0.68 0.63 0.67

Recall 0.91 0.9 0.86 0.67 0.61 0.65

F1 0.91 0.9 0.86 0.66 0.59 0.64

so far out of the x queried profiles. Recall (also known as the true positive rate – TPR) is
the fraction of leads found so far out of the total number of leads. Precision and Recall are
often combined by the F1 measure, computed as F1 = 2 · Precision·Recall

P recision+Recall
.

Figure 10a plots average Precision, Recall, and the F1-measure as a function of the num-
ber of queries performed so far (x) for the Google+ dataset described above, using our best
solver (EBysP). The Recall results corresponds to the results reported in the previous sec-
tions, showing a diminishing return effect: the recall increases quickly at the beginning of
the search and then slows down until convergences. Precision is initially very high, but drops
quickly as the search progresses and fewer leads are found. This is reasonable as there are
significantly more non-leads than leads. Figure 10b zooms-in on the results of the first 100
iterations. Observe the precision results: until the 10th iteration the precision decreases, but
then, it remains stable until the 30th iteration. In this period on average, two out of three
queried profiles are leads, showing the strength of our search strategy (EBysP). Then, as the
pool of available leads becomes sparser, fewer leads are being found, resulting afterwards
in a quick drop in the precision and a more modest increase of the recall. Indeed, the 30th
iteration is exactly the turning point where the F1 measure starts to decrease. In the limit
(i.e,. after many iterations), most leads are found (so Recall is close to 1.0), the precision is
almost zero since most profiles are not leads, and thus the F1 measure also drops down to
zero.

The well-known receiver operating characteristic (ROC) curve [17], which measures the
TPR as a function of the false positive rate (FPR), can also be created, by varying the values

(a)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1
25

6
51

1
76

6
10

21
12

76
15

31
17

86
20

41
22

96
25

51
28

06
30

61
33

16
35

71
38

26

Itera�ons

F-Measure
Recall
Precision

(b)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 11 21 31 41 51 61 71 81 91
Itera�ons

F-Measure
Recall
Precision

Figure 10 F1-measure, recall, and precision results for EBysP on the Google+ dataset. The right-hand side
zooms in on the first 100 iterations

World Wide Web (2019) 22:1447–1480 1475

of x. The area under the ROC curve (AUC) is a popular IR measure, where a larger AUC
indicates a better solver.

Figure 11a shows the average AUC of the algorithms: FIFO, EFIFO, FM , EFM, BysP
and EBysP. The RTF heuristics (run under RTF) are colored in blue and the ETF heuristics
(run under ETF(1)) are colored in purple. AUC results show trends similar to Figure 6
and Figure 4, as could be expected. However it is interesting to see that despite the fact
that EFIFO eventually finds more leads then BysP, it’s average AUC is still lower, since it
preforms worse during most of the search.

Discounted cumulative gain (DCG) [30] is yet another metric for evaluating the quality
of an ordered sequence of results. DCG accumulates the gain of finding the relevant results,
i.e. the leads, such that the closer the lead is to the beginning of the sequence the higher
its gain. Every Islead() query increases the network footprint of the intelligence collection
process and with the footprint grows the chance the process will be discovered or the OSN
service will block future acquisitions. Therefore, every Islead() query reduces the gain from
further lead acquisitions and it is important to spot the leads as early in the search process
as possible. Let p1, p2, . . . be the profiles sorted by the order in which Islead() query was
applied to them. DCG is computed by DCG = IsLead(p1) + ∑n

i=2
IsLead(pi)

log2i
, where

IsLeadpi= 1 if the ith profile is a lead and IsLeadpi= 0 otherwise.
Figure 11b shows the average DCG of the algorithms mentioned before. First, observe

that in terms of DCG, using EFIFO yields worse results than using FIFO. This is in contrast
to the AUC results (Figure 11a), where EFIFO yielded higher AUC compared to FIFO. This
advantage of FIFO in terms of DCG is due to the fact that leads more densly populate the
first tier. Therefore FIFO will find more leads in earlier iterations – yielding higher DCG –
since it only searches the first tier and thus its search is less scattered. Thus, in general, for
a given TONIC heuristic it may be better to use RTF than ETF if one wants to maximize
DCG.

However, when the more intelligent TONIC heuristics are used, we observe again the
benefit of using ETF. This is somewhat surprising, as one could expect that the first leads
being found are from the first tier and thus RTF may perform better than ETF. These results
suggest that the best performing TONIC heuristics – BysP and FM – are intelligent enough
to consider expanding non-leads only when it is helpful, thus resulting in finding more
leads than in RTF even in early iteration of the search. In summary, we observe that EBysP
and EFM are robust across both AUC and DCG, showing the best performance in both
measures.

(a)

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

FIFOFMEFIFOBysPEFMEBysP

0.856

0.902

0.9280.931
0.962

0.969

(b)

0

1

2

3

4

5

FMEFIFOFIFOBysPEFMEBysP

4.6704.8084.9445.3635.6455.766

6

Figure 11 Evaluating TONIC heuristics using IR measures. The plots show the average AUC (a) and DCG
(b) obtained on our benchmark

1476 World Wide Web (2019) 22:1447–1480

(a)

0

0.2

0.4

0.6

0.8

1
1

29
7

59
3

88
9

11
85

14
81

17
77

20
73

23
69

26
65

29
61

32
57

35
53

38
49

41
45

44
41

47
37

50
33

53
29

56
25

59
21

62
17

dnuoFsdaeL
%

Itera�on Number

EBysP
EFIFO
ERND
BysP
FIFO
RND

(b)

0

0.2

0.4

0.6

0.8

1

1
28

4
56

7
85

0
11

33
14

16
16

99
19

82
22

65
25

48
28

31
31

14
33

97
36

80
39

63
42

46
45

29
48

12
50

95
53

78
56

61
59

44

dnuoFsdaeL
%

Itera�on Number

EBysP
EFIFO
ERND
BysP
FIFO
RND

Figure 12 Evaluating TONIC heuristics on different OSNs. a shows results for the Live Journal OSN, and b
shows results for the Pokec OSN

9 Experiments on different online social networks

To provide further support for our conclusions, we also performed a series of experiments on
other OSNs. Namely, we experimented on LiveJournal [6, 35], which is an online commu-
nity that allows member to maintain journals, blogs, and define friendship between profiles,
and Pokec [49], which is the most popular OSN is Sloveniya. Both networks were made
available as part of the Standform Network Analysis Project (SNAP) at snap.stanford.edu.
Both OSNs are active and large (although not as large as Google+), where LiveJournal has
more than 10 millions profiles and Pokec has more than 1.5 millions.

For each network we randomly chose 50 profiles as targets, considering only profiles
with more than 30 friends and 4,000 edges in its 2-tier neighborhood. For each target
we present results for both TONIC frameworks (RTF and ETF) and compare the baseline
approaches random and FIFO with the best performing heuristic BysP.

Figure 12 shows the results for these two OSNs, in the same format as in Figure 7: the
x-axis is the number of iterations and the y-axis is the percentage of leads found. The main
trends observed for Google+ are seen here too:

• RTF finds fewer profiles. The RTF algorithms exhausts the set of leads they can find
and converges to finding fewer leads than the ETF algorithm.

• BysP and EBysP dominate the baseline methods. For both OSNs, BysP is better than
random and FIFO, and EBysP is better than ETF random and EFIFO.

• EBysP dominates BysP. Even before RTF exhausts all the leads it can reach, we
observe that EBysP is able to find more leads faster than BysP. To demonstrate this, the
average percentage of leads found after after 200 iterations was 45% and 64% for BysP
and EBysP, respectively, in the Pokec OSN, and 39% and 47% for BysP and EBysP,
respectively, in the Live Journal OSN.

It is also interesting to compare the behavior of the different frameworks – RTF and ETF
– across the three OSNs we experimented with (Google+, Pokec, and Live Journal). Table 5

Table 5 % of leads reachable with RTF and ETF in different OSNs

Framework Google+ Pokec Live Journal

RTF 0.82 0.66 0.51

ETF 1.00 1.00 0.78

snap.stanford.edu

World Wide Web (2019) 22:1447–1480 1477

shows the average percentage of reachable leads found using RTF and ETF for our OSNs.
We observe that Live Journal OSN is the most difficult in terms of TONIC, in the sense
that RTF and even ETF ends up finding fewer percentage of leads compared Google+ and
Pokec. Indeed, the observant reader will see that the ETF algorithms in Figure 12a do not
converge to finding all leads. This suggests future research in which the limitation of ETF
to the first tier will be reevaluated based on the OSN characteristics.

10 Conclusion and future work

This paper addressed the Target Oriented Network Intelligence Collection (TONIC) prob-
lem, in which the task is to find profiles in an OSN that contain information about a given
target profile. Beyond academic interest, TONIC is an integral part of commercial and gov-
ernmental applications. TONIC was formalized as a search problem in an unknown graph
and two frameworks for solving it were proposed, RTF and ETF. RTF focuses the search by
only acquiring leads. ETF generalizes RTF by allowing non leads to be acquired, as long
as there exists a known path from them to a lead that is at most n hops long, where n is a
parameter. As n grows, more leads are reachable but the search may become too costly and
unfocused. Empirical results suggests that n = 1 serves as a valid middle ground.

For both RTF and ETF(1), we present several heuristics for guiding the search. These
heuristics are evaluated experimentally on a real OSN. Evaluation results show that:

1) The Bayesian Promising (BysP and EBysP) heuristics and the heuristics based on the
Friends Measure, significantly outperform other heuristics.

2) Using ETF results in substantially more leads than RTF when using the anytime
objective.

3) Depending on the costs of the queries and on the reward of finding leads, either BysP
(RTF) or EBysP (ETF(1)) is the preferable when using the MaxGain objective.

4) The number of reachable leads increases with both the number of initial leads and tier.

There are many exciting directions for future work. An obvious future work is to evaluate
the proposed algorithms on a larger dataset with more OSNs, and studying how properties
of a given OSN affect their performance. Another future research direction is to create
heuristics that consider a profile’s textual data (hobbies, demographic information, etc.) and
not just the topology of the CKG as the current heuristics do. One other direction is to utilize
the power of machine learning to predict which potential leads will turn to be leads de facto.
ML models can be trained using both data from past executions on various targets and data
on profiles acquired during investigation of current target.

For example, one can learn a more sophisticated hybrid approach that combines
information from several TONIC heuristics.

Another direction is to consider leads with different rewards, where finding a lead that
provides more information about target is preferred.

In addition, one may consider higher cost for querying some profiles, e.g., to avoid
querying profiles that are more sensitive and thus querying them is more risky. This raises a
complex task of how to quantify information and how to quantify risk. Furthermore, infor-
mation found from one lead can affect the value of information from other leads, as some
information may overlap. In addition, we assumed that Islead() and Acquire() are always
applicable. Future work can consider network errors that may cause queries to fail with
some probability, introducing uncertainty.

1478 World Wide Web (2019) 22:1447–1480

11 Ethical aspects in TONIC

As mentioned earlier in this paper, a particular application of our investigation of effective
TONIC solvers it to uncover the LOF of a target profile by exploring the LOFs of other
profiles. Consequently, an effective TONIC solver may uncover a target’s LOF even if the
target has blocked direct access to its LOF through its profile. Although this information
(other profiles LOF) is publicly available, the ability to automatically and effectively access
this information raises some ethical concerns. First, one may argue that if the target has
blocked access to its LOF, then by searching for its LOF we are accessing to the target’s
private information, even if the search itself is not done on the target but on other profiles.
Second, one can imagine settings in which criminals use the proposed algorithm to collect
information about citizens for various criminal activities.

Indeed both concerns are valid and need to be discussed. It is general knowledge that
people and organization use OSNs and other publicly available sources to gather informa-
tion about specific entities (e.g., people, organizations, and other social groups). This is
often done manually, for example, before hiring a person, or when police forces monitor-
ing affiliates of known criminals in social networks. In fact, there are existing tools such as
Palantir (www.palantir.com) that automatically collects publicly available information on a
given profile. In that sense, our work is a more effective version of an existing approach
(which usually applies a FIFO strategy, which we show to be inferior).

Moreover, we emphasize that an effective TONIC solver can be used for many good pur-
poses. It can serve as an helpful tool for law enforcement agencies. For example, imagine
a search for information about a pedophile in an OSN. In fact, the social network paradigm
has been successfully used to investigate organized crime in the Netherlands [33]. Alterna-
tively, an effective TONIC solver can be used as a tool for preserving privacy, by allowing a
person to find how much publicly available information exists about him/her in a given OSN
and change his/her privacy setting accordingly. Indeed, like many other advances in science
the algorithms we propose can be used for good and bad purposes, depending on its user.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. Phys.
Rev. E 64, 046135 (2001)

2. Aggarwal, C.C., Al-Garawi, F., Yu, P.S.: Intelligent crawling on the world wide web with arbitrary pred-
icates. In: Proceedings of the 10th international conference on World Wide Web. ACM, pp. 96–105
(2001)

3. Almpanidis, G., Kotropoulos, C., Pitas, I.: Combining text and link analysis for focused crawling—an
application for vertical search engines. Inf. Syst. 32(6), 886–908 (2007)

4. Altshuler, Y., Aharony, N., Fire, M., Elovici, Y., Pentland, A.: Incremental learning with accuracy predic-
tion of social and individual properties from mobile-phone data, CoRR, vol. arXiv:1111.4645. [Online].
Available: http://dblp.uni-trier.de/db/journals/corr/corr1111.html#abs-1111-4645 (2011)

5. Altshuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A.: Security and Privacy in Social
Networks. Springer, Berlin (2012)

6. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: Mem-
bership, growth, and evolution. In: ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 44–54 (2006)

7. Barabási, A.-L., Réka, A.: Emergence of scaling in random networks. Science 286(5439), 509–512
(1999)

www.palantir.com
http://arXiv.org/abs/1111.4645
http://dblp.uni-trier.de/db/journals/corr/corr1111.html#abs-1111-4645

World Wide Web (2019) 22:1447–1480 1479

8. Bidoki, A.M.Z., Yazdani, N., Ghodsnia, P.: FICA: A fast intelligent crawling algorithm. In: Proceedings
of the IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society, pp. 635–
641 (2007)

9. Bnaya, Z., Puzis, R., Stern, R., Felner, A.: Social network search as a volatile multi-armed bandit
problem. ASE Human 2(2), pp–84 (2013)

10. Bujlow, T., Carela-Español, V., Sole-Pareta, J., Barlet-Ros, P.: A survey on web tracking: mechanisms,
implications, and defenses. Proc. IEEE 105(8), 1476–1510 (2017)

11. Cai, R., Yang, J.-M., Lai, W., Wang, Y., Zhang, L.: irobot: An intelligent crawler for web forums. In:
Proceedings of the 17th international conference on World Wide Web. ACM, pp. 447–456 (2008)

12. Chakrabarti, S., Van den Berg, M., Dom, B.: Focused crawling: a new approach to topic-specific web
resource discovery. Comput. Netw. 31(11), 1623–1640 (1999)

13. Chang, C., Kayed, M., Girgis, M., Shaalan, K., et al.: A survey of web information extraction systems.
IEEE Trans. Knowl. Data Eng. 18(10), 1411 (2006)

14. Chen, Z., Ma, J., Lei, J., Yuan, B., Lian, L.: An improved shark-search algorithm based on multi-
information. In: 2007. FSKD 2007. Fourth International Conference on Fuzzy Systems and Knowledge
Discovery. IEEE, vol. 4, pp. 659–658 (2007)

15. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pp. 785–794 (2016)

16. Cho, J., Garcia-Molina, H., Page, L.: Efficient crawling through url ordering. Comput. Netw. ISDN Syst.
30, 161–172 (1998)

17. Croft, W., Metzler, D., Strohman, T.: Search engines: Information retrieval in practice. Addison-Wesley,
Reading (2010)

18. Davis, D., Lichtenwalter, R., Chawla, N.V.: Multi-relational link prediction in heterogeneous information
networks. In: 2011 International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, pp. 281–288 (2011)

19. De Bra, P., Post, R.: Searching for Arbitrary Information in the Www: the Fish-Search for Mosaic. In:
WWW (1994)

20. Diligenti, M., Coetzee, F., Lawrence, S., Giles, C.L., Gori, M., et al.: Focused crawling using context
graphs. In: VLDB, pp. 527–534 (2000)

21. Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N.V., Rao, J., Cao, H.: Link prediction and recommendation
across heterogeneous social networks. In: 2012 IEEE 12th International Conference on Data Mining.
IEEE, pp. 181–190 (2012)

22. Ermakova, T., Fabian, B., Bender, B., Klimek, K.: Web Tracking – a Literature Review on the State of
Research. In: HICSS 51 (2018)

23. Felner, A., Stern, R., Ben-Yair, A., Kraus, S., Netanyahu, N.: PhA*: Finding the shortest path with A*
in unknown physical environments. J. Artif. Intell. Res. 21, 631–679 (2004)

24. Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L., Elovici, Y.: Link prediction in social net-
works using computationally efficient topological features. In: IEEE international conference on social
computing (SocialCom), pp. 73–80 (2011)

25. Fire, M., Katz, G., Elovici, Y., Shapira, B., Rokach, L.: Predicting student exam’s scores by analyzing
social network data. In: AMT, pp. 584–595 (2012)

26. Fire, M., Tenenboim-Chekina, L., Puzis, R., Lesser, O., Rokach, L., Elovici, Y.: Computationally effi-
cient link prediction in a variety of social networks. ACM Trans Intell Syst Technol (TIST) 5(1), 10
(2013)

27. Fire, M., Tenenboim-Chekina, L., Puzis, R., Lesser, O., Rokach, L., Elovici, Y.: Computationally effi-
cient link prediction in a variety of social networks, ACM Trans. Intell. Syst. Technol. 5(1), 1–25
(2014)

28. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in facebook: A case study of unbiased
sampling of osns. In: INFOCOM, pp. 1–9 (2010)

29. Hersovici, M., Jacovi, M., Maarek, Y.S., Pelleg, D., Shtalhaim, M., Ur, S.: The shark-search algorithm.
an application: tailored web site mapping. Comput. Netw. ISDN Syst. 30(1), 317–326 (1998)

30. Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf Syst
20(4), 422–446 (2002)

31. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)
32. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)
33. Klerks, P.: The network paradigm applied to criminal organizations: Theoretical nitpicking or a relevant

doctrine for investigators? recent developments in the netherlands. Connections 24(3), 53–65 (2001)
34. Kurant, M., Gjoka, M., Butts, C.T., Markopoulou, A.: Walking on a graph with a magnifying glass: Strat-

ified sampling via weighted random walks. In: ACM Joint International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), pp. 281–292 (2011)

1480 World Wide Web (2019) 22:1447–1480

35. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural
cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

36. Li, X., Smith, J.D., Dinh, T.N., Thai, M.T.: Privacy issues in light of reconnaissance attacks with incom-
plete information. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 311–318
(2016)

37. Li, X., Smith, J.D., Thai, M.T.: Adaptive reconnaissance attacks with near-optimal parallel batching.
In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). IEEE. pp.
699–709 (2017)

38. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J Amer Soc Inf Sci
Technol 58(7), 1019–1031 (2007)

39. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Annu.
Rev. Sociol. 27(1), 415–444 (2001)

40. Menczer, F., Pant, G., Srinivasan, P., Ruiz, M.E.: Evaluating topic-driven web crawlers. In: Proceedings
of the 24th annual international ACM SIGIR conference on Research and development in information
retrieval. ACM, pp. 241–249 (2001)

41. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know: inferring user profiles
in online social networks. In: Proceedings of the third ACM international conference on Web search and
data mining. ACM, pp. 251–260 (2010)

42. Mitchell, T.M.: Machine learning. McGraw-Hill, McGraw-Hill (1997)
43. Pawlas, P., Domański, A., Domańska, J.: Universal web pages content parser. In: Computer Networks.

Springer, pp. 130–138 (2012)
44. Russell, S.J., Norvig, P.: Artificial intelligence - A modern approach pearson education (2010)
45. Samama-Kachko, L., Puzis, R., Stern, R., Felner, A.: Extended Framework for Target Oriented Network

Intelligence Collection. In: Symposium on Combinatorial Search (SoCS) (2014)
46. Stern, R., Kalech, M., Felner, A.: Searching for a K-Clique in Unknown Graphs. In: SOCS (2010)
47. Stern, R.: Finding patterns in an unknown graph. AI Commun. 25(3), 229–256 (2012)
48. Stern, R.T., Samama, L., Puzis, R., Beja, T., Bnaya, Z., Felner, A.: TONIC Target Oriented Network

Intelligence Collection for the Social Web. In: AAAI (2013)
49. Takac, L., Zabovsky, M.: Data analysis in public social networks. In: International Scientific Conference

and International Workshop Present Day Trends of Innovations, pp. 1–6 (2012)
50. Tang, J., Lou, T., Kleinberg, J.: Inferring social ties across heterogenous networks. In: Proceedings of

the fifth ACM international conference on Web search and data mining. ACM, pp. 743–752 (2012)
51. Tang, J., Yao, L., Zhang, D., Zhang, J.: A combination approach to web user profiling. ACM Trans.

Knowl. Discov. Data 5(1), 2:1–2:44 (2010)
52. Vempaty, N.R., Kumar, V., Korf, R.E.: Depth-first vs best-first search. In: National Conference on

Artificial Intelligence (AAAI), pp. 434–440 (1991)
53. Wang, W., Chen, X., Zou, Y., Wang, H., Dai, Z.: A focused crawler based on naive bayes classifier. In:

2010 Third International Symposium on Intelligent Information Technology and Security Informatics
(IITSI). IEEE, pp. 517–521 (2010)

54. Watts, D.J., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 6684 (1998)
55. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Mag. 17(3), 73–83 (1996)

	Target oriented network intelligence collection: effective exploration of social networks
	Abstract
	Introduction
	The TONIC problem
	TONIC problem settings and objectives
	Anytime objective
	Max net-gain objective

	Related work
	Intelligent crawling
	Focused crawling
	Network sampling

	Network completion
	Heuristic search in an unknown graph

	TONIC as search in an unknown graph
	The Restricted TONIC Framework (RTF)
	RTF heuristics
	Clustering coefficient heuristic
	Known-degree heuristic
	Promising-leads heuristics
	Aggregating promising leads
	Bayesian aggregation
	Friends measure heuristic (FM)
	Runtime complexity

	Experimental results

	Extended TONIC framework (ETF)
	Reachable leads in ETF
	ETF heuristics
	EFIFO heuristic
	Hybrid heuristic
	Variants of the known degree heuristic
	BysP and FM heuristics for ETF

	Maximizing the net gain
	Net gain results
	Identifying when to stop
	Learning a zero rule stopping condition
	Learning a dynamic stopping condition
	Experimental results

	TONIC as an information retrieval task
	Experiments on different online social networks
	Conclusion and future work
	Ethical aspects in TONIC
	References

