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Abstract
Spatial prevalent co-location pattern mining is to discover interesting and potentially useful
patterns from spatial data, and it plays an important role in identifying spatially correlated
features in many domains, such as Earth science and Public transportation. Existing ap-
proaches in this field only take into account the clique instances where feature instances form
a clique. However, they may neglect some important spatial correlations among features in
practice. In this paper, we introduce star participation instances to measure the prevalence of
co-location patterns such that spatially correlated instances which cannot form cliques will also
be properly considered. Then we propose a new concept called sub-prevalent co-location
patterns (SPCP) based on the star participation instances. Furthermore, two efficient algo-
rithms – the prefix-tree-based algorithm (PTBA) and the partition-based algorithm (PBA) – are
proposed to mine all the maximal sub-prevalent co-location patterns (MSPCP) in a spatial data
set. PTBA uses a typical candidate generate-and-test way starting from candidates with the
longest pattern-size, while PBA adopts a step-by-step manner starting from 3-size core
patterns. We demonstrate the significance of our proposed new concepts as well as the
efficiency of our algorithms through extensive experiments.
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1 Introduction

As the rapid development of LBS (Location-Based Services) and the easier access of
processing techniques for spatial information, spatial data containing enormous number
of spatial information with various useful attributes has become available [1, 10]. This
kind of data includes VLSI chip layout data, preprocessed remote sensing or medical
imaging data, and geographic search logs comprising with associated locations, etc.

A spatial co-location pattern represents subsets of spatial features (or spatial objects,
attributes) whose instances are frequently located close together, and the spatial co-
location pattern mining aims to uncover the interesting and frequent co-located spatial
features in various domains. For example, a co-location pattern may show that the region
where mosquitoes are abundant and poultry are kept usually has West Nile virus around;
or can find that the percentage of sub-humid evergreen broadleaved forests growing with
orchid plants can reach 80% [6, 25].

The traditional model for discovery of prevalent co-location patterns was firstly
proposed by Shekhar and Huang [6, 16] where the prevalence measure of a co-
location pattern is defined based on clique instances under spatial neighbor relationships.
In other words, a prevalence measurement called PI (participation index) is defined as
the measurement for the prevalence of a co-location pattern, the PI value of a co-location
c is the minimum participation ratio Pr(fi, c) among all features fi in c; Pr(fi, c) is defined
as the fraction of the instances of fi participating in row-instances (set of instances having
clique relationship) of c. Figure 1 shows an example spatial data set containing four
spatial features (A, B, C, and D), if the corresponding distance between two spatial
instances is no more than a distance threshold d, a line connects them in Figure 1. An
instance written as f.i denotes the i-th instance of feature f. In Figure 1, the co-location
pattern {A, B, C} only has one row-instance {A.1, B.1, C.1}, thus, if the given
prevalence threshold is more than 1/2, the co-location pattern {A, B, C} is not consid-
ered prevalent. But by looking into the distribution of this pattern {A, B, C}, three
instances of A neighbor to instances of the other features, and B has two instances
neighboring to instances of the other two features, and C has two instances similarly.
That is to say, at least 40% (min{3/4, 2/5, 2/3}) of instances of each spatial feature
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Figure 1 An example of the
spatial data sets
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neighbor to the other features’ instances in {A, B, C}. This reveals that instances of the
three features A, B and C form spatially correlated relationships, which might be
neglected if only considering the clique instances.

Based on above, patterns like {A, B, C} in Figure 1 may contain meaningful
distribution of instances which can help decision makers gain further insights. For
example, given a vegetation distributional data set, if there exists a pattern similar to
{A, B, C} in Figure 1, then the other vegetations present in the neighborhood of growing
any vegetation in {A, B, C}, i.e., vegetations A, B and C represent symbiotic vegetation.
This kind of patterns shows significance in practice. For instance, they can be well used
in analysis of vegetation distribution, site selection for investigating vegetations, as well
as vegetation protection, etc.

On the other hand, we consider Figure 1 as a data set in real daily life, thus, the features
A, B and C represent “hospital”, “resident area” and “bus station”, respectively. By the
observation of the distribution of instances of the three features, it can be seen that B.3
neighbors to A.4, C.2 and C.3, while A.4, C.2 and C.3 are not neighbors to any one of the
others, but A.4 and C.1 are neighbors. In fact, the three features within the dotted line in
Figure 1 have satisfied a co-located correlation because for each instance except the
endpoints (B.2, C.3 and D.2) in the dotted line, there are instances of the other two
features connected.

In the traditional model for co-location pattern discovering, to measure the prevalence
of a co-location pattern c, each row-instance of c needs to be traversed. Note that the
concept of row-instance is a clique-based concept. However, the statement “the presence
of B and C in the neighborhood of an instance of feature A” only demonstrates B and C
must neighbor to A, the neighbor relationship of B and C is not necessary. Thus, in this
paper, a new concept called sub-prevalent co-location patterns was defined to follow the
statement above by replacing row-instance with star participation instances.

In traditional co-location pattern mining, each row-instance of c must form a clique in
neighborhood relationship, while for a sub-prevalent co-location, clique relationship is
not necessary. Thus, a prevalent co-location pattern is a sub-prevalent pattern while not
vice versa. In other words, the set of prevalent co-locations discovered from a spatial
data set are a subset of sub-prevalent co-location set discovered from the same data set.
However, the large amount of discovered sub-prevalent co-locations may increase the
burden of the user and cause the user easily confused. By means the downward inclusion
property satisfied by sub-prevalent co-locations, we consider study the discovery of
maximal sub-prevalent co-location patterns (MSPCP) to effectively reduce the volume
of sub-prevalent co-locations.

This paper’s main contributions can be summarized as follows:

First, instead of clique relationship for each instance of a co-location, a star
neighborhood relationship was proposed to get an instance (called star participation
instance) of a co-location. Using star participation instances, a new concept called
sub-prevalent co-location patterns (SPCPs) was presented. This concept can better
describe the frequently co-located features in practice.
Second, two novel algorithms, named prefix-tree-based algorithm (PTBA) and
partition-based algorithm (PBA), are proposed to discover MSPCPs in this paper.
Furthermore, an intersection-based method is proposed to compute the prevalence of
patterns with star participation instances.
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Third, strength and weakness of the proposed algorithms are analyzed in depth, as
well as their computational complexities.
Finally, sufficient experiments are deliberately designed to evaluate our approaches.
The experimental results show that our algorithms are scalable and can discover the
potential star-correlations of the spatial features which cannot be discovered by
traditional models.

The remainder of this paper is organized as follows. Section 2 gives the definitions on
the discovery of Sub-Prevalent Co-location Patterns (SPCPs), and proves the anti-
monotonic property of SPCPs. Two novel algorithms for discovering MSPCPs are
designed in Section 3 and 4, respectively. The experimental results are shown in
Section 5 and Section 6 gives the related work. Finally, the conclusion is given in
Section 7.

2 Basic concepts and properties

In this section, we first review the basic concept of prevalent co-location pattern (PCP)
mining, and then present the concept of the MSPCP mining and discuss its anti-
monotonic property.

2.1 Prevalent co-location patterns (PCPs)

Given a set of spatial features (a kind of things, e.g. KFC) F = {f1, f2, …, fn} where each
feature fi has some instances (an occurrence of a feature, e.g. KFC branch No. 2),
suppose S is the set containing all instances of features in F. We use a spatial neighbor
relationship R to describe the relationships of two instances, i.e. If two instances i1 and i2
are neighbors to each other, the relationship can be denoted as R(i1, i2). In common
works, Euclidean distance are commonly used to define the relationships, that is, for two
instances i1 and i2, if the distance between them is no more than a given distance
threshold d (distance(i1, i2) ≤ d), they are neighbors (R(i1, i2)). We use Figure 1 as an
example spatial data set, where two instances are connected with a line if they are
neighbors. This data set contains four features A, B, C and D and their instances, A.1
means the first instance of A observed. In figure, A has four instances (A.1, A.2, A.3 and
A.4). A Spatial co-location pattern c is a subset of F, c ⊆ F, whose instances form cliques
frequently under R. A row-instance I of a co-location c is a set of instances containing
instances of all the features in c and forming a clique relationship, and any subset of I
cannot contain all the features in c. The set containing all row-instances in c is called
table-instance of c. The size of c is the number of features in c.

For example, in Figure 1, {B.1, D.2} is a row instance of a 2-size co-location
pattern {B, D} but {B.5, D.1} is not, and the table-instance T({B, D}) is {{B.1,
D.2}, {B.4, D.1}}.

In co-location pattern mining, participation index (PI) is widely used to measure the
prevalence of co-location patterns [1–3, 6, 8, 18, 25–32]. Before defining PI, we first
give the definition of participation ratio (PR).

Definition 1 Participation Ratio (PR).
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Given a co-location pattern c, the participation ratio of a feature fi in c, denoted as PR(c, fi),
is the fraction of instances of feature fi that participate in T(c). That is,

PR c; f ið Þ ¼ Number of distinct instances of f i inT cð Þ
Total number of instances of f i

ð1Þ

Definition 2 Participation Index (PI).
The participation index of a co-location pattern c is defined as

PI cð Þ ¼ minfi∈c PR c; f ið Þf g ð2Þ

Definition 3 Prevalent Co-location Pattern (PCP).
Given a user-specified prevalence thresholdmin_prev, a co-location pattern c is a prevalent co-

location pattern (PCP) if PI(c) ≥min_prev.
For example, in Figure 1, T({B, D}) = {{B.1, D.2}, {B.4, D.1}}. The participation

ratio of feature B in {B, D}, PR({B, D}, B), is 2/5 since two out of five instances of B
participate in T({B, D}). In the same way, PR({B, D}, D) is 2/2. Thus, the participation
index of {B, D}, PI({B, D}), is min{PR({B, D}, B), PR({B, D}, D) = 2/5 = 0.4. If the
prevalence threshold min_prev is set as 0.3, the co-location {B, D} is prevalent.

The PI and PR measures satisfy the anti-monotonicity property (downward closure
property), i.e., PI(c) ≥ PI(c’) for any c ⊂ c′, and PR(c, f) ≥ PR(c’, f) for any c ⊂ c′ and f ∈ c [6].

Based on the anti-monotonicity of co-location prevalence, we can give the concept of
maximal prevalent co-location patterns, which infers the original collection of PCPs.

Definition 4 Maximal Prevalent Co-location Pattern (MPCP).
A prevalent co-location pattern (PCP) c is maximal if there is no PCP c′ such that c ⊂ c′.

2.2 Sub-Prevalent Co-location Patterns (SPCPs)

By replacing clique instances with star neighborhood instances, we introduce the concept
of Sub-Prevalent Co-location Patterns (SPCPs). The related definitions are as follows.

Definition 5 Star Neighborhoods Instance (SNsI).
SNsI(ij) = {ik | distance(ij, ik) ≤ d, where d is a given distance threshold} is the star

neighborhoods instance of ij. In other words, SNsI(ij) is a set comprising instances in its
neighborhood and itself as the center instance.

In Figure 1, SNsI(A.4) = {A.4, B.3, C.1}, and SNsI(C.2) = {A.3, B.3, C.2}. Based on
Definition 5, the following concepts are defined successively: star participation instances
(SPIns), star participation index (SPI) as well as star participation ratio (SPR) to measure
the prevalence of instances from different features in a co-location pattern using star
neighbors.
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Definition 6 Star Participation Instance (SPIns).
SPIns(c, fi) = {ij | ij is an instance of feature fi and SNsI(ij) includes instances of all features

in c} is the star participation instance of feature fi in c. In other words, SPIns(c, fi) is the set of
instances of fi whose instances in its star neighborhoods contain instances of all features in c.

Definition 7 Star Participation Ratio (SPR).
SPR c; f ið Þ ¼ jSPIns c; f ið Þj=jS f i j represents the star participation ratio of feature fi in a co-

location c,where S f i is the set containing all instances of fi. In other words, SPR(c, fi) is the ratio
of instances of fi that occur in the star participation instance of fi in c to the whole instances of fi.

Definition 8 Star Participation Index (SPI).
SPI cð Þ ¼ min f i∈c SPR c; f ið Þf g is the star participation index of a co-location c, which is

the minimum star participation ratio SPR(c, fi) among all features fi in c.

Definition 9 Sub-Prevalent Co-location Pattern (SPCP).
A co-location c is a sub-prevalent co-location pattern (SPCP), if and only if its star

participation index is no less than a given sub-prevalence threshold min_sprev, i.e.,
SPI(c) ≥min_sprev.

For example, in Figure 1, for a co-location pattern c = {A, B, C}, the star participation
instance SPIns(c, A) = {A.1, A.3, A.4}, SPIns(c, B) = {B.1, B.3}, and SPIns(c, C) = {C.1,
C.2}. Thus, the star participation ratio SPR(c, A) = 3/4, SPR(c, B) = 2/5, SPR(c, C) = 2/3, and
SPI(c) =min{3/4, 2/5, 2/3} = 2/5. If min_sprev is set as 0.4, c is a SPCP.

Lemma 1 (Monotonicity of SPR and SPI). Let c and c′ be two co-location patterns (c′ ⊆ c).
Then, for each feature f ∈ c′, SPR(c′, f) ≥ SPR(c, f). Furthermore, SPI(c′) ≥ SPI(c).

Proof For the first claim in the lemma, it only needs to prove that for a spatial feature f∈c′,
|SPIns(c′, f)| ≥ |SPIns(c, f)|.

Since c′ ⊆ c, every star participation instance of feature f in c includes instances of all
features in c′. Thus, the inequality holds.

T h e s e c o n d c l a i m f o l l o w s f r o m t h e f a c t t h a t

SPI c
0� � ¼ min f ∈c0 SPR c

0
; f

� �� �
≥min f ∈c SPR c; fð Þf g ¼ SPI cð Þ.

Lemma 1 declares that both SPR and SPI satisfy the downward inclusion property.
Intuitively, based on the introduction of the concept of SPCP, longer co-location

patterns can be discovered. But the massive volume and mutually inclusive of the
discovered results may cause the user confused and costly on the calculation of redun-
dant results. Thus, to solve this disadvantage, a concept of maximal sub-prevalent co-
location patterns is defined to concisely express the massive results.

Definition 10 Maximal Sub-Prevalent Co-location Pattern (MSPCP).
Given a SPCP c = {fl,…,fv} in a set of spatial features F = {f1,f2,…,fn}, l,v∈{1,2,…,n}, if any

of c’s super-patterns is not sub-prevalent, c is called a Maximal Sub-Prevalent Co-location
Pattern (MSPCP).

Similar with the maximal co-location patterns [28] defined based on traditional prevalent
co-locations, the defined MSPCPs are the minimum representation that can not only express
the prevalence of all SPCPs but also reduce the volume of the whole SPCPs effectively.
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In the following two sections, two novel algorithms focus on the discovery of complete
MSPCPs are proposed, respectively.

3 A prefix-tree-based algorithm

A prefix-tree-based algorithm (PTBA) is proposed in this section. In PTBA, in order to
efficiently perform candidate pruning, all MSPCP candidates generated from 2-size
SPCPs are organized into a prefix tree. Meanwhile, an intersection-based method is
presented to compute the star participation index (SPI) of candidates. Finally, the
performance of PTBA is analyzed, and then a pruning lemma is given.

3.1 Basic idea

To demonstrate the basic idea of PTBA, first, star neighborhoods instance is equivalent
to each other, i.e., if oj∈SNsI(oi), oi∈SNsI(oj). Thus, we firstly collect pairs of instances
neighbors, and then select 2-size SPCPs by comparison with a given sub-prevalence
threshold min_sprev.

With Lemma 1, from the set of 2-size SPCPs, MSPCP candidates can be generated
using feature sets forming cliques. For example, Given a set of 2-size SPCPs: SPCP2 =
{{A, B}, {A, D}, {A, E}, {B, C}, {B, D}, {B, E}, {C, D}, {D, E}}, the feature set {A,
B, D, E} is a 4-size MSPCP candidate because all its 2-size subsets are sub-prevalent,
while {C, D, E} is not a candidate because {C, E} is not included in the set of 2-size
SPCPs.

A lexicographic order based method is used to generate all MSPCP candidates. For
reducing the candidate search space during the candidate generation process, a prefix tree
is constructed to organize all generated candidates where each branch expresses a
candidate and new branches would share common prefixes. For example, the prefix tree
constructed using a set of candidates {{ABCD, ABC, ABD, ACD, AC, AD}, {BCD,
BC, BD}, {CDE, CE}, {DE}} is shown in Figure 2, the candidate {A, B, C, D} is the
first candidate to be added to the candidate search space tree. The following candidate
{A, B, C} cannot form a new branch because {A, B, C} is a prefix of {A, B, C, D},

A B C D

B C D C D

C D

D E

D

D D E

E

(a) A candidate search space tree

A B C D

B C D C D

C D

D E

D

D D E

E

(b) After finding a {A,B,C,D} maximal set

Y

Y

Figure 2 Candidate search space tree and pruning
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whilst {A, B, D} can form a new branch because only {A, B} of {A, B, D} can be
represented by {A, B, C} or {A, B, C, D}.

To identify each node of the prefix tree, two attributes head and tail are assigned to
each node, the head attribute demonstrates its ancestor nodes and the tail attribute
indicates the set of its descendant nodes. For example, consider nodes Y′ and Y′′ in
Figure 2 whose head attribute values are {A} and {A, B}, respectively, and the tail
attribute value are the set {B, C, D} and {C, D}, respectively. Thus, the Head Union Tail
(HUT) of Y′ is {A, B, C, D}.

A maximal sub-prevalent co-location pattern is a sub-prevalent co-location pattern
that any of its supersets is not sub-prevalent while all its subsets are sub-prevalent. Thus,
it is reasonable to generate MSPCP candidates from long size to short size, and the
longest MSPCP candidate is firstly to be checked whether it is a MSPCP according to
Definition 9 and 10. Once a candidate is checked as a MSPCP, the algorithm then starts a
pruning process. Each node in the prefix tree is traversed using a breadth-first way to
check whether its HUT is a subset of a current maximal set. If its HUT is a subset of any
current MSPCPs, the sub-tree whose root is the node can be pruned. For example, in
Figure 2a, suppose that {A, B, C, D} is a MSPCP. The breadth-first way of checking and
pruning for candidates in the search space tree is performed as follows. First, the HUT of
node A is {A, B, C, D} which is a subset of {A, B, C, D}, thus, the sub-tree whose root
is A is pruned. The next node in same level is node B with HUT {B, C, D} also a subset
of {A, B, C, D}, thus, this sub-tree can be pruned. The pruning process continues with
the rest of the nodes in the first level. Figure 2b shows the candidate search space tree
after the checking and pruning operations when the maximal set only contains {A, B, C,
D}.

The processes mentioned above perform continually until there are no more candidates to
process.

From the method discussed above, the core problem is to compute the sub-prevalence
measure of a candidate c, i.e. SPI(c) (star participation index of c). Using the 2-size co-
location instances (neighborhoods instances’ pairs), according to Lemma 2, the SPI of
any k-size pattern (k > 2) can be computed.

Lemma 2 Given the 2-size co-location instances of a spatial data set, the SPI of a k-size co-
location pattern c = {f1, f2, …, fk} can be calculated as follows:

SPI cð Þ ¼ min
n
j ∩
j¼2;:::k

SPIns f 1; f j

n o
; f 1

� �
j=jS f 1 j; :::; j ∩

j¼1;:::k−1
SPIns f k ; f j

n o
; f k

� �
j=jS f k j

o
ð3Þ

where SPIns(c, fi) is the set of star participation instances of fi in c.

Proof For c = {f1, f2, …, fk}, according to Definition 6,

SPIns c; f ið Þ ¼ ∩
j¼1;…k; j≠1

SPIns f i; f j

n o
; f i

� �
. And by Definitions 7 and 8, the formula for

calculating SPI(c) is obvious.
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For example, in Figure 1, If c = {A, B, C}, SPI(c) = min{|{A.1, A.3, A.4} ∩ {A.1, A.3,
A.4}| / 4, |{B.1, B.2, B.3} ∩ {B.1, B.3}| / 5, |{C.1, C.2} ∩ {C.1, C.2, C.3}| / 3} =min{3/4,
2/5, 2/3} = 0.4.

3.2 Algorithm

The pseudo-code of PTBA to mine all MSPCPs is shown in Algorithm 1.
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Preprocessing and candidate generation (Step 1–4) Given an input spatial data set and a
neighbor distance threshold d, we firstly find all neighboring instance pairs (all 2-size co-
location instances) using a geometric method such as plane sweep, or a spatial query method of
using quaternary trees or R-Trees. We then compute their star participation index (SPI) and
determine whether a 2-size co-location is sub-prevalent, by comparing SPI to a user-defined
sub-prevalence threshold min_sprev, and include it as the result set of MSPCP2. Based on
MSPCP2, all MSPCP candidates are generated using the lexicographic order method.

Select l-size (from lmax to 2) co-location candidates (Step 5–8) First, the longest size of
candidates is set to lmax. The MSPCP mining is processed from size l = lmax. Select l-size
candidates Cl from the candidate pool.

Calculate l-size sub-prevalent co-locations (Step 9–13) For each candidate c in Cl, based on
the related 2-size co-location instances SI2, SPI(c) is calculated by Lemma 2. If SPI(c) ≥
min_sprev, insert c into the l-size MSPCP set MSPCPl.

Update result set and prune the subsets (Step 14–15) Update the maximal sub-prevalent
result set MSPCP, and all subsets of the maximal set MSPCPl are pruned.

Return the final result set (Step 16–17) The procedure from Step 7 to Step 17 is repeated
continually until l = 3 or the candidate set is empty. The final result then can be returned.

3.3 Analysis and pruning

The main cost of performing the prefix-tree-based algorithm (PTBA) occurs with
procedures gen_2-size_co-loc_ins, gen_max_candi, and the loop of Step 7. Suppose
the total number of spatial instances is m, the number of features is n, and Am denotes
the average number of instances in all features. Then the cost of procedure gen_2-
size_co-loc_ins is at most O(m2log2m), and procedure gen_max_candi is at most O(n2)
if we suppose that computing an order string needs only a unit time by the lexico-
graphic order method.

For the loop of Step 7, the procedures calculate_spi and Subset_Pruning are the dominant
costs. If we calculate the SPI of candidates using Lemma 2, the procedure calculate_spi would

cost at most O( ∑
k¼3

lmax

jCk j⋅k2⋅Am), where |Ck| is the number of k-size candidates. The computa-

tional complexity of procedure Subset_Pruning is related to the number of candidates, and the
effects of pruning. The smaller is the size of MSPCPs, the fewer is the number to be pruned,
and so higher is the cost of Subset_Pruning.

For a data set containing n features, the number of candidates in some extreme
situation may reach as high as 2n, and with a short average size of candidates, the effect
of procedure Subset_Pruning may not be ideal. Thus, the following pruning lemma is
proposed to efficiently prune sub-trees or nodes in a candidate search space tree when a
candidate is not a MSPCP.

Lemma 3 (Depth-first pruning). If a candidate c= c′ ∪ {X} ∪ {Y} is not maximal sub-prevalent,
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(1) The node “Y” can be pruned;
(2) If SPI(c′ ∪ {X} ∪ {Y}) = SPI(c′ ∪ {X}), the sub-tree whose root is node “X” can be

pruned;
(3) If SPI(c′) = SPI(c′ ∪ {X}), the node “Y” which is a brother of the node “X” can be

pruned.

Proof Case (1) is obviously satisfied because the candidate c is not a MSPCP; For case (2)
SPI(c′ ∪ {X} ∪ {Y}) = SPI(c′ ∪ {X}), because SPI(c′ ∪ {X}) = SPI(c′ ∪ {X} ∪ {Y}) <min_sprev,
according to case (1), the sub-tree whose root is “X” can be pruned; For case (3) SPI(c′) =
SPI(c′ ∪ {X}), because SPI(c′ ∪ {Y}) = SPI(c′ ∪ {X} ∪ {Y}) <min_sprev, according to case (1),
the node “Y” in c′ ∪ {Y} can also be pruned.

For example, Figure 3a and b respectively show the pruning results of cases (2) and (3) in
Lemma 3 after finding the non-MSPCP {A, C, D, E}.

In this section, PTBA algorithms has been proposed to discover all MSPCPs, although it is
feasible, in big and dense data sets, large number of candidates may be generated from the
candidate search space tree, meanwhile, the process for checking sub-prevalence of a pattern is
cost, these problems limit the performance of PTBA algorithm. Thus, to solve above problems
efficiently, a novel partitioning technique will be proposed in the next section.

4 A partition-based algorithm

4.1 Method

In this section, a novel method called partition-based algorithm (PBA) is proposed where a
divide-and-conquer strategy is adopted. This strategy can be stated as follows. First, the 2-size
SPCPs are divided into a set of strings by the relation = head in lexicographic order, and then a
core pattern method is used for each string to do the mining process separately. We first define
the following related concepts.

A B C D

B C D C

C D

D E

E

E

D

E

E

(a) If the case 

SPI({A,C,D,E})=SPI({A,C,D})
(b) If the case 

SPI({A,C})=SPI({A,C,D})

A B C D

B C D C

C D

D E

E

E

D

E

E

Figure 3 Pruning results after finding {A, C, D, E} is not maximally sub-prevalent
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Definition 11 Partition pattern (PP) and core pattern (CP).
A partition pattern (PP) of a co-location c is a 2-size pattern contained in c, if its star

participation index (SPI) is the biggest of all 2-size co-locations of c, and two SPCPs divided
by the partition pattern (PP), are called core patterns (CPs) of c.

For example, given a co-location c = {B, D, E, G}, if the PP of c is {D, E}, CPs of c are {B,
D, G} and {B, E, G}. Because PP is a 2-size co-location of c having the biggest SPI value, the
CPs divided by PP are more likely to be key patterns determining the sub-prevalence of c.

The process of the core pattern method to identify SPCPs: Given a l-size co-location c = {f1,
f2, …, fl}and its PP {fl-1, fl}, c can be divided into two (l-1)-size CPs {f1, …, fl-2, fl-1} and {f1,
…, fl-2, fl} by {fl-1, fl}. If two CPs {f1,…, fl-2, fl-1} and {f1,…, fl-2, fl} are sub-prevalent, and the
they satisfy the following two additional conditions, c is a SPCP.

The additional condition (1):

jSPIns f 1; :::; f l−2; f l−1f g; f l−1ð Þ∩SPIns f l−1; f lf g; f l−1ð Þj=jS f l−1 j≥min sprev

and jSPIns f 1; :::; f l−2; f lf g; f lð Þ∩SPIns f l−1; f lf g; f lð Þj=jS f l j
o
≥min sprev

The additional condition (2):

min
n
jSPIns f 1; :::; f l−2; f l−1f g; f 1ð Þ∩SPIns f 1; :::; f l−2; f lf g; f 1ð Þj=jS f 1 j; :::;

jSPIns f 1; :::; f l−2; f l−1f g; f l−2ð Þ∩SPIns f 1; :::; f l−2; f lf g; f l−2ð Þj=jS f l−2 j
o
≥min sprev

In fact,

SPI cð Þ ¼ min
n
jSPIns f 1; :::; f l−2; f l−1f g; f 1ð Þ∩SPIns f 1; :::; f l−2; f lf g; f 1ð Þj=jS f 1 j; :::;

jSPIns f 1; :::; f l−2; f l−1f g; f l−2ð Þ∩SPIns f 1; :::; f l−2; f lf g; f l−2ð Þj=jS f l−2 j;
jSPIns f 1; :::; f l−2; f l−1f g; f l−1ð Þ∩SPIns f l−1; f lf g; f l−1ð Þj=jS f l−1 j;
jSPIns f 1; :::; f l−2; f lf g; f lð Þ∩SPIns f l−1; f lf g; f lð Þj=jS f l j

o

The idea of this method is shown in Figure 4 visually.
For identifying two CPs {f1,…,fl-2, fl-1} and {f1,…,fl-2, fl}, they can be treated recursively by

the core pattern method employing a bottom-up iteration strategy starting from identifying core
patterns using a level-wised way, i.e., starts from 3-size core patterns, then 4-size,…, until l-
size patterns. The following example gives an illustration on how the PBA algorithm works.

{f1 … fl-2, fl-1} {f1 … fl-2, fl}
Partition by 

{fl-1,fl}

{f1… fl-2, fl-1} is 

sub-prevalent
Identifying 

sub-patterns

Result

{f1… fl-2, fl} is 

sub-prevalent

Additional condition (1) 
is satisfied.

Additional condition (2) 
is satisfied.

{f1… fl} is sub-prevalent

Additional 

conditions

Figure 4 The idea of core pattern method
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Suppose there is the set of 2-size SPCPs: SPCP2 = {{B, C}, {B, D}, {B, E}, {B, G}, {B,
H}, {C, D}, {C, E}, {C, H}, {D, E}, {D, G}, {D, H}, {E, F}, {E, G}, {E, H}, {F, G}} in a
spatial data set with feature set {B, C, D, E, F, G, H}.

First, SPCP2 is partitioned into a set of strings (denoted as L1) in lexicographical order
under the relation = head. Thus, L1 = {δhead(B) = BCDEGH, δhead(C) = CDEH, δhead(D) = DEGH,
δhead(E) = EFGH, δhead(F) = FG, δhead(G) = G, δhead(H) = H}. This partition is called
Partition_1.

Then, using 2-size non-SPCPs, ordered strings in L1 are divided further. In our example,

SPCP2{BF, CF, CG, DF, FH}. Thus, δhead(B) = BCDEGH is further divided into two strings
BCDEH and BDEGH by CG included both in non-SPCP2 and δhead(B). The division process
will be continually performed on above sub-strings successively until no 2-size or more non-
SPCPs in it. Thus, L1 can be replaced with L = {BCDEH, BDEGH, CDEH, DEGH, EFG,
EGH, FG}. The non-SPCP-based partition is called Partition_2.

Next, strings in L are to be treated successively using the core pattern method to obtain the
whole MSPCPs. In our example, we first take into account the ordered string “BCDEH”.
Suppose {D, E} is the PP of c = {B, C, D, E, H}, then the CPs of c are {B, C, D, H} and {B, C,
E, H}. Continually using the partition process, we may finally obtain 3-size CPs {B, C, D} and
{B, C, H} for {B, C, D, H}, and {B, C, E} and {B, C, H} for {B, C, E, H}. The partition
obtaining CPs based on PP is called Partition_3. The real line part in Figure 5 is the result of
partitioning {B, C, D, E, H} by Partition_3.

Given a 3-size core pattern, it can be computed directly using Lemma 2, and the SPI value
of k-size (k > 3) can be computed by k-1-size core patterns. In our example:

Given two 3-size core patterns {B, C, D} and {B, C, H}, if they are sub-prevalent and
satisfy additional conditions (1) and (2), the 4-size co-location {B, C, D, H} combined by {B,
C, D} and {B, C, H} is sub-prevalent. Similarly, we can identify {B, C, E, H}, and then
identify {B, C, D, E, H} using {B, C, D, H} and {B, C, E, H}.

If a 5-size pattern {B, C, D, E, H} is not sub-prevalent, its 4-size patterns with the same
head B (two CPs excluded) {B, C, D, E} and {B, D, E, H} (dotted line part in Figure 5) are
required to be identified. Note that a lower-size pattern may be used for identifying its higher-
size supersets for multiple times. For example, in Figure 5, the pattern {B, C, H} is used to
identify its supersets {B, C, D, H} and {B, C, E, H}, and the pattern {B, C, D} is used to
identify its supersets {B, C, D, E} and {B, C, D, H}. Thus, if the results of the lower-size
patterns are stored once they are identified, it can save much time for identifying its higher-size
supersets.

If the process of checking the sub-prevalence of ordered string “BCDEH” is finished, the
ordered string “BDEGH” in δhead(B) is then to be checked. Next, we obtain the set MSPCPB

fromMSPCPs with the head “B”, and then prune all subsets ofMSPCPB in L. In the following,
the ordered strings with a head of “C” in L are handled.

BCDH BCEH BCDE BDEH

BCD BCH BDHBCE

BCDEH

BEH BDE

Figure 5 {B, C, D, E, H} and its
sub-sets with head of “B”
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Algorithm 2 summarizes this mining process.

Preprocessing (Step 1–4) First, compute the instances set SI2 of 2-size co-locations, and
select all 2-size SPCP2. Then, based on Partition_1 and Partition_2, we obtain a set L of
ordered strings.

Get the ordered strings with the head of “i” (Step 5–8) First, the set of ordered strings with
the head of “i” in L is put to Li. The set MSPCPi of all MSPCPs with the head of “i” is set to
“null”. The mark array B is set initial value 0 (B prevents repeat computation), and the value of
B is 1 if the corresponding pattern is sub-prevalent, otherwise −1. “i” runs from the first feature
to the last feature.

Deal with ordered strings in Li by the core pattern method (Step 9–15) For each ordered
string c in Li, compute the set HSc of all MSPCPs in c by the recursive procedure CPD(c, |c|).
The design of the recursive procedure is based on the core pattern method. For Step 13,
according to the computational results of CPD(c, |c|), we can obtain MSPCPs of c. For
example, if B(Hash(c)) = 1 then c→HSc. Either c is a unique MSPCP in c, or else we have
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to check the two core patterns c′ and c′′ of c. Next, we merge the computational result HSc into
the result set MSPCPi with the head of “i”. In the merging operation of Step 14, we need to
delete patterns which are the sub-sets of other patterns. Then the next ordered string in Li is
dealt with until there are no ordered strings left.

Update result set and prune the subsets (Step 16–17) Update maximal sub-prevalent result
set MSPCP, and all subsets of MSPCPi in L are pruned.

Return the final result set (Step 18) The set of ordered strings with the head of the next
feature is dealt with until there are no ordered strings left in L. Finally, return the final result set
MSPCP of MSPCPs.

The recursive procedure CPD(c, |c|) in Algorithm 2 is shown in below.

In CPD, if c has been identified (i.e., c is a common pattern) then return; Steps 2–5 exit the
recursive procedure; Step 6 and 7 recursively call CPD with the two core patterns c′ and c′′ of
c; Steps 8–15 are for dealing with the case that two core patterns c′ and c′′ of c are sub-
prevalent, while Steps 16–20 deal with the case that c′ and c′′ are not all sub-prevalent, whereas
Steps 12–14 and Steps 17–19 are for dealing with patterns other than the two core patterns,
marked as dotted lines in Figure 5.

Analysis of computational complexity The main cost of Algorithm 2 comes from
performing Partition_1, Partition_2 and the recursive procedure CPD. The cost of Parti-
tion_1 + Partition_2 is about O(n2) because we scan all 2-size SPCPs in Partition_1, and
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because all 2-size non-SPCPs are scanned in Partition_2, the total number of 2-size patterns is
n(n-1)/2, where n is the number of spatial features.

For the cost of recursive procedure CPD, if we suppose the worst cost of computing a k-size

pattern c is T(k), then T(k) satisfies: T kð Þ ¼ 3 k ¼ 3
k−1ð ÞT k−1ð Þ k > 3

�
.

A 3-size pattern needs 3 times the intersection operations, and when k > 3, in the worst case,
all (k-1)-size sub-patterns are recursively called in CPD, and for a k-size pattern c, there are k-1
sub-patterns which are (k-1)-size and with the same head of c.

Thus T(k) is about ∏
k−1

i¼3
3⋅i. This is the worst case and includes large amounts of repeated

computation. Repeated computation has been avoided in the core pattern method.

4.2 Comparison with the Prefix-tree-based Method

We have mentioned the main disadvantages of the PTBA algorithm in Section 3: huge
volume of candidate search space tree in big and dense data sets and expensive cost for
the computation of SPI of candidates by Lemma 2. The PBA algorithm presented in this
section aims to solve these two problems.

PBA uses two partitions Partition_1 and Partition_2 to divide all candidates into
equivalent classes, in each equivalent class, patterns having the same head are succes-
sively to be identified, which can solve the problem of the candidate search space tree
being too large.

PTBA algorithm starts the identification of patterns with sizes from long to short,
while the PBA method is on the contrary which performs from 3-size to higher sizes.
Considering the expected cost of the intersection operations, the core pattern method
adopted in PBA is better than the PTBA algorithm. For example, given a 6-size pattern
c = {A, B, C, D, E, F}, it needs 24 intersection operations to directly compute SPI(c) by
Lemma 2 because 4 intersection operations are needed for the computation of SPIns(c, f)
where f is a feature of c. If c is not sub-prevalent, 15 intersection operations are needed
to compute a 5-size subset of c, and 4-size subset is 8. A 3-size pattern costs 3
intersection operations by using the core pattern method. To compute a 4-size pattern
based on two 3-size core patterns needs 4 intersection operations. Similarly, the cost of a

24

(a) The computational cost of 

prefix-tree-based method

(b) The computational cost of core 

pattern method
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Figure 6 The comparison of a 6-size pattern’s computation cost
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5-size is 5 and 6-size’s is 6. As shown in Figure 6a‘s left and b‘s right, we respectively
list the computational cost attributed to the relevant size. Thus, the expected cost of the
PTBA for a 6-size pattern c is (90 + 78 + 54 + 24)/4 = 61.5, while by PBA it is (40 + 43 +
24+ 12)/4 = 27.5. In fact, we have the following Lemma 4.

Lemma 4 The expected cost ratio of the core pattern method versus the PTBA in identifying a
size k (k > 2) co-location pattern is about 2

k−1.

Proof In the following proof, we only consider the computational cost of the two methods
where their computational volume is similar to Figure 6, where a 6-size pattern contains two 5-
size sub-patterns, three 4-size sub-patterns, and four 3-size sub-patterns.

For the core pattern method, the total cost of a k-size pattern is ∑
k

i¼3
i⋅ k−iþ 1ð Þ2

	 

. For

example, a 6-size pattern c, it is (3⋅42 + 4⋅32 + 5⋅22 + 6⋅12) = 110. So, the expected cost of

identifying c is ∑
k

i¼3
i⋅ k−iþ 1ð Þ2

	 

= k−2ð Þ.

For the prefix-tree-based method, the expected cost of a k-size pattern is

∑
k

i¼3
i⋅ i−2ð Þ2⋅ k−iþ 1ð Þ

	 

= k−2ð Þ. For example, a 6-size pattern c, it is (3⋅12⋅4 + 4⋅22⋅ 3 +

5⋅32⋅2 + 6⋅42⋅1)/4 = 246/4 = 61.5.

Consequently, the expected cost ratio τ of two methods is: τ ¼
∑
k

i¼3
i⋅ k−iþ1ð Þ2

∑
k

i¼3
i⋅ i−2ð Þ2 ⋅ k−iþ1ð Þ

. We note that

τ is approximately equal to the ratio of their mid-values. That is τ≈ k−kþ3
2 þ1ð Þ

kþ3
2 −2ð Þ2 ¼ 2

k−1.

The explanation of formula ∑
k

i¼3
i⋅ k−iþ 1ð Þ2

	 

In the core pattern method, for a k-size

pattern c, we need to compute 3 patterns of (k-2)-size and, at least, 4 patterns of (k-3)-size. In
general, i patterns of (k-i + 1)-size need to be computed, until we get a k-size pattern c.
Furthermore, the computational cost of an i-size pattern is i, and the computation of an i-size
pattern is based on (i-1)-size core patterns. So, the cost i of an i-size pattern is repeatedly
counted (k-i + 1) times.

The explanation of formula ∑
k

i¼3
i⋅ i−2ð Þ2⋅ k−iþ 1ð Þ

	 

In the prefix-tree-based method, for a

k-size pattern c, we also need to compute i patterns (i = 3,…k) of (k-i + 1)-size where the
computational cost of a i-size pattern is i⋅(i-2) in the prefix-tree-based method. When we
compute a i-size pattern, we must have already computed all higher patterns, so the cost i⋅(i-2)
of a i-size pattern is repeatedly counted (i-2) times.

If a pattern is considered not sub-prevalent, the core pattern method could find it
sooner using Partition_3 based on a partition pattern which SPI is the biggest in all the 2-
size co-locations with respect to it. In addition, the middle computational results could
either be MSPCPs or be used in the computation of other corresponding patterns. For
example, in Figure 5, if the computation comes to 5-size {B, C, D, E, H} (i.e., its two 4-
size core patterns are sub-prevalent), and that it is not sub-prevalent has been determined,
then we can declare that the two core patterns {B, C, D, H} and {B, C, E, H} are
maximally sub-prevalent up to now. At the same time, the computational results of 3-size
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patterns {B, C, D} and {B, C, E} could also be used to identify the remaining 4-size
patterns marked by dotted lines in Figure 5.

5 Experiments

In this section, real data sets and extent synthetic data sets are used to evaluate the
performance of PTBA and PBA. In order to better analyze the experimental results, the
join-less algorithm [5] has been improved to mine all MPCPs (called M-join-less
algorithm), compared with other classical algorithms (e.g. join-based) for co-location
pattern mining, M-join-less algorithm handle more data within the same run-time.

All algorithms are memory-based and implemented using C# with Intel i3–3240 @3.4 GHz
CPU and 4GB of memory. In all the following experiments, the results of all algorithms
presented in this section have been manually verified to be expected results.

5.1 Synthetic data generation

Synthetic data sets were generated using a spatial data generator similar to [6, 32]. Synthetic
data sets allow greater control over studying the effects of interesting parameters.

Table 1 describes the parameters used for our data generation. First, we generatedF features, and
then generated Η 2-size core patterns, where the feature types of each 2-size core pattern were
randomly chosen from F features. Next, average of P 2-size co-location instances per 2-size core
pattern was generated. The total number of instances was N. For locating 2-size instances, we
randomly chose S 2-size core patterns as a 2-size cluster, and then chose a point randomly in the
spatial frame (D×D), and located a cluster instancewithin an area (d× d) whose center is the chosen
point, and where cluster instances are united by 2-size co-location instances in a cluster.

To generate our specialized data sets, first, the spatial frame size D ×D controls overall data
density. For a fixed total number of instances N, the smaller D was, the denser the data was.
Second, the data density in neighborhood areas was controlled by a parameter clumpy. When a

Table 1 Experimental Parameters and Their Values in Each Experiment

Parameter Definition Experimental tables or figures

T.2/F.7 F.8 F.9 F.10(a) F.10(b) F.10(c) F.10(d)

H The number of 2-size core co-locations 60 60 60 60 60 60 60
S The size of a cluster formed by 2-size

core co-locations
6 6 6 6 6 6 6

P The average number of 2-size instances
in 2-size core co-locations

200 200 200 N/100 200 200 200

N The number of instances 20K,15K 20K 20K * 20K 20K 20K
F The number of features 20,15 20 20 20 * 20 20
D Spatial frame size(D×D) * 1K 2K 2K 2K 5K 1K
d Neighborhood distance threshold 15 15 15 15 15 * 15
min_sprev Sub-prevalence threshold 0.3 0.2 0.3 0.3 0.3 0.3 *
clumpy The number of cluster instances

generated in a same neighborhood
area

1 1 * 1 1 1 1

overlap The ratio of points overlapped in
different cluster instances over all
points

0 * 0 0 0 0 0

*: Variable values; K=1000
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point was randomly chosen for locating a 2-size cluster instances, a clumpy number of cluster
instances were generated in the d × d area. The default clumpy value is 1. Finally, the number
of instances overlapped in different cluster instances was controlled by the parameter overlap,
and N × overlap instances were randomly selected. The parameter values for the synthetic data
set used in each experiment are described in Table 1.

5.2 Comparison of Computational Complexity Factors

In this section, three synthetic data sets were used to test the costs of computational complexity
factors with different density: A sparse data set having 20 features and the maximal size of its
generated MSPCPs is 6; a dense data set also having 20 features but the maximal size of its
generated MSPCPs is as high as 9; a dense* (shown in Table 2) data set where 13-size
MSPCPs can be generated from 15 features to better observe the advantage of PTBA
compared with PBA. Table 2 shows the total execution time and the percentage of each
progress for different methods in different data sets. Overall, it can be seen that M-join-less
runs more slowly than our two algorithms in any situation, this is because the computation of
clique instances used for computing PI values is more expensive than that of intersection
operations. Thus, in the following sections, we only discuss PBA and PTBAwithout M-join-less.

From Table 2, it can be seen that in both sparse and dense data sets, PBA shows better than
PTBA, while in dense* data set with a very dense distribution, PTBA performs much better
than PBA. The reason is that PTBA is a top-down method, and in dense* data set, the average
size of prevalent co-locations is long and a long-size maximal co-locations may save much
time on the identification of its subsets, while PBA is a bottom-up method that it needs more
time to identify a long maximal co-location. Note that in PTBA algorithm, a denser data set
can cause a high percentage of Tpruning.. It also can be seen in Table 2 that Tgen_mspcp and Tpruning
consist of the main costs than any other costs. That is, the different methods for identifying
candidates are the core distinction between two algorithms.

5.3 Comparison on expected costs in identifying candidates

From Table 2, it is hard to declare whether one of the two algorithms is better than the other
one. Thus, in order to demonstrate the relationship of running time between the two algo-
rithms, the expected costs are compared to identify candidates in PBAwith those in PTBA.

Table 2 Comparison of computational complexity factors (factor %)

Method M-join-less PTBA PBA

data type sparse dense sparse dense dense* sparse dense dense*

Tgen_2_prev_col 6.12 0.6 0.2 0.001 3.40 16.25 0.9 1.87
Tgen_candi 2.58 3.85 1.96 0.29 0.44 – – –
Tgen_candi-tree – – 6.49 0.74 0.74 – – –
Tgen_2-non_prev_col – – – – – 2.52 0.001 0.001
Torder_features – – – – – 13.89 0.002 0.001
TPart_1 + Part_2 – – – – – 1.77 0.002 0.002
TPruning – – 3.12 39.21 61.53 8.59 4.16 0.26
Tgen_mspcp 91.29 95.64 88.19 59.76 33.88 56.89 94.94 97.88
Total execution time(Sec) 3.03 108.36 0.65 102.17 1.32 0.48 7.23 9.17
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A dense data set where the spatial frame size D is set as 1000 and a sparse data set where D
is set as 5000 are used to evaluate the expected performance ratio. For each data set, all k-size
candidates are selected where k is set as 6, 8, 10, 12, 14, 16 and 18, respectively. For each k-
size candidates, the average execute time on differentmin_sprev is recorded for each algorithm
wheremin_sprev is set as 0.2, 0.4, 0.6 and 0.8, respectively. Thus, the y-axis shows the ratio of
average execute time of PBA to the average execute time of PTBA. As shown in Figure 7, the
expected cost ratio decreases with the increase of the size of candidates, especially in sparse
data sets. Meanwhile, it should be noted that the experimental results are basically consistent
with the analysis in Section 4.2.

5.4 Comparison of candidate pruning ratios

We studied the effect of candidate pruning ratio with overlap ratio, which controls the false
MSPCP-candidates generated from our 2-size SPCPs. In order to make our results more
efficient, we reduced the range D and min_sprev in order to make sure that the candidate sets
are dense enough to perform our experiments.

As Figure 8 shows, with the overlap ratio increases, the pruning ratio also increases in both
PTBA and PBA, but PTBA can do better pruning than PBA although PBA has a good
performance too. This is explained by the fact that when all the 2-size patterns are all prevalent,
the PTBA has 2^|F| – (|F| + 1) candidates while PBA only has |F| candidates, and if the longest
candidate from prefix-tree generated in PTBA is prevalent, it will prune the whole tree because
the remaining candidates are subsets of this candidate. We can also see that the candidate
pruning ratio of PTBA is over 90% when the degree of overlap is bigger than 15%, and that of
PBA is also over 90% when the degree of overlap is 20%.

5.5 Effects of the Parameter Clumpy

We examined the effects of the parameter clumpy for PTBA and PBA. Clumpy shows the
number of cluster instances generated in the same neighborhood area. The bigger the clumpy
degree is, the more cluster instances gather in the same neighborhood area. As Figure 9 shows,
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as clumpy increases, PTBA and PBA all increase very slowly. In fact, their Tgen_max_prev_coloc is
almost the same for different clumpy values. Only Tgen_2-prev_coloc is affected as the clumpy
degree increases. So, both PTBA and PBA have good robustness with respect to the parameter
clumpy.

5.6 Scalability tests

We examined the scalability of PTBA and PBA with several workloads on execution time
(TPTBA and TPBA) and space cost (SPTBA and SPBA), e.g. different numbers of instances,
numbers of features, neighbor distance thresholds, and sub-prevalence thresholds.

Effect of the number of instances First, the effect of the number of instances was compared
between PTBA and PBA. In order to ensure that each data set generates around 10-size
prevalent patterns, P (The average number of 2-size instances in 2-size core co-locations, see
Table 1) was increased with the increase of the number of instances. As shown in Figure 10a,
when the number of instances is fewer, PBA performs better than PTBA, but as the data set
grows denser, PBA using a bottom-up way costs more time on calculation while PTBA
adopting a top-down manner has a drop after the point of 80 k (80000) instances. As the
number of instances increases (more than 100 K), a dense* data set is formed where the
longest candidate pattern is sub-prevalent, which makes PTBA and PBA terminate soon and
spend more on generating 2-size sub-prevalent patterns. Because PTBA costs more time on
creating the prefix tree than PBA costs on Partition_1 and Partition_2, PTBA costs a little more
than PBA. The space costs of both algorithms increase as the increase of the number of
instances, and the main reason why PTBA costs much more than PBA when the number of
instances over 100 K is that the data set gets dense enough that PTBA may generate many
long-size non-prevalent candidates being checked while PBA can discard them by checking
lower-size subsets.

Effect of the number of features Second, the performance of PTBA and PBAwas compared
with the number of features. As shown in Figure 10b, as the increase of features, PTBA shows
a slow decrease while PBA shows a rapid increase. The main reason is that when the number
of instances is fixed, an increase of the number of features may cause a decrease number of
instances per feature, which in turn causes the size of result co-locations decrease. Thus, the
shorter-size candidates may cause PBA cost more on Partition_2 from a larger number of non-
prevalent 2-size patterns, but makes PTBA efficient because of the decrease of the number of
instances per 2-size pattern. The space costs of the two algorithms are much the same because
the data set is sparse and the average size of result co-locations and the average number of
row-instances per co-location is quite low, which causes that the main space cost of both
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algorithms is the storage of row-instances. In sparse data sets, PBA may cost more space
than PTBA mainly because of the recursive process. It needs to be said that when N >
300,000 and the number of features reaches 40, a memory overflow was occurred in
implementation of PTBA.

Effect of neighbor distances The effect of different neighbor distances was examined in the
third experiment. As Figure 10c shows, both PTBA and PBA first have an increase then
decrease. The main reason of increase is that a larger neighbor distance causes larger
neighborhood area that causes a larger number of 2-size co-location instances. During this
process of the increase of neighbor distances, PBA performs better than PTBA. But when the
distance is large enough (e.g. more than 100 in Figure 10c), the data set gets dense enough that
the number and the average size of maximal sub-prevalent co-locations increase. These
increases make PTBA which adopts a top-bottom way to check a long candidate more
efficient than PBA using a bottom-up manner because the high probability of the
longest candidate being sub-prevalent. While the space costs of the two algorithms
increase as the increase of neighbor distances, because a denser data set makes longer
size candidates and larger count of row-instances, and in a dense data, PBA performs
much better than PTBA.

Effect of sub-prevalence threshold Finally, the performance effect of different sub-
prevalence threshold min_sprev was examined. Overall, an increase of sub-prevalence thresh-
old causes decreases of the execution time for both algorithms, as shown in Figure 10d.
However, the PBA algorithm drops slowly and has better time performance than PTBA
algorithm as the increase of min_sprev. With the increase of thresholds, the space costs
decrease because a higher threshold may cause fewer candidates with less size and row-
instances. When threshold is low, PTBAwill generate much more long candidates than PBA,
thus, PBA performs well than PTBA.

(a) By number of instances (b) By number of features

(c) By neighbor distances (d) By sub-prevalence thresholds
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5.7 Evaluation with Real Data Sets

In this section, a real data set of the “Three Parallel Rivers of Yunnan Protected Areas” is used
to test our algorithms. The distribution of this data set can be observed from Figure 11, where
X and Y represent the location of each instance respectively. It can be observed that the data set
forms a zonal distribution, which is common in natural ecological studies. This data set
contains 31 features (plants) and 336 instances within a rectangular spatial area of size
125 km × 720 km.

First, mining result was tested to show the differences between MSPCPs (Maximal Sub-
prevalent Co-location Patterns) and MPCPs (Maximal Prevalent co-location Patterns) using
the real data set. The neighbor distance threshold d is set as 12 km, and prevalence thresholds
min_sprev and min_prev are set as 0.3. Table 3 shows the number of MSPCPs / MPCPs with
different sizes.

From Table 3, it can be seen that the number of MSPCPs with longer-size is more than that
of MPCPs with the same parameters. This is because for MPCPs, each row-instance of a
MPCP must form a clique relationship. While for MSPCPs, each instance of a MSPCP may
not form a clique relationship. Thus, for a pattern c, the number of its instances with clique
relationship is no more than that with star partition relationship, in the other words, for the
same co-location c, PI(c) ≤ SPI(c), thus, long-size patterns are more likely to be sub-prevalent.
It also can be found in Table 3 that the percentage of long-size patterns with size over 7 in
MSPCPs is 15.5%, while in MPCPs is only 4.1%. It is significance that long patterns
containing more interesting information can be more likely to draw users’ attentions.

Figure 11 The distribution of a certain plant data

Table 3 Mining Results on the Plant Data Set in Figure 11

size N. of MSPCPs N. of MPCPs size N. of MSPCPs N. of MPCPs

2 5 15 7 23 31
3 41 70 8 35 9
4 64 115 9 10 5
5 95 98 10 7 3
6 72 73 11 3 –
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Let’s take some mined results as examples to do further analysis. Given three mined 11-size
MSPCPs are {B, G, J, O, Q, R, T, V, W, c, e}, {G, J, O, Q, R, T, V, W, a, c, e} and {G, H, J, O,
Q, R, V, W, a, c, e}, whilst three mined 10-size MPCPs are {G, J, O, R, T, V, W, a, c, e}, {G, J,
Q, R, T, V, W, a, c, e} and {J, O, Q, R, T, V, W, a, c, e}. We note that 11-size MSPCPs are
supersets of 10-size MPCPs. Let us consider one of the the rare plant “O” with dashed circles
in Figure 11, The reason why it occurs in three mined 11-size MSPCPs is that it’s basically
distributed in an axial line which is the focus area of growing plants, the same cases to the
plants “G” and “Q”.

Second, another large scale vegetation distribution data set in the “Three Parallel Rivers of
Yunnan Protected Area” was used to examine the efficiency of the PBA method, where the
number of features is 15, and the number of instances is 487,857. min_sprev was set as 0.3,
and the neighborhood distance thresholds are set as 1000 m, 3000 m, and 5000 m, respectively.
As a result, the running time of PBA is 148.26(s), 1967.84(s), and 7906.74 (s), respectively.

6 Related Works

The problem of discovering association rules based on spatial relationships was firstly
proposed by Koperski and Han [9]. This work discovers the subsets of spatial features
frequently associated with a specific reference feature, e.g., mines. A top-down, progressive
refinement method to discover all rules from the transactions was presented in [9], and Wang
et al. [24] proposed a novel method based on the partition of spatial relationships for mining
multilevel spatial association rules from the transactions. In their method, the introduction of
an equivalence partition tree method makes the discovery of rules efficient.

Morimoto [14] adopted a support count measure for discovering frequent co-located
features sets. This approach uses a space partitioning and non-overlap grouping scheme for
identifying co-located instances. However, the explicit space partitioning approach may miss
co-location instances across partitions. Shekhar and Huang [6, 16] proposed the minimum
participation ratio based on clique instances to measure the frequency of a co-location pattern.
This is a statistically meaningful interest measure for spatial co-location patterns. Thus, many
mining algorithms were proposed [6–8, 18, 26, 27, 31, 32] using this interest measure.
Specifically, [6] presented a classic join-based mining algorithm. The core idea of this
approach is to find size k clique instances by joining the instances of its size k-1 subset co-
locations where the first k-2 objects are common and then checking the neighbor relationships
between the k-1th objects. [32] proposed a star-neighborhood-based join-less algorithm. The
join-less method uses an instance-lookup scheme instead of the instance join operation used in
the join-based method for identifying clique instances. [18] put forward a CPI-tree algorithm
which uses a tree-structure to store the neighbor relationships between spatial instances, and
the clique instances of candidate patterns can be quickly generated by CPI-tree.

In terms of uncertain data, [11] utilized a probability density function to describe the uncer-
tainty of spatial instances’ locations, defined the expected distance between instances and
proposed the UJoin-based algorithm. Based on the concept of semantic proximity neighborhoods
under the fuzzy equivalent classes of instances, [21] studied the problem of discovering co-
location patterns from interval data. [23] considered the uncertainty of spatial instances’ existence,
and defined a prevalence probability and expected participation index based on a possible world
model, and then provided exact and approximation algorithms that mine probabilistic prevalent
co-location patterns. [15] proposed two new kinds of co-location pattern mining for fuzzy objects,
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single co-location pattern mining (SCP) and range co-location pattern mining (RCP), to mining
co-location patterns at a membership threshold or within a membership range.

To deal with the situation where there exists a rare feature in the data sets (i.e. the number of
instances with this feature is significantly smaller than those with other features), [5] proposed
a maximal participation ratio (maxPR) interest measure and a maxPrune algorithm based on a
weak monotonicity property of the maxPR measure, and [4] defined a minimum weighted
participation ratio interest measure and gave a mining algorithm based on this ratio, which can
not only mine the prevalent co-location patterns with rare features, but also exclude the non-
prevalent patterns.

In some cases, the co-location patterns are not prevalent globally, or some low participation
index patterns are still prevalent in a specific region. Therefore, regional co-location pattern
mining has become a research focus [1, 2]. The huge size of prevalent co-location patterns
does not help the user to easily retrieve relevant information. Such observation leads to various
definitions of redundancy in order to limit the number of spatial prevalent co-location patterns
[17, 19, 25, 28–30]. Recently domain-driven spatial co-location pattern discovery has been
attracting more researchers [3, 12, 13, 22].

Although there were a lot of researches about co-location pattern mining, the problem about
sub-prevalent co-location pattern mining was taken the first step by us in [20]. We enlarge that
work here by adding more theoretical and experimental analysis.

Our work on the interest measure lies between the reference object model [9] and the
minimum participation ratio measure [6, 16]. Without specific reference feature, directly
applying the model of [9] may not capture some co-locations found by the techniques in this
paper, whilst the measure in [6, 16] may miss some reasonable and useful co-located patterns
in practical applications because of the requirement of clique instances. In the designs for
mining MSPCPs, the idea of using the prefix-tree structure comes from the work presented
in [25]; the idea of pruning breadth-first in candidate space search tree can be traced back
to [28, 30]. In the literature we have found no mention of our core pattern method based on
partitions.

7 Conclusions

In traditional spatial co-location pattern mining, instances forming a clique relationship are
used as a row-instance of a co-location pattern. This definition is too strict and may lose some
significance of the co-located features in practice. To solve this problem, new kinds of co-
location patterns which have more meaningful significance for co-located features are pro-
posed in this paper. Thanks to the downward inclusion property of our proposed star
participation ratio (SPR) and star participation index (SPI), it makes the discovery of sub-
prevalent maximal co-location pattern mining feasible.

In order to discover maximal sub-prevalent co-locations, two novel algorithms PBA and
PTBA were proposed in this paper, and extent experiments were conducted to evaluate the
performances of them. Empirical evaluation shows that our two algorithms complement each
other for different situations, i.e., PBA is more suitable to sparse data sets while PTBA
performs well in dense data sets. Overall, our proposed two algorithms are more efficient
than M-join-less algorithm in any case.

For the future plan, we mean to extend the maximal sub-prevalent co-location mining to
other types of spatial data, e.g. spatio-temporal data and uncertain data.
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