
World Wide Web (2019) 22:1359–1399
https://doi.org/10.1007/s11280-018-0643-5

IG-Tree: an efficient spatial keyword index for planning best
path queries on road networks

Anasthasia Agnes Haryanto1 ·Md. Saiful Islam2 ·David Taniar1 ·
Muhammad Aamir Cheema1

Published online: 15 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Due to the popularity of Spatial Databases, many search engine providers have started to
expand their text searching capability to include geographical information. Because of this
reason, many new queries on spatial objects affiliated with textual information, known as the
Spatial Keyword Queries, have taken significant research interest in the past years. Unfortu-
nately, most of existing works on Spatial Keyword Queries only focus on objects retrieval.
There is barely any work on route planning queries, even though route planning is often
needed in our daily life. In this research, we propose the Best Path Query, which we find
the best optimum route from two different spatial locations that visits or avoids the objects
that are specified by the textual data given by the user. We show that Best Path Query is an
NP-Hard problem. We propose an efficient indexing technique, namely IG-Tree, and three
different algorithms with different trade-offs to process the Best Path Queries on Road Net-
works. Our extensive experimental study demonstrates the efficiency and accuracy of our
proposed approach.

Keywords Spatial databases · Spatial keywords · Trip planning queries · IG-Tree · Best
path · Road networks

� Anasthasia Agnes Haryanto
agnes.haryanto@monash.edu

Md. Saiful Islam
mdsaiful.islam@griffith.edu.au

David Taniar
david.taniar@monash.edu

Muhammad Aamir Cheema
aamir.cheema@monash.edu

1 Faculty of Information Technology, Monash University, Melbourne, Australia
2 School of Information and Communication Technology, Griffith University, Gold Coast, Australia

Received: 30 July 2018 / Revised: 6 September 2018 / Accepted: 31 October 2018 /

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0643-5&domain=pdf
http://orcid.org/0000-0001-7181-5328
mailto: agnes.haryanto@monash.edu
mailto: mdsaiful.islam@griffith.edu.au
mailto: david.taniar@monash.edu
mailto: aamir.cheema@monash.edu

1360 World Wide Web (2019) 22:1359–1399

1 Introduction

Spatial Databases have taken a big interest in today’s society. A lot of applications are using
spatial data to help our daily necessity, such as the GPS. The application of spatial data
itself is accessible not only on desktop computers, but it is also very popular in mobile
environments these days as mobile devices provide significant services in our everyday life
[1, 24, 29, 38, 39, 44, 50]. According to StatisticBrain, about 81% of mobile users use their
device for Maps and directions [53]. With the popularity of Spatial Databases, search engine
providers, such as Google and Yahoo, have broadened their text searching capability to
provide geographical information [6, 18]. The GlobalWebIndex showed that Google Maps
is the most used app as it is used by 54% of the general smartphone users [54]. In the
past, conventional search engines could only process simple user queries, such as finding
a Point of Interest (POI) based on a certain keyword [25]. However the high demand in
spatial data compels the search engines to have the capability of processing more than such
simple queries. A lot of new queries on spatial objects affiliated with textual information,
known as Spatial Keyword Queries [45], have been studied in recent years. A number of
researches have been done in order to improve the geographical search engines. Yet there
are still many challenges to combine and process both the textual information and the spatial
data.

Nowadays, each spatial object contains one or more meaningful keywords as to represent
the object’s entities [15, 18]. The keywords may contain country name, city name, address,
references to landmark, or even type of road [6]. For example in Figure 1, the points denote
spatial objects and each object is affiliated with one or more keywords. Through the exis-
tence of this kind of spatial keywords information, the Spatial Keyword Queries become
varied. Some of the commonly used queries are the Top-k kNN Query, Boolean kNN Query,
and Boolean Range Query [7]. All of these queries require the user to give a spatial location

Figure 1 Illustration of a road network with spatial keyword objects

World Wide Web (2019) 22:1359–1399 1361

(normally the current user location) and textual data in the form of keywords as the input.
While the output of these queries is spatial objects that are nearest to the user’s location and
contain the keywords given. The principle parameter used to identify the nearest objects is
based on the shortest path distance, which is basically computing the minimum distance
between two location points. Although the existing shortest path-based solutions are useful,
they are not always sufficient for our needs. In real life, we often want to plan our trip with
the most efficient cost (e.g. time, distance) taken. We may need to stop by several locations
in our trip before arriving to the designated destination and there are also times when we
would like to avoid some spatial objects that can interfere our activities. Planning a trip is
eminently more complex than a simple source-to-destination type of query. Unfortunately,
the existing studies on trip planning query in Spatio-Textual area are not flexible enough
to answer this kind of query. Furthermore, often at times researchers only consider users to
give keywords just to find POIs. But in reality, this is not always the case. Some query key-
words may have negative connotations, such as traffic jams, which means that not all user
given keywords can be considered as POI.

In this paper, we propose a new variant of spatial keywords query. Given a user with
his/her location, this user wants to go to his/her destination while stopping by or avoiding
several locations denoted by certain keywords. For instance a user wants to go to his work-
place from his house, but before arriving to the workplace he wants to stop by a gas station
to refill his car fuel, a bakery to get some breakfast, and also wish to avoid any highway
along his trip (see Figure 1). In this query, the user specifies the source and destination loca-
tions and several other keywords. The keywords specified are gas station, bakery, and avoid
highway. So we need to find the most optimum path for the user that satisfies his preferred
keywords condition. Using the illustration in Figure 1, assume that sl is the user’s house
(source location) and dl is his workplace (destination location). There are a number of spa-
tial objects that contain the keyword of gas station and bakery, such as s2, s3, s5, s10, and
s11, hence there are many possibilities of path combination to be established from sl to dl

passing through at least one of each keyword. Looking at the road network, the path with
the shortest distance is from sl to s2 to stop by a gas station, then s3 to stop by a bakery, and
then dl . However this path passes through a highway. One of the keywords specified by the
user to avoid is highway, which means that the path does not satisfy all the criteria given by
the user. Therefore the best path that offers the least sum of distance and meets the criteria
is from sl to s11 for bakery, then s10 to stop by the gas station, then finally the destination
dl (obviously this path also avoids any highway). We call this kind of query as the Best Path
Query (BP).

In Best Path Query, we are dealing with both spatial and textual data. Hence the user
given query has two main parts: the spatial data part that consists of the source and des-
tination locations that are given by the user, and the textual data part that consists of the
keywords that the user would like to pass or avoid throughout his/her trip to the destination.
Based on the user input, the query keyword itself can be classified into positive or nega-
tive situations. As in previous example, the user gave a negative keyword, which is to avoid
highway. The positive keyword here is the POI that he wants to pass by, which are the gas
station and bakery. The formal definition of Best Path Query is given as follow:

Definition 1 (Best Path Query) Given a source location sl , a destination location dl , and
a set of keywords K = {k1, k2, ..., kn}, where each ki for 1 ≤ i ≤ n can be positive
(denoted by k+) or negative (denoted by k−), find the Best Path from sl to dl , denoted by
BP(sl, dl, K), that passes through all k+ and avoid all k− with optimum cost.

1362 World Wide Web (2019) 22:1359–1399

1.1 Challenges

The main challenge in this research is in the insufficiency of current solutions to trip plan-
ning in spatial keywords area, especially on Best Path Query. Existing studies do not take
into consideration negative keywords. Having negative keywords actually increase the com-
plexity of the problem as we have to make sure that we can avoid certain paths. There are
definitely some cases where the result cannot be retrieved as we have to avoid all of the
paths in between the source and destination locations.

The road networks are usually represented as a graph. The edges typically represent the
road segments while the vertices represent the road intersections. So the path generation is
always limited only to the edges to adjacent vertices. This increases the complexity of our
query computation when we are working specifically in this environment. The complexity
is also intensified with the types of query keywords given by the user. When the query
keywords are negative, a lot of the paths will be blocked as we have to avoid them. We
always have to make sure that we plan the route optimally despite these complexities.

Another challenge is that most of the route planning problems are regarded as a general-
ization of Traveling Salesman Problem (TSP) problem [3, 4]. They are NP -hard problems.
The solutions offered for these queries are in polynomial time approximation algorithms.
Even so, the solutions offered generally involve no pre-processing. This causes more com-
putation particularly since the computation requires the processing of both spatial and
textual relevancy. So having an on-the-go solution does not always guarantee performance
efficiency. There are also very limited indexing techniques in the Spatio-Textual area, espe-
cially on road networks. In this research we attempt to provide a solution to this problem by
offering a novel index that incorporate both keywords and spatial road networks information
based on G-Tree [51, 52] and IR2-Tree [15].

1.2 Contributions

Our main contributions in this paper are as follows:

– We formally define Best Path problem on road networks and prove that this is an NP -
hard problem.

– We develop a novel indexing scheme, called IG-Tree, for planning Best Path queries in
road networks.

– We present three approximate algorithms with different trade-offs for searching Best
Paths on road networks.

– We also demonstrate the effectiveness and efficiency of our algorithms through
comprehensive experiments on real datasets.

1.3 Organisation

The rest of the paper is organised as follows. Section 2 presents the preliminaries and the
query model for Best Path problem on road networks. Section 3 discusses the computa-
tional complexities of the Best Path problem on road networks. We introduce the IG-Tree in
Section 4 and discuss our algorithms to solve the Best Path problem in Section 5. Section 6
presents the experimental evaluations of all the algorithms proposed. We discuss some
related works in Section 7. Finally, Section 8 concludes the paper.

World Wide Web (2019) 22:1359–1399 1363

2 Preliminaries

This section presents the necessary background information, and the data and query model
for Best Path problem on road networks.

2.1 Road network

We consider road network as an undirected weighted graph G = (V ,E), where V is a set
of vertices and E is a set of edges. Each edge (u, v) ∈ E connects two adjacent vertices
u, v ∈ V and is associated with a non-negative weight w(u, v) > 0 that represents distance
or travel time.

A path P(v1, vn) = {v1, v2, ..., vn} is a sequenced vertices such that vi is adjacent to
vi+1, i.e., (vi, vi+1) ∈ E, for 1 ≤ i < n. The cost of a path P , denoted by cost (P), is
the sum of weights of the edges of P . Given vertices u and v, we use δ(u, v) to denote the
shortest path from u to v while we use dist (u, v) to denote the cost of δ(u, v). Figure 2
shows an example of a road network. If given a source vertex v1 and destination vertex v4,
then δ(v1, v4) = {v1, v2, v5, v4} is the shortest path between v1 and v4 and dist (v1, v4) = 6.

2.2 Datamodel

A spatio-textual object o is an object with a spatial location from S = {s1, s2, ..., sm} that
contains a set of keywords from T = {t1, t2, ..., tx}. We assume that spatio-textual objects
are located at vertices in V . The weight of an edge (u, v) ∈ E is the travel time or road net-
work distance of two spatially-adjacent objects o1 and o2 representing u and v, respectively.
We use vertex v or spatio-textual object o interchangeably in this paper.

2.3 Querymodel

Given a road network G, the user queries consist of a source location sl , a destination loca-
tion dl , and preferred set of keywords K = {k1, k2, ..., kn}, where each ki , 1 ≤ i ≤ n, can
be positive (k+) or negative (k−). A positive keyword k+ means that the keyword satisfies
what the user wants, while a negative keyword k− means that part of the keyword expresses
negative connotation which the user wants to avoid. We assume K ⊆ T . Having all these
information, we want to find the Best Path BP(sl, dl, K) that establishes a shortest path

Figure 2 Example of a road network

1364 World Wide Web (2019) 22:1359–1399

from sl to dl , and that passes through all k+ and avoids all k− keyword matching vertices
in G.

Table 1 presents the list of mathematical notations used in this paper.

3 Complexity analysis

The Best Path problem is different from the general Shortest Path problem. In Best Path
problem, we want to find the path with objects of interest along our way to the destination.
The objects of interest are determined by the keywords. The result of Best Path itself often is
longer in distance than the Shortest Path, but there are also cases where it can have the same
result as the Shortest Path. When the user does not specify any keywords at all in the query,
then the Best Path is basically the Shortest Path since there are only source and destination
locations provided. The Shortest Path problem is solvable in polynomial time. Therefore we
can implement the commonly used algorithms for Shortest Path, such as Dijkstra algorithm,
for this particular case.

Lemma 1 Given sl , dl , and K = {}, BP(sl, dl, K) = δ(sl, dl).

Proof Base Case: If |P | = 1 and K = {}, then P = {sl} and cost (P) = 0 = dist (sl, sl).
Hence, δ(sl, sl) = BP(sl, sl, K).

Inductive hypothesis: Let u be the last vertex added to P , P ′ = P ∪ {u}. In this case our
Inductive Hypothesis is

for each y ∈ P ′, cost (P ′(sl, y)) = cost (δ(sl, y))

Inductive step: Suppose that there is a shortest path Q from sl to u and

cost (Q) < cost (P ′(sl, u))

Since Q is a shortest path, then cost (Q) = dist (sl, u).
Assume that the shortest path Q begins at P ′ and then leaves P ′ before arriving to the

destination u. (y, z) is the first edge in Q that leaves P ′, and Qy is a shortest path from sl
to y, so

cost (Qy) + w(y, z) ≤ cost (Q)

Table 1 List of notations used in the paper

Notation Definition

G Road network

δ(u, v) Shortest path between u and v

dist (u, v) Distance between u and v

sl , dl Source location, destination location

K Query keywords given by user

k+, k− Positive keyword, negative keyword

BP(sl , dl , K) The Best Path from sl to dl that passes through all k+ and avoids k−

World Wide Web (2019) 22:1359–1399 1365

Since according to the Inductive Hypothesis cost (P ′(sl, y)) is also the cost of δ(sl, y), then
cost (P ′(sl, y)) ≤ cost (Qy). So it gives us

cost (P ′(sl, y)) + w(y, z) ≤ cost (Qz)

As y and z are adjacent vertices, then

cost (P ′(sl, z)) ≤ cost (P ′(sl, y)) + w(y, z)

Since u is part of Q, so
cost (P ′(sl, u)) ≤ cost (P ′(sl, z))

Therefore shortest path Q does not exist, so cost (P ′(sl, u)) = δ(sl, u) = BP(sl, u,K).

However, this is not the same when we have a keyword specified by the user. Depending
on the positive or negative value, the path may or may not be retrieved. If the query contains
only one positive keyword, doing the shortest path search from source to the nearest vertex
that has matching keyword then doing another shortest path search from the nearest vertex
with matching keyword to the destination is incorrect. As an example using the road network
in Figure 1, assume that the source sl is v5, destination dl is v10, and then the preferred
keyword given by the user is located at v1 and v3. If we choose the nearest keyword match
vertex from v5, v3 is the nearest since dist (v5, v3) is 3, while dist (v5, v1) is 6. However if
we calculate the total distance from v5 to v3 to v10, the total is 18. On the contrary, the total
distance from v5 to v1 to v10 is 9, which is a lot shorter than having v3 as the chosen keyword
match vertex. Hence, choosing the nearest vertex with matching keyword will cause local
minimum problem.

Meanwhile if the query keyword does not exist in T , then BP(sl, dl, K) is also δ(sl, dl).

Lemma 2 Given sl , dl , and K = {k1}, k1 /∈ T . Thus BP(sl, dl, K) = δ(sl, dl).

Proof If k1 /∈ T , then K = {}; which is already proven in Lemma 1.

If the user query contains a negative keyword, then the vertices that have this particular
keyword need to be avoided/blocked. When we do the query processing to find the Best
Path, these vertices can be pruned/disconnected from the graph as they are no longer con-
sidered as POI. This may also cause a deadend in the graph since a potential path can be
ceased with the disappearance of a vertex. So when an edge of a vertex with negative key-
word is a bridge, we will not be able to retrieve any Best Path. Lemma 3 and 4 prove the
non-existence of Best Path for this particular case.

Lemma 3 If there exists a bridge (u, v) in G, and G consists of subgraph H and I that are
connected by (u, v). Given sl ∈ H and dl ∈ I , then (u, v) ⊆ BP(sl, dl, K).

Proof Assume that (u, v) is a bridge in G and BP(sl, dl, K) on G does not contain (u, v).
Since BP(sl, dl, K) is a path that every vertex in it has to be connected with each other, and
BP(sl, dl, K) ⊆ G \ {(u, v)} which G \ {(u, v)} is a disconnected graph, then it must be
disconnected.

Definition 2 A critical path cp(vi, vj), i �= j , is a path that consists of one or more graph
bridges between vi and vj .

1366 World Wide Web (2019) 22:1359–1399

Lemma 4 Given sl , dl , K = {k−}, and BP(sl, dl, K) = cp(sl, dl). Then BP(sl, dl, K)

does not exist.

Proof Suppose that there exists a bridge (u, v) in BP(sl, dl, K) and k− ∈ (u, v). Since we
have to avoid negative keywords, then (u, v) has to be pruned from BP(sl, dl, K). Hence,
the graph is now disconnected as proved in Lemma 3.

Even though negative keywords can cause path blockage, it does not mean that we cannot
retrieve any Best Path at all. The path blockage might cause us to re-route to another path
even though it may cause a longer path.

Lemma 5 Given dl , sl , and K = {k−}, if BP(sl, dl, K) �= cp(sl, dl), then there exists
BP(sl, dl, K).

Proof We can establish a path since the graph is still connected even though there is k−.

In the case where the user gave a set of positive keywords as the query input and there is
no negative keyword at all, then the Best Path’s result will be similar to the state-of-the-art
Trip Planning Route Queries (TPQ)’s result [27].

Lemma 6 Given dl , sl , and K = {k+
1 , k+

2 , ..., k+
n }, BP(sl, dl, K) = T PQ.

Proof When all keywords are positive, then by definition, Best Path is the same as TPQ
where we have to find the best trip/route from sl , passing through one point from each
category and then ending the trip at dl .

Looking at Lemma 6, it means that Best Path also can be considered as NP -hard
problem. Thus in the following Lemma we try to reduce Best Path problem to Traveling
Salesman Problem (TSP), to which TSP is a well-known NP -hard problem.

Lemma 7 BP(sl, dl, K) is NP -hard.

Proof Assume a road network G of a set of spatio-textual objects with spatial locations S =
{s1, s2, ..., sm} and each object has a distinct keyword from the keyword set T . Moreover, the
user queries consist of a source location sl , destination location dl , and preferred keywords
K = {k1, k2, ..., kn}. Again, assume that for K , we need to visit every vertex in G. Now,
we reduce the Best Path Problem to TSP. Let Gprime = (V prime, Eprime) as the instance
of TSP, where V ′ = V and E′ = (u, v) for any u, v ∈ V ′. Then for road network G, we
complete the graph by connecting all vertices. The cost fuction between G and G′ is as
follow:

cost (u, v) =
{

0, if edge(u, v) ∈ E

1, if edge(u, v) /∈ E

Suppose that Best Path BP(sl, dl, K) exists in G and has cost ≤ 0 in G′, hence there
exists a solution to TSP in G′ with cost ≤ 0.

World Wide Web (2019) 22:1359–1399 1367

4 Data index

This section presents the IG-Tree, an indexing technique for planning Best Path Queries
on Road Networks. Before presenting the IG-Tree, we first provide a brief background on
G-Tree [51, 52] and IR2-Tree [15], which are the indexing techniques that inspired us to
develop the IG-Tree for processing BP(sl, dl, K) queries efficiently.

4.1 G-Tree

One of the most efficient indexing techniques on Road Networks is the G-Tree [51, 52].
In G-Tree, the road network is partitioned recursively into sub-networks. The nodes in G-
Tree correspond to a single sub-network and each node contains two or more road network
vertices. The graph partition process is performed by using the multi-level partitioning algo-
rithm [26], which guarantees that each subgraph will be of almost the same size. Figure 3
shows an example of graph partitioning of the road network given Figure 2. Here, the orig-
inal graph is partitioned into two subgraphs, which are shown by G1 and G2. In the next
level, G1 is partitioned again into two equal-sized subgraphs G3 and G4. Similarly, G2 is
partitioned again into subgraphs G5 and G6.

The vertices that connect two sub-networks together are marked as borders and they are
stored in the G-Tree nodes. Figure 3 shows the example where vertex v1 is the border of
G3 since it connects partition G3 with other partitions G4 and G5. The border in partition
G4 consists of v8 and v7, the border in partition G5 consists of v2 and v3, and the border in
partition G6 is v4. In the partition G1, the borders are v1 and v7 as both connects G1 with
G2. While the borders in G2 are v2 and v3.

G-Tree does not store the distance of every vertex but stores the set of borders and the
shortest path distance between borders that is kept in the distance matrix. For example for
partition G3, the border is v1, so the distance matrix will contain the shortest path from v1 to
all other vertices in the subgraph partition {v1, v10, v11}. The distance matrix itself is proven
to be very efficient in terms of processing the kNN search on road networks [51, 52].

Though G-Tree is very efficient in indexing and processing nearest neighbor (NN),
k nearest neighbor (kNN) and keyword-based kNN queries on road networks, it is not
applicable for processing Best Path queries.

1

22

3

45
6

7

8

9

10

11

4
2

1

3

5

7

3

3

32
4

6611

77

8

9

7

3

2

3

5
4

3

G
0

G
1

G
2

food

supermarket,
book

book

food

cinema
G
3

G
4

G
5

G
6

Figure 3 Graph partitioning on road network given in Figure 2

1368 World Wide Web (2019) 22:1359–1399

4.2 IR2-Tree

There are a number of indexing techniques proposed for processing Spatial Keywords
Queries, one of them is the IR2-Tree. The IR2-Tree is first introduced by Felipe et al. [15].
It is a hybrid indexing approach that combines the R-Tree [5] and information retrieval sig-
nature files. However, this indexing technique is only applicable for spatial data objects in
Euclidean space.

The indexing in IR2-Tree is performed by attaching the inverted index to the R-Tree, i.e.,
every tree node in IR2-Tree holds the information for both spatial location and keywords.
The leaf nodes contain the actual spatial data and keywords. For example, assume that an
object o1 that contains keyword book is located in leaf node N1 with spatial location of
[38, 4] [93, 9] (upper right and bottom left coordinate of the minimum bounding rectangle
(MBR)), while an object o2 with keyword supermarket is located in leaf node N2 with
spatial location of [8, 15] [41, 32]. Suppose that the inverted index for keyword book is 10
and the inverted index for keyword supermarket is 01. Thus the leaf node N1 contains
the information of spatial location [38, 4] [93, 9] and keyword index 10, while leaf node N2
contains the information of spatial location [8, 15] [41, 32] and keyword index 01.

As the leaf node in IR2-Tree stores the spatial data and keyword index, the non-leaf node
contains the combination of several objects. The spatial information is based on the MBR,
while the inverted index of the keywords are calculated using logical OR [15]. For example,
the leaf nodes N1 and N2 from the previous example have the same parent node N0. So in
this case, N0 contains keyword information of 11 as this node consists of both keywords
from N1 and N2.

4.3 Proposed data index: IG-Tree

As previously discussed, the IR2-Tree [15] is used for indexing Spatial Keywords Queries
in Euclidean space, while the G-Tree [51, 52] is used for indexing Road Networks. As Best
Path is a type of Spatial Keywords Query on Road Network, each one of these indexing
techniques has its own benefit to Best Path Query. Thus, we adopt these two indexing tech-
niques to develop a new indexing scheme that can improve the processing of Best Path
query: IG-Tree, a hybrid between IR2-Tree and G-Tree.

Using the road network in Figure 2, we attempt to create the IG-Tree. So following the
graph partition technique used in G-Tree, we partition the graph into smaller subgraphs.
Figure 3 shows the graph partitioning of the example road network given in Figure 2. The
graph is divided into equal-sized subgraphs using the multi-level partitioning algorithm [26]
and each partition consists of two or more vertices. At the leaf level of the tree, the subgraph
G3 consists of vertices v1, v10 and v11; subgraph G4 consists of vertices v7, v8 and v9;
subgraph G5 consists of vertices v2, v3 and v5; and finally, subgraph G6 consists of vertices
v4 and v6. Each partition makes up one node in the IG-Tree, as presented in Figure 4.

After the graph partition, we mark the borders of each partition. Borders are the vertices
in one partition that are connecting the road network to another partition. For example the
border for partition G3 is v1 since v1 connects the subgraph to partition G4 and partition
G5. So the borders of G4 are v7 and v8; the borders of G5 are v2, v3 and v5; while the
border of G6 is v4. Based on these borders, we create the distance matrices. So the shortest
path distances for every border in every node are pre-computed and stored in the matrices.
Tables 2, 3, 4, 5, 6, 7, and 8 show the distance matrices for each node in IG-Tree.

Another aspect of the graph in Figure 3 is the keywords. Some vertices contain one or
more keywords, thus we also need to index these keywords. The keywords can be turned

World Wide Web (2019) 22:1359–1399 1369

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G
0

1111

G
1

v1 v7 1011

G
3

v1 0010

G
2

v2 v3 1110

G
4

v8 v7 1001

G
5

v2v3v5 1010

G
6

v4 0100

Figure 4 IG-Tree

Table 2 Distance Matrix for G0
G0 v1 v7 v2 v3

v1 0 7 2 9

v7 7 0 9 5

v2 2 9 0 7

v3 9 5 7 0

Table 3 Distance Matrix for G1
G1 v1 v8 v7

v1 0 3 7

v8 3 0 10

v7 7 10 0

Table 4 Distance Matrix for G2
G2 v2 v3 v5 v4

v2 0 7 4 6

v3 7 0 3 5

v5 4 3 0 2

v4 6 5 2 0

Table 5 Distance Matrix for G3
G3 v1 v10 v11

v1 0 3 5

1370 World Wide Web (2019) 22:1359–1399

Table 6 Distance Matrix for G4
G4 v8 v9 v7

v8 0 3 10

v9 3 0 13

v7 10 13 0

into inverted list. So the first step is to sort all of the keywords in the graph. Then for each
keyword, we assign a binary value based on its existence in each node. For instance vertex
v2 contains only keyword book, thus the inverted list for v2 is 1000. For node v8, it contains
both keyword book and supermarket , so its inverted list is 1001. The inverted index for all
the vertices of the graph in Figure 3 is presented in Table 9.

Based on the above inverted index list, we attach each inverted index to its corresponding
vertices at the leaf nodes. For each parent node, its inverted index is calculated using logical
OR of its child nodes. For instance G

prime

3 s inverted index is the result of logical OR of the

inverted index of v1, v10, v11. The result of 0000 or 0000 or 0010 is 0010, thus G
prime

3 s
inverted index is 0010. The same calculation is applied for every non-leaf nodes. The root
node will normally have all 1s for the index.

Even though we have indexed all of the available keywords and assign them to each node
in the tree, having these indexes are not adequate. The inverted index only identifies that a
certain keyword exists on a node but do not exactly identify the location until we go to the
leaf node. Therefore we propose a Keyword Distance Matrix for each node. This Keyword
Distance Matrix contains the distance of the nearest keyword matching vertex from each
border. By having this matrix, the keyword search computation is sped up as we do not need
to compute the keyword distance in processing time. The Keyword Distance Matrices for
the IG-Tree in Figure 4 are shown at Tables 10, 11, 12, 13, 14, 15 and 16.

Based on the above discussion, there are several important components to build an IG-
Tree. For every non-leaf node in IG-Tree contains the partition name, the border of each
partition, and the inverted index (using the logical OR of its child node). Each non-leaf node
also contains two types of matrices, which are the Distance Matrix and Keyword Distance
Matrix. For every leaf node, it contains the road network’s vertex and inverted list of the
corresponding vertex. We also keep the geographic coordinate location of each vertex in the
leaf node.

4.3.1 Space complexity of the IG-Tree

Height The height of IG-Tree is similar to G-Tree [51, 52] which is H = logf

|V |
τ

+ 1,

where f is the number of partition for each graph/subgraph, |V | is the number of vertices in
the given (road network) graph G, and τ is the number of maximum vertices on leaf node’s
subgraph.

Table 7 Distance Matrix for G5
G5 v2 v3 v5

v2 0 7 4

v3 7 0 3

v5 4 3 0

World Wide Web (2019) 22:1359–1399 1371

Table 8 Distance Matrix for G6
G6 v4 v6

v4 0 1

Table 9 Keyword index
Keyword Book Cinema Food Supermarket

v1 0 0 0 0

v2 1 0 0 0

v3 0 0 1 0

v4 0 0 0 0

v5 0 0 0 0

v6 0 1 0 0

v7 0 0 0 0

v8 1 0 0 1

v9 0 0 0 0

v10 0 0 0 0

v11 0 0 1 0

Table 10 Keyword Distance
Matrix for G0 G0 1000 0100 0010 0001

v1 2 9 5 3

v7 9 11 5 10

v2 0 7 7 5

v3 7 6 0 11

Table 11 Keyword Distance
Matrix for G1 G1 1000 0100 0010 0001

v1 2 Ø 5 3

v8 0 Ø 8 0

v7 10 Ø 12 10

Table 12 Keyword Distance
Matrix for G2 G2 1000 0100 0010 0001

v2 0 7 7 Ø

v3 7 6 0 Ø

v5 4 3 3 Ø

v4 6 1 5 Ø

Table 13 Keyword Distance
Matrix for G3 G3 1000 0100 0010 0001

v1 Ø Ø 5 Ø

1372 World Wide Web (2019) 22:1359–1399

Table 14 Keyword Distance
Matrix for G4 G4 1000 0100 0010 0001

v8 0 Ø Ø 0

v9 3 Ø Ø 3

v7 10 Ø Ø 10

Number of nodes Like G-Tree, IG-Tree has only one node in level 0, which is the root. In
an arbitrary level i of the tree, there are f i internal nodes as the number of partition for each
graph (at level 0)/subgraph (at level > 0) is s. As τ is the maximum number of vertices on
leaf node’s subgraph, there are |V |

τ
leaf nodes. As a result, the number of nodes in IG-Tree

is O
(

f
f −1 · |V |

τ

)
= O

(|V |
τ

)
which is again similar to that of G-Tree.

Number of inverted lists A node in IG-Tree contains an inverted list representing the key-

words covered in that node. As the number of nodes in an IG-Tree is O
(|V |

τ

)
, the number

of inverted lists is O
(|V |

τ
+ |V |

)
. Thus, the space complexity of maintaining inverted lists

in IG-Tree becomes O
(|V |

τ
· |T | + |V | · |T |

)
, where |T | is the number of keywords cov-

ered in the whole road network G and |V | · |T | is the space complexity of the inverted lists
for all vertices in V .

Number of borders If we assume the road network to be modeled as a planar graph, the

number of borders on average in a node of level i is O
(

log2 f ·
√ |V |

f i+1

)
as per the calcula-

tion conducted in [51, 52]. As there are f i nodes in a level i, the number of border nodes in

an arbitrary level i is O
(

log2 f ·
√ |V |

f i−1

)
. If we sum this measure from level 1 to height of

the tree logf

|V |
τ

+ 1, the total number of borders in an IG-Tree is O
(

log2 f√
τ

|V |
)

, which is

again similar to the G-Tree under the planar graph assumption.

Distance matrices The total distance matrix size of all leaf nodes is O(
√

τ |V | · log2 f)

and the total distance-matrix of non-leaf nodes is O
(
|V | · log2

2 f · logf
|V |
τ

)
as per the

calculation conducted in [51, 52].

Keyword distance matrices The average number of borders in a leaf node of IG-Tree
is O(log2 f · √

τ)[51, 52] and the total number of keywords in G is |T |. Thus the key-
word distance matrix size in a leaf node is O(log2 f · √

τ · |T |). The total keyword

distance matrix size of all leaf nodes becomes O
(|V |

τ
· log2 f · √

τ · |T |
)

. Each internal

node on level i generates O
(

log2 f ·
√ |V |

f i+1

)
borders on average [51, 52]. Therefore,

Table 15 Keyword Distance
Matrix for G5 G5 1000 0100 0010 0001

v2 0 Ø 7 Ø

v3 7 Ø 0 Ø

v5 4 Ø 3 Ø

World Wide Web (2019) 22:1359–1399 1373

Table 16 Keyword Distance
Matrix for G6 G6 1000 0100 0010 0001

v4 Ø 1 Ø Ø

the keyword distance matrix size of each node at level i is O
(

log2 f ·
√ |V |

f i+1 · |T |
)

. In

IG-Tree, there are f i nodes at level i, therefore keyword distance matrix size at level

i is O
(
f i · log2 f ·

√ |V |
f i+1 · |T |

)
=O

(
log2 f · √|V |f i−1 · |T |

)
. Thus the total keyword

distance matrix size of non leaf nodes is O(
∑

0≤i<H log2 f · √|V |f i−1 · |T |).

4.3.2 Index reconstruction for tree node with negative query keywords

In the Best Path Query, the user is allowed to give keywords as input of the query
and the query keywords can be positive and negative. The positive keywords denote the
spatio-textual objects that the user wants to visit, while the negative keywords denote the
spatio-textual objects that the user wants to avoid along his/her trip. Even though IG-Tree
contains textual information of spatial objects, we still have to check the textual relevancy
between the spatial object with the query keywords given by the user in order to consider
an object to be visited or avoided. For the objects that contain positive keywords, the IG-
Tree can compute the path well with the help of the Distance Matrices. For example if we
want to compute the path from v5 to the nearest book, we can directly refer to the Keyword
Distance Matrix in Table 15 to save up some time. But this is different when negative key-
words exist. Even though IG-Tree is designed to improve path computation on finding the
Best Path, it still has a weakness when there is a negative keyword found in the query given
by the user. As previously mentioned in Section 3, a vertex that holds one or more negative
query keywords must be pruned from the road network graph. This is due to the fact that this
particular vertex holds a query that the user wants to avoid/block. Currently IG-Tree con-
sists of Distance Matrices that store the shortest paths between borders. So when a vertex is
pruned from the graph, the shortest path may also change. The existing index has to be mod-
ified considering a vertex is gone and the Distance Matrices are no longer storing accurate
distances. The new Distance Matrices will replace the existing matrices during the query
processing time of the query with the corresponding negative keywords. The modification
however depends on the location of the vertex in the IG-Tree:

– Case-C1. If vertex v that contains k− is the border and no other border exists for a node
that we must visit, then no path can be established. In this case, v is considered as a
bridge. This situation is already proved through Lemmas 3 and 4 in Section 3.

– Case-C2. If vertex v that contains k− is the border and there is/are other border(s),
then path reconstruction is needed. The path reconstruction will involve the whole tree
node where v is located and also the borders on other nodes that are adjacent to v.
For example if v3 in Figure 3 contains k−, then the path reconstruction occurs on the
whole G5 tree node and its adjacent borders. The adjacent borders in this case can be
identified through parent nodes of G5, whether the parent nodes has v3 as one of their
borders. G2 and G0 are indeed sharing v3 as their border, so the path reconstruction will
involve these two tree nodes as well. As v3 is pruned from the graph, v3 is then omitted
from the Distance Matrices of G5,G2 and G0. The border-to-border distances of these
matrices are also affected because of the omission of v3, thus the entire matrices has to
be recalculated because of the changes in the shortest path between these borders. The

1374 World Wide Web (2019) 22:1359–1399

Table 17 Reconstructed
Distance Matrix for G5 G5 v2 v5

v2 0 4

v5 4 0

path reconstruction itself can be obtained using Dijkstra algorithm. Tables 17, 18 and
19 shows the Distance Matrices after path reconstruction.

– Case-C3. If vertex v that contains k− is in the leaf node (not the border), then distance
has to be recalculated. The index recalculation for this case does not affect the whole
tree, but only on the tree node where the vertex with negative keyword lies. Similar
to the previous case, the path reconstruction can be obtained using Dijkstra algorithm.
When v is in the leaf node, we can focus on its own subgraph partition as it does not
affect the other partitions like in the previous case. For instance, assume that v10 in
Figure 3 contains k−. v10 is a leaf node as it does not connect any sub-networks. v10 is
located in partition G3, thus only this partition will need to be reconstructed which is
shown in Table 20.

5 Query processing

We propose three Best Path query processing algorithms that can be applied on IG-Tree,
namely the Optimal Distance Approximation Search, Ancestry Priority Search, and the
Euclidean-based Approximation. A baseline algorithm is also provided in this section. The
baseline algorithm offers precise solution, while the other three proposed algorithms offer
approximation solution with different trade-offs. In each subsection, we discuss on how
each algorithm works and their trade-offs.

5.1 Baseline algorithm

In this section, we discuss on the baseline algorithm that can be used on IG-Tree to find
the Best Path. This algorithm is able to compute the result of Best Path query accurately.
The key/main idea is to find the permutation of all possible combinations of positive key-
words and then compare them in order to find the one that has the most efficient cost (least
distance).

As an example, assume that we want to find the best path from v1 to v4 while pass-
ing through cinema and book. In this case, sl = v1, dl = v4, and keywords =
{cinema, book}. The first step here is to turn the preferred keywords into inverted index so

Table 18 Reconstructed
Distance Matrix for G2 G2 v2 v5 v4

v2 0 4 6

v5 4 0 2

v4 6 2 0

World Wide Web (2019) 22:1359–1399 1375

Table 19 Reconstructed
Distance Matrix for G0 G0 v1 v7 v2

v1 0 7 2

v7 7 0 9

v2 2 9 0

that we can check its relevancy with the inverted index in IG-Tree. The preferred keywords
are cinema and book, therefore the inverted list is 1100 (K = 1100). Then we have to find
the partition that contains the source and destination in the IG-Tree, where v1 is located
under the partition G3 and v4 is located under the partition G6. After the source and des-
tination locations are found, then we can start finding the best path BP(v1, v4, 1100) that
visits the chosen keywords.

Scanning through every single vertex in the leaf node that holds inverted index of 1100.
The inverted index of 1000 can be found at v2 and v8, while the inverted index of 0100
can be found at v6. Knowing the exact locations of the keywords, we can do cartesian
product between each set of keywords. In this case, the cartesian product will be between
{v2, v6} and {v8, v6}. Then based on the cartesian product, we have to get the permutation
to help computing the path with the least distance. The permutations for this case consist
of {v2, v6}, {v6, v2}, {v8, v6}, and {v6, v8}. Based on these permutations, we can find the
shortest path from sl to each permutation, and then from the permutation to dl . In this case,
we will have four possible paths: v1 → v2 → v6 → v4 = 10, v1 → v6 → v2 →
v4 = 22, v1 → v8 → v6 → v4 = 16, v1 → v6 → v8 → v4 = 32. Algorithm 1
shows the pseudocode for shortest path search in IG-Tree. While calculating the shortest
paths, we also need to keep track of the path with the least sum of distance. At the end, we
will obtain the Best Path with the most accurate solution. For this example, the Best Path
BP(v1, v4, 1100) = v1 → v2 → v6 → v4 with the least total distance of 10.

This algorithm guarantees the accuracy of finding the Best Path on road networks. How-
ever since the Best Path query is an NP -Hard problem, this algorithm definitely runs in
non-polynomial time especially on a large datasets. In our experiment, it can spend up to
17 hours merely to find the Best Path with 5 query keywords even in a very small datasets
with only 100 vertices. This is certainly impossible to be applied for our daily use. The
pseudo-code of the baseline algorithm is given in Algorithm 2.

5.2 Optimal distance approximation search

Because of the non-polynomial time complexity of the baseline algorithm, we propose an
approximation algorithm to compromise the runtime. This algorithm is a lot faster than the
baseline one but its result is not 100% accurate.

When multiple keywords are involved in the query, the complexity rises as we have to
know all possible combinations of the keywords in order to get the most optimal solution

Table 20 Reconstructed
Distance Matrix for G3 G3 v1 v11

v1 0 Ø

1376 World Wide Web (2019) 22:1359–1399

(distance-wise). However when there is only one keyword involved in the query, the query
can be retrieved in polynomial time. Thus in this approximation algorithm we utilize this
situation in order to retrieve the multiple keywords query. The way this algorithm works is
that for each query keyword given by the user, we find the best path between the source
location to the query keyword and then to the destination. By getting the best path for
each keyword, we can locate the best possible location of each keyword that will give the
shortest distance of source-keyword-destination. Then after we have the best candidate of
each keyword, we find the path from source location to its nearest candidate, then from the
nearest candidate to its next nearest candidate. We keep doing this until all keywords are
covered, then finishing the path to the destination location.

World Wide Web (2019) 22:1359–1399 1377

For example a user wants to find the best path from v10 to v7 while passing through a
bookstore and a cinema. In this case, sl = v10, dl = v7, and K = {book, cinema}. In
order to find the best path, we have to transform the query keywords given by the user into
inverted list. Since the keywords are {book, cinema}, thus the inverted list is Kif = 1100.

In this algorithm, we have to firstly find the locations of sl and dl . Looking at the IG-Tree,
sl is located within partition G3, while dl is located within partition G4 as shown in Figure 5.
Now for each keyword kn in Kif , we have to find the best path from sl − kn − dl . Assume
that the first keyword that we want to find its best path is book to which its inverted index
is 1000. In the road network, there are actually several vertices that contain the keyword
book. So we have to calculate the total shortest path distance for each keyword location
and then finding the one that has the least amount of distance. A naive solution here is to
find the shortest path between sl to kn and then add up the shortest path between dl to kn.
Since our current keyword index is 1000, v8 and v2 have the same index. Hence we have to
establish the shortest path δ(v10, v8) + δ(v8, v7) and also δ(v10, v2) + δ(v8, v2). The way
the shortest path works is similar to the previous section. The best path distance for visiting
v8 is dist (v10, v8) + dist (v8, v7) = 6 + 10 = 16, while the best path distance for visiting
v2 is dist (v10, v2) + dist (v2, v7) = 5 + 9 = 14. Based on these calculations, v2 has the
best path from v10 to v7 as depicted in Figures 6 and 7. Thus, we can store v2 to a candidate
queue Qk as the candidate vertex to find the multiple keywords best path query. The same
process also goes for keyword cinema. The inverted index of keyword cinema is 0100.
There is only one vertex in the road network that contains 0100, which is v6. Therefore
the best path is going to be based on δ(v10, v6) + δ(v8, v6). Hence, v6 can be stored to a
candidate queue Qk as another candidate vertex for finding the multiple keywords best path
query, specifically for keyword cinema.

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G
0

1111

G
1

v1 v7 1011

G
3

v1 0010

G
2

v2 v3 1110

G
4

v8 v7 1001

G
5

v2v3v5 1010

G
6

v4 0100

v10
0000

v77
0000

Figure 5 Finding location of v10 and v7

1378 World Wide Web (2019) 22:1359–1399

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G
0

1111

G
1

v1 v7 1011

G
3

v1 0010

G
2

v2 v3 1110

G
4

v8 v7 1001

G
5

v2v3v5 1010

G
6

v4 0100

v10
0000

G
3

v1 0010

G
1

v1 v77 1011

G
0

1111

G
2

v2 v3 1110

G
5

v2v3v5 1010

v2
1000

v77
0000

Figure 6 Path from v10 to nearest node with keyword book

World Wide Web (2019) 22:1359–1399 1379

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G
0

1111

G
1

v1 v7 1011

G
3

v1 0010

G
2

v2 v3 1110

G
4

v8 v7 1001

G
5

v2v3v5 1010

G
6

v4 0100

v10
0000

v77
0000

G
3

v1 0010

G
1

v1 v77 1011

G
0

1111

G
2

v2 v3 1110

G
5

v2v3v5 1010

v2
1000

G
4

v8 v77 1001

Figure 7 Path from v10 to v7 passing through keyword book

As we have found the candidates for each keyword specified by the user, we can do best
path search from sl to the candidates, then to dl . Qk consists of v2 and v6. So what we have to
do is to find which vertex in the candidate queue Qk is the nearest from sl (v10). In this case,
v2 is the nearest so we have to find the shortest path δ(v10, v2) = {v10, v1, v2} with total
distance dist (v10, v2) = 5. Next, we have to find the nearest next candidate from v2, which
is v6. Then we establish another shortest path δ(v2, v6) = {v2, v5, v4, v6} with total distance
dist (v2, v6) = 7. Since there is no more candidate in the queue, then it means that we have
found all the keywords specified by the user in our path. Thus we can establish the final
path from the last candidate to the destination dl (δ(v6, v7) = {v6, v4, v5, v3, v7} with total
distance dist (v6, v7) = 11). The result of the best path BP(v10, v7, {book, cinema}) =
{v10, v1, v2, v5, v4, v6, v4, v5, v3, v7}.

Based on our experiment, this algorithm runs faster than the baseline algorithm even
though the approximation is not 100% accurate. However the approximation result is close
to the baseline result even when the algorithm runs with a large dataset. The pseudo-code
of this algorithm is given in Algorithm 3.

5.3 Ancestor priority approximation search

In this paper, we propose another approximation algorithm. This algorithm utilizes the com-
mon ancestor between the source and destination locations with the purpose of minimizing

1380 World Wide Web (2019) 22:1359–1399

the tree traversal time. Sometimes when we are trying to find one or more keywords in the
IG-Tree, we have to travel through most of the tree nodes even though the source and des-
tination locations are on the same partition node. However in this algorithm, the idea is to
traverse only on the branch of an ancestor node. This is basically to do early pruning through
the common ancestor between source and destination locations in IG-Tree.

As an example, a user invokes a query with source location in vertex v10, destination
location in vertex v7, and the preferred keyword is book. The query keyword inverted index
in this case is 1000 for keyword book. Looking at the IG-Tree in Figure 8, the common
ancestor between v10 and v7 is G1. Thus in this algorithm we are going to only focus on
the branch under G1, especially if the user given keyword is available in this branch. As the
query inverted index is 1000 and the inverted index attached in G1 is 1011, we can see that
the query keyword exists in G1, so we can definitely focus on this node to find the best path
from v10 to v7 while passing by a keyword book.

The way the Ancestor Priority Search algorithm works is similar to the Optimal Distance
Approximation algorithm once we know which branch we need to work on. Firstly we

World Wide Web (2019) 22:1359–1399 1381

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G
0

1111

G
1

v1 v7 1011

G
3

v1 0010

G
2

v2 v3 1110

G
4

v8 v7 1001

G
5

v2v3v5 1010

G
6

v4 0100

v10
0000

v77
0000

G
1

v1 v77 1011

Figure 8 G1 as the common ancestor of v10 and v7

have to compute the best path of each keyword, then recording the candidate vertices into a
queue Qk in order to find the final multiple keywords best path query. Continuing from the
previous example, the focus now is only on the branch of G1. So we do not need to travel to
other branches outside partition G1. In this case, we have to find the best path for each query
keyword first. But since there is only one keyword, then we can find the Best Path directly.
The way we find each keyword is through the inverted index attached in the IG-Tree and
traverse down until we found which vertex has the keyword. We know that G1 has 1000 so
we have to check its immediate children. G3 does not have 1000, while G4 has 1000, thus
we need to traverse down the partition of G4 in order to find the keyword. The children of
G4 are v8, v9, and v7. Only v8 has 1000, therefore we have to find the best path from sl to
v8 and then to v7 as depicted in Figure 9. Similar to the previous algorithm, we have to find
the shortest path δ(v10, v8) and δ(v8, v7) to help finding the best path. The shortest path
δ(v10, v8) = {v10, v1, v8}, while the shortest path δ(v8, v7) = {v8, v1, v7}. As there is only
one keyword, therefore the Best Path BP(v10, v7, {book}) = {v10, v1, v8, v1, v7}.

The previous case however does not always happens because if the keyword does not
exist in the current ancestor node, we have to go to its parent node and check whether the
query keyword is available in the parent node. If it does not, then we have to keep going to
the upper node until we can find the query keyword. Once the query keyword is found in
the node, then we can continue the best path search. For example assume that a user wants
to find the best path from v10 to v7 while passing through a cinema. The inverted index for
cinema is 0100, while the common ancestor of v10 and v7 is G1. The partition G1 does not

1382 World Wide Web (2019) 22:1359–1399

v1
0000

v10
0000

v11
0010

v8
1001

v9
0000

v7
0000

v2
1000

v3
0010

v5
0000

v4
0000

v6
0100

G
0

1111

G
1

v1 v7 1011

G
3

v1 0010

G
2

v2 v3 1110

G
4

v8 v7 1001

G
5

v2v3v5 1010

G
6

v4 0100

v10
0000

v77
0000

G
3

v1 0010

G
1

v1 v77 1011

G
4

v8 v77 1001

v8
1001

Figure 9 Path from v10 to v7 passing through keyword book

have cinema in it since its inverted index is 1011, thus we have to find out whether cinema

is available in G1’s parent node. The parent node of G1 is G0 and its inverted index is 1111,
which means that cinema exists in this partition. Therefore the best path search will cover
the whole tree branches under G0.

The main advantage of this algorithm is in the early pruning. There is no need to explore
the whole tree as we only need to focus on one branch through the common ancestor
between the source and destination. However the disadvantage of this algorithm is that it
has even lower accuracy compared to the Optimal Distance Approximation Search algo-
rithm. Traversing under one branch does not guarantee the shortest path distance for best
path since some keywords with closer distances might be located in other partitions. But
this algorithm tries to compromise this with lesser tree traversal cost. The pseudo-code of
this algorithm is given in Algorithm 4.

5.4 Euclidean-based approximation search

We propose another approximation algorithm in this paper. The idea behind this particu-
lar algorithm is to make use of the coordinate of each vertex and then find the best path
through Euclidean distance before applying it into road network. This approximation algo-
rithm is very fast compared to the previous algorithms since it is using Euclidean distance
computation. However because of the usage of Euclidean distance on a road network data,
the performance of this algorithm is quite low in terms of its accuracy.

World Wide Web (2019) 22:1359–1399 1383

The Euclidean-based Approximation has two main components, namely the Euclidean
approximation (Algorithm 5 row 1-10) and the best road network path (Algorithm 5 row
11-20). In the Euclidean approximation part, we firstly need to find the Euclidean locations
of both the source location sl and the destination location dl . Based on these two Euclidean
locations, we calculate the best path in Euclidean distance for each keyword kn in Kif . The
way we find the best path for each keyword kn is similar to the Optimal Distance Approxi-
mation algorithm, where we have to get the optimum shortest path of δ(sl, kn)+δ(kn, dl) in
Euclidean distance and then store kn into a candidate queue Qk to help establishing the final
best path. Once we have found the best path of each keyword kn, we move to the second
part, which is the road network path.

In the road network path component of Euclidean-based Approximation algorithm, the
best path search is done in a similar fashion as the previous algorithms where we have to
find the nearest candidate Qk1 from sl then establish the shortest path δ(sl, Qk1) between
sl and the candidate Qk1 in road network distance instead of the Euclidean distance. After
the shortest path δ(sl, Qk1) is established, we need to find the next nearest candidate Qkn

from the Qk1 and establish the shortest path δ(Qk1,Qkn). We repeat the same step until

1384 World Wide Web (2019) 22:1359–1399

every single candidate in the queue Qk has been visited. Then we can find the shortest path
δ(Qkn, dl) to end the trip.

The Euclidean distance is merely to help deciding which vertices to be visited based on
the keywords chosen by the user. But at the end the best path’s result is in road network
distance. The approximation in this algorithm is very low as it can over-approximate the
result up to 300% based on our experiment. However the running time of this algorithm is
a lot faster compare to the other algorithms.

6 Experiment

In this section, we compare the efficiency and accuracy of the four Best Path query process-
ing algorithms from Section 5: Baseline Algorithm (BruteForce), Optimal Distance Approx-
imation Search (OptDist), Ancestor Priority Approximation Search (AncestorPriority), and
Euclidean-based Approximation Search (Euclidean).

6.1 Settings

6.1.1 Environment

We perform our experiments on 2.5 GHz Intel Core i7-4870 CPU and 12 GB RAM running
64-bit Ubuntu. All of the algorithms were written in single-threaded C++.

World Wide Web (2019) 22:1359–1399 1385

Table 21 Road Network Datasets
Dataset Description # Vertices # Edges

CAL California 21,048 43,386

NY New York City 264,346 733,846

COL Colorado 435,666 1,057,066

FLA Florida 1,070,376 2,712,798

6.1.2 Datasets

We use real datasets from 9th DIMACS Implementation Challenge - Shortest Paths [20] and
[55] for the road network datasets. We select four datasets: California, New York City, Col-
orado, and Florida. Table 21 provides the details of the size of the real-world road network
datasets.

Meanwhile for the textual information we utilize keyword sets based on [55] and assign
them into the vertices in the road network datasets. As the textual part needs to be able to
detect whether the user gives one or more negative keywords, a number of negative sen-
timent analysis based words from [21, 22] are used in order to accommodate the negative
keyword(s) in the user query.

6.1.3 Queries

In our experiments, we generate the keyword set K for the test queries with a random
distribution from a keyword pool. The size of the keyword set in the test queries varies from
1 to 15 while the object density1 of these keyword set varies from 1% to 30% of the whole
road network datasets. We also evaluate the impact of varying the distance between sl and
dl pairs, which are varied from 2% to 64% of the maximum distance between two vertices
in the space.

6.2 Index evaluation

This section evaluates the proposed IG-Tree index for planning Best Path queries on road
networks in terms of index building time and space consumption, and index reconstruction
time(s) for negative keywords in the tested queries. Figure 10 shows the index building times
and space consumption of the proposed IG-Tree and the G-Tree indices for New York City
dataset. We see that index building time of IG-Tree is comparable to that of G-Tree though
IG-Tree combines IR2-Tree with G-Tree. The index size of IG-Tree is slightly larger than
that of G-Tree as inverted lists and Keyword Distance Matrices are maintained in IG-Tree
in addition to Distance Matrices.

Finally, the times required to reconstruct the IG-Tree index for negative keywords in the
Best Path queries are quite durable as we observe from Figure 11. The IG-Tree takes only
∼ 0.8 secs to reconstruct the index for up to 10 (negative) keywords. However, we observe
only a few keywords in K including negative keywords in route planning queries, which is
around 5-6 keywords, in our usual life. Therefore, we believe that the index reconstruction

1Object density: the quantity of keyword matched objects for each query keyword compared to the number
of vertices in the road network.

1386 World Wide Web (2019) 22:1359–1399

100

101

102

103

104

105

106

107

CAL NY COL FLA

In
d

ex
in

g
 t

im
e

(m
s)

G-Tree
IG-Tree

(a) Building time

 0

 200

 400

 600

 800

 1000

 1200

 1400

CAL NY COL FLA

M
em

o
ry

 u
sa

g
e

(M
B

)

G-Tree
IG-Tree

(b) Index size

Figure 10 IG-Tree vs. G-Tree: index building time and size

time IG-Tree for few negative keywords would be pretty durable in practical applications of
Best Path queries.

6.3 Performance study

We evaluate our query processing algorithms on two metrics, specifically on the running
time and approximation accuracy. The approximation accuracy shows the percentage of
the result accuracy produced by each algorithm compared to the expected correct result
obtained by running the baseline algorithm.

6.3.1 Effect of k+

The positive keywords (k+) given by the users take a very important role in Best Path
Query. Each k+ must be visited at least once, therefore the more k+ to be visited, it is
expected that the running time also increases for every algorithm. Figure 12 shows the query
performance as the number of k+ increases. In these experiments, we specified the query
keywords K to be all positive, without any negative keywords. The experiments show that
the running times for the approximation algorithms (OptDist, AncestorPriority, Euclidean)
run a lot better compared to the baseline algorithm. The baseline algorithm has the worst

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
d

ex
in

g
 t

im
e

(m
s)

Number of negative keywords

Index Reconstruction

Figure 11 Index reconstruction times for varied number of negative keywords in K

World Wide Web (2019) 22:1359–1399 1387

 0

 200

 400

 600

 800

 1000

 1200

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

 0

 500

 1000

 1500

 2000

 2500

 3000

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

 0

 500

 1000

 1500

 2000

 2500

 3000

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 12 Query performance with all positive query keywords

running time among all as the time increases exponentially. According to our experiments,
the average running time for baseline algorithm for |K| = 1 is 0.48 ms but it increases up
to 21507.41 ms when |K| = 5. Even though baseline algorithm offers a precise solution,
the amount of time taken to get the result is not suitable for daily usage. Imagine when we
want to plan a trip to a new country and it takes 17 hours for us to get the best path with
|K| = 10. This is definitely impossible to be used in everyday life.

As we proposed three approximation algorithms, we also evaluate the approximation
accuracy for each algorithm. Figure 13 shows the percentage of accuracy of each approx-
imation algorithm compared to the baseline algorithm. When K is only 1, all the three
approximation algorithms have high accuracy. However when K increases, the accuracy
decreases. The OptDist has the best approximation compared to the other two algorithms.
Even though its approximation is not 100% accurate, the percentage of accuracy is still
above 75%. It is very different from the Euclidean-based algorithm to which its approxi-
mation is very poor compared to others as the accuracy is only 6.83% when K = 15. The
trend for Euclidean approximation algorithm is definitely the worst as the inaccuracy keeps
escalating drastically.

Based on this experiment, we can see that OptDist performs better than the other three
algorithms in terms of the running time. It also performs better than the other two approxi-
mation algorithms in terms of the approximation accuracy. So we can conclude that OptDist
is the best choice when we want to invoke Best Path Query with various numbers of K .

1388 World Wide Web (2019) 22:1359–1399

0

20

40

60

80

100

1 5 10 15

A
cc

u
ra

cy
 (

%
)

K

OptDist

10
0

90
.9

7

17
.8

4

22
.4

4

AncestorPriority10
0

89
.0

8

11
.3

5

15
.9

5

Euclidean

10
0

89
.0

8

11
.3

5

15
.9

5

(a) Approximation accuracy for
CAL

0

20

40

60

80

100

1 5 10 15

A
cc

u
ra

cy
 (

%
)

K

OptDist

10
0

83
.6

5

92
.1

5

68
.3

3

AncestorPriority10
0

72
.6

9

72
.3

3

43
.5

7

Euclidean98
.2

7

13
.2

6

4.
83

0

0

20

40

60

80

100

1 5 10 15

A
cc

u
ra

cy
 (

%
)

K

OptDist

10
0

89
.9

6

79
.0

0

53
.7

2

AncestorPriority10
0

89
.9

6

51
.2

0

46
.0

8

Euclidean

92
.8

9

89
.2

3

26
.6

2

16
.0

2

(c) Approximation accuracy for
COL

0

20

40

60

80

100

1 5 10 15

A
cc

u
ra

cy
 (

%
)

K

OptDist

10
0

74
.7

4

28
.9

3

28
.9

3

AncestorPriority10
0

51
.3

0

2.
32

3.
95

Euclidean

44
.5

8

9.
07

0 0

(b) Approximation accuracy for
NY

(d) Approximation accuracy for
FLA

Figure 13 Approximation accuracy for all positive query keywords

6.3.2 Effect of k−

The k− has a great impact to the Best Path Query. As previously discussed in Section 4,
there are several cases on what would happen to the IG-Tree when we found a k−. A lot of
times when k− is located on the border, the path cannot be retrieved at all. So the distribution
of k− is always kept to be lesser than k+ in this particular experiment to ensure that we
can retrieve some results. For this experiment, we set the query keywords K to have both
positive and negative keywords.

According to our experiment result in Figure 14, the Euclidean-based algorithm always
has a faster running time compared to the other three algorithms. The OptDist and Ances-
torPriority are actually almost the same in terms of their running time even though the
AncestorPriority still seems to be a bit faster than OptDist. Meanwhile the baseline algo-
rithm has the worst running time as expected. Having a negative keyword k− definitely
affects the running time of some queries as there might be path reconstruction happen-
ing throughout the query processing. This also explains the difference between the time in
Figures 12 and 14, where the running time in Figure 12 with all positive keywords does not
require any path reconstruction so it is faster than the experiment result in Figure 14.

Another metric that we test is the accuracy of the approximation algorithms. Figure 15
shows the result of the approximation accuracy of each algorithm towards the result of
baseline algorithm. The trend in Figure 15 is almost similar to the trend in Figure 13, which

World Wide Web (2019) 22:1359–1399 1389

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

 0

 1x107

 2x107

 3x107

 4x107

 5x107

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 14 Query performance with combination of positive and negative query keywords

might indicate that the path reconstructions happening in these queries because of k− does
not truly have impact towards the accuracy. We can also see that the accuracy percentage of
OptDist and AncestorPriority are the same for this case and both have better accuracy than
the Euclidean-based algorithm. The Euclidean approximation is still the worst among the
other algorithms with very low accuracy even though the running time is a bit faster than
the others.

6.3.3 Effect of keyword densities

In this experiment evaluation, we want to observe the query performance when we increase
the keyword densities. Figure 16 shows the running time for query within the density of
0.01 to 0.30. The running time of the baseline algorithm increases drastically compared to
the rest. Even in the lower density case, specifically on 0.01 density, the baseline algorithm
takes about 17x more time than the OptDist algorithm. The Euclidean-based algorithm how-
ever performs in a constant manner even though the density increases. The OptDist and
AncestorPriority on the other hand have similar running time.

We also run an experiment on the running time when K is varied from 1 to 15 while
the density for each keyword is 0.05. Figure 17 shows the result of this specific experiment
where it interestingly shows that the constant running time for Euclidean algorithm. The
trend indicates that Euclidean-based algorithm has the most constant running time espe-
cially for denser datasets. This is totally different from the other three algorithms, which

1390 World Wide Web (2019) 22:1359–1399

0

20

40

60

80

100

1 5 10 15

A
cc

u
ra

cy
 (

%
)

K

OptDist

10
0

89
.0

8

6.
49

6.
49

AncestorPriority10
0

89
.0

8

6.
49

6.
49

Euclidean

10
0

89
.0

8

4.
86 7.
30

(a) Approximation accuracy for
CAL

0

20

40

60

80

100

1 5 10 15

A
cc

u
ra

cy
 (

%
)

K

OptDist

10
0

83
.6

5

86
.1

4

68
.3

3

AncestorPriority10
0

83
.6

5

86
.1

4

68
.3

3

Euclidean98
.2

7

13
.2

6

21
.8

2

0

0

20

40

60

80

100

1 5 10 15

A
cc

u
ra

cy
 (

%
)

K

OptDist

10
0

33
.9

5

30
.3

1

55
.1

5

AncestorPriority10
0

33
.9

5

30
.3

1

55
.1

5

Euclidean

92
.8

9

30
.6

1

10
.1

2

14
.1

9

(c) Approximation accuracy for
COL

0

20

40

60

80

100

1 5 10 15

A
cc

u
ra

cy
 (

%
)

K

OptDist

10
0

77
.1

8

28
.9

3

28
.1

7

AncestorPriority10
0

77
.1

8

28
.9

3

28
.1

7

Euclidean

44
.5

8

12
.7

9

22
.0

8

0

(b) Approximation accuracy for
NY

(d) Approximation accuracy for
FLA

Figure 15 Approximation accuracy for datasets with negative keywords

keep increasing with the increase in density. Even though Figures 12 and 14 run similar
experiments, the results are different. In Figures 12 and 14, the keyword density is
randomized and usually below 0.05.

We conducted another experiment to test the running time of query with all negative
keywords while increasing the density of the keywords from 0.01 to 0.055. We only increase
until 0.055 by the reason of having higher density of negative keywords will return no
path/no result at all. Figure 18 shows the result of this particular experiment. Surprisingly,
the running time of Euclidean algorithm drastically increases almost in the same trend as the
baseline algorithm. Meanwhile, the OptDist and AncestorPriority are running in constant
time manner when the keywords are all negative.

6.3.4 Effect of positive and negative keywords ratio

Figure 19 shows the running time on the positive and negative keywords ratio. The ratio
is based on 0.01 density. In this experiment, we limit the ratio of the keywords (pos-
itive:negative) into 1:0, 0:1, 1:1, 5:0, 0:5, and 5:1. We exclude the ratio with negative
keywords higher than the positive keywords as there is no path retrived most of the time
with this kind of query.

In Figure 19, we can see that the running time of OptDist algorithm increases if the
number of query keywords increase (both positive and negative). The AncestorPriority has

World Wide Web (2019) 22:1359–1399 1391

100

101

102

103

104

105

106

107

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

er
y

ti
m

e
(µ

s)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

102

103

104

105

106

107

108

109

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

er
y

ti
m

e
(µ

s)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

102

103

104

105

106

107

108

109

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

er
y

ti
m

e
(µ

s)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

102

103

104

105

106

107

108

109

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Q
u

er
y

ti
m

e
(µ

s)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 16 Query performance based on keyword density

similar trend with OptDist with the increase of time towards the more keywords involved.
The increase in trend also happens to the baseline algorithm but it increases exponentially
as what we have expected from the previous experiments. Nevertheless, the increasing trend
does not happen to the Euclidean algorithm as it is comparatively constant in running time
even with more positive keywords added into the query.

6.3.5 Effect of distance between sl and dl

We also evaluate the effect of varying the distance between sl and dl pairs. The distance
between sl and dl are varied from 2%, 4%, 8%, 16%, 32%, up to 64% of the maximum
distance between two points in the road network datasets. We set |K| = 15 by default and
contain both positive and negative keywords. Figure 20 shows the experimental results of the
source–destination distance. We do not include the baseline in Figure 20 since the runtime
for 2% in NY dataset already reaches above 10,000 ms, which made a huge difference with
the other three algorithms.

From the experimental result, we can see that the three algorithms are running in constant
time even though the source-destination distance increases. Both OptDist and AncestorPri-
ority have a similar trend, while Euclidean has better running time most of the time than the
rest.

1392 World Wide Web (2019) 22:1359–1399

100

101

102

103

104

105

106

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

102

103

104

105

106

107

108

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

102

103

104

105

106

107

108

109

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

102

103

104

105

106

107

108

109

1 5 10 15

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 17 Query performance when K is varied (keyword density=0.05)

6.3.6 Summary

Based on our experimental study, each algorithm has its own strength. The baseline algo-
rithm certainly offers accurate result, but it has the worst running time as it increases
exponentially when the queries and dataset increases. The OptDist itself has the best
approximation compared to the other two approximation algorithms (AncestorPriority and
Euclidean). Its running time is definitely a lot better than the baseline algorithm but the
AncestorPriority and Euclidean-based algorithms still beats it by a few microseconds,
especially when all the keywords in the user query are positive.

The AncestorPriority often follows the trend of OptDist on both the runnning time and
accuracy. In terms of running time, AncestorPriority is frequently faster by only a few
microseconds compared to OptDist. On the other hand, the accuracy of AncestorPriority
is slightly lower than OptDist because of the early pruning. Compared to the Euclidean,
AncestorPriority still has better accuracy even though its speed is still slower than the
Euclidean.

The Euclidean-based algorithm’s main strength is in its fast runtime. For a quick approx-
imation, the Euclidean-based algorithm can be used but it has the lowest accuracy compared
to the other algorithms. The Euclidean however does not perform well when the density of
the negative keywords are high.

World Wide Web (2019) 22:1359–1399 1393

100

101

102

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Q
u

er
y

ti
m

e
(µ

s)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

100

101

102

103

104

105

106

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Q
u

er
y

ti
m

e
(µ

s)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

100

101

102

103

104

105

106

107

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Q
u

er
y

ti
m

e
(µ

s)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

100

101

102

103

104

105

106

107

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Q
u

er
y

ti
m

e
(µ

s)

Density

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 18 Query performance based on keyword density with all negative keywords

In general, OptDist offers the best solution in comparison with the other algorithms. Even
though the Euclidean-based algorithm outperforms the running time of OptDist when the
queries contain all positive keywords, OptDist still provide better approximation. OptDist
is more stable in both its speed and approximation accuracy.

7 Related works

This section discusses the related works, specifically on Spatial Keyword and Route
Planning Queries.

7.1 Spatial keywords queries

With the growth of geographical search engine, Spatial Keyword Queries becoming more
crucial and popular among researchers. Most of the early works on Spatial Keyword Queries
focus on queries like top-k nearest neighbor queries (TkNN) [7–9, 11, 15, 35, 42]. In TkNN
queries, the goal is to rank objects, measured the keywords similarity (between the object’s
keyword and query) and the distance from the specified query location, in order to retrieve k

1394 World Wide Web (2019) 22:1359–1399

100
101
102
103
104
105
106
107
108

1:0 0:1 1:1 5:0 0:5 5:1

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

101
102
103
104
105
106
107
108
109

1:0 0:1 1:1 5:0 0:5 5:1

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

100

102

104

106

108

1010

1:0 0:1 1:1 5:0 0:5 5:1

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

100

102

104

106

108

1010

1:0 0:1 1:1 5:0 0:5 5:1

Q
u

er
y

ti
m

e
(µ

s)

K

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 19 Running time based on keyword ratio (positive:negative)

World Wide Web (2019) 22:1359–1399 1395

100

101

102

103

104

105

2 4 8 16 32 64

C
o

st
 (
µs

)

Source-Destination Distance (%)

OptDist
AncestorPriority

Euclidean
Baseline

(a) Running time for CAL

100

101

102

103

104

105

106

107

108

2 4 8 16 32 64

C
o

st
 (
µs

)

Source-Destination Distance (%)

OptDist
AncestorPriority

Euclidean
Baseline

(b) Running time for NY

100

102

104

106

108

1010

2 4 8 16 32 64

C
o

st
 (
µs

)

Source-Destination Distance (%)

OptDist
AncestorPriority

Euclidean
Baseline

(c) Running time for COL

100

102

104

106

108

1010

2 4 8 16 32 64

C
o

st
 (
µs

)

Source-Destination Distance (%)

OptDist
AncestorPriority

Euclidean
Baseline

(d) Running time for FLA

Figure 20 Effect of varying distance between sl and dl

number of objects with the highest ranking. As discussed earlier, this type of query mainly
accepts user’s spatial location and keywords as input, and produces spatial objects with
matching keywords as the output.

A lot of other Spatial Keyword Queries variants are also based on TkNN queries, in
which the works on these variants try to improve the TkNN queries to be able to process
moving objects [40], continuous objects [17], reverse top-k query [16, 32], joint queries
[23, 41], or interactive TkNN queries [49]. Besides the works on Spatial Keyword Queries
that focus on TkNN queries, some variants of Spatial Keyword Queries have also been
proposed, such as the collective Spatial Keyword querying [10, 31, 48], diversified Spatial
Keyword search [47], region-based query [13], scalable continual top-k query [43], reverse
spatial and textual k nearest neighbor query [34], spatio-textual data clustering [14], fuzzy
keyword search [2], and m-closest keyword queries [46]. However, none of these queries
can be classified as route planning queries.

As Spatial Keyword Queries become varied, a number of indexing techniques that are
able to process both spatial and textual data have been proposed in the past years. A lot
of the indexing technique on Euclidean space are utilizing the R-Tree in which they attach
additional textual information into the R-Tree to be capable of computing textual data. Some
of those R-Tree based indices are IR-Tree [28], bR*-Tree [45], and IR2-Tree [15]. The
IR2-Tree itself have been discussed in Section 4 as it inspired us to develop the IG-Tree for
planning Best Path queries.

1396 World Wide Web (2019) 22:1359–1399

Several indexing techniques for Spatial Keyword Queries on road networks have also
been studied recently. These indexing techniques are a lot more complex compared to
indices for Euclidean data spaces. One of the earlier work was proposed by Rocha-Junior et
al. [35] where their basic indexing architecture consists of four components. The first com-
ponent is spatial component which is using the network R-Tree. The second is adjacency
component, which it uses adjacency B-Tree to traverse the network. The third component is
mapping component, which it uses Map B-Tree to map the adjacency edges with MBR that
encloses the edges. The last component is the spatio-textual component, which it stores the
spatial and textual properties of the objects. Another work on road networks is also done
by Luo et al. [33]. They introduced a new indexing technique that is very different from
Rocha-Junior et al. [35]. The proposed index, which is the Node-Partition-Distance (NPD)
index, keeps useful distances so that the exact distance and the query keyword coverage
can be computed independently. Another recent work on spatial keywords index on road
networks is also proposed by Li et al. [30]. They proposed SKQAI, a novel air index for spa-
tial keyword query processing on road networks. The SKQAI indexing technique consists
of three components: weighted Quad-Tree of road network, keyword Quad-Trees, and
network distance bound array.

We see that researchers have proposed many different indexing techniques in order to
process diverse spatial keyword queries efficiently through the past few years. But the
indexing techniques proposed still treat the spatial data part and the textual part as two
different entities. Current techniques often adopts hybrid indexing, in which they have
separate indices for the spatial data and the textual data and then combines both indices,
especially for road networks. Looking at the existing studies, we find that these indices are
not applicable to route planning queries in Spatio-Textual data, e.g., Best Path queries.

7.2 Route planning queries

There are a number of similar route planning queries as Best Path. The most well known
query is the Trip Planning Route Query (TPQ), which retrieves the best trip from two
different locations that passes at least one point from each of the chosen categories [27].
Ever since the invention of TPQ, many new studies start to investigate the variation and
application of TPQ in certain areas, such as Group TPQ (GTP) [19] for processing multi-
ple users’ trip, and a recent study on TPQ with Location Privacy [37] in order to protect
user’s location privacy. Another popular route planning query is Optimal Sequenced Route
Queries (OSR), a spatial query that finds the minimum route distance from a source loca-
tion and passing through a set of sequenced categories [36]. However, these queries do not
consider any keywords processing. Best Path Query focus on Spatio-Textual field, which in
this case it needs to process the textual part of the objects. Another difference is that all of
these existing works do not take into consideration any negative keywords. Everything in
the chosen categories in TPQ and OSR must be visited, while in Best Path there are some
categories that we have to avoid which increases the complexity of the problem.

In Spatio-Textual area itself, there is one study on route planning to the best of our knowl-
edge, which is the Keyword-aware Optimal Route Search (KOR) [12]. It is a query that
finds an optimal route that covers a set of user given keywords with a specific budget con-
straints and objective score [12]. In conjunction to Best Path Query, KOR is different as the
query requires budget constraint for processing. KOR also does not take into consideration
negative keywords as what Best Path does.

Most of the route planning problems is regarded as a generalization of Traveling Sales-
man Problem (TSP) problem [3, 4]. They are NP -hard problems. The solutions offered

World Wide Web (2019) 22:1359–1399 1397

for these queries are polynomial time approximation algorithms. Even so, the solutions
offered do not involve significant pre-processing. This causes more computation, particu-
larly since the computation requires the processing of both spatial and textual relevancy. So
having an on-the-go solution does not always guarantee performance efficiency, especially
on Spatio-Textual field. Therefore in this research we attempt to provide a better solution to
this problem by offering a pre-processing index that incorporate both Keywords and Spatial
Road Networks.

8 Conclusion

In this paper, we introduce a new variant of Spatial Keywords Query, which is the Best Path
Query. The Best Path Query is an NP-Hard problem as it can be reduced to the Travelling
Salesman Problem (TSP). Throughout our study, we develop an indexing technique called
the IG-Tree that can process both spatial and textual information. This indexing technique
can be used on various types of Spatial Keywords Query, especially on the Best Path Query.
Three algorithms to solve the Best Path Query are also proposed in this paper, namely
the Optimal Distance Approximation Search, Ancestor Priority Search, and the Euclidean-
based Approximation solution. Each algorithm has its own strengths and weaknesses.
The effectiveness and efficiency of the proposed algorithms are demonstrated through our
extensive experiments. As a possible future work, we can further improve the IG-Tree to
include keyword scoring function in order to increase the keyword search accuracy.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Adhinugraha, K.M., Taniar, D., Indrawan, M.: Finding reverse nearest neighbors by region. Concurrency
Comput. Pract. Exp. 26(5), 1142–1156 (2014)

2. Alsubaiee, S., Li, C.: Fuzzy keyword search on spatial data. In: International Conference on Database
Systems for Advanced Applications, pp. 464–467 (2010)

3. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric
problems. J. ACM 45(5), 753–782 (1998)

4. Arora, S.: Approximation schemes for np-hard geometric optimization problems: a survey. Math.
Program. 97(1), 43–69 (2003)

5. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: an efficient and robust access
method for points and rectangles. In: ACM SIGMOD, pp. 322–331 (1990)

6. Chen, Y.Y., Suel, T., Markowetz, A.: Efficient query processing in geographic Web search engines. In:
ACM SIGMOD, pp. 277–288 (2006)

7. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation.
In: Proceedings of the VLDB Endowment, vol. 6, pp. 217–228 (2013)

8. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. Proc.
VLDB Endow. 2(1), 337–348 (2009)

9. Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial Web objects. Proc.
VLDB Endow. 3(1-2), 373–384 (2010)

10. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: ACM SIGMOD,
pp. 373–384 (2011)

11. Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D., Yiu, M.L.: Spatial keyword
querying. In: Conceptual Modeling, pp. 16–29 (2012)

12. Cao, X., Chen, L., Cong, G., Guan, J., Phan, N.T., Xiao, X.: Kors: keyword-aware optimal route search
system. In: IEEE ICDE, pp. 1340–1343 (2013)

1398 World Wide Web (2019) 22:1359–1399

13. Cao, X., Cong, G., Jensen, C.S., Yiu, M.L.: Retrieving regions of interest for user exploration. Proc.
VLDB Endow. 7(9), 733–744 (2014)

14. Choi, D.W., Chung, C.W.: A k-partitioning algorithm for clustering large-scale spatio-textual data. Inf.
Syst. 64(Supplement C), 1 – 11 (2017)

15. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: IEEE ICDE, pp. 656–665
(2008)

16. Gao, Y., Qin, X., Zheng, B., Chen, G.: Efficient reverse top-k boolean spatial keyword queries on road
networks. IEEE Trans. Knowl. Data Eng. 27(5), 1205–1218 (2015)

17. Guo, L., Shao, J., Aung, H., Tan, K.L.: Efficient continuous top-k spatial keyword queries on road
networks. GeoInformatica 19(1), 29–60 (2015)

18. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (Sk) queries in geographic
information retrieval (Gir) systems. In: ACM SSDBM, pp. 16–16 (2007)

19. Hashem, T., Hashem, T., Ali, M.E., Kulik, L.: Group trip planning queries in spatial databases. In: SSTD,
pp. 259–276 (2013)

20. http://www.dis.uniroma1.it/challenge9/download.shtml. Last accessed 22 January 2018
21. http://www.wjh.harvard.edu/∼inquirer/No.html. Last accessed 22 January 2018
22. https://github.com/jeffreybreen/twitter-sentiment-analysis-tutorial-201107/blob/master/data/opinion-lexi

con-English/negative-words.txt. Last accessed 22 January 2018
23. Hu, H., Li, G., Bao, Z., Feng, J., Wu, Y., Gong, Z., Xu, Y.: Top-k spatio-textual similarity join. IEEE

Trans. Knowl. Data Eng. 28(2), 551–565 (2016)
24. Hwang, K., Cho, S.: A lifelog browser for visualization and search of mobile everyday-life. Mob. Inf.

Syst. 10(3), 243–258 (2014)
25. Jones, C.B., Abdelmoty, A.I., Finch, D., Fu, G., Vaid, S.: Geographic information science: proceedings

of the third international conference, GIScience, Chap. The spirit spatial search engine: architecture,
ontologies and spatial indexing (2004)

26. Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (1995)

27. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.H.: On trip planning queries in spatial
databases. In: SSTD, pp. 273–290 (2005)

28. Li, Z., Lee, K.C.K., Zheng, B., Lee, W.C., Lee, D., Wang, X.: Ir-tree: an efficient index for geographic
document search. IEEE Trans. Knowl. Data Eng. 23(4), 585–599 (2011)

29. Li, Y., Wu, D., Xu, J., Choi, B., Su, W.: Spatial-aware interest group queries in location-based social
networks. Data Knowl. Eng. 92(Supplement C), 20–38 (2014)

30. Li, Y., Li, G., Li, J., Yao, K.: Skqai: a novel air index for spatial keyword query processing in road
networks. Inf. Sci. 430-431(Supplement C), 17 – 38 (2018)

31. Long, C., Wong, R.C.W., Wang, K., Fu, A.W.C.: Collective spatial keyword queries: a distance owner-
driven approach. In: ACM SIGMOD, pp. 689–700 (2013)

32. Lu, J., Lu, Y., Cong, G.: Reverse spatial and textual k nearest neighbor search. In: ACM SIGMOD, pp.
349–360 (2011)

33. Luo, S., Luo, Y., Zhou, S., Cong, G., Guan, J., Yong, Z.: Distributed spatial keyword querying on road
networks. In: EDBT, pp. 235–246 (2014)

34. Luo, C., Junlin, L., Li, G., Wei, W., Li, Y., Li, J.: Efficient reverse spatial and textual k nearest neighbor
queries on road networks. Knowl-Based Syst. 93(Supplement C), 121 – 134 (2016)

35. Rocha-Junior, J.B., Nørvåg, K.: Top-K spatial keyword queries on road networks. In: EDBT, pp. 168–
179 (2012)

36. Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The optimal sequenced route query. VLDB J. 17(4),
765–787 (2008)

37. Soma, S.C., Hashem, T., Cheema, M.A., Samrose, S.: Trip planning queries with location privacy in
spatial databases. World Wide Web 20(2), 205–236 (2017)

38. Waluyo, A.B., Srinivasan, B., Taniar, D.: Research in mobile database query optimization and process-
ing. Mob. Inf. Syst. 1(4), 225–252 (2005)

39. Waluyo, A.B., Taniar, D., Rahayu, W., Srinivasan, B.: Mobile service oriented architectures for nn-
queries. J. Netw. Comput. Appl. 32(2), 434–447 (2009)

40. Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query
processing. In: IEEE ICDE, pp. 541–552 (2011)

41. Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. IEEE Trans.
Knowl. Data Eng. 24(10), 1889–1903 (2012)

42. Xu, J., Lu, H.: Efficiently answer top-k queries on typed intervals. Inf. Syst. 71(Supplement C), 164–181
(2017)

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.wjh.harvard.edu/~inquirer/No.html
https://github.com/jeffreybreen/twitter-sentiment-analysis-tutorial-201107/blob/master/data/opinion-lexicon-English/negative-words.txt
https://github.com/jeffreybreen/twitter-sentiment-analysis-tutorial-201107/blob/master/data/opinion-lexicon-English/negative-words.txt

World Wide Web (2019) 22:1359–1399 1399

43. Xu, Y., Guan, J., Li, F., Zhou, S.: Scalable continual top-k keyword search in relational databases. Data
Knowl. Eng. 86, 206–223 (2013)

44. Yairi, I., Igi, S.: Mobility support gis with universal-designed data of barrier/barrier-free terrains and
facilities for all pedestrians including the elderly and the disabled. In: IEEE International Conference on
Systems, Man and Cybernetics, vol. 4, pp. 2909–2914 (2006)

45. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K., Kitsuregawa, M.: Keyword search in spatial databases:
towards searching by document. In: IEEE ICDE, pp. 688–699 (2009)

46. Zhang, D., Ooi, B.C., Tung, A.K.H.: Locating mapped resources in Web 2.0. In: IEEE ICDE, pp. 521–
532 (2010)

47. Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search
on road networks. In: EDBT, pp. 367–378 (2014)

48. Zhang, P., Lin, H., Yao, B., Lu, D.: Level-aware collective spatial keyword queries. Inf. Sci.
378(Supplement C), 194 – 214 (2017)

49. Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword
queries. In: IEEE ICDE, pp. 423–434 (2015)

50. Zhong, R., Fan, J., Li, G., Tan, K.L., Zhou, L.: Location-aware instant search. In: ACM CIKM, pp.
385–394 (2012)

51. Zhong, R., Li, G., Tan, K.L., Zhou, L.: G-Tree: an efficient index for knn search on road networks. In:
ACM CIKM, pp. 39–48 (2013)

52. Zhong, R., Li, G., Tan, K.L., Zhou, L., Gong, Z.: G-tree: an efficient and scalable index for spatial search
on road networks. IEEE Trans. Knowl. Data Eng. 27(8), 2175–2189 (2015)

53. http://www.statisticbrain.com/mobile-browser-vs-application-preferences/
54. http://blog.globalwebindex.net/chart-of-the-day/top-global-smartphone-apps-who-s-in-the-top-10/
55. http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm

http://www.statisticbrain.com/mobile-browser-vs-application-preferences/
http://blog.globalwebindex.net/chart-of-the-day/top-global-smartphone-apps-who-s-in-the-top-10/
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

	IG-Tree: an efficient spatial keyword index for planning best path queries on road networks
	Abstract
	Introduction
	Challenges
	Contributions
	Organisation

	Preliminaries
	Road network
	Data model
	Query model

	Complexity analysis
	Data index
	G-Tree
	IR2-Tree
	Proposed data index: IG-Tree
	Space complexity of the IG-Tree
	Height
	Number of nodes
	Number of inverted lists
	Number of borders
	Distance matrices
	Keyword distance matrices

	Index reconstruction for tree node with negative query keywords

	Query processing
	Baseline algorithm
	Optimal distance approximation search
	Ancestor priority approximation search
	Euclidean-based approximation search

	Experiment
	Settings
	Environment
	Datasets
	Queries

	Index evaluation
	Performance study
	Effect of k+
	Effect of k-
	Effect of keyword densities
	Effect of positive and negative keywords ratio
	Effect of distance between sl and dl
	Summary

	Related works
	Spatial keywords queries
	Route planning queries

	Conclusion
	References

