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Abstract
In LDA model, independence assumptions in the Dirichlet distribution of the topic propor-
tions lead to the inability to model the connections between topics. Some researchers have
attempted to break them and thus obtained more powerful topic models. Following this
strategy, by using an association matrix to measure the association between latent topics, we
develop an associated topic model (ATM), in which consecutive sentences are considered
important and the topic assignments for words are jointly determined by the association
matrix and the sentence level topic distributions, instead of the document-specific topic dis-
tributions only. This approach gives a more realistic modeling of latent topic connections
where the presence of a topic may be connected with the presence of another. We derive a
collapsed Gibbs sampling algorithm for inference and parameter estimation for the ATM.
The experimental results demonstrate that the ATM gives a more practical interpretation
and is capable of learning more associated topics.

Keywords Topic models · Hierarchical models · Association measures · Gibbs sampling ·
Text analysis

1 Introduction

Topic modeling is an efficient tool to explore large collections of text by automatically
extracting the underlying topics contained in the documents. Researchers in this field have
proposed a suite of algorithms that uncover the hidden thematic structure in document col-
lections and these algorithms help us develop new ways to search, browse and summarize
large archives of texts. Nowadays topic models have achieved significant progress in the
statistical analysis of documents collection and other discrete data.

In topic modeling field the basic approach is to model each word in a document as a
sample from latent aspects or topics (e.g., [7, 11, 17, 21, 32]). They employ parameters on
different levels, global parameters that are associated with the probability of words given
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topics, and a set of parameters for each of the documents that stand for the probability of
topics in a document in the corpora. These models assume that each document is a multi-
nomial distribution over topics and each topic is a multinomial distribution over words and
uses the Dirichlet distribution to model the variability among topic proportions. This has
gradually become a common framework in topic modeling field.

In these models, the order of words is usually neglected and text corpora is represented
by a co-occurrence matrix of words and documents. That is, each word is generated from
a single topic, and different words in a document may be generated from different topics
and therefore each document is represented as mixing proportions for topics and thereby
reduced to a multinomial distribution on a fixed set of topics. The distribution is considered
as a short description of the document.

However, the strong independence assumption imposed by the Dirichlet that the random
variables are independent and identically distributed in LDA is not realistic when analyzing
real document collections and it fails to directly model relations between the occurrence of
topics. Specifically, under a Dirichlet, the components of the proportions vector are nearly
independent, which leads to the strong assumption that the presence of one topic is not
correlated with the presence of another. However, it is natural to expect that the occurrences
of the underlying latent topics will be highly correlated.

Relaxing these assumptions of exchangeability and dependence is expected to yield bet-
ter models which can improve the ability to capture local dependencies between words. In
recent years Markov models have been tried to solve this problem in which consecutive
words are modeled by Markovian relations [1, 4, 19, 30, 32–35]. These models follow the
framework by the LDA model and differently assume that each word generation depends on
a latent topic assignment as well as on the previous words or sentences in the text and hence
are able to capture relations between consecutive words or sentences. Griffiths et al. [18]
employs a latent variable standing for syntactic classes whether words are generated from
topics that are randomly drawn from the topic mixture of the document or from the syn-
tactic classes that are drawn from the previous syntactic class. The model treats the latent
variables of the syntactic classes as a sequence with local dependencies while latent assign-
ments of topics are similar to the LDA model. Gruber et al. [19] models the topics of words
in a document as a Markov chain where all words in a sentence have the same topic and
consecutive sentences intend to have the same topic. Andrews and Vigliocco [1] assumes
that the topics of words in a document form a Markov chain, and that consecutive words
are more likely to have the same topics. Wang et al. [33] detects semantic relations by pro-
jecting the new relation’s training instances onto a lower dimension topic space constructed
from existing relation detectors through a three step process. All these models focus on what
the word generations depend on and try to get better models.

Following the same lines we propose the associated topic model (ATM) to model unstruc-
tured data that contains stream of sentences and words. In this paper we assume sentences
are bags of words and focus on the orders of sentences in each document because the tran-
sition of topic distributions between consecutive sentences can provide useful information
about the possible meaning of words.

Unlike the LDA model and mixture of unigram models, which allow random topic tran-
sitions among words in a document, we assume consecutive sentences are more likely to
have the similar topics and allow topics transitions through the sentences. Documents are no
more than a random permutation of words. The input to the algorithm is the entire document,
sentence by sentence, rather than a document-word co-occurrence matrix. This obviously
increases the storage requirement for each document, but it allows us to capture unknown
relations among topics. Hence the generated topics have more realistic meanings. It could

World Wide Web (2019) 22:2545–25602546



be very useful for word sense disambiguation in many applications such as machine transla-
tion. Furthermore, the topic assignment will tend to be coherent and it in turn affects topics
transitions in consecutive sentences.

The paper is organized as follows. We introduce basic notation and terminology in
Section 3 and related work in Section 2. The ATMmodel is presented in Section 4 and infer-
ence and parameter estimation for ATM are discussed in Section 5. Empirical results in text
modeling are presented in Section 6. Finally, Section 7 presents our discussions.

2 Related work

Conventional algorithms in topics models mostly assume each word in the document was
generated by a hidden topic and explicitly model the word distribution of each topic as
well as the prior distribution over topics in the document, which has formed a common
framework. After that, various approaches, including purely unsupervised topics models and
external knowledge based topic models, have been proposed to exploit the relations among
words or topics to get meaningful topics.

In unsupervised topics models, latent variables are drawn in different ways from a fixed
distribution. Blei and Lafferty [6] and [23] made the first attempt on breaking the inde-
pendence assumption by substituting the logistic normal distribution for the Dirichlet prior
distribution, which allows for a general pattern of variability between the components. CTM
models the topic proportions with an alternative, more flexible distribution that allows for
covariance structure among the components. Li and Mccallum [24], employing a directed
acyclic graph (DAG) to represent the topic complex structure, introduced the pachinko allo-
cation model (PAM) to captures arbitrary correlations. Afterwards [19] used Markov chain
to model the topics of words in the document. They assume that all words in the same sen-
tence have the same topic and successive sentences are more likely to have the same topics.
Chong et al. [13] developed Markov topic models (MTMs) by applying Gaussian (Markov)
random fields to model the correlations of different corpora. The MTMs could learn topics
simultaneously from multiple corpora and capture the internal topic structure within each
corpus and the relationships between topics across the corpora. Blei et al. [8] used nested
Chinese restaurant process (nCRP) as a prior distribution in a Bayesian nonparametric
model hLDA and.

In the knowledge based topic models, external knowledge are employed to obtain differ-
ent models, although they are hard to acquire in the real word applications. Andrzejewski
et al. [2] employs Dirichlet Forest prior over the topic-word multinomials to encode the
Must-Links and Cannot-Links between words. Petterson et al. [29] used word information
and a prior over the topic-word multinomials such that similar words share similar topic
distributions. Newman et al. [26] proposed a quadratic regularizer and a convolved Dirich-
let regularizer over topic-word multinomials to incorporate the correlation between words.
Andrzejewski et al. [3] attempted to incorporate domain knowledge regarding documents,
topics and side information into LDA. Chen et al. [12] models each topic as a probability
distribution over domain knowledge. Jagarlamudi et al. [22] set a set of seed words in the
beginning that users believe could represent certain topics.

Besides, some researchers tried new sentence based models to find better topics and
applied them in new fields. Andrews and Vigliocco [1] proposed a hidden Markov top-
ics model(HMTM) incorporating sequential and syntactic structures to model distributional
structure. Hennig et al. [20] represented each sentence as a distribution over topics to
identify sentential content with the same meaning. Tian et al. [31] took the one sentence

World Wide Web (2019) 22:2545–2560 2547



one topic assumption where word generations in a sentence depend on both the topic of
the sentence and the whole history of its preceding words in the sentence. Zhang et al. [36]
proposed the sentence level topic model (SLTM), which contains a hidden layer, called the
topic layer, between corpus and words to classify review sentences into different classes
corresponding to different product features. Balikas et al. [5] incorporated the structure of
the textual input in the generative and inference processes to encode much information hid-
den in coherent text spans such as sentences.These models take into account the inherent
sequential nature of linguistic data. They focus on sentence generation and new application.
Meanwhile, to our knowledge there are seldom work focusing on modeling topic relation.

Different from these models, we emphasis on the sentence orders to get their topic coher-
ence and relatively ignore the word orders in each sentence. Our model does not introduce
any external knowledge. We take into account sentences’ influence to adjacent sentences in
a document, we emphasis on the sentence orders to get their topic coherence and relatively
ignore the word orders in each sentence. We make a small attempt to define the associa-
tion relationship among topics that accords with topic transition and co-occurrence in or
between sentence.

3 Notation and terminology

We use the language of text collections throughout the paper, referring to entities such as
“words”, “sentences”, “documents” and “corpora” and we define the terms as follows. A
word is the basic unit of discrete data, defined to be an item from a vocabulary denoted by
w. A sentence is a sequence of N words denoted by w= (w1, ...wN ), where wn is the nth
word in the sequence. A document is a sequence of L sentences denoted by s= (w1, ...wL),
where wl is the lth sentence in the document. A corpus is a collection of M documents
denoted by D= {s1, ..., sM }, where sm is the mth document in the corpus. See Table 1 for
detailed description.

4 Associated topic model (ATM) for text documents

The associated topic model(ATM) is a hierarchical generative model. In LDA as well as
ATM each document is represented as a random mixture over latent topics and each topic is
characterized by a random mixture over words. ATM differs from LDA in that ATM thinks
of a document as a sequence of sentences, not a collection of words. ATM accounts for that
consecutive sentences are more likely to have the same topics and meanwhile the order of
words in the same topic is neglected. Accordingly, ATM neglects the orders of words but
emphasizes the orders of sentences in a document.

We take the form of association measures, a square and symmetric matrix, to measure the
association between topics [9]. Association measures are symmetric in the sense: the value
of the association, referred to association coefficient, between the kth topic and the sth one
is the same as the value of the association between the sth and the kth.

We use previous sentence, current sentence and next sentence to illustrate how a topic
distribution for the current sentence is obtained. Rather than sampling topic identities for
words in the current sentence from a probability distribution πm for themth document, these
identities are generated by a specified topic distribution ψcurrent for the current sentence,
which is determined commonly by φ and the topic distributions ψprevious , ψnext for the
previous and next sentences, except the first and the last sentences. Figure 1 and (1) show
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Table 1 Definition of variables in the model

Variable Meanings

K number of topics

V number of words in the vocabulary

M number of documents in the corpus

Nl number of words in the lth sentence wl

Lm number of sentences in the mth document sm
Tm number of words in the mth document sm, Tm = ∑L

l=1 Nl

wmln index of the nth word in the lth sentence of the mth document

zmln index of topic for the nth word in the lth sentence of the mth document

W the chain of word index in a corpus in the sampling process

Z the chain of topic index assignments in a corpus in the sampling process

αk prior weight of the kth topic in a document, αk >0

α a K-dimension vector of all αk values

γk prior weight of topic k associated with another topic, γk >0

γ a K-dimension vector, collection of all γk values

ηv prior weight of the vth word in a topic, ηv >0

η a V -dimension vector, collection of all ηv values

πmk probability of the kth topic in the mth document for any word, 0 ≤ πmk ≤ 1

πm a K-dimension probability distribution of topics in the mth document with
∑K

k=1 πmk = 1

βkv probability of word w occurring in topic k, 0 ≤ βkv ≤ 1

βk V -dimension probability distribution of words in the k topic with
∑V

v=1 βkv = 1

φks probability of the kth topic associated with the sth topic, 0 ≤ φks ≤ 1

φ a K × K association matrix

ψcurrent K-dimension probability distribution of topics in the current sentence

ψprevious K-dimension probability distribution of topics in the previous sentence

ψnext K-dimension probability distribution of topics in the next sentence

how the topic distributions for sentences (except for the first sentence and the last sentence)
are determined. The topic distribution for the first sentence in a document is determined by
its next sentence and the topic distribution for the last sentence by its previous sentence. In
(1) we think of the K-dimension probability distribution of topics ψ as a 1 × K vector so
that the matrix multiplication makes sense.

ψcurrent = 0.5 ∗ (ψprevious + ψnext ) ∗ φ. (1)

Figure 1 To describe how the topic distribution of previous sentence, the topic distribution of next sentence
and the association matrix commonly determine the topic distribution of the current sentence

World Wide Web (2019) 22:2545–2560 2549



Now we turn to the description of generative process in this model. The key point is still
topic allocations for all words. To generate a new word in the current sentence, one starts
by firstly computing a multinomial distribution over topics corresponding to the current
sentence ψcurrent . After that, sample a hidden topic z for the word w from ψcurrent and then
sample a word from the multinomial distribution over words with parameters βk . Formally
the generative process can be described as follows.

1. For each topic,

1.1 Draw βk ∼ Dir(η).
1.2 Draw φk ∼ Dir(γ ).

2. For each document,

2.1 Draw πm ∼ Dir(α).

2.2 For each sentence except the first and the last sentences

a Compute the topic distribution for this sentence ψcurrent by (1).
b For each word in this sentence assign a topic z ∼ Multinomial

(ψcurrent ).
c Choose a word w ∼ Multinomial(βz).

The associated topic model is represented as a probabilistic graphical model in Figure 2.
In this model there are four levels of parameters related to a corpus, documents, sen-
tences and words, separately. The corpus-level parameters β and φ are global variables and
assumed to be sampled once in the process of generating a corpus. Specifically, βs are
drawn from a common Dirichlet prior parameterized by η and φ are drawn from a common
Dirichlet prior parameterized by γ . The document-level variables πms are local variables,
sampled once per document. Finally, the word-level variables zdn and wdn are also local
variables, sampled once for each word in each document. In order to make it more explicit,
Figure 2 makes a graphical description of parameters and their connections.

The ATM makes several simplifying assumptions regarding parameters. The number of
topics and thus the dimension of the Dirichlet distribution, often denoted by Dir(α), is

Figure 2 Graphical model representation of ATM. In our model the document-level variables πms are used
in document representation only and will not participate in the process of generating topic assignments
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fixed beforehand. The properties that the Dirichlet distribution is the conjugate prior of
the multinomial distribution help facilitate efficient inference and estimation algorithms.
Furthermore, when there is no prior knowledge favoring one component over another, the
symmetric case might be useful, where all of the elements making up the parameter vector
have the same value. The density function of symmetric Dirichlet distribution has the form

p(θ |α) = 	(αK)

	K(α)

K∏

k=1

θα−1
k ,

where the parameter α = (α, ..., α) is a k-vector with its component α >0 and 	(.) is the
Gamma function.

In this model, πms of all documents are drawn from a common Dirichlet prior distribu-
tion parameterized by α and will be used to initialize topic assignments for all words of a
document. Note that in our model the document-level variables πms are used to document
representation only and will not participate in the process of generating topic assignments,
so they do not appear on the graphical representation of ATM (Figure 2). After conver-
gence of the Gibbs sampling, we will update them and each document is represented as
mixing proportions for topics and thereby reduced to a multinomial distribution on a fixed
set of topics. This distribution is the short description of the document and can be used in
document modeling.

5 Inference and parameter estimation

The key inferential problem for this model is that of computing the posterior distribution of
the hidden variables given a document

P(Z,φ,β|W, η, γ ) = P(Z,φ,β, W |η, γ )

P (W |η, γ )
. (2)

and the likely function

P(W |η, γ ) =
∫

P(β|η)P (φ|γ )
∏

m,l,n

∑

zm,l,n

P (zm,l,n|θm,l)P (wm,l,n|βzm,l,n
)dβdφ. (3)

Unfortunately, the quality P(W |α,β,φ) can not be computed tractably due to the cou-
pling among β and φ and we turn to approximate inference algorithms for the problem,such
as variational approximation [6, 7] and Markov chain Monte Carlo (MCMC) [16, 18, 19].

In this section we employ MCMC to estimate the parameters because MCMC is an
effective procedure for obtaining samples from complicated probability distributions, which
allows a Markov chain to converge to the target distribution and then samples can be drawn
from the Markov chain [15]. Each state of the chain is an assignment of values to the
latent variables being sampled, and all variables will be sampled sequentially from their
distribution, conditioned on the current values of all other variable and the data.

Gibbs Sampling is a member of a family of MCMC algorithms and this method is based
on sampling from conditional distributions of the variables of the posterior. We choose
Gibbs sampling aiming to construct a Markov chain that has the target posterior distribution
as its stationary distribution. In other words, after a number of iterations of stepping through
the chain, sampling from the distribution should converge to be close to sampling from the
desired posterior.

World Wide Web (2019) 22:2545–2560 2551



For ATM, we need to estimate the latent document-topic portions πm, the topic-word
distributions β the association matrix φ and the topic index assignments for each word
Z. While conditional distributions can be derived from a chain of these latent variables,
it should be noted that πm, β and φ can be calculated using just the chain of topic index
assignments Z (i.e. Z is a sufficient statistic for both these distributions). That is, we use
Gibbs sampling to sample only the assignments Z of words to topics. Therefore, a sim-
pler algorithm, called a collapsed Gibbs sampler, can be used to compute the probability
of a topic z being assigned to a word w, given all other topic assignments to all other
words. What we will use in the sampling step is just the conditional posterior distribution
P(zm,l,n = k|Z−l ,W).

By using Bayes’ rule, for words in documents, the conditional posterior distribution for
zm,l,n is given by

P(zm,l,n = k|Z−l ,W)

∝ P(wm,l,n|zm,l,n = k, Z−l ,W−(m,l,n))P (zm,l,n = k|Z−l ,W−(m,l,n)), (4)

where Z−l is the assignments of words expect that in the lth sentence of the mth document.
This is an application of Bayes’ rule, where the first term on the right hand is a likelihood
and the second a prior.

For the first term, we have

P(wm,l,n|zm,l,n = k, Z−l , W−(m,l,n))

=
∫

β(k)
wm,l,n

P (β(k)|Z−(m,l,n), W−(m,l,n))dβ(k) (5)

Using the property of expectation of Dirichlet distribution, we have

P(wm,l,n|zm,l,n = k, Z−l , W−(m,l,n)) = t
(wm,l,n)

−(m,l,n),k + γ

t
(.)
−(m,l,n),k + Wγ

. (6)

Here, t
(wm,l,n)

−(m,l,n),k denotes the number of instances of word wm,l,n assigned to topic k and

t
(.)
−(m,l,n),k denotes the total number of words assigned to topic k, not including the current
one.

Similarly, for the second term, we have

P(zm,l,n = k|Z−l ,W)

∝
∑

l

1

2
(zl

m,l−1 + zl
m,l−1)

n
(l,k)
−(m,l) + α

n
(l)
−(m,l) + Kα

. (7)

Here ∝ in this case means that the denominator is not a function of zm,l,n and thus is the
same for all values of zm,l,n; it forms part of the normalization constant for the distribution
over zm,l,n. Combining (4), (6) and (7), we get

P(zm,l,n = k|Z−l , W) ∝
t
(wm,l,n)

−(m,l,n),k + γ

t
(.)
−(m,l,n),k + Wγ

∑

l

1

2
(zl

m,l−1 + zl
m,l−1)

t
(l,k)
−(m,l) + α

t
(l)
−(m,l) + Kα

. (8)

The Gibbs sampling algorithms generate an instance from (8) in turn, conditional on the
current values of the other variables. It can be shown [14] that the sequence of samples
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constitutes a Markov chain, and the stationary distribution of that Markov chain is just the
joint distribution. Additionally, the marginal distribution of any subset of variables can be
approximated by simply considering the samples for that subset of variables, ignoring the
rest.Therefore, on convergence of the Gibbs sampling, we will get samples from the joint
posterior distribution P(Z,π ,φ,β|W,α, η, γ ) and hence other variables of interest can be
obtained from this posterior distribution.

6 Experiments

In this section, we empirically evaluate the effectiveness of our model, comparing it with
three baseline methods on two datasets, which are wide benchmark in text analysis. The
purpose of the experiments is to show the validity of the ATM and to demonstrate its bet-
ter performance. We present the experimental results from three perspectives. First, we use
perplexity curve to validate the convergence of the ATM on the NIPS dataset. Second,
we demonstrate ATM’s capability of obtaining more realistic topics on the NIPS dataset.
Thirdly, we use document clustering on 20Newshome dataset and the Reuters-21578 dataset
to measure the quality of the learned topical representations from different models.

6.1 Data sets

The experiments are conducted on the NIPS dataset , 20 Newsgroups dataset and the
Reuters-21578 dataset. The NIPS dataset consists of 1740 documents, of which the train set
consists of 1557 documents and the test set consists of the remaining 183. The vocabulary
contains 12113 words. From the raw data we extracted the words that appear in the vocab-
ulary and divided the text to sentences preserving their order. And we also discarded stop
words from the input. The 20Newsgroups dataset is a collection of approximately 20,000
newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. It has
become a popular data set for experiments in text applications of machine learning tech-
niques, such as text classification and text clustering. The Reuters-21578 dataset contains
21578 documents which are grouped into 135 clusters. We use here the ModeApte version.
Those documents with multiple category labels are discarded. It leaves us with 8293 doc-
uments in 65 categories. For ModeApte split, there are 5946 training documents and 2347
testing documents. Compared with TDT2 corpus, the Reuters corpus is more difficult for
clustering.

6.2 Baselines

We compare our model with three baseline models: latent Dirichlet allocation(LDA) [7], the
correlated topic model(CTM) [6] and the Markov topic models (MTMs) [13]. LDA is the
most widely used topic model. CTM put first focus on relationship. As inMTMs, we employ
Markov chain to describe topic transformation in a document. Besides, these models, like
our model, did not introduce any external knowledge.

6.3 Experimental settings

Before explaining our experiments, we describe here the parameter specifications used to
conduct our experiments. We run each Gibbs sampler for 500 iterations with 200 burn-in
with the varying values of T , the number of topics. The value of 500 iterations is chosen
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to guarantee the convergence of posterior distribution so that topics are nearly drawn from
the true distribution. We report the average perplexity of 5 randomly initialized runs on the
NIPS dataset with K = 50 and for each run, 25% documents are held out for testing. The
empirical prior parameters are set for all or part of models. We let η = 0.02, α = 50/K and
γ = 1.

6.4 Evaluating topics

We compare our model with the baselines both qualitatively and quantitatively.

6.4.1 Perplexity

We follow the standard way in document modeling to evaluate the word predicative per-
plexity of our model and related models on the NIPS dataset. The perplexity of a testing
collection of M documents is formally defined as:

perplexity(Dtest ) = exp{−
∑M

d=1 logp(Wd)
∑M

d=1 Nd

}.

Mathematics, the perplexity of a word distribution is the inverse of the geometric per-word
average of the probability of the observations and it means that how the models predict
the remaining words after observing a portion of the document. Therefore it reflects the

Table 2 Comparation of topics learned by ATM (top) and LDA (bottom) from NIPS dataset. Each column
gives a topic represented by the top ten words from its distribution

#1 #2 #3 #4 #5 #6 #7 #8

network case probability distance input parameters data figure

learning hidden set linear system weight output networks

model functions patterns vector information processing problem control

neural algorithm orientation space noise neuron performance number

input form single set error pattern based shown

data analog average field neurons equation features values

figure phase cells nonlinear algorithm classifier task order

function classification level connections spike threshold rules visual

networks time object images point result paper approximation

inputs algorithms local regression time gaussian gradient estimation

units strategy noise state memory data feature neurons

hidden information information reinforcement capacity regression features neuron

unit expected code action associative estimate representation connections

layer approach coding policy stored method level neural

input variables channel optimal number variance structure fig

weights positive input states storage methods representations phase

output cases signal actions memories clustering figure network

net maker spectral control high estimation similarity activity

training good codes function recall noise information activation

network game rates time fault cluster part delay

World Wide Web (2019) 22:2545–25602554



Table 3 Association matrix for the eight topics shown in Table 2

0.11 0.08 0.06 0.06 0.1 0.07 0.08 0.03

0.08 0.12 0.05 0.07 0.08 0.09 0.08 0.03

0.06 0.05 0.09 0.04 0.05 0.07 0.08 0.07

0.06 0.07 0.04 0.1 0.04 0.06 0.07 0.05

0.1 0.08 0.05 0.04 0.13 0.08 0.08 0.04

0.07 0.09 0.07 0.06 0.08 0.09 0.08 0.05

0.08 0.08 0.08 0.07 0.08 0.08 0.07 0.07

0.03 0.03 0.07 0.05 0.04 0.05 0.07 0.06

difficulty of predicting a new unseen document and lower perplexity means more predictive
capability.

We first demonstrate the performance of ATM on the NIPS dataset. Table 2 shows some
associated topics learned by ATM, between which the associated coefficients are shown
in Table 3 and makes a comparison with those by LDA. For example, network, learning,
model, neural, input, data, figure, function, networks, inputs represent a topic related to
learning and this is consistent with intuition. From this table we can see that more realistic
semantic topics can be learned when sequential information is taken into account.

Perplexity as a function of the number of topics is depicted in Figure 3. The perplexities
decrease rapidly at the beginning and then decrease gently to a stable value. This means
that our algorithm can converge quickly to the local optimal value and the assigning process
reaches a stable stage. Meanwhile, perplexities decrease rapidly with the number of topics
varying from 10 to 50 and then decrease gently and the curves demonstrate ATM’s better
performance than LDA at a computational cost that is acceptable to us. These models are
not only computationally efficient, but also seem to capture correlations between words via
the topics.

6.4.2 Coherence measures

Topic models give no guarantees on well interpretable output, which extract topics from
word counts in documents without requiring any semantic annotations. Therefore, coher-
ence measures [10, 25, 27] were proposed and have been approved to distinguish between
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Figure 3 Perplexity vs iteration number (left) and the number of topics (right) on the NIPS dataset with K =
50
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good and bad topics based on top words with respect to interpretability. Coherence measures
compute a sum of scores over pairs of words from top words of a given topic:

coherence =
∑

i<j

score(wi, wj ).

The state-of-the-art measures in terms of topic coherence are the intrinsic measure UMass
and the extrinsic measure UCI, both based on the same high-level idea.

The UCI-coherence measures the coherence of a topic based on pointwise mutual infor-
mation(PMI) using large scale text data sets from external sources. Given the T most
probable words of a topic k, (w1, . . . , wT ), PMI-Score measures the pairwise association
between them.

PMI (wi, wj ) = log
P(wi,wj ) + 1

M

P(wi)P (wj )

where P(wi,wj ), P(wi) and P(wj ) are the probabilities of co-occurring words pair
(wi, wj ) and wi is estimated empirically from the external data sets, respectively. The
smoothing count 1

M
is added to avoid calculating the logarithm of zero. The UCI-coherence

is calculated by:

UCI − coherence(topic) =
T∑

i=2

i−1∑

j=1

PMI (wi,wj ). (9)

The coherence based on pointwise mutual information (PMI) gave large correlations with
human ratings. The measure is extrinsic as it uses empirical probabilities from an external
corpus such as Wikipedia. In our experiments, we extract topics and then compute UCI-
coherence on the same dataset. Since these external data sets are model-independent, UCI-
Score is fair for all the topic models.

Table 4 and Figure 4 show the average coherence measures of topic models with different
fixed topic numbers on the NIPS dataset. It clearly shows the difference between the quality
of the topics extracted by different models. For UCI-coherence our model always performs
better than LDA, CTM and closely to MTMs. Besides, the three models get better results as
the number of topics get larger.

6.4.3 Document clustering

To measure the quality of the learned topical representations from different models, we use
k-means document clustering problem to see how accurate and discriminative the features
obtained by different models are. k-means clustering aims to partition N observations into k

Table 4 Average topic coherence results on the NIPS dataset. The higher coherence score corresponds to a
better topic quality

100 200 300

ATM .4234 .4762 .4581

LDA .3852 .3975 .4234

CTM .3729 .4134 .4177

MTMs .4018 .4292 .4392

Values in bold in each column show that the algorithms corresponding to these numbers get the best
performance
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Figure 4 Average topic coherence results on the NIPS data set for ATM, LDA, CTM and MTMs

clusters in which each observation belongs to the cluster with the nearest mean. Document
clustering is a well researched area that has several traditional methods available. In the text
clustering problem, we wish to classify a document into two or more mutually exclusive
classes. A challenging aspect of the document classification problem is the choice of fea-
tures. Choosing features is essential in the document clustering problem. Treating all words
as features yields a rich but very large feature set, which often causes great complexity. One
way to reduce this feature set is to use topic models for dimension reduction and this is our
focus in this section.

In these experiments, we split the data set into training and test subsets, and employed
the k-means algorithm on the low-dimensional representations provided by LDA , ATM,
CTM and MTMs respectively. It is of interest to see how much discriminatory information
we leave in reducing the document description to topic-based features. The clustering result
is evaluated by comparing the obtained label of each sample with that provided by the data
set.

The accuracy(AC) and the normalized mutual information metric(NMI) are used to mea-
sure the clustering performance. Given a document d , let cd and rd be the obtained cluster
label and the label by the corpus, respectively. The AC is defined as

AC =
∑D

d=1 δ(cd, rd)

D

where D is the total number of documents and and δ(x, y) is the delta function that equals 1
if x = y and equals 0 otherwise. Let X denote the set of clusters obtained from the ground
truth and Y obtained from our models. H(X), p(x) and p(x, y) denote the entropy of X,
the probabilities that a document arbitrarily selected from the corpus belongs to the clusters
x, and the joint probability that the arbitrarily selected document belongs to the clusters x
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Figure 5 Accuracy (left) and normalized mutual information (right) results on the 20NewsHome data set for
ATM, LDA, CTM and MTMs

as well as y at the same time, respectively. The mutual information metric MI(X, Y ) and
the normalized mutual information metric NMI(X, Y ) are defined as follows:

MI(X, Y ) =
∑

x∈X,y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)

NMI (X, Y ) = MI(X, Y )

max{H(X),H(Y )} .

The value of NMI ranges from 0 to 1 and a larger value means stronger independence.
Figure 5 and Table 5 show document clustering performance on the 20Newshome data

set. The evaluations were conducted with the topics(features) numbers varying in {50, 100,
200, 300}. The performance confirms ATM’s validity and effectiveness. The clustering
results demonstrate that the topic-based representation provided by ATM can be thought
as a filtering algorithm for feature selection in text analysis. Similar results appear on the
Reuters-21578 dataset.

7 Discussion and future work

We have developed a hierarchical probabilistic model of documents that replaces the Dirich-
let distribution of per-document topic proportions with an association matrix to generate
topic assignments, which allows the model to capture associations between topics. We

Table 5 Clustering performance on 20NewsHome dataset. Each entry is the clustering accuracy(left) and
NMI(right) of the column method on the corresponding row topic numbers

ATM LDA CTM MTMs

K=50 (.5224, .5327) (.5324, .5425) (.5322, .5429) (.5120, .5435)

K=100 (.5021, .5380) (.5010, .5247) (.5026, .5324) (.5004, .5316)

K=200 (.4961, .4967) (.4676, .4770) (.4727, .4828) (.4924, .4953)

K=300 (.4840, .4771) (.5014, .4947) (.4723, .5421) (.4824, .4826)
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defined an associational relation between topics in terms of a joint distribution. The associ-
ated topic model gives better predictive performance and provides a rich way of exploring
text collections.

It should be pointed out that in our model the number value of topics have to be set man-
ually in advance. However, some topic models use nonparametric Bayesian methods based
on the Dirichlet process to solve this problem that can accommodate new topics as more
documents are observed.Seeking a suite of tools to tackle the model selection issue in ATM
is an important area of future research. Another possible direction for future work is inves-
tigating whether there exist deep relations between topics, for instance, causal relations [28].
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