
World Wide Web (2019) 22:2017–2040
https://doi.org/10.1007/s11280-018-0638-2

Towards secure and truthful task assignment in spatial
crowdsourcing

Dongjun Zhai1 ·Yue Sun1 ·An Liu1 ·Zhixu Li1 ·Guanfeng Liu2 · Lei Zhao1 ·Kai Zheng3

Received: 15 April 2018 / Revised: 12 July 2018 / Accepted: 7 September 2018 /
Published online: 18 September 2018

This article belongs to the Topical Collection: Special Issue on Web Information Systems Engineering 2017
Guest Editors: Lu Chen and Yunjun Gao

� An Liu
anliu@suda.edu.cn

1 School of Computer Science and Technology & Institute of Artificial Intelligence, Soochow
University, Suzhou, China

2 Department of Computing, Macquarie University, Sydney, NSW 2122, Australia
3 Big Data Research Center, University of Electronic Science and Technology of China,

Chengdu, China

Abstract
The ubiquity of mobile device and wireless networks flourishes the market of spatial
crowdsourcing, in which location constrained tasks are sent to workers and expected to
be performed in some designated locations. To obtain a global optimal task assignment
scheme, the platform usually needs to collect location information of all workers. During
this process, there is a significant security concern, that is, the platform may not be trust-
worthy, so it brings about a threat to workers location privacy. In this paper, to tackle the
privacy-preserving task assignment problem, we propose a privacy-preserving reverse auc-
tion based assignment model which consists of two key parts. In the first part, we generalize
private location to travel cost and protect it by an anonymity based data aggregation proto-
col. In the second part, we propose a reverse auction task assignment algorithm, which is
a truthful incentive mechanism, to encourage workers to offer authentic data. We theoreti-
cally show that the proposed model is secure against semi-honest adversaries. Experimental
results show that our model is efficient and can scale to real SC applications.

Keywords Privacy-preserving · Spatial crowdsourcing · Task assignment · Reverse auction

1 Introduction

With the rapid development of GPS-equipped mobile devices and wireless networks, Spa-
tial Crowdsourcing (SC) has become an emerging platform to tackle human intrinsic tasks
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[3]. In a traditional SC model, location-constrained tasks are sent to workers (e.g. users with
smart phones) and the workers are expected to physically travel to some locations to per-
form corresponding tasks. As the embodiment of Wisdom of Crowd, SC has applications in
numerous domains such as transportation (e.g. Uber), handyman service (e.g. TaskRabbit),
collaborative mapping (e.g. OpenStreetMap) and food delivery (e.g. Eleme).

Based on the publishing modes of spatial tasks, SC can be divided into two different
categories [3]: worker selected tasks (WST) and server assigned tasks (SAT). Due to the
global view of generating task assignment, SAT is more popular and has more application
scenarios than WST. The task assignment problem in SAT mode can be viewed as task-
worker bipartite graph matching problem, in which each task and worker node may have
multiple matching edges. Specifically, each task can be assigned to more than one workers
and each worker can hold more than one tasks at a time. So far, existing approaches mainly
focus on optimizing task assignments problem. Given some temporal, budget or capacity
constraints, these works try to maximize, for example, the overall number of assigned tasks
[16], the number of worker’s self-selected tasks [9], the budget-minus-cost score of task
assignment [6], the acceptance of workers [46] and so on.

Compared with conventional crowdsourcing, SC has some special privacy concerns, as
the SC platform needs to collect all workers’ private locations to perform task assignment.
Protecting workers’ private information can encourage them to participate SC, so this is
an important problem that needs to be solved in spatial crowdsourcing. Existing privacy-
protection methods can be divided into three categories: spatial cloaking [15, 22, 36],
differential privacy [33, 38], and homomorphic encryption [23, 25]. Methods based on spa-
tial cloaking and differential privacy typically cannot obtain the accurate task assignment
result due to the decreased data utility, which results from the noise introduced by these
mechanisms. Homomorphic encryption based methods can generate accurate task assign-
ment, but they suffer from computation time issue due to the expensive operations over
ciphertext and thus cannot scale to large SC applications.

To overcome the above weaknesses of existing methods, we consider a novel SAT mode in
which workers can set their preferences for tasks and the SC platform makes task assignment
based on not only its own optimization goal but also workers’ preferences. If a worker prefers
some tasks, s/he sends his/her travel cost instead of locations to the platform. This setting
gives more rights to workers as their preferences are taken into account during task assign-
ment. Further, it protects location privacy to a certain extent by generalizing a worker’s exact
location to the circumference of a circle whose center is the task location and its radius is
proportional to the travel cost. However, the untrustworthy platform can still infer a worker’s
location approximately by considering the intersections of these circles. To deal with this,
we propose an Anonymity-based Data Aggregation (ADA) protocol, which utilizes a bit-
wise XOR homomorphic cipher [44] and oblivious transfer[11]. On the other hand, the
accuracy of task assignment relies on the authenticity of the travel cost claimed by workers.
Hence, we also propose a Reverse Auction based Task Assignment (RATA) algorithm, which
is a truthful incentive mechanism, to stimulate workers to provide authentic travel cost.

The main contributions of our work can be summarized as follows:

(1) We consider a novel task assignment mode where workers report their travel cost
instead of their exact locations to the SC platform. This not only gives more rights to
workers but also can protect location privacy to a certain extent.

(2) We design an anonymity based data aggregation protocol for task assignment. This
protocol can protect worker location privacy in an k-anonymity manner, and its
security is formally proved.
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(3) Compared with our conference version [31], we propose a new reverse auction based
task assignment algorithm to ensure the authenticity of reported travel cost and
formally show its correctness.

(4) We analyze the complexity of our proposed method and present the performance eval-
uation. Both theoretical and empirical results show that our method is not only secure
but also efficient.

The rest of the paper is organized as follows. Section 2 summarizes the preliminary
technology and knowledge knowledge we used in this paper. In Section 3, we presents the
model and problem statement. In Section 4, we clarify our privacy-preserving reverse auc-
tion based assignment model from two aspects: anonymity-based data aggregation protocol
and reverse auction based task assignment algorithm. Then, the theoretical analysis is pre-
sented in Section 5. Further, we evaluate the performances of our model in Section 6. In the
end, we review some related works in Section 7 and conclude our work in the Section 8.

2 Preliminary

2.1 Security model

In this paper, we assume all parties involved in spatial crowdsourcing are semi-honest (also
known as honest-but-curious). In other words, each entity will follow a protocol exactly,
showing the honest aspect. On the other hand, they will also try to learn as much as possible
about other’s private data, showing the curious aspect. The semi-honest model is reasonable
since each entity is generally willing to follow and accomplish the protocol so as to benefit
from the crowdsourcing system.

The security of each worker’s private data is defined in an k-anonymity manner. If an
adversary can only learn that a private data comes from one of k workers, we say this data
has a privacy level of k. Obviously, the larger k is, the stronger privacy is. Formally, we use
computational indistinguishability to model the anonymity of a worker’s data and define the
security of a protocol under semi-honest model as follows:

Definition 1 (Security under the Semi-honest Model) Let the view of the SC platform in
the execution of a protocol, denoted as V IEW , is a triple (m, r, x), where m represents the
received data, r represents coin flips, and x represents the output of received data. For any
worker wi and wj in the worker set W , their data can be denoted as mi and mj . Then this
protocol is secure under semi-honest model if

V IEW((...,mi, ...,mj , ...), r, x) ≡ V IEW((...,mj , ...,mi, ...), r, x), (1)

where ≡ denotes computationally indistinguishability of two random variable ensembles
and (...,mi, ...,mj , ...) is a random permutation of (...,mj , ...,mi, ...).

The above definition states that if we switch any two workers’ data, the platform cannot
efficiently notice any difference.

2.2 Bitwise XOR homomorphic cipher

Bitwise XOR homomorphic cipher system [44] makes it possible that plaintexts can be
directly derived by performing bitwise XOR operations on the ciphertexts. The basic idea
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of this cipher system is that the result of any data m XOR itself is zero, that is, m⊕
m = 0.

This cipher system can be set up as follows. Assume that there exist n independent string
{S|si ∈ {0, 1}l}(i = 0, ..., n−1) and n pieces of data {D|di ∈ {0, 1}l}(i = 1, ..., n) that need
to be encrypted. Each piece of data di will be distributed by two strings si−1 and si mod n

and be encrypted by performing bitwise XOR operation on itself with these two strings.
Then, it is obvious that the bitwise XOR of all ciphertexts equals to the bitwise XOR of
plaintexts.

2.3 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic primitive in which a sender transfers one of the
potentially many pieces of information to a receiver, but it remains oblivious as to what
piece (if any) has been transferred. The basic form of OT which is called 1-out-of-2 OT
and denoted as OT 1

2 , was developed by Shimon Even et al. [11]. A 1-out-of-n OT (denoted
as OT 1

n ) can be defined as a natural generalization of an OT 1
2 . Specifically, a sender has

n messages, and the receiver has an index i. The receiver wishes to receive the i-th mes-
sage, without the sender learning i. Meanwhile, the sender wants to ensure that the receiver
receives only one of the n messages. In this paper, we use OT 1

n protocol as the building
block of our model. To learn more about it, please refer to [27].

3 Problem definition

A typical spatial crowdsourcing system includes a platform, which receives the spatial tasks
from crowdsourcing service requesters and assigns spatial tasks to suitable crowd workers
to perform. The task and worker are defined as follows:

Definition 2 (Spatial task) A spatial task (task for short) is denoted by tj =〈
ltj , atj , dtj , vtj

〉
, where ltj is the location in a 2D space where task tj needs to be performed,

atj and dtj make up a range time during which the task is valid and vtj is the value to the
platform, i.e. the budget.

Definition 3 (Crowd worker) A crowd worker (worker for short) is denoted by wi =〈
lwi

, awi
, dwi

, cwi

〉
, arrives at the platform with initial location lwi

at time awi
and performs

several tasks before the deadline dwi
. In addition, capacity cwi

is the maximum number of
tasks that worker wi intends to finish.

If a task tj is allocated to a worker wi , the worker needs some travel cost to move to
location ltj and expects to attain some payment from the platform after finishing the task.
The travel cost and payment are defined as follows:

Definition 4 (Travel cost) The travel cost of wi with respect to tj is defined to be
proportional to the distance from lwi

to ltj , which can be calculated as follows:

c
j
i = C ∗ dist (lwi

, ltj ), (2)

where C is the unit cost per mile and dist is a distance calculation function (e.g., Euclidean
distance).
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Definition 5 (Payment) The payment of wi with respect to tj is the monetary cost that the

platform has to pay to wi for performing tj . It should be larger than c
j
i to motivate workers

to participate crowdsourcing, that is

p
j
i ≥ c

j
i . (3)

For the platform, its profit can be regarded as the difference between the sum of all tasks’
values and the sum of payments to workers, that is:

∑
tj ∈S vtj − ∑

(wi ,tj )∈S p
j
i , where S is

the final task assignment schema (i.e., worker-and-task assignment pairs). For wi , his/her
profit uj

i is simply the difference between the monetary s/he obtains from the platform and

his/her travel cost: pj
i − c

j
i .

In this paper, we want to maximize the total profit of the platform and all workers,
denoted as social welfare, whose definition is as follows:

Definition 6 (Social welfare) Let S be a task assignment schema, that is, a set of worker-
and-task assignment pairs, the social welfare φ(S) is calculated as follows:

φ(S) =
∑

tj ∈S

vtj −
∑

(wi ,tj )∈S

p
j
i +

∑

(wi ,tj )∈S

(p
j
i − c

j
i ) =

∑

tj ∈S

vtj −
∑

(wi ,tj )∈S

c
j
i . (4)

Now, we are ready to give the definition of privacy-preserving task assignment problem
in spatial crowdsourcing.

Definition 7 (Privacy-preserving task assignment problem) Given a set of workers and a
set of tasks, the privacy-preserving task assignment problem is to generate a task assignment
schema S such that:

(1) each worker wi is assigned to no more than cwi
tasks;

(2) the total payment of the task tj does not exceed its budget vtj ;
(3) each worker-and-task assignment pair satisfies the time range requirement (i.e.,

(atj , dtj ) ∩ (awi
, dwj

) �= ∅);
(4) each worker’s private information is indistinguishable from k − 1 other workers;
(5) the social welfare φ(S) is maximized.

The above problem can be formalized as follows:

Maximize : φ(S) =
∑

tj ∈S

vtj −
∑

(wi ,tj )∈S

c
j
i (5)

Subject to :
∑

(wi ,tj )∈S

X
j
i ≤ cwi

, X
j
i ∈ {0, 1} (6)

∑

(wi ,tj )∈S

b
j
i ≤ vtj (7)

∀(wi ,tj )∈S, (atj , dtj ) ∩ (awi
, dwj

) �= ∅ (8)

Security : (1) holds. (9)



2022 World Wide Web (2019) 22:2017–2040

4 Privacy-preserving reverse auction based task assignment

4.1 System overview

As mentioned earlier, workers in our model are more active: they can choose their interested
tasks, compute travel costs and send these data to the platform. This brings the following
advantages in spatial crowdsourcing:

(1) workers’ preferences are taken into consideration, avoiding the situation in which the
platform allocates tasks to workers by force;

(2) the workers do not need to report their exact locations to the platform, which protects
their location privacy to a certain extent;

(3) the travel costs submitted by workers determine the potential matching edge in the
worker-and-task bipartite graph matching problem, thus reducing the computation
overhead.

However, when a worker submits travel costs for different tasks, the platform can
infer his/her location approximately by intersecting these circumferences. Therefore, in
Section 4.2, we design an Anonymity based Data Aggregation (ADA) protocol to delink the
data from its sources and generalize the worker location to multiple circumferences, guar-
anteeing the security of workers’ location privacy further. On the other hand, workers are
selfish and may submit a high travel cost to attain more payment. To solve this problem,
in Section 4.3, we propose a Reverse Auction based Task Assignment (RATA) algorithm to
motivate workers to send truthful travel cost.

As shown in Figure 1, our privacy-preserving task assignment model includes three par-
ties: the SC platform, workers and an auxiliary agent, who provides some cryptographic
services such as the generation and the distribution of keys. In the beginning, the platform
poses a set of tasks to all online workers. Then the agent establishes a bitwise XOR cipher
system by generating and distributing secret keys to all workers. Afterwards, each worker

Figure 1 System model
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can figure out the travel costs from his/her location to task locations and encrypt this origin
data (travel costs) into perturbed data via his/her bitwise XOR secret key. After receiving all
workers’ perturbed data, the platform produces a task assignment schema via a reverse auc-
tion based task assignment algorithm. However, the platform only learns that some workers
are selected but does not know their IDs. Thus, the platform then performs oblivious transfer
with the agent who holds workers’ IDs to allocate tasks to corresponding workers. Table 1
summarizes the main notations in this paper.

4.2 Anonymity-based data aggregation (ADA)

In this subsection, we present an anonymity based data aggregation protocol. Without loss
of generality, we only consider the situation where one task is announced on the platform
and a set of workers intend to cooperate for the task. However, the protocol can be easily
extended to multiple tasks vs. multiple workers circumstance. To be specific, this protocol
can be decomposed into four subprocesses.

Key generation and distribution phase Firstly, the agent generates n strings {S|Si ∈
{0, 1}l} uniformly and independently. Secondly, the agent performs a random permutation
of workers’ ID sequence I to get a new position sequence Pos. Then, the agent sends key
pairs

〈
sa
i = Si−1, s

b
i = Si mod n, Posi

〉
to worker wi .

Data computation and encryption phase Each worker computes a travel cost for moving
to performing task based on the distance. The travel cost data is private and can be converted
into l-bit binary string mi . Then each worker wi chooses two pseudo-random function hsa

i

Table 1 Summary of notations
Notation Definition

Hl,m,o {hs : {0, 1}m → {0, 1}l}s∈{0,1}o
hs(t) A function indexed by s in Hl,m,o

W,wi Worker set and the ith worker

I, Ii ID sequence and the ith ID

Pos, Posi Position sequence and the ith position

T , tj Task set and the j th task

l Bit length of worker’s data

mi Bit string of wi ’s origin data

ci Bit string of workers’ encrypted data

⊕ Bitwise XOR operation

| Concatenation operation

c
j
i True travel cost for wi performing tj

b
j
i Claimed travel cost for wi performing tj

p
j
i Payment for wi performing tj

X
j
i Winning bid indicator for wi performing tj

S Winning bid set

(i, j) Index of worker and task in S
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and hsb
i
from family Hl,m,o = {hs : {0, 1}m → {0, 1}l}s∈{0,1}o and generates n random l-bit

strings k
j
i (j = 1, ..., n) via computing

k
j
i = hsa

i
(t |j) ⊕ hsb

i
(t |j), (10)

where t |j is the concatenation of time stamp t and position index Posi . Each worker gets
the same t when executing a data aggregation. Afterwards, worker wi uses k

Posi
i to encrypt

its real data mi and uses k
j
i (j �= Posi) to encrypt dummy data {0}l respectively. To be

specific, worker wi gets n encrypted l-bit strings by computing:

{0}l ⊕ k1i , ..., {0}l ⊕ k
Posi−1
i , mi ⊕ k

Posi
i , {0}l ⊕ k

Posi+1
i , ..., {0}l ⊕ kn

i . (11)

In the end, worker wi can get the encrypted nl-bit string ci by concatenating these n

encrypted l-bit strings successively and send ci to the platform.

Data decryption and analysis phase After the platform receives submitted ciphertexts
{c|ci ∈ {0, 1}nl}(i = 1, ..., n), it can directly compute the concatenation of all workers’
origin data by performing bitwise XOR operation:

m1 | ... | mPosi | ... | mn = c1 ⊕ ... ⊕ cPosi ⊕ ... ⊕ cn. (12)

Then, the platform divides the concatenation into n pieces of data and generates task
assignment and payment schema based on RATA algorithm, which will be discussed in
Section 4.3.

Remark 1 Because only the Posi-th data in ciphertext ci is the worker’s origin data, the
rest are dummy data {0}l and Pos is the random permutation of I . It is easy to prove that
the bitwise XOR of all ciphertexts {c|ci ∈ {0, 1}nl}(i = 1, ..., n) equals the concatenation
of origin data {m|mi ∈ {0, 1}l}(i = 1, ..., n).

Oblivious transfer phase After generating task assignment schema, the platform needs to
allocate the task to selected workers. However, the platform only konws the position index
Posi instead of ID Ii of selected worker wi due to random permutation of received data.
On the other hand, the agent holds the corresponding relation between ID sequence I and
position sequence Pos. Therefore, the platform needs to perform oblivious transfer with
the agent. In an OT 1

n model, the agent (sender) holds the corresponding relation data and
the platform (receiver) wants to get the Posi-th data. When they finish one round of OT 1

n

protocol, the platform only knows the ID Ii of the Posi-th worker other than the rest n − 1
workers and the agent learns nothing about which piece of data the platform gets. In the
end, the platform can allocate the task to the selected workers.

Example To make the proposed protocol more clear, we illustrate the main procedure via a
simple example. As shown in Figure 2, there are 3 workers who have travel cost data 710 =
01112, 1110 = 10112 and 310 = 00112 respectively. Further, the Posi number for 3 workers
are 2, 3 and 1 respectively. For each worker, s/he chooses two pseudo-random functions with
private key pair (sa

i , sb
i ) and generates random bit string k

j
i with time stamp t and position

number Posi . To encrypt the data, each worker needs to perform bitwise XOR operations
between k

j
i and the real (or dummy) data. Then all 3 workers send their ciphertexts to the

platform. After receiving all 3 bit strings, the platform performs the decryption by bitwise
XOR operation on ciphertexts and breaks the bit string into 3 parts. Afterwards, the platform
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Figure 2 Example of ADA

can generate the task assignment schema based on received plaintexts. Here, the task will be
assigned to the worker who is in the 1st position for simplification. However, the platform
only knows the position of the selected worker other than its ID, while the agent holds the
corresponding relations between IDs and positions. Hence, the platform executes an OT 1

3
protocol with the agent and learns that the selected worker is worker 3. Finally, the task will
be assigned to worker 3.

4.3 Reverse auction based task assignment (RATA)

In our proposed model, workers send travel cost instead of private location data to the
platform. Obviously, the performance of the generated task assignment schema severely
depends on the authenticity of the submitted data. Since workers are different individually,
it is reasonable to assume that workers are rational and selfish. In other words, each worker
will not participate in tasks unless there is sufficient incentive and always tries to maximize
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his/her own profit. Hence we need to design a truthful incentive mechanism to stimulate
workers to compete for tasks at a truthful cost.

Reverse auction theory is the perfect theoretical tool to design a truthful incentive mech-
anism for task assignment in our model. To be specific, we model the platform as an
auctioneer, workers as sellers of service by performing the tasks and submitted travel costs
as bids. The platform takes these bids as input, selects a subset of bids as winning bid set
and determines the payment for each winning bid. Based on this reverse auction model, we
design a task assignment algorithm, which mainly involves two key problems: the Winning
Bid Selection Problem and the Payment Determination Problem.

First, we define some basic notations for the auction:

Definition 8 (Bid and winning bid) When wi wants to perform tj , it will submit a bid,

denoted by b
j
i , which is a cost claimed by wi . Since wi always tries to maximize his/her

own profit, s/he may submit a bid b
j
i which is greater than his/her true travel cost cj

i . When

wi wins task tj by bid b
j
i , we call b

j
i winning bid.

Obviously, the Winner Selection Problem is an optimization problem: Given a set of
bids B, selects a subset (task assignment schema) S such that the social welfare φ(S) is
maximized over all possible subsets. The problem is defined as follows:

Definition 9 (Winner selection problem)

Maximize : φ(S) =
∑

tj ∈S

vtj −
∑

(wi ,tj )∈S

b
j
i (13)

Subject to :
∑

(wi ,tj )∈S

X
j
i ≤ cwi

, X
j
i ∈ {0, 1} (14)

∑

(wi ,tj )∈S

b
j
i ≤ vtj (15)

∀(wi ,tj )∈S, (atj , dtj ) ∩ (awi
, dwj

) �= φ (16)

Remark 2 The reverse auction based task assignment algorithm is a truthful incentive mech-
anism, which means that each worker must submit a bid that equals to his/her true travel
cost. Therefore, we can say b

j
i = c

j
i . Then, (13) is equivalent to (5). In addition, X

j
i = 1

indicates that bid b
j
i wins the auction and task tj will be assigned to worker wi . The three

constraints are the same as Definition 7 and the ADA protocol guarantees the security.

Then, we can formalize the Payment Determination Problem as follows.

Definition 10 (The Payment Determination Problem) The Payment Determination Prob-
lem is to compute the payment for each bid b

j
i ∈ S, satisfying truthfulness and individual

rationality.

– Truthfulness: Let b
j
i be the truthful bid submitted by worker wi for task tj and b̂

j
i be

the untruthful bid which is manipulated by wi . The payments for the truthful bid and

untruthful bid are p
j
i and p̂

j
i . Then, we say that the auction protocol is truthful if

p
j
i − c

j
i ≥ p̂

j
i − c

j
i (17)
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– Individual Rationality: For each winner worker, we say that the auction protocol
satisfies individual rationality if the corresponding profit is non-negative, i.e.,

p
j
i − c

j
i ≥ 0 (18)

The Winner Selection Problem is NP-hard, which can be proved as follows:

Theorem 1 The Winner Selection Problem is NP-hard.

Proof First, we consider a special case of the Winner Selection Problem, where these is
only one worker wi and his/her bid is Bi . Then, this special problem is to select a subset
Si from Bi to maximize the social welfare φ(Si) with the constraint of |Si | ≤ cwi

. This is
equivalent to the well-known 0-1 knapsack problem which is NP-hard: given a set Bi , each
item in which has a value vtj − c

j
i and a weight 1, determining a subset to maximize the

whole value, while ensuring the total weight is not large than cwi
. Therefore, the special

problem is NP-hard and the general Winner Selection Problem is also at least NP-hard.

Due to the Winner Selection Problem is an NP-hard problem, we turn to design an
approximation algorithm via submodularity of the social welfare function.

Definition 11 (Submodular function) Let σ be a finite set, a function f : 2σ → R is
submodular if

f (X ∪ {x}) − f (X) ≥ f (Y ∪ {x}) − f (Y ) (19)

for any X ⊆ Y ⊆ σ and x ∈ σ \ Y .

We now first prove the submodularity of the social welfare function φ(S).

Lemma 1 The social welfare function φ(S) is submodular.

Proof By Definition 11, we need to show that

φ(X ∪ {bj
i }) − φ(X) ≥ φ(Y ∪ {bj

i }) − φ(Y ) (20)

for any X ⊆ Y ⊆ S and b
j
i ∈ S \ Y . As one task can be assigned to multiple workers, after

adding a new bid b
j
i , X may expand while Y does not. We use f lagx and f lagy with value

0 or 1 to denote whether the set X and set Y expand or not, respectively. If f lagy = 1 then
f lagx = 1, however, if f lagy = 1, f lagx can be 0 or 1. Thus we have

φ(X ∪ {bj
i }) − φ(X) = vtj ∗ f lagx − b

j
i

≥ vtj ∗ f lagy − b
j
i

= φ(Y ∪ {bj
i }) − φ(Y )

Therefore social welfare function φ(S) is submodular.

Based on the submodularity of the optimization objective, we design an algorithm as
illustrated in Algorithm 1. The winner bid selection phase follows a greedy approach: Bids
are essentially sorted according to the difference of their marginal values. Given the selected
bid set S, the marginal value of bid b

j
i is V

j
i (S) = V (S∪{bj

i })−V (S) = ∑
tk∈τ(S∪{bj

i }) vtk −
∑

tk∈τ(S) vtk . In the sorting, the (k + 1) bid is the bid b
j
i such that V j

i (Sk)−b
j
i is maximized
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overB\Sk , where Sk is the winning set in the k-th iteration and S0 = ∅. We use Vk instead of
V

j
i (Sk−1) and bk instead of the kth bid in the sorting for simplification. The sorting implies

the submodularity of social welfare function by:

V1 − b1 ≥ V2 − b2 ≥ ... ≥ V|B| − b|B| (21)

The If statement(line 3) ensures the three constraints: for each worker-and-task matching
pair, the time requirements need to be met; for each task tj , the total payment should not be
greater the value vtj of tj ; for each worker wi , it can afford no more than cwi

tasks.

4.3.1 Payment determination

The payment determination algorithm is to compute the payment for each winning bid,
ensuring each worker honestly claims its true cost. The truthfulness of algorithm relies on
the well-known Myerson’s theory [26].

Theorem 2 An auction mechanism is truthful if and only if:

– The selection rule is monotone: If worker wi wins the auction by bid b
j
i , s/he also wins

by bid b̃
j
i ≤ b

j
i ;

– Each winner is paid the critical value: worker wi would not win the auction if s/he bids
higher than this value.

Based on Theorem 2, we design our payment determination algorithm, as shown in Algo-
rithm 2. This algorithm also computes the payment pj

i for each winning bid b
j
i in a greedy

manner. As similar with (21), bids are sorted over B̃ = B \ b
j
i by

V1 − b1 ≥ V2 − b2 ≥ ... ≥ V|B̃| − b|B̃| (22)

where Vm = V l
k (Tm−1 ∪ bl

k) − V l
k (Tm−1) and Tm−1 is the winning set in the m-th iteration

for b
j
i . For each position m in the sorting, we compute the maximal price that bj

i can reach

such that bj
i can be selected instead of the bid inm-th position. The iteration will be repeated
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until the last position M satisfying VM ≥ BM . In the end, we set the value of p
j
i to the

maximum of these M bids.

5 Theoretical analysis

5.1 Validity analysis

Theorem 3 The task assignment algorithm is truthful.

Proof According to Theorem 2, it suffices to prove that the selection rule of Algorithm 1 is
monotone and the payment pj

i computed in Algorithm 2 is critical value. The monotonicity

is obvious as bidding a smaller value cannot push b
j
i backwards in the sorting order. We

next show that pj
i is the critical value making the bid b

j
i win the auction exactly. Note that

p
j
i = max

{
max

1≤m≤M
(V

j
i − (Vm − bm)), VM+1

}
. (23)

If worker bids b
j
i > p

j
i , the bid will be placed after the position M since b

j
i > V

j
i − (Vm −

bm). At the (M + 1)th iteration, b
j
i will not be selected as winning bid as b

j
i > VM+1.

Hence, pj
i is the critical value and the theorem holds.

Theorem 4 The task assignment algorithm satisfies individual rationality.

Proof We need to prove p
j
i − c

j
i ≥ 0. If b

j
i /∈ S, then p

j
i − c

j
i = 0. Now assume that

b
j
i ∈ S, the iteration guarantees that bj

i ≤ V
j
i and p

j
i ← max{pj

i ,min{V j
i (T ) − (V l

k (T ) −
bl
k), V

j
i (T )}}. Hence, b

j
i ≤ V

j
i ≤ p

j
i . Further, due to the truthfulness of task assignment

algorithm, we have b
j
i = c

j
i . Therefore, we have p

j
i − c

j
i ≥ 0. The theorem holds.
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5.2 Security analysis

Lemma 2 Our privacy-preserving task assignment protocol is secure against semi-honest
adversaries.

Proof Given a set of semi-honest workers W = (w1, ..., wn), a sequence of their data
M = (m1, ...,mn), a sequence of their encrypted data C = (c1, ..., cn) which will be sent to
the platform as its input.

For ∀(wi, wj ) ∈ W where 1 < i < j < n, the view of the platform in execution of our
protocol are as follows:

V IEW = ((c1, ..., ci−1, ci , ci+1, ..., cj−1, cj , cj+1, ..., cn), r, x) (24)

where x represents the output of received data which is immutable and r represents coin flips.
Suppose that worker wi and wj switch their data, the sequence of data changes to

M ′ = (m1, ...,mi−1, mj ,mi+1, ...,mj−1,mi,mj+1, ...) (25)

and then view of platform in the protocol also becomes

V IEW ′ = ((c1, ..., ci−1, cj , ci+1, ..., cj−1, ci , cj+1, ..., cn), r, x) (26)

According to Definition 1, to prove the security of out protocol is equivalent to prove

V IEW ≡ V IEW ′ (27)

holds for ∀(wi, wj ) ∈ W where ≡ denotes computationally indistinguishability of two
random variable ensembles.

To clarify this, we construct a simulator Sim that takes C = (c1, ..., cn) as input and
outputs a view V IEW ′′ which is computationally indistinguishable to both V IEW and
V IEW ′. Specifically, Sim runs the same protocol with all workers and gets received data
C as input. Then Sim performs a random permutation function π ([1, n] → [1, n]) on input
and converts it C′′ = π(c1, ..., cn). Further, the view of Sim is updated at the same time:

V IEW ′′ = (π(c1, ..., cn), r, x). (28)

Obviously, we know V IEW ≡ V IEW ′′, because it is impossible to distinguish C and
permutation C′′ in polynomial time. In a similar way, we also know V IEW ′ ≡ V IEW ′′.
Therefore, we have

V IEW ≡ V IEW ′ (29)

Theorem 5 Our privacy-preserving task assignment model can prevent workers’ location
from being revealed.

Proof Firstly, based on Lemma 2, the platform cannot efficiently notice any difference if
we switch two workers’ data. After analyzing the received data, the platform only knows
the source of selected worker is one of the n workers because of the random permutation.
Secondly, the agent only knows the corresponding relations between ID sequence I and
position sequence Pos which cannot help it infer other private information. Last but not
least, the oblivious transfer protocol ensures that the platform only learns the IDs of selected
workers and the agent learns nothing about task assignment schema. The theorem holds.
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5.3 Complexity analysis

5.3.1 Efficiency of ADA

The ADA protocol has a high efficiency both on the computation time and communication.
We will analyze the complexity of ADA from the aspects of the platform, the agent and
each worker. The result is shown in Table 2. Note that, XOR represents bitwise XOR oper-
ation, HASH represents one-way hashing for pseudo-random function and OT 1

2 represents
computation (or communication) overhead of a round of basic 1-2 OT protocol. In addition,
we use n instead of workers number |W | for simplification.

Platform On each round of ADA protocol, the platform needs to perform n2l bitwise XOR
operations on received nl-bit data submitted by n workers. Therefore, the communica-
tion overhead is n2l bits. Based on efficient implementation in [27], OT 1

n invokes logn

basic OT 1
2 . Hence, the computation and communication cost of the platform are n2l XOR

+ logn OT 1
2 and n2l + logn OT 1

2 , respectively.

Agent For the agent, the time of generating and distributing keys is negligible, while the
communication overhead is 2nl bit. In the round of OT 1

n , the agent needs to invoke logn

basic OT 1
2 and perform the other nlogn hash operations. Therefore, the computation and

communication overhead of the agent are nlogn HASH + logn OT 1
2 and 2nl + logn OT 1

2 ,
respectively.

Worker For each worker, the time and space overhead rely on the ADA protocol. In each
round of the ADA protocol, each worker wi firstly performs 2n hash operations to compute
hsa

i
(t |j) and hsb

i
(t |j), then performs nl bitwise XOR operations to compute hsa

i
(t |j) ⊕

hsb
i
(t |j) and performs nl bitwise XOR operations to encryption real or dummy data in the

end. Hence, the computation cost is 2n HASH + 2nl XOR. Moreover, the communication
overhead is nl-bits encrypted data.

5.3.2 Efficiency of RATA

The computation overhead of RATA is dominated by finding the bid with maximum
marginal value V

j
i (S) − b

j
i which takes O(|B|). Hence, the while-loop (line 2–7) in Algo-

rithm 1 takes O(|B|2) time to select winning bid set S from origin bid set B and the for-loop
(line 2–11) in Algorithm 2 takesO(|S||B|2) time to compute payment for |S|. It is noted that
|S| is proportional to |B|, the latter complexity can be deduced to O(|B|3). In conclusion,
the RATA has a polynomial-time computation complexity.

Table 2 Complexity of ADA
Computation time Communication cost

Platform n2l XOR + logn OT 1
2 n2l + logn OT 1

2

Agent nlogn HASH + logn OT 1
2 2nl + logn OT 1

2

Worker wi 2n HASH +2nl XOR nl
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6 Experimental evaluation

In this section, we present experimental evaluations of our model from the following
aspects: the computation and communication efficiency of ADA, the social welfare of
RATA, truthfulness and individual rationality. Since the computation overhead of RATA
only depends on the number of bids, which has been deduced theoretically in Section 5.3,
we will not evaluate the aspect.

We adopt the widely-used read world dataset Gowalla [7] which has a total of 6,442,890
check-ins of 196,591 users over the period of Feb. 2009–Oct. 2010. In our simulation, we
assume that Gowalla users are the workers of the spatial crowdsourcing platform and their
locations are those of most recent check-in points. We also model each check-in point as
a task which needs to be performed by workers. The travel cost of each 〈worker, task〉
pair can be measured by unit cost (uc for short). We select a subset of all users as workers,
and the number of workers |W | is set to 100,200,500,1000,2000. The capacity cwi

of each
worker is set to 1, 3 and 5. Then we randomly deploy a number of tasks where the number is
set to 100,200,500,1000,2000. The value vtj of each task is randomly sampled in the range
[5, 30] times of uc. The bit length l are set to 5,10,15,20,30. When l reaches 30, it means a
quite large data space which is [0,230 − 1]. All of these simulation parameters are listed in
Table 3, where the default value for each parameter is shown in boldface.

Furthermore, all experiments are performed on a PC running 64-bit windows 10 with
Intel Core i5-3470 3.2 GHz CPU and 8GB memory. The code is implemented in Java and
executed in JDK 1.8. We use SHA512 as pseudo-random function family for bitwise XOR
homomorphic cipher and OT. Results of experiments on our proposed model are averaged
by 100 runs.

6.1 Evaluation of ADA

6.1.1 Computation time

Based on complexity analysis in Section 5.3, there are two critical factors effecting the
time efficiency of ADA protocol: the number of workers n and the bit length l of data.
We evaluate the computation overhead on two aspects: Encryption/Decryption time and OT
execution time.

Encryption/Decryption time First, as shown in Figure 3, the computation cost increases a
little faster on the influence of n than that on the influence of l. This is reasonable because
l is in a small value interval, while n can be very large. Second, the encryption time for per
worker is negligible so that the protocol is suitable for mobile device with limited resource.

Table 3 Evaluation settings
Parameter Value

Number of workers |W | 100, 200, 500, 1000, 2000

Number of tasks |T | 100, 200, 500, 1000, 2000

Bit length of bid l 5, 10, 15, 20, 30

Value vtj of task tj [5, 30]

Capacity cwi
of worker wi 1, 3, 5
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Figure 3 Encryption/Decryption time of ADA

Third, with the help of parallel technology, the decryption time of the platform can be
deduced to a satisfactory level. For example, the decryption time of parallel situation comes
down to 172 ms which is a quarter of the origin time when n = 2000 in Figure 3a.

OT execution time Similarly, as shown in Figure 4, the OT execution time is prone to
be effected by n other than l. Further, the execution time of the platform is slightly more
than that of the agent. This is because the platform needs to perform more asymmetric
cryptography operations in the round of OT.

6.1.2 Communication cost

The communication cost of per worker is proportional to l and n, and is negligible for
each worker. Therefore, we focus on the communication cost of the execution phase of
OT 1

n using the same experimental setting as in the computation evaluations. As shown in
Table 4, communication is prone to be affected by n. However, even when n reaches 2000,
the communication cost between the platform and the agent is only 119.02 kb.

Figure 4 OT execution time of ADA
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Table 4 Communication cost of OT

l = 5 l = 10 l = 15 l = 20 l = 30

Comm. (kb) 76.85 77.63 78.06 78.59 79.81

n = 100 n = 200 n = 500 n = 1000 n = 2000

Comm. (kb) 41.25 48.31 58.29 78.65 119.02

6.2 Evaluation of RATA

6.2.1 Social welfare

As shown in Figure 5, we evaluate the effect of the number of tasks |T | and the number of
workers |W | on the social welfare. The effect of capacity of each worker is also considered.

We can find that capacity-5 achieves the highest social welfare, while capacity-1 obtains
the smallest social welfare. This is because capacity represents the number of tasks one
worker can handle at some period. Especially, capacity-1 means each worker can perform 1
task or not. The higher capacity is, the more tasks one worker can obtain. Hence, in the multi
capacity situation, tasks can be assigned to more potential workers to achieve the higher
overall social welfare.

Effect of the number of tasks We set the number of workers |W | to 500 and increase the
number of tasks |T | from 100 to 2000. As shown in Figure 5a, the social welfare grows
sharply when |W | ≥ |T | and increases slightly when |W | < |T |. This is because almost
each task will be assigned when |W | ≥ |T |. The more tasks are, the higher social welfare
is. While |W | < |T |, only the tasks with high values can be performed by workers. On the
other hand, the social welfare with capacity-5 is higher than capacity-3 and capacity-1 when
|W | ≥ |T |. It is reasonable that workers with higher capacity will obtain more tasks, hence
more tasks will be performed to achieve higher total social welfare.

Effect of the number of workers We set the number of tasks |T | to 500 and increase the
number of workers |W | from 100 to 2000. The result is shown in Figure 5b. When |W | ≤
|T |, the social welfare increases with the growth of workers and the capacity of each worker.
While |W | > |T |, the social welfare grows slightly due to the shortage of tasks.

Figure 5 Social welfare
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Figure 6 Evaluation of truthfulness and individual rationality

6.2.2 Truthfulness and individual rationality

Truthfulness To verify of truthfulness of RATA, we randomly choose a worker and allow
s/he to claim his/her bids different from his/her real travel cost. The result is shown in
Figure 6a, where the critical payment is 10 uc and the true travel cost is 6 uc. When the
claimed bid value is not large than the critical payment, the payment and payoff remain
unchanged, which are 10 uc and 10 − 6 = 4uc, respectively. Otherwise, if the claimed bid
exceeds the critical payment, the corresponding payment and payoff become 0. Hence, the
RATA is truthful.

Individual rationality To verify the individual rationality of workers, we randomly choose
some winning bids and depict them in Figure 6b, according to the corresponding payment
and real travel cost. The results show that each payment is higher than the real travel cost,
which means that RATA satisfies the property of individual rationality.

7 Related work

Crowdsourcing is an emerging way to utilize the capabilities of crowd to address computer-
hard tasks, such as transcribing books, folding proteins, and classifying galaxies. The
involvement of human however makes crowdsourcing much challenging, as different work-
ers may need different times and costs to do the same task, and their answers may have
different qualities. Therefore, a great deal of work on crowdsourcing has been reported
recently, trying to achieve high quality answers in a cost-effective and efficient way [17,
19]. In [18], the authors design and implement a crowd-powered database system that can
generate high-quality answers with small cost and low latency. The superiority of their
multi-goal optimization strategy is demonstrated on both simulated and real experiments.
Another interesting problem in crowdsourcing is truth inference, that is, how to infer the
truth based on workers’ answers. In [47], the authors adopt Bayesian Voting (BV) to solve
Jury selection problem. As computing Jury quality with BV is NP-hard, an approximation
algorithm is proposed to reduce computation cost. In [49], domain knowledge is utilized
to model a worker’s quality to facilitate the inference of the true answer of a task. In [50],
Zheng ets al. provide a detailed experimental study on existing truth inference algorithms
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over five real datasets, identifying the limitations of existing work and promising research
directions. Task assignment is also a hot research issue in crowdsourcing. In [48], two pop-
ular evaluation metrics, i.e., Accuracy and F-score, are considered in task assignment to
improve the quality of final answers. In [14], the authors leverage crowdsourcing to improve
the quality of POI labeling. Tasks are assigned to workers in a dynamic way so that more
accurate inference for next available workers can be made.

As mentioned earlier, Spatial Crowdsourcing (SC) is a special kind of crowdsourcing
where workers need to physically move to some locations to perform tasks. This brings
some new challenges for spatial crowdsourcing. Among them, how to address location con-
straint or protect location privacy in task assignment is really appealing, as this is largely
overlooked by current studies in non-spatial crowdsourcing. Further, we use incentive mech-
anism in this paper to encourage workers to report correct information. Therefore, we
subsequently discuss related work from the following aspects: task assignment in spatial
crowdsourcing, location privacy, privacy-preserving spatial crowdsourcing and incentive
mechanism in crowdsourcing.

Task assignment in spatial crowdsourcing In [16], Kazemi and Shahabi formulate task
assignment as a matching problem between tasks and workers. They introduce a framework
called GeoCrowd to maximize the number of assigned tasks. Similarly, Chen et al. [4] pro-
pose a general platform gMission which possesses some features of task recommendation.
Deng et al. [9] formulate task assignment as a scheduling problem in which the goal is to
maximize the number of performed tasks for each worker. Cheng et al. [6] tackle the situ-
ation in which workers have multi-skills. In [46], Zheng et al. take workers’ rejection into
consideration and try to maximize acceptance. In [35], Tong et al. consider task assignment
in online scenarios and formulate it as an online maximum weighted bipartite match prob-
lem. All of these works do not take location privacy into consideration as they assume that
workers are willing to share their private location information with the platform. Our work
complements these works by protecting location privacy in the phase of task assignment.

Location privacy Ghinita et al. [12] adopt private information retrieval (PIR) to enable
users to conduct approximate and exact nearest neighbor search without revealing their loca-
tions to the server. Paulet et al. [29] combines PIR and oblivious transfer (OT) to achieve
mutual privacy-preserving location-based queries. On one hand, the server is unable to know
the location of users. On the other hand, users can only get a limited location data for their
queries, thus protecting the server’s private data. Liu et al. [21] propose a more efficient
approach for this problem by utilizing two rounds of OT and show the efficiency improve-
ment can be realized at the expense of acceptable communication cost. Yi et al. [41] present
a solution based on Paillier and Rabin cryptosystem for mutual privacy-preserving kNN
query where k is fixed. The solution is extended in [42] to support dynamic k up to a con-
stant and sequential queries. However, these solutions cannot be applied to our scenario.
This is because, in SC, worker location is not the private data of the SC-server, but rather
the sensitive information that workers want to hide from the SC-server. There are also some
works focusing on privacy-preserving location-based queries over outsourced location data
[40, 43], where the data owner and users sending queries are assumed to trust each other.
In SC, however, there is no inherent trust relationship between task requesters and workers.
To enable kNN query over encrypted data, Elmehdwi et al. [10] propose a set of protocols
based on Paillier. While mutual privacy can be guaranteed due to the security of Paillier, the
computation cost of these protocols are very expensive [20]. Thus, we cannot apply these
protocols to directly solve large task assignment problems.
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Privacy-preserving spatial crowdsourcing Pournajaf et al. [30] summarizes typical
privacy-preserving techniques used in spatial crowdsourcing, including k-anonymization,
spatial cloaking and differential privacy. In [33], the number of workers in a region is dis-
guised using differential privacy by a trusted party. The SC platform needs to find a region
that is very likely to contain enough workers nearby the task location and the workers in
this region are notified to perform the task. Similarly, Xiong et al. [38] introduce a trusted
third party to process the origin location data according to differential privacy and con-
struct contour line to indicate location distribution. Since dummy data are injected into
raw worker location data, the SC platform cannot learn the true location information of
each worker. In [34], To et al. perturb the locations of both tasks and workers based on
geo-indistinguishability [1] and perform task assignment based on the probabilities of reach-
ability between tasks and workers. In [22], the authors utilize Geohash to realize a cloaked
area to hide the exact locations of workers. Methods based on differential privacy or spatial
cloaking, however, has an inherent weakness, that is, data utility will be inevitably reduced
due to the injected noise [24, 37]. To ensure the accuracy of task assignment, different kinds
of cryptosystems have been employed in spatial crowdsourcing. In [23], worker locations
are encrypted by Paillier [28] and indexed by an SKD tree, a newly designed data struc-
ture which eliminates potential information leakage of normal KD-tree caused by its public
splitting dimension. However, workers are not static and they often move from one place
to another, so the SKD tree needs to be updated frequently. Unfortunately, the update oper-
ation is very time-consuming especially when there are a large number of workers, which
makes it unsuitable for large-scale real time SC applications. In [25], Liu et al. combine
Paillier and ElGamal to design a protocol which allows the platform to find workers with
the shortest travel time without knowing the private data of workers and tasks. Though this
protocol provides strong privacy guarantee, it still suffers from computation time issue and
cannot scale to large SC applications.

Incentive mechanism From the perspective of participating workers and the platform, Yang
et al. [39] propose user-centric and platform-centric incentive mechanisms respectively. The
former guarantees the validity of the mechanism based on a reverse auction model and the
latter computes the unique Stackelberg Equilibrium to maximize the utility of the platform.
In [32], Tham et al. propose two incentive mechanisms, IDF (Incentive with Demand Fair-
ness) and TIf (Iterative Tank Filling), to ensure the fairness of workers and maximize the
social welfare. Zhao et al. [45] propose two online incentive mechanism based on the timing
of worker participation and the character of non-negative submodular function.

8 Conclusion

In this paper, we have presented a novel privacy-preserving task assignment model in spatial
crowdsourcing. First, we have generalized workers’ private location data to travel cost and
protect it in a k-anonymity manner via combining the bitwise XOR homomorphic cipher
and OT. Second, to guarantee the authenticity of the travel costs submitted by workers, we
have designed a reverse auction based task assignment algorithm to produce task assignment
schema. Further, We have theoretically proved the security and analyzed the complexity
of our model. In the end, experimental results have shown that our proposed model has
considerable efficiency in both computation time and communication overhead, and the
incentive mechanism can achieve good social welfare while satisfying the truthfulness and
individual rationality.
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The work reported in this paper can still be improved in several ways. For example, a
weakness of our method is in the static problem setting. In most real world spatial crowd-
sourcing scenarios, however, both tasks and workers come dynamically. Intuitively, our
method can be easily extended to an online problem setting by using a batched assign-
ment scheme where the assignment is delayed for a period of time (e.g. 10 min) [5, 8,
13]. However, Asghari et al. [2] point out this method has two main disadvantages. On
one hand, every task has less available time to be scheduled. On the other hand, this
delay cannot be accepted in some real-time applications such as Uber and Didi. Therefore,
privacy-preserving online task assignment is one of the next steps we need to consider.
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