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Abstract
In the era of Big Data, truth discovery has emerged as a fundamental research topic, which
estimates data veracity by determining the reliability of multiple, often conflicting data
sources. Although considerable research efforts have been conducted on this topic, most cur-
rent approaches assume only one true value for each object. In reality, objects with multiple
true values widely exist and the existing approaches that cope with multi-valued objects still
lack accuracy. In this paper, we propose a full-fledged graph-based model, SmartVote, which
models two types of source relations with additional quantification to precisely estimate
source reliability for effective multi-valued truth discovery. Two graphs are constructed
and further used to derive different aspects of source reliability (i.e., positive precision and
negative precision) via random walk computations. Our model incorporates four impor-
tant implications, including two types of source relations, object popularity, loose mutual
exclusion, and long-tail phenomenon on source coverage, to pursue better accuracy in truth
discovery. Empirical studies on two large real-world datasets demonstrate the effectiveness
of our approach.

Keywords Truth discovery · Multi-valued objects · Graph-based model ·
Source relations · Object popularity · Long-tail phenomenon

1 Introduction

In today’s digital and connected world, we are experiencing more and more freely created
and published data on open sources. These massive data on theWeb hold the potential to rev-
olutionize many aspects of our modern society. For example, enterprises can leverage these
data to analyze the market and promote their products. Government agencies can analyze
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these data for decisions on security issues. Researchers can study these data for effective
knowledge discovery. However, different sources often provide conflicting descriptions on
the same objects of interest, due to typos, out-of-date data, missing records, or erroneous
entries [10, 14, 16, 18, 28, 33], making it difficult to determine which data source to trust.
Those conflicting data could mislead people and cause considerable damages and financial
loss in various applications such as drug recommendation in healthcare systems or price
prediction in the stock markets [1]. Moreover, due to the massiveness of data, it is infeasible
to manually determine which data is true.

Considerable research efforts have been conducted to address the truth discovery prob-
lem [5, 17, 23, 30, 41, 46]. These methods commonly assume that each object has exactly
one true value (i.e., single-valued assumption). However, multi-valued objects widely exist
in the real world, e.g., the children of a person, the authors of a book. One may argue that the
previous single-valued methods) (i.e., the methods under the single-value assumption) can
be adapted to deal with multi-valued objects—given a multi-valued object, these methods
can simply regard the value set claimed by each source as a joint single value, and then deter-
mine the most confident value set as the truth. However, the value sets provided by different
sources might be correlated. For example, there may be some overlaps between two sources’
claimed value sets, indicating that they are not totally voting against each other. Neglect-
ing this implication could degrade the accuracy of truth discovery. Moreover, single-valued
methods overlook the important distinction between two aspects of quality: false negatives
and false positives. Another example is that, for multi-valued objects, some sources may
provide erroneous values, making false positives, while some other sources may provide
partial true values without erroneous values, making false negatives. Single-valued truth
discovery methods cannot distinguish the quality of these two types of sources.

In view of the limitations of single-valued methods, several approaches [35–38, 46] have
been proposed to tackle the multi-valued objects. However, these approaches have disad-
vantages and the multi-truth discovery (MTD) problem is still far from being solved. Firstly,
previous methods generally require proper initialization of source reliability, which signifi-
cantly impacts their performance in terms of convergence rate and accuracy. Precise source
reliability initialization with limited parameter settings could facilitate better truth discov-
ery. Secondly, there are supportive relations among sources, implying that sources agree
with/endorse another source by providing the same values. Intuitively, a source endorsed
by more sources is regarded as more authoritative and can be more trusted. Unlike other
source relations (e.g., copying relations) that have been widely studied, the supportive rela-
tions among sources are largely neglected by the previous work. Thirdly, while object
difficulty [17] (i.e., the difficulty of getting true values for varied objects) and relations
among objects [30, 43] (i.e., objects may have relations that affect each other) have been
studied by previous research efforts, to the best of our knowledge, no previous work differ-
entiate the popularity of different objects. In reality, the impact of knowing the true values
of various objects might be totally different. For example, between the email address and
the children of a famous researcher, her email address is apparently more popular because
other researchers doing research in the same areas may need the email address to contact
her. Therefore, taking object popularity into consideration could better model the real-world
truth discovery and therefore lead to the more accurate result.

In a nutshell, this work makes the following main contributions:

– We measure two aspects of source reliability, i.e., positive precision and negative pre-
cision to differentiate the false positives and false negatives. We propose a graph-based
approach, called SourceVote, to improve the existing truth discovery methods. Two
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graphs are constructed by capturing two-sided inter-source agreements, from which the
source reliability is derived.

– We propose a graph-based model, called SmartVote, as an overall solution to the
multi-truth discovery problem. This model incorporates four important implications,
including two types of source relations, object popularity, loose mutual exclusion, and
long-tail phenomenon on source coverage, for better truth discovery.

– By relaxing the assumption that sources are independent of each other, we model two
types of source relations, namely supportive relations and copying relations. Graphs
capturing source features are constructed based on these relations. Specifically, source
authority features and two-sided source precision are captured by ±supportive agree-
ment graphs, while source dependence scores are quantified by ±malicious agreement
graphs. Random walk computations are applied to both types of graphs to estimate
source reliability and dependence scores.

– We propose to differentiate the popularity of objects by leveraging object occurrences
and source coverage, to minimize the misleading of false values. The long-tail phe-
nomenon on source coverage is not rare in the real world. Our model tackles MTD by
considering this phenomenon and avoids the quality of sources with very few claims
from being under (or over) estimated.

– We conduct extensive experiments to demonstrate the effectiveness of our approach
via comparison with competitive state-of-the-art baseline methods on two real-world
datasets. The impact of different implications on our model is also empirically studied
and discussed.

The rest of the paper is organized as follows. We discuss the observations that motivate
our work and formulate the multi-valued truth discovery problem in Section 2. Section 3
introduces the SourceVote approach for improving the existing truth discovery methods.
Section 4 presents the model of SmartVote and the incorporated implications. We report
our experimental results in Section 5, and discuss the related work in Section 6. Finally,
Section 7 provides some concluding remarks.

2 Preliminaries

We present the statistical observations of objects on real-world datasets in Section 2.1 to
motivate our approach. In Section 2.2, we formally define the multi-valued truth discovery
problem. We further validate the intuition that motivates us to model source reliability by
quantifying the two-sided inter-source agreements in Section 2.3.

2.1 Observations andmotivations for object differentiation

We have investigated the distributions of objects over sources in various real-world datasets.
As an example, Figure 1a and b show the results on the Book-Author [41] and Biogra-
phy1 [30] datasets, respectively. Each point (x, y) in the figure depicts that y objects are
covered by x sources, respectively, in the corresponding dataset. We observe an apparent
long-tail phenomenon from the distributions of the Biography dataset (containing 2,579
objects), which indicates that very few objects are referenced by a large number of sources

1In this paper we focus on the parent-children relation in the dataset because it corresponds to multi-valued
objects.
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Figure 1 The number of sources that provide values on objects: different objects are covered by varying
number of sources

in the dataset, and many objects are covered by very few sources. For the Book-Author
dataset with much fewer objects (containing 1,262 objects), the long-tail phenomenon is
less evident, but objects are claimed by significantly varying numbers of sources, indicating
that objects are of different occurrences. For example, there are 624 sources in total in the
Book-Author dataset. The author list of book (id : 1558606041) is claimed by 55 sources,
while the lists of books (id : 0201608359) and (id : 020189551X) are only claimed by one
source each.

Intuitively, the objects with more occurrences in the sources’ claims indicate that they
are more popular and sources tend to publish popular information to gain attention from the
public. Since the number of potential audiences of popular objects is usually bigger than that
of unpopular objects, if a source provides false values on a popular object, it will mislead
more people than on a less popular object. With this consideration, we believe that there is
a different impact on the public for knowing the true values of different objects. Therefore,
we propose to distinguish source reliability by differentiating the popularity of objects, to
minimize the number of people misguided by false values. Sources providing false values
for popular objects should be penalized more and assigned with lower reliability, to discour-
age them from misguiding the public. Therefore, more evidence can be used for estimating
value veracity regarding those objects, leading to reliable truth estimation. This motivates
us to assign heavier weights to popular objects in the calculation of source reliability for
more accurate estimation.

2.2 Problem definition

A multi-truth discovery problem (i.e., MTD) generally involves five components (Table 1
summarizes the notations used in this paper) in its life cycle:

Explicit inputs include i) a set of multi-valued objects, O, each of which may have more
than one true value to be discovered. The number of true value(s) can vary from object to
object; ii) a set of sources, S . Each s ∈ S provides potential true values on a subset of
objects in O; iii) claimed values, the values provided by any source of S on any objects of
O. Given a source s, we regard the set of values provided by s on an object o as positive
claims, denoted as Vso .
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Table 1 Notations used in the paper

Notation Explanation

o, O An object (resp., set of all objects)

s, S A source (resp., set of all sources)

v, V A claimed value (resp., set of all claimed values)

Vo
∗ Identified truth for o

Vo
g Ground truth for o

So Set of sources provide values on o

Sv , Sṽ Set of sources claim/disclaim v on o

Os Set of objects covered by s

Cov(s) The coverage of s

Vso , Ṽso Set of positive/negative claims provided by s on o

Uo Set of all claimed values on o

τ(s), τ̃ (s) ±SourceVote, evaluation of positive/negative precision of s

τ ′(s), τ̃ ′(s) ±SmartVote, improved evaluation of positive/negative precision of s

Cv , Cṽ The confidence score of v being true/false

A(s1, s2), Ã(s1, s2) Endorsement degree from s1 to s2 on positive/negative claims

Ao(s1, s2), Ão(s1, s2) Agreement between the positive/negative claims of s1 and s2 on o

Po The popularity degree of o

D(s, o), D̃(s, o) The dependence score of s providing positive/negative claims on o

μ(s, o), μ̃(s, o) The confidence score of s providing positive/negative claims on o

L(s1, s2) The long-tail phenomenon compensation for edge from s1 to s2

ω(s1 → s2), ω̃(s1 → s2) The weight of edge from s1 to s2 in ±agreement graph

ω′(s1 → s2), ω̃′(s1 → s2) The weight of edge from s1 to s2 in ±supportive agreement graph

ωco (s1 → s2), ω̃co (s1 → s2) The weight of edge from s1 to s2 in ±malicious agreement graph of o

Implicit inputs are derived from the explicit inputs and include two parts: i) the complete
set of values provided by all sources on any object o, denoted as Uo; ii) by incorporating
the mutual exclusion assumption, given an object o, a source s that makes positive claims
Vso is believed to implicitly disclaim all the other values on o. We denote the set of values
disclaimed by s as Ṽso (i.e., negative claims provided by s on o), which is calculated by
Uo − Vso .

Intermediate variables are generated and updated during the iterative truth discovery pro-
cedure. They include i) source reliability, which reflects the capability of each source
providing true values; ii) confidence score, which reflects the confidence on a value being
true or false. In this paper, we differentiate the false positives and false negatives made by
sources by modeling two aspects of source reliability, namely positive precision (i.e., the
probability of the positive claims of a source being true), and negative precision (i.e., the
probability of the negative claims of a source being false). In the following sections, we
will first derive ±SourceVote (denoted by τ(s) and τ̃ (s) for a source s) as the evaluations
of source reliability by capturing source authority features based on two-sided inter-source
agreements (Section 3). Then, we improve the source reliability evaluations by incorporat-
ing four important implications in Section 4. The improved evaluations of source positive
and negative precision are named as ±SmartVote, denoted by τ ′(s) and τ̃ ′(s) for a source s.
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Table 2 An illustrative example: four sources provide author names of two books

9780072830613 9780072231236

Ground Truth Stephen;James Michael

s1 Stephen;James;Merrill Michael;Lloyd

s2 Stephen;James Michael

s3 Stephen;Kate Michael;Susan

s4 Stephen;Kate Michael;Susan

Accordingly, we estimate both the confidence scores of a value v being true (i.e., Cv) and
false (Cṽ).

Outputs are the identified truth for each object o ∈ O, denoted as Vo
∗.

Ground truth is the factual truth for each object o ∈ O, denoted as Vo
g , which is used to

measure the effectiveness of the truth discovery methods.

Example 1 Table 2 shows a snippet of the Book-Author dataset. In this particular example,
four sources (i.e., s1, s2, s3, and s4) claim values on two objects (i.e., the authors of two
books id : 9780072830613 and id : 9780072231236, denoted as o1 and o2). Each cell in the
table demonstrates the positive claims of a specific source on a specific object. For exam-
ple, s1 provides {Stephen;James;Merrill} as positive claims, i.e., Vso1

, on object o1. There
are conflicts among these four sources as they provide different positive claims on the same
objects. Table 2 also shows the ground truth of the two objects. Given the conflicting data,
our goal is to identify the true authors for these two books. We can derive from the dataset
that Uo1 = {Stephen;James;Merrill;Kate}, |Uo1 | = 4, and Uo2 = {Michael;Lloyd;Susan},
|Uo2 | = 3, based on which we can further extract implicit inputs regarding the two objects
from the raw dataset as shown in Tables 3 and 4. Comparing with the ground truth, s2
provides all the true values, which deserves a higher positive precision and negative preci-
sion. Sources s3 and s4 provide the same values and there may be supportive relations or
copying relations between them. We will discuss these two types of relations in Section 4.
Source s1 is audacious, which claims additionally a false value besides the true values
for every object, while s3 and s4 are error-prone, each of which claims a false value for
every object.

We formally define the multi-valued truth discovery problem as follows:

Table 3 Truth discovery inputs
regarding the first book 9780072830613

positive claims (pc) # pc negative claims (nc) # nc

s1 Stephen;James;Merrill 3 Kate 1

s2 Stephen;James 2 Merrill;Kate 2

s3 Stephen;Kate 2 James;Merrill 2

s4 Stephen;Kate 2 James;Merrill 2



World Wide Web (2019) 22:1855–1885 1861

Table 4 Truth discovery inputs regarding the second book

9780072231236

positive claims (pc) # pc negative claims (nc) # nc

s1 Michael;Lloyd 2 Susan 1

s2 Michael 1 Lloyd;Susan 2

s3 Michael;Susan 2 Lloyd 1

s4 Michael;Susan 2 Lloyd 1

Definition 1 Multi-Truth Discovery Problem (MTD) Given a set of multi-valued objects
(O) and a set of sources (S) that provide conflicting values V , the goal of MTD is to iden-
tify a set of true values (Vo

∗) from V for each object o, satisfying that Vo
∗ is as close to

the ground truth Vo
g as possible. A truth discovery process often proceeds along with the

estimation of the reliability of sources, i.e., positive precision (τ ′(s)) and negative precision
(τ̃ ′(s)). The perfect truth discovery results will satisfy Vo

∗ = Vo
g .

2.3 Agreement as hint

For multi-valued objects, sources may provide totally different, the same, or overlapping
sets of values from one another. Given an object, we define the common values claimed
by two sources on the object as inter-source agreement. Based on the mutual exclusion, we
consider two-sided inter-source agreements. Specifically, +agreement (resp., –agreement) is
the agreement between two sources on positive (resp., negative) claims, indicating that they
agree with each other on their claimed (resp., disclaimed) common values being true (resp.,
false). Intuitively, the agreement among sources indicates an endorsement. If the positive
(resp., negative) claims of a source are agreed/endorsed by the majority of other sources,
this source may have a high positive (resp., negative) precision and is called an authoritative
source.

Suppose Vo
g is the ground truth of an object o, Uo is the set of all claimed values of o,

we denote by Uo − Vo
g the set of false values of o. For the simplicity of presentation, we

use T , U , and F to represent Vo
g , Uo, and Uo − Vo

g in this section. For any two sources s1
and s2, the +agreement between them on an object o is calculated as:

Ao(s1, s2) = Vs1o
∩ Vs2o

(1)

Suppose s1 and s2, each selects a true value from T independently. We denote their
selected values as t1 and t2, respectively. The probability of t1 = t2, denoted as PAo(t1, t2),
can be calculated as follows2:

PAo(t1, t2) = 1

|T | (2)

Similarly, let f1 and f2 be the two values independently selected by s1 and s2 from F , and
PAo(f1, f2) be the probability of s1 and s2 providing the same false value (i.e., f1 = f2),
PAo(f1, f2) can be calculated using:

PAo(f1, f2) = 1

|F | (3)

2Note that this probability is based on a prior knowledge that s1 and s2 each provides a true value, which is
different from the probability of two sources s1 and s2 independently provide the same true value.
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In reality, an object usually has a small truth set and random false values, i.e., |T | � |U |.
Applying this to (2) and (3), we get:

PAo(f1, f2) � PAo(t1, t2) (4)

Typically, the values claimed by sources would contain a fraction of true values from T

and a faction of false values from F . By applying (4), positive claims from T are more likely
to agree with each other than those from F . This implies that the more true values a source
claims, the more likely the other sources agree with its claimed values. Inversely, if a source
shows a high degree of agreement with the other sources regarding its claimed values, the
values claimed by this source would have a higher probability to be true, and this source
would have a bigger positive precision. The positive precision of a source is endorsed by
the +agreements between this source and the other sources.

Similarly, the –agreement between any two sources s1 and s2 on an object o is calculated
as:

Ão(s1, s2) = Ṽs1o
∩ Ṽs2o

= U − (Vs1o
∪ Vs2o

) (5)

Let Ão(s1, s2) ∩ T be the true values in the –agreement between s1 and s2, and
Ão(s1, s2) ∩ F be the false values in the –agreement between s1 and s2, satisfying |Vs1o

| �
|U |, |Vs2o

| � |U |, |T | � |U |. It can be proved that |Ão(s1, s2) ∩ T | � |Ão(s1, s2) ∩ F |.
Therefore, it is more likely for sources to agree with one another on false values than on true
values with respect to their negative claims. This implies that the more false values a source
disclaims, the more likely that other sources agree with its negative claims. Inversely, if a
source shows a high degree of agreement with the other sources on its negative claims, the
values disclaimed by this sources would have higher probabilities to be false, and this source
would have a bigger negative precision. The negative precision of a source is endorsed by
the –agreements between this source and the other sources.

3 The SourceVote approach

In this section, we propose a two-step process called SourceVote to evaluate the two-sided
source reliability, which can be utilized to initialize the existing truth discovery methods: i)
creating two graphs based on ±agreement among the sources, namely ±agreement graphs,
and ii) assessing source reliability as ±SourceVote based on the graphs. We first assume
sources as independent of one another and then relax this assumption in Section 4.

To facilitate source reliability evaluation, we model the two-sided inter-source agree-
ments by constructing two fully connected weighted graphs, namely ±agreement graphs.
In such a graph, the vertices denote sources, each directed edge represents that one source
agrees with the other source, and the weight on each edge depicts to what extent one source
endorses the other source. We defineA(s1, s2) (resp., Ã(s1, s2)) as the endorsement degree
from s1 to s2 on positive (resp., negative) claims, representing the rate, at which s2 is
endorsed by s1 on the values being true (resp., false).

+Agreement graph We first formalize endorsement between any two sources based on
their common positive claims as follows:

A(s1, s2) =
∑

o∈Os1∩Os2

|Ao(s1, s2)|
|Vs2o

| (6)
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We calculate the weight on the edge from s1 to s2 using:

ω(s1 → s2) = β + (1 − β) · A(s1, s2)

|Os1 ∩ Os2 |
(7)

In (7), we add a “smoothing link” by assigning a small weight to every pair of vertices,
where β is the smoothing factor. This measure guarantees that the graph is always connected
and source reliability calculation can converge. For our experiments, we set β = 0.1 (as
demonstrated by Gleich et al. [19] in their empirical studies). Finally, we normalize the
weights of out-going links from every vertex by dividing the edge weights by the sum of the
out-going edge weights from the vertex. This normalization allows us to interpret the edge
weights as the transition probabilities for the random walk computation.

–Agreement graph We construct the –agreement graph in a similar way by applying the
following two equations:

Ã(s1, s2) =
∑

o∈Os1∩Os2

|Ão(s1, s2)|
|Ṽs2o

| (8)

ω̃(s1 → s2) = β + (1 − β) · Ã(s1, s2)

|Os1 ∩ Os2 |
(9)

Specifically, we adopt the Fixed Point Computation Model (FPC) to calculate
±SourceVote for each source. FPC captures the transitive propagation of source trustworthi-
ness through agreement links based on the above-constructed two graphs [4]. In particular,
we refer to each graph as a Markov chain, with vertices as the states, and the weights on the
edges as the probabilities of transition between the states. Then, we calculate the asymptotic
stationary visit probabilities of theMarkov randomwalk. As the sum of all visit probabilities
equals to 1, they cannot reflect the real source precision. To resolve this issue, we set the pos-
itive precision (resp., negative precision) of the source with the highest visit probability in
the +agreement graph (resp., –agreement graph) as ppmax (resp., npmax), and calculate the
normalization rate by dividing the precision by the corresponding visit probability. Then,
the visit probabilities of all sources can be normalized as precision (±SourceVote) (denoted
as τ(s) and τ̃ (s)) by multiplying the normalization rate. The computed±SourceVote capture
the following two characteristics:

– Vertices with more input edges have higher precision since those sources are endorsed
by a large number of sources and should be more trustworthy3.

– Endorsement from a source with more input edges should be more trusted than that
from other sources. Since an authoritative source is likely to be more trustworthy, the
source endorsed by an authoritative source is also likely to be more trustworthy.

Example 2 Figure 2 shows the sample ±agreement graphs for the dataset described in
Example 1. Take the link from s1 to s2 in the sample +agreement graph as an example,
by applying (1), we get |Ao1(s1, s2)| = 2, and |Ao2(s1, s2)| = 1. By substituting this
result into (6), A(s1, s2) = 2

2 + 1
1 = 2, and by further substituting this result into Eq. 7,

ω(s1 → s2) = 0.1 + (1 − 0.1) × 2
2 = 1. In the same way, we obtain ω(s1 → s3) = 0.55,

and ω(s1 → s4) = 0.55. Finally, the normalized weights of edges s1 → s2, s1 → s3, and

3Here we neglect the smoothing links, if there is no common value between two sources, there is no link
between them in the graphs.
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Figure 2 Sample ±agreement graphs of four sources in Table 2

s1 → s4 of +agreement graph are 1
1+0.55+0.55 = 0.48, 0.55

1+0.55+0.55 = 0.26, 0.55
1+0.55+0.55 =

0.26, respectively. After random walk computations, we obtain the visit probabilities of the
sources in the +agreement graph as {s1 : 0.21, s2 : 0.28, s3 : 0.26, s4 : 0.26}, and those in
the –agreement graph as {s1 : 0.17, s2 : 0.29, s3 : 0.27, s4 : 0.27}. Suppose the real posi-
tive precision of s2 is 1, and the real negative precision of s2 is also 1, we finally obtain the
+SourceVote of the sources as {s1 : 0.75, s2 : 1, s3 : 0.93, s4 : 0.93}, and –SourceVote of
them as {s1 : 0.59, s2 : 1, s3 : 0.93, s4 : 0.93}. We can see that the above results capture
the authority features of those four sources. For example, the positive claims and nega-
tive claims of s2 are both endorsed by more sources than those of the other sources. Thus,
s2 is assigned with the highest ±SourceVote. According to the ground truth provided by
Table 2, s3 and s4 agree with each other on false values. This indicates a possible malicious
agreement between them and, consequently, over-estimated positive precision and negative
precision of s3 and s4 (this aspect will be described in detail in Section 4.2).

Note that the majority of existing truth discovery methods start with initializing source
reliability as a default value (e.g., always set as 0.8 for source reliability [34]). These ini-
tialization requirements impact the convergence rate and precision of the methods. Li et al.
state in [24] that “knowing the precise trustworthiness of sources can fix nearly half of the
mistakes in the best fusion results”. As the construction and computation of our agreement
graphs can be easily realized, SourceVote can be applied to all existing methods for pre-
cise source reliability initialization. Specifically, +SourceV ote (resp., –SourceV ote) is for
positive (resp., negative) precision initialization.

4 The SmartVote approach

In reality, sources might not only support one another by providing the same true claims
but also maliciously copy from others to provide the same false claims. Therefore, we
further identify two types of source relations to conduct more accurate source reliability
estimation. Specifically, sharing the same true values means one source supports/endorses
the other source, indicating a supportive relation between the two sources. We define the
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common values between these two sources as supportive agreement. Based on the analysis
in Section 2.3, we measure source reliability by quantifying inter-source supportive agree-
ments. Even though one source can copy from another, we consider this type of copying
relations as benignant. On the contrary, sharing the same false values is typically a rare
event when the sources are fully independent. If two sources share a significant amount of
false values, they are likely to copy from each other, indicating a copying relation between
them. We define these common false values as malicious agreement. Neglecting the exis-
tence of deliberate copying of false values would impair the accuracy of source reliability
estimation.

Besides source relations, several additional heuristics can also be considered to precisely
estimate source reliability in reality. To this end, we propose a full-fledged graph-based
model, called SmartV ote, to solve the MTD problem.

4.1 The graph-basedmodel

Given the large-scale noisy multi-sourced Web data, it is difficult for a human to deter-
mine what the truth is. The goal of our model is to automatically predict the truth from the
conflicting multi-sourced data. Our model incorporates four implications, including source
relations, object popularity, loose mutual exclusion, and long-tail phenomenon on source
coverage, in a graph-based model. We classify and briefly describe the above components
as follows:

Core component It applies two principles for truth discovery [26]: 1) sources providing
more true values are assigned with higher reliability; 2) values provided by higher-quality
sources are more likely to be true. Value confidence scores and source reliability are iter-
atively calculated from each other until convergence. By relaxing the source independent
assumption and identifying two types of source relations (namely supportive relations
and copying relations), the general inter-source agreements quantified by SourceVote are
divided into supportive agreements and malicious agreements. The SmartVote core com-
ponent derives the improved evaluations of source positive and negative precision, i.e.,
±SmartVote, from two constructed ±supportive agreement graphs. The constructions of
±supportive agreement graphs incorporate the outputs of the four optimization components.
Note that the supportive relations among sources are modeled by supportive agreement
graphs constructed by the core component.

Optimization components These four optimization components compute the parameters
regarding the four implications required by the core component. The malicious agreement
detection component models the copying relations among sources and derives the depen-
dence score of each source providing claims on each object (Section 4.2). The object
popularity quantification component differentiates the popularity of objects based on the
consideration that knowing the truths of different objects impacts differently on source reli-
ability estimation (Section 4.3). Given a multi-valued object, a source may either cautiously
provide partial true values while omitting the values they are not sure about, or audaciously
provide all potential values even if the veracity of the claimed values is uncertain. This
means that the mutual exclusion among values is not as strict as that of the single-valued
object, i.e., the loose mutual exclusion. For this reason, SmartVote uses the source con-
fidence measurement component to calculate the source confidence scores of providing
positive (resp., negative) claims on each object, and reconcile sources’ belief in their positive
and negative claims (Section 4.4). Finally, the balancing long-tail phenomenon on source
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coverage component calculates the compensation of long-tail phenomenon on source cov-
erage for each link in the ±supportive agreement graphs to avoid small sources from being
assigned with extreme reliability (Section 4.5).

In the core component, the constructions of ±supportive agreement graphs are similar to
those of ±agreement graphs. In particular, we calculate the endorsement degree from s1 to
s2 on positive claims by modifying (6) as follows:

A(s1, s2) = L(s1, s2)+
∑

o∈Os1∩Os2

|Ao(s1, s2)|
|Vs2o

| ·(1−
∏

v∈Ao(s1,s2)

Cṽ)·Po·(1−D(s1, o))·μ(s1, o)

(10)
where D(s, o) is the dependence score of s providing positive claims on o (defined in
Section 4.2), Po is the popularity degree of o (defined in Section 4.3), μ(s, o) is the confi-
dence score of s providing positive claims on o (defined in Section 4.4), and L(s1, s2) is the
long-tail phenomenon compensation of edge from s1 to s2 (defined in Section 4.5).

We calculate the edge weight of a +supportive agreement graph as follows:

ω′(s1 → s2) = β + (1 − β) · A(s1, s2)

|Os2 |
(11)

Similarly, we calculate the edge weight of a –supportive agreement graph as follows:

Ã(s1, s2) = L(s1, s2)+
∑

o∈Os1∩Os2

|Ão(s1, s2)|
|Ṽs2o

| ·(1−
∏

v∈Ão(s1,s2)

Cv)·Po·(1−D̃(s1, o))·μ̃(s1, o)

(12)

ω̃′(s1 → s2) = β + (1 − β) · Ã(s1, s2)

|Os2 |
(13)

We apply FPC random walk to those two graphs and obtain τ ′(s) and τ̃ ′(s) as the
±SmartVote for each source by conducting the same normalization process as with
SourceVote. Besides the features captured by ±SourceVote, ±SmartVote additionally
capture the following characteristics:

– The endorsement from a source on values with higher probabilities to be true (resp.,
false) in the +supportive agreement graph, should be more (resp., less) respected. Sim-
ilarly, the endorsement from a source on values with higher probabilities to be false
(resp., true) in the –supportive agreement graph, should be more (resp., less) respected.

– The endorsement independently provided by a source should be more trustworthy, since
the endorsement provided by copiers can be malicious and might have little wisdom in
it. Also, the endorsement from a source on popular objects should be highlighted, since
popular objects are more valued by the public, false values of which can lead to bad
consequences.

– If a source shows more confidence in the claims (positive or negative) of an object,
the endorsement from this source on the object should be highlighted. Also, sources
covering few objects should not be assigned with extremely big or small values of
±SmartVote as the evidence for estimating their reliability are limited.
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To jointly determine value veracity from source reliability, we consider each source that
belongs to So casts a smart vote to each potential value of o. In particular, if a source
provides v as a positive claim, then it casts a vote proportional to τ ′(s) for it; in contrast,
if a source disclaims v, then it casts a vote proportional to (1 − τ ′(s)) for it. Finally, we
compute the confidence scores of each value v being true or false by applying the following
equations:

Cv =
∑

s∈Sv
τ ′(s) + ∑

s∈Sṽ
(1 − τ̃ ′(s))

|So| (14)

Cṽ =
∑

s∈Sv
(1 − τ ′(s)) + ∑

s∈Sṽ
τ̃ ′(s)

|So| (15)

4.2 Malicious agreement detection

Copying relations among sources in the real world are complex. For example, a copier may
copy all values or partial values from a source. A source may transitively copy from another
source or collect information from several sources. Multiple sources may copy one source.
To better model the malicious agreement among sources globally, we construct ±malicious
agreement graphs for sources that provide values on an object o, i.e., So, for each object
o ∈ O. Similar to the graphs constructed above, each edge of +malicious (resp., -malicious)
agreement graph represents one source maliciously endorses the other on the positive (resp.,
negative) claims of an object with a quantified endorsement degree, denoted as ωco(s1 →
s2) (resp., ω̃co (s1 → s2)), calculated by:

ωco(s1 → s2) = β + (1 − β) · |Ao(s1, s2)|
|Vs2o

| · (1 −
∏

v∈Ao(s1,s2)

Cv) · μ(s1, o) (16)

ω̃co (s1 → s2) = β + (1 − β) · |Ão(s1, s2)|
|Ṽs2o

| · (1 −
∏

v∈Ão(s1,s2)

Cṽ) · μ̃(s1, o) (17)

Both FPC random walk computation and normalization are conducted on each graph
to obtain the dependence score for each source that provides positive (resp., negative)
claims on an object o, denoted as D(s, o) (resp., D̃(s, o)). We set the dependence score
of the source with the highest visit probability in the +malicious agreement graph (resp.,
–malicious agreement graph) as pcmax (resp., ncmax). The computed dependence scores
capture the following characteristics, all of which are consistent with our intuition:

– Vertices with more input edges should have a higher value of dependence score since
those sources are maliciously endorsed by a larger number of sources. Such sources
tend to act as collectors that copy values from several sources.

– The malicious endorsement. Similarly, a source that claims a value with a lower prob-
ability to be true (resp., false) in +malicious agreement graph should be more (resp.,
less) respected. Meanwhile, the malicious endorsement from a source on a value with
a lower probability to be false (resp., true) in –malicious agreement graph, should be
more (resp., less) respected.
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Figure 3 Sample ±malicious agreement graphs of four sources on book id : 9780072830613 in Table 2

– If a source shows more confidence in the claims (positive or negative) of the object, the
endorsement from this source should be highlighted.

Example 3 Figure 3 shows sample ±malicious agreement graphs for book id :
9780072830613 (simply denoted as o) in the dataset described in Example 14. Take the
link from s1 to s2 in the sample +malicious agreement graph as an example, by apply-
ing (1), we get Ao(s1, s2) = {Stephen; James}, then |Ao(s1, s2)| = 2. By applying
majority voting, we get the votes for values in Uo as {Stephen: 4, James: 2, Kate: 2, Mer-
rill: 1}. Therefore, we initialize the confidence scores for the values as 4

4 = 1, 2
4 = 0.5,

2
4 = 0.5, 1

4 = 0.25. By substituting this result in (16), we obtain ωco(s1 → s2) =
0.1+ (1−0.1)× 2

2 × (1−1×0.5) = 0.55. In the same way, we obtain ωco(s1 → s3) = 0.1,
and ωco(s1 → s4) = 0.1. Finally, the normalized weights of edges s1 → s2, s1 → s3,
and s1 → s4 of +malicious agreement graph are 0.55

0.55+0.1+0.1 = 0.73, 0.1
0.55+0.1+0.1 = 0.135,

0.1
0.55+0.1+0.1 = 0.135, respectively. After applying random walk computations, we obtain

{D(s1, o) : 0.235,D(s2, o) : 0.245,D(s3, o) : 0.26,D(s4, o) : 0.26}, {D̃(s1, o) :
0.20, D̃(s2, o) : 0.25, D̃(s3, o) : 0.275, D̃(s4, o) : 0.275}. The results capture the relation
patterns in the sample dataset: s3 and s4 are more likely to be copiers than other sources on
either positive claims or negative claims for the specific book id : 9780072830613.

4.3 Object popularity quantification

Intuitively, popular objects tend to be covered by more sources, as sources tend to publish
popular information to attract more audiences. Therefore, we quantify the popularity of an
object, denoted as Po, by its occurrence rate. Specifically, each source casts a vote for the
popularity of every object it covers, and each object collects votes from every source that

4We neglect the confidence scores of each source and omit the dependence score normalization step in this
example.
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claims values on it. We define the coverage of a source s, i.e., Cov(s), as the percentage
of its provided objects over O. Formally, inspired by the idea from term frequency-inverse
document frequency (i.e., TF-IDF) in information retrieval, we measure the popularity of
each object by applying the following equations, which comprehensively incorporate the
occurrence of the object and the coverage of each source that covers the object:

Pu
o =

∑

s∈So

1

Cov(s)
(18)

where Pu
o is the un-normalized popularity of object o. Pu

o of all objects are then normalized
as Po to sum to 1.

The normalized popularity of each object captures the following two features, both of
which are consistent with our intuition:

– Objects covered by more sources are more popular than those covered by fewer sources.
– Votes for the popularity of objects from the sources with lower coverage should be more

respected than those from the sources with higher coverage.

4.4 Source confidencemeasurement

For a single-valued object, if a source claims a value for it, then the source certainly dis-
claims all the other values of the object. However, a straight application of the above mutual
exclusion for a multi-valued object is unreasonable, as sources may not know the num-
ber of true values on the objects and therefore do not necessarily reject negative claims.
To differentiate and quantify sources’ confidence on their positive and negative claims, we
incorporate loose mutual exclusion [36] into our model for source reliability calculation.
The measurement approach of source confidence score is similar to the Kappa coeffi-
cient [20]. The main idea is to exclude the effect of random guess in determining the extent.
In particular, the confidence score of s providing positive claims on o is calculated as:

μ(s, o) = 1

|Vso |
· (1 − 1

|Uo| ) (19)

Meanwhile, the confidence score of s providing negative claims on o is calculated as:

μ̃(s, o) = 1

|Ṽso |
· 1

|Uo| (20)

The computed source confidence scores capture the following two features, which are
consistent with our intuition:

– A cautious source, which only provides values that it is sure to be true and omits
uncertain values, may claim partial true values of an object. Thus its confidence score
on positive claims is relatively higher than that of the other sources. Similarly, its
confidence score on negative claims is relatively lower than that of the other sources.

– For an audacious source, which tends to provide all potential values of an object, it
may cover as many as possible values of an object, including false values. Therefore,
its confidence score on positive claims is relatively lower than that of the other sources,
while its confidence score on negative claims is relatively higher than that of the
other sources.
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4.5 Balancing long-tail phenomenon on source coverage

In reality, many datasets show the long-tail phenomenon in their source coverage, i.e., very
few sources provide extensive coverage for the objects of interest, while most of the sources
only provide values for very few objects. Since identifying reliable sources is the key to
determining value veracity and source reliability is typically estimated by the empirical
probability of making correct claims, the accuracy of truth discovery and source reliability
estimation depend on the coverage of the evaluated source. When sources cover numer-
ous objects, we can conduct more accurate estimation of source reliability based on the
sufficient evidence, leading to better truth discovery. However, due to the existence of the
long-tail phenomenon, the majority of sources are “small” sources with very few claims.
Source reliability estimation based on the limited evidence could be totally random. For
example, consider the extreme case when most sources only cover one object. If the claimed
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values of one of these sources are correct and complete, the positive precision and negative
precision of this source would both be one. On the other hand, if the claim is totally wrong,
the positive precision would be zero.

To smooth the estimation for small sources, given an object, we consider three cases
for the agreement between two sources: i) both sources sharing several common values; ii)
both sources providing totally different values; iii) one source covering this object while
the other source ignoring this object. To deal with the long-tail phenomenon, we assert that
the agreement in the third case should not be zero. If a source does not cover an object,
it does not indicate that this source votes against the values claimed by the other sources.
In this section, our goal is to distinguish the third case from the second case. Formally,
we use L(s1, s2) to represent a compensation for a link s1 → s2, to re-balance the long-
tail phenomenon on source coverage. In particular, for each object covered by s2 but not
covered by s1, we approximately estimate the endorsement degree from s1 to s2 on this
object according to (10) and (12). Each factor on the right side of

∑
in (21) corresponds to

the factor in the same position of (10) and (12).

L(s1, s2) =
{

βL · ∑
o∈Os2−(Os1∩Os2 )

1
2 · 1

2 · Po · 1
2 · ( 1

|Uo| (1 − 1
|Uo| )); for A(s1, s2)

βL · ∑
o∈Os2−(Os1∩Os2 )

1
2 · 1

2 · Po · 1
2 · 1

|Uo|
2; for Ã(s1, s2)

(21)

where βL is an uncertainty factor of the compensation.

4.6 The algorithm

Algorithm 1 shows the whole procedure of SmartVote. The initialization phase initializes
parameters with a priori values (line 1). The parameters to be initialized include itera-
tion convergence threshold δ, smoothing factor β, uncertainty factor βL, positive precision
ppmax , negative precision npmax , the two-sided dependence scores (pcmax and ncmax)
of sources with the highest visit probabilities in both ±supportive agreement graphs and
±malicious agreement graphs. Besides, the confidence scores of each value v being true
(denoted as Cv) or being false (denoted as Cṽ) are both initialized by adopting the major-
ity voting in our experiments (alternative methods can be applied for this initialization). To
start, we count the votes of each individual value of each object o ∈ O. Then, we normalize
those vote counts by dividing them by |So| to represent Cv for each value. Cṽ is initial-
ized as 1 − Cv (line 2). The object popularity quantification (lines 3-4), source confidence
measurement (lines 5-7), and long-tail phenomenon on source coverage balancing (line
8) are calculated directly from the multi-sourced data outside the iteration. For each cycle
of iteration, the algorithm does three parts of work: 1) recalculating the two-sided source
dependence scores (lines 10-12); 2) calculating ±SmartVote (lines 13-14) of sources based
on the two-sided value confidence scores; 3) computes value confidence scores (lines 15-16)
based on ±SmartVote of sources. The algorithm is believed to converge when the difference
of cosine similarity of ±SmartVote between two successive iterations turns smaller than a
given threshold, δ (line 17).

The time complexity of the algorithm is O(|O||S|2 + |S|2 + |V |). We believe the time
complexity should not be an issue for the algorithm. First, there are many mature distributed
computing tools that can be used for random walk computation to reduce the time complex-
ity. For example, Apache Hama5 is a framework for big data analytics, which uses the Bulk

5https://hama.apache.org/

https://hama.apache.org/
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Synchronous Parallel (BSP) computing model. It includes the Graph package for vertex-
centric graph computations. Second, we can easily extend the Vertex class to create a class
for realizing parallel random walk computation.

5 Experiments

5.1 Experimental setup

5.1.1 Real-world datasets

We used two real-world datasets in our experiments. Each object in both datasets may
contain multiple true values. The Book-Author dataset [41] contains 33,971 book-author
records crawled from www.abebooks.com. These records were collected from numerous
book websites (i.e., sources). Each record represents a store’s positive claims on the author
name(s) of a book (i.e., object). We refined the dataset by removing the invalid and
duplicated records, and excluding the records with only minor conflicts to make the prob-
lem more challenging—otherwise, even a straightforward method could yield competitive
results. We finally obtained 13,659 distinctive claims, 624 websites providing values about
author name(s) of 655 books. Each book has on average 3.1 authors. The ground truth pro-
vided by the original dataset was used as the gold standard. The Parent-Children dataset
was extracted by focusing on the parent-children relation from the Biography dataset [30],
which contains 11,099,730 records edited by different users about people’s birth and death
dates, names of their parents, children, and spouses on Wikipedia. We obtained 227,583
claims about 2,579 people’s children information (i.e., objects) edited by 54,764 users (i.e.,
sources). We also further removed the duplicated and minor conflicting records for this
dataset for more effective comparison. In the resulting dataset, each person has on average
2.48 children. We used the latest editing records as the gold standard.

5.1.2 Baseline methods

We compared SmartVote with three types of truth discovery methods as follows:

ExistingMTDmethods Based on our thorough analysis of the existing MTD methods (see
Section 6), we chose the following three state-of-the-art MTD methods as the baselines and
excluded other methods (e.g., [31, 35, 47]), which are already proved to perform worse than
these three baselines [37]:

– LTM (Latent Truth Model) [46]: it applies a probabilistic graphical model to infer source
reliability and value veracity.

– MBM (Multi-truth Bayesian Model) [36]: it incorporates source confidence and a finer-
grained copy detection technique into a Bayesian model.

– MTD-hrd [38]: it is a model designed for Multi-Truth Discovery, which incorporates
two implications, namely the calibration of imbalanced positive/negative claim distri-
butions and the consideration of the implication of values’ co-occurrence in the same
claims, to improve the probabilistic approach.

STD methods Wang et al. [37] showed that all traditional STD methods achieve low
accuracy in MTD scenarios when regarding a value set claimed by the same source as a
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single joint value. To adapt existing STD methods to MTD scenarios, we pre-processed
the input datasets by conducting claim value separation. For example, for the record “s2,
9780072830613, Stephen;James” in Table 2, we reformatted it into “s2, 9780072830613,
Stephen” and “s2, 9780072830613, James”. We thereby modified the STD methods to treat
each value in a source’s claimed value set on a given object individually, and determined the
veracity of each individual value separately to accept multiple true values. We chose sev-
eral representative methods but excluded those methods that are inapplicable to the MTD
scenario for the comparison. For example, the methods proposed in [6] use the number of
false values as prior knowledge, which is, however, impossible to be obtained in advance in
the MTD scenario because we do not know the number of true values for each object. IATD
(Influence-Aware Truth Discovery) [44] makes a number of variable distribution assump-
tions, which are unfeasible to adapt to the MTD scenarios as well. The method in [30]
requires the normalization of the veracity scores of values, which is unfeasible for the MTD
problem. The methods in [23, 45] focus on handling heterogeneous data, while our approach
is designed specially for categorical data.

– Voting: this method regards a value as true if the proportion of the sources that claim
this value exceeds a certain threshold.

– Sums [21], Average-Log [30]: these two methods are modified to incorporate mutual
exclusion. They compute the total reliability of all sources that claim and disclaim a
value separately. If the former is bigger than the latter, the value will be regarded as true.

– TruthFinder [41]: this method iteratively estimates trustworthiness of source and con-
fidence of fact from each other by additionally considering the influences between
facts.

– 2-Estimates [17]: this method adopts mutual exclusion and recognizes a value as true if
its truth probability exceeds 0.5.

Improved STD methods We improved the above STD methods by incorporating truth
number prediction. In particular, for each method, we treated the values in the set of claimed
values of each source individually and ran the original method to output source reliabil-
ity and value confidence scores. Then, we computed |Vso | for each source on every object,
based on which to predict the number of true values for each object:

Po(n) = |So |

√ ∏

|Vso |=n,s∈So

A(s) ·
∏

|Vso |	=n,s∈So

(1 − A(s)) (22)

where Po(n) is the unnormalized probability6 of the number of values of an object o to be
n, and A(s) is the reliability of s calculated by each method.

For each object, we chose the number with the highest probability (denoted as N ) as the
number of true values and output the top-N values instead of choosing the value set with
the biggest confidence score as the outputs. Finally, we obtained five new methods, namely
Voting∗7, Sums∗, Average-Log∗, TruthFinder∗, and 2-Estimates∗.

5.1.3 Parameter configuration

To ensure the fair comparison, we ran a series of experiments to determine the optimal
parameter settings for each baseline method. We used the same criterion for all the iterative

6Such values are then normalized to represent probabilities.
7For Voting∗, we predict the number of true values as the number with the highest vote counts.
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methods to determine their convergence. For our approach, we simply used the default
parameter settings for both datasets. In particular, we set βL as 0.1, from our study on the
impact of βL on the performance of our approach ( see Section 5.3.5). Intuitively, sources
tend to provide values that they are sure to be true and omit uncertain values, while copiers
are likely to copy those explicitly claimed values from other sources. Therefore, we set
ppmax as 1, npmax as 0.9, pcmax as 1, and ncmax as 0.8.

5.1.4 Evaluation metrics

We implemented all the above methods in Python 3.4.0 and ran experiments on a 64-bit
Windows 10 Pro. PC with an Intel Core i7-5600 processor and 16GB RAM. We ran each
method multiple times (denoted as K , for our experiments, we set K as 10) to evaluate their
average performance. In particular, we used two groups of evaluation metrics.

Traditional performance measurements Precision and recall are two commonly used
performance measurements for evaluating the accuracy of truth discovery methods. We
additionally used F1 score to represent the overall accuracy. Execution time was measured
for efficiency comparison.

Object popularity weighted performance measurements We introduced a new concept
of object popularity to measure the importance of each object. Intuitively, objects with dif-
fered popularity have varied sizes of audience. The false values on an object with higher
popularity would mislead people. Traditional performance metrics treat all the objects
equally, thus cannot capture this implication. To measure the performance of truth discov-
ery methods more precisely, we integrated object popularity as a weight into the calculation
of precision, recall and F1 score. We used the following three object popularity weighted

performance metrics: i) Weighted precision, calculated as 1
K

∑K
k=1

∑|O|
n=1

|Vo
∗(k)∩Vo

g |
|Vo

∗(k)| · Po;

ii)Weighed recall, calculated as 1
K

∑K
k=1

∑|O|
n=1

|Vo
∗(k)∩Vo

g |
|Vo

g | ·Po; and iii)Weighted F1 score,
which is the harmonious mean of weighted precision and weighted recall.

5.2 Comparative studies

Table 5 shows the performance of different methods on two real-world datasets in terms of
accuracy and efficiency. For all the accuracy evaluation metrics except precision, SmartVote
consistently achieved the highest value. Even in terms of precision, SmartVote still achieved
the second-best performance on the Parent-Children dataset and the third-best performance
on the Book-Author dataset. Among the four methods specially designed for the MTD prob-
lem, our approach is the most efficient as demonstrated by its lowest execution time. This
is because LTM and MTD-hrd include complicated Bayesian inference over the complex
probabilistic graphical model, and MBM conducts time-consuming copy detection, while
our approach is based on a relatively simple graph model. All algorithms performed bet-
ter on the Parent-Children dataset than on the Book-Author dataset. The possible reasons
include the small scale, the poor quality of sources, and missing values (i.e., true values that
are missed by all the data sources) of the Book-Author dataset, leading to insufficient evi-
dence to support all correct values. The majority of the methods showed higher precision
than recall, reflecting relatively high positive precision than the negative precision of most
real-world sources.
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Specifically, since Voting conducts truth discovery without iteration and the consider-
ation of the quality of sources, it has relatively low accuracy, but on the other hand, it
consumes the least execution time. The improved STD methods performed even worse than
their original versions. This depicts that in reality, the majority of sources tend to be cautious
and only provide values they are sure to be true. As a result, the predicted numbers of true
values were generally smaller than the real ones, leading to lower precision and recall of the
improved STDmethods. Besides our approach, 2-Estimates andMBM also performed better
than the other methods in terms of both the traditional and weighted measurements. This can
be attributed to their consideration of mutual exclusion. Though LTM and MBM-hrd also
take this implication into consideration, they make strong assumptions on the prior distribu-
tions of latent variables. For this reason, once the dataset does not comply with the assumed
distributions, it performs poorly. Without incorporating object popularity, 2-Estimates and
MBM showed lower quality Compared withMBM, which showed second-best performance,
SmartVote not only includes object popularity but also globally models two types of source
relations and pays attention to the ubiquitous long-tail phenomenon on source coverage.
Overall, SmartVote showed the best accuracy performance.

5.3 Impact of different concerns

The compound effect of different technical components contributes to the performance of
SmartVote. To evaluate the impact of different concerns, we implemented five variants of
SmartVote:

– SmartVote-Core: A variant of SmartVote without incorporating the four implications.
– SmartVote-C: A version of SmartVote-Core that adopts the malicious agreement

detection.
– SmartVote-P: A version of SmartVote-Core that adopts the object popularity quantifi-

cation.
– SmartVote-Con: A version of SmartVote-Core that incorporates the loose mutual

exclusion.
– SmartVote-L: A version of SmartVote-Core that considers the long-tail phenomenon on

source coverage.

Figure 4 reports the performance comparison of different variants of SmartVote on the
Book-Author dataset. The experimental results on the Parent-Children dataset show the
similar insights. By incorporating each individual component into SmartVote-Core, our
approach showed consistently better performance in terms of accuracy with only slight
increase in the execution time. The full version of SmartVote led to the best result. We stud-
ied the impact of each technical component on our approach and report the findings in the
following sections.

5.3.1 SourceVote

To validate the feasibility of modeling source reliability by quantifying the two-sided
inter-source agreements, we implemented SourceVote to estimate source reliability as
±SourceVote for the two real-world datasets. We used these results to initialize the param-
eters regarding source reliability of the aforementioned baseline methods, including Sums,
Average-Log, TruthFinder, 2-Estimates, LTM, and MBM. Note that we did not apply
SourceVote to Voting, because Voting assumes all sources are equally reliable.
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Figure 4 Performance comparison of different variants of SmartVote

Figure 5 describes the performance comparison of the SourceVote initialized methods
with their original versions in terms of precision, recall, and execution time on the Book-
Author dataset. We omit the results on the Parent-Children dataset as it led to similar
conclusions. The results show that initializing source reliability by applying SourceVote
almost led all methods to better performance, indicated by higher precision and recall, lower
execution time. This reflects that the source reliability evaluated by SourceVote is more
accurate than the widely applied default value of 0.8. With precise initialization, all methods
show a faster convergence speed. Especially, the precision and recall ofMBM stayed stable.
This indicates that MBM is insensitive to the initial assumptions of source quality. How-
ever, the execution time ofMBM was reduced dramatically due to the precise source quality
inputs. The execution time of LTM increased because the number of iterations was fixed
to 1,001 to ensure algorithm convergence and avoid performance fluctuations (as suggested
in [34]). The increased execution time came from the time spent on SourceVote.

5.3.2 Malicious agreement

To validate the fact that two types of source relations, namely source supportive relations
and copying relations (which corresponds to source supportive agreements and malicious

Figure 5 Comparison between the original versions of representative existing truth discovery methods and
the versions that apply SourceVote for precise source reliability initialization. The latter versions are marked
by suffix “-s”
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agreements), widely exist in real-world datasets, we conducted an analysis on the Book-
Author dataset. The analysis results on the Parent-Children dataset show the same features.
Take the book (id : 9780072223194) as an example, the ground truth shows that “Den-
nis Suhanovs” is its true author. From the dataset, we can see that the false value “Laura
Robinson” is claimed by three sources including “The Recycled Book Shop”, “Blackwell
Online”, and “textbookxdotcom”. This phenomenon indicates the possible malicious agree-
ments (or copying relations) among the three sources. Meanwhile, the true value “Dennis
Suhanovs” is claimed by the majority of sources, which indicates supportive agreements
(or supportive relations) among those sources. Overall, among all the books covered by the
ground truth, we found only 11.76%, on which no source shows malicious agreement with
others. For this small portion of objects, sources make unique false claims other than com-
mon false claims. Meanwhile, there is only one book, on which no source claims the true
values, and therefore no supportive relation exists among those sources on this book. Based
on this analysis, we conclude that the supportive relations and copying relations are ubiqui-
tous in real-world datasets. That is why we should consider those relations when pursuing
better truth discovery.

By incorporating malicious agreement detection component, both precision, recall and
F1 score of SmartVote-C are higher than SmartVote-Core, as shown in Figure 4. Interest-
ingly, when we leveraged weighted metrics to evaluate SmartVote-C, the algorithm even
showed better results than by using traditional metrics. The results report the wide exis-
tence of copying relations in real-world datasets. Neglecting these relations would lead to
the result of overestimating the reliability of copiers and impair the performance of truth
discovery methods. Among other components, malicious agreement detection is the most
time-consuming, as we need to compute the dependence score of each source on each object
iteratively from the confidence scores of the claimed values of each object, and calculate
the reliability of each source iteratively from the independence score of each source and the
confidence score of each value. However, when comparing with the performance improve-
ment introduced by incorporating this component, this additional amount of time cost can
be justified. To study the effect of this component in depth, we compared the performance
of SmartVote-Core and SmartVote-C in terms of precision and recall for each cycle of iter-
ation, as shown in Figure 6a. Although SmartVote-C took longer time to converge, i.e.,
7 rounds of iteration (SmartVote-Core only required 4 rounds of iteration), it consistently
achieved higher performance in each round of iteration.

5.3.3 Object popularity

By considering the different popularity of objects, SmartVote-P performed better in terms
of accuracy with nearly no extra execution time cost. This is because more sources provide
claims on popular objects, and more evidence can be obtained to model the endorsement
among sources. Therefore, when computing source reliability, assigning more weights to
the popular objects would lead to better truth discovery. In addition, object popularity is
calculated directly from the multi-sourced data. Since this calculation is outside of the iter-
ation, it can be conducted effectively under linear execution time. Another observation was
that SmartVote-P achieved higher weighted accuracy. This is consistent with our expecta-
tion because source reliability evaluation relies on the claims provided on popular objects.
By differentiating the popularity of objects, our approach obtained more precise results.
By ranking objects in the Book-Author dataset and the Parent-Children dataset, respec-
tively, in a descending order of their popularity degrees, we draw scatter diagrams as shown
in Figure 6c and d, where each point depicts an object with the corresponding popularity
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Figure 6 Impact of different concerns

degree (totally, there are 677 objects in the Book-Author dataset and 2,579 objects in the
Parent-Children dataset). We observed that in both scatter diagrams, the points with very
high popularity degrees are quite sparse, indicating that only very few objects are more
popular than the majority.

To further validate SmartVote, we compared withMBM (the best baseline method) on the
top-20 popular objects in the ground truth of the Book-Author dataset. SmartVote returned
false values on 2 objects (Book id : 9780072499544 and Book id : 9780071362856) while
MBM made mistakes on 4 objects (Book id : 9780028056005, Book id : 9780072499544,
Book id : 9780071362856, and Book id : 9780072843996). This demonstrated that
SmartVote had better accuracy on the more popular objects. SmartVote and MBM both
returned false values on Book id : 9780072499544 and Book id : 9780071362856 because
some authors are neglected by all the sources.

5.3.4 Source confidence

We can see from Figure 4 that SmartVote-Con performed better than SmartVote-Core in
terms of precision and F1 score while keeping the recall unchanged. The reason for the better
performance of SmartVote-Con is that in real-world datasets, the total number of distinct
values of an object provided by all the sources is generally much larger than the number of
positive claims of a specific source. Thus, sources normally make more negative claims than
positive claims and show different confidence for these two types of claims. Neglecting this
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type of differences and strictly conducting the mutual exclusion would certainly increase
the false negatives of the truth discovery methods. On the other hand, re-balancing and
quantifying the confidence scores of sources for their positive claims and negative claims
according to their distributions in the datasets make our approach more aligned with the
reality.

5.3.5 Long-tail phenomenon on source coverage

Incorporating the balancing long-tail phenomenon on source coverage component dramat-
ically increased the precision of SmartVote-Core with only a slight decrease in the recall,
resulting in a higher value of F1 score. In reality, different sources often cover different
objects. For the case that a source covers an object that is ignored by another source, the
source reliability will be under-estimated if we directly consider there is no agreement
between the two sources. On the other hand, the source reliability may be over-estimated,
if we use the average endorsement degree between the two sources on the commonly cov-
ered objects to measure the overall endorsement degree between the sources. Our approach
tackles this issue by modeling the claim distributions, and experimental results validate the
effectiveness of our approach. We also investigated the performance of our approach by tun-
ing the values of the uncertainty factor βL from 0 to 1 (as shown in Figure 6b). We found
that the precision stayed stable for varying values of βL, while the recall peaked at the points
when βL equals to 0.1 and 0.2.

5.3.6 Convergence discussion

In this experiment, different variants of SmartVote all converged on both Book-Author
and Parent-Children datasets. As shown in Table 5, the execution time of SmartVote is the
shortest among all the compared MTD methods, indicating that SmartVote converged at a
quicker rate than those methods. Take SmartVote-Core and SmartVote-C as examples, we
can see from Figure 6a that SmartVote-Core converged at the 4th round of iteration, while
SmartVote-C converged at a slower rate (required 7 rounds of iteration). According to a
recent survey [26], the open question on “will the existing truth discovery methods promise
convergence or not” still remains unsolved. The study on the convergence rate and how to
bound the errors of converged results of the methods could be an interesting future research
direction. We leave the theoretical analysis of the convergence of our approach as future
work.

6 Related work

Due to the significance of the veracity to Big Data, truth discovery has been a hot topic and
studied actively for last few years in the database community [12, 13]. Aiming at resolving
the conflicts among the multi-sourced data, and determining the underlying true values,
significant research efforts have been conducted and many methods have been proposed for
truth discovery in various application scenarios (see [24, 26, 34] for surveys). The primitive
methods are typically rule-based, such as: i) regarding the latest edited values as true; ii)
conducting majority voting (for categorical data), i.e., predicting the values with the highest
number of occurrences as the truths; iii) naively taking the mean/minimum/maximum as
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the true values (for continuous data). These methods focus on improving the efficiency
in database queries [2, 3, 8, 29], but they show low accuracy for cases that many sources
provide low-quality data, due to the fact that the sources may not be equally reliable.

Yin et al. [41] first formulate the truth discovery problem in 2008. Since then, many
advanced solutions have been proposed by applying unsupervised or semi-supervised learn-
ing techniques while additionally taking various implications of multi-sourced data into
consideration. According to the models they adopted, we classify the advanced methods
into five categories8.

The first category is link based methods [21, 30] that conduct random walks on the bipar-
tite graph between sources and values of objects. They measure source authority based on
their links to the claimed values and estimate source reliability and value correctness based
on the bipartite graph. Iterative methods [17, 30, 41] iteratively calculate value veracity and
source reliability from each other until certain convergence condition is met. Bayesian point
estimation methods [6, 36] adopt Bayesian analysis to compute the maximum a posteriori
probability orMAP value for each object. Probabilistic graphical model based methods [38,
45, 46] apply probabilistic graphical models to jointly reason about source trustworthiness
and value correctness. Finally, optimization based methods [22, 23] formulate the truth dis-
covery problem as an optimization problem. Recently, Popat et al. [32] propose an approach
for early detection of emerging textual claims. This is a very interesting direction of truth
discovery, but out of the scope of our paper.

Since source reliability is the key to determining value veracity and existing truth discov-
ery methods generally require source reliability initialization to launch their algorithm, more
precise source reliability initialization is much in demand. Recent work adopts an external
trustful source [11], a subset of labeled data [9, 27, 42], or the similarity among sources [43]
as prior knowledge to initialize or help initialize the source reliability. To the best of our
knowledge, SourceVote is the very first few to help source reliability initialization nearly
without any prior knowledge.

To realize better truth discovery, the long-tail phenomenon on source coverage of multi-
sourced data has been empirically investigated on four real-world datasets by Li et al.
in [22]. The observations of sources’ authority features and sources’ copying relations
have been presented in [21] and [5–7, 25, 44]. The long-tail phenomenon on objects has
also been studied by Xiao et al. [39] to conduct confidence interval estimation. However,
all those implications have been incorporated into different models under the single-value
assumption.

Despite active research in the field, multi-truth discovery (MTD) is rarely studied by
the previous work. LTM (Latent Truth Model) [46], a probabilistic graphical model-based
method, is the first solution to MTD. In this work, Zhao et al. measure two types of errors
(false positive and false negative) by modeling two different aspects of source reliability
(specificity and sensitivity) in a generative process. The disadvantage is that LTM makes
strong assumptions about prior distributions for nine latent variables, rendering the model
inhibitive and intractable to incorporating various implications to improve its performance.
Pochampally et al. [31] study various correlations among sources by taking information
extractors into consideration, but their application scenario is different from ours. The

8Note that there are overlaps among those categories. For example, Investment belongs to both Web-link
based methods and iterative methods.
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experiments show that their basic model without considering source correlations sometimes
performs worse than LTM. In our experiments, SmartVote constantly achieves better results
than LTM. To rebalance the distributions of positive claims and negative claims and to
incorporate the implication of values’ co-occurrence in the same claims, Wang et al. [38]
propose a probabilistic model that takes multi-valued objects into consideration. However,
this method also requires initialization of multiple parameters, such as prior true or false
count of each object, and prior false positive or true negative count of each source.

Waguih et al. [34] conclude with extensive experiments that these probabilistic graphical
model-based methods cannot scale well. Zhi et al. [47] also consider the mutual exclu-
sion between sources’ positive claims and negative claims, but they model the silence rate
of sources to tackle the possible non-truth objects rather than multi-valued objects. To
relax unnecessary assumptions, Wang et al. [36] analyze the unique features of MTD and
propose MBM (Multi-truth Bayesian Model), which incorporates source confidence and
finer-grained copy detection techniques in a Bayesian framework. However, they assume
that false information is copied from sources and correct information is provided indepen-
dently by sources. Recently, Wang et al. [37] design three models (i.e., the byproductmodel,
the joint model and the synthesis model) for enhancing existing truth discovery methods.
Their experiments show that those models are effective in improving the accuracy of multi-
truth discovery using existing truth discovery methods. However, LTM and MBM still
perform better than those enhanced methods. Wan et al. [35] propose an uncertainty-aware
approach for the real-world cases where the number of true values is unknown. However,
they deal with continuous data rather than categorical data.

Different from those methods, SmartVote is a graph-based method [15], which incorpo-
rates four types of implications. In particular, SmartVote has four features: i) it is the first
to take the impact of object popularity on source reliability into consideration; ii) instead
of assuming independence of sources (in LTM) or independent copying relations among
sources (in MBM), SmartVote globally models copying relations by constructing graphs of
all sources that provide values on a specific object; iii) different from previous copy detec-
tion approaches, including MBM and other methods [5–7, 31], which only consider the
copying relations among sources, SmartVote not only punishes malicious copiers that make
the same faults with other sources but also defines a new source relation, namely supportive
relation, to punish that sources that support each other by providing the same true values;
and iv) as the long-tail phenomenon on source coverage is common in reality, SmartVote
additionally deals with this significant issue by avoiding sources with few claims from being
assigned high reliability.

A recent survey [26] shows that most of truth discovery methods start with uniform
weights among all sources, and as a result, the performance of truth discovery may rely on
the majority. Therefore, it is safe to say that most existing truth discovery methods may fail
when the majority of sources are of low-quality. Typically, for the special circumstances
where most of sources are malicious copiers or of low-quality, prior knowledge regarding
value veracity from the Web content is required; otherwise, there would be no clue to reason
about the truth. A promising work that could relieve this issue is proposed by Yu et al. [43],
who develop a novel unsupervised multi-dimensional truth-finding framework to explore
the wisdom of minority. They leverage the strengths of both Natural Language Processing
work and Data Mining work. We leave the research on multi truth discovery under such
circumstances as our future work.
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7 Conclusion

In this paper, we focus on the problem of discovering true values for multi-valued objects
(i.e., multi truth discovery problem or MTD). We first propose an approach, called
SourceVote, to model two aspects of source reliability (i.e., positive precision and negative
precision) by quantifying the two-sided inter-source agreements. SourceVote can be utilized
to initialize the existing truth discovery methods. To further improve the accuracy of source
reliability estimation and predict truths for multi-valued objects, we further propose a full-
fledged graph-based model, SmartVote. This model incorporates four implications including
source relations (i.e., supportive relations and copying relations), object popularity, loose
mutual exclusion, and long-tail phenomenon on source coverage. We construct ±supportive
agreement graphs to model the endorsement among sources on their positive and negative
claims, from which to derive improved evaluations of two-sided source reliability. We then
capture copying relations among sources by constructing the ±malicious agreement graphs
based on the consideration that sources sharing the same false values are more likely to be
dependent. We further consider the popularity of objects and develop techniques to quan-
tify object popularity based on object occurrences and source coverage. Finally, we apply
source confidence scores to differentiate the extent to what a source believes its positive
claims and negative claims. For the ubiquitous long-tail phenomenon on source coverage,
we introduce smoothing weights to the ±supportive agreement graphs to avoid the reliabil-
ity of small sources from being over- or under-estimated. Experimental results show that our
approach outperforms the state-of-the-art truth discovery methods on two real-world large
datasets. Inspired by a recent research effort by Xiao et al. [40], one of our future research
efforts will focus on convergence analysis of our truth discovery approach and investigate
the theoretical guarantee of the results of our approach.
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