
https://doi.org/10.1007/s11280-018-0625-7

Parallel strategy for multiple scan operations with data
replication

XingWei1 ·Huiqi Hu1 ·Huichao Duan1 ·Weining Qian1 ·Aoying Zhou1

Received: 30 November 2017 / Revised: 23 May 2018 / Accepted: 19 July 2018 /

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
To support the large-scale analytic for Web applications, the backend distributed data
management system must provide the service for accessing massive data. Thus, the scan
operation becomes a critical step. To improve the performance of scan operation, mod-
ern data management systems usually rely on the simple partitioned parallelism. Under
the partitioned parallelism, tables are consist of several partitions, and each scan oper-
ation can access multiple partitions separately. It is a simple and effective solution for
a single scan operation. In this paper, we consider managing multiple scan operations
together, where the situation is no longer straightforward. To address the problem, we
propose the parallel strategy to schedule batched scan operations together beyond the sim-
ple partitioned parallelism. For the sake of performance, first, we utilize replications to
increase the parallelism and propose an effective load balancing strategy over replica-
tion nodes based on linear programming. Second, we propose an effective chunk-based
scheduling algorithm for multi-threading parallelism on each node to guarantee all threads
have even workloads under a qualified cost model. Finally, we integrate our parallel scan
strategy into an open-sourced distributed data management system. Experimental eval-
uation shows our parallel scan strategy significantly improves the performance of scan
operation.

Keywords Parallel scan · Load balancing · Parallel scheduling · Distributed data
management system

This article belongs to the Topical Collection: Special Issue on Web and Big Data
Guest Editors: Junjie Yao, Bin Cui, Christian S. Jensen, and Zhe Zhao

� Huiqi Hu
hqhu@dase.ecnu.edu.cn

Extended author information available on the last page of the article.

World Wide Web (2019) 22:2561–2587

Published online: 13 August 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0625-7&domain=pdf
http://orcid.org/0000-0001-5220-3166
mailto: hqhu@dase.ecnu.edu.cn

1 Introduction

The backstage of all kinds of Web applications is the big data and the data management
system. With the explosion of Web applications, the data become large-scale and the data
management system is facing challenges. The distributed data management system can pro-
vide the storage service for the massive volumes of data. Catering to diverse Web services
for users, modern data management systems are in urgent need of supporting large-scale
analytic applications, which request data set by accessing gigabytes or terabytes of data
through SQL or SQL-Like interface. Technology supports those large amounts of expen-
sive processing capacity by keeping data within a parallel disk system consisting of tens to
hundreds of machines interconnected with high-speed interconnection networks. As many
components of the system contribute to the processing performance, the scan operation is
considered as the most fundamental and crucial one.

A scan operation accesses the data from their resident nodes and delivers them to the
target nodes. It has a wide spectrum of application scenarios in the distributed data manage-
ment system. For example, to shop online, a customer has to run a scan query which accesses
all related commodities among hundreds of millions of records. Enhancing parallelism of
the scan operation is a matter of primary importance and many data management systems
give the implementations such as Greenplum Database [26] and PostgreSQL 9.x [22]. The
big solution can be called partitioned parallelism. For a scan operation, it divides data into
several parts and separately scans them with different resources. In the distributed data man-
agement systems (e.g. Greenplum Database [26]), data are partitioned and processed on
different nodes in parallel. While for the non-distributed systems (e.g. PostgreSQL 9.x [22]),
a configurable number of threads are usually utilized to scan different parts of data (some-
times known as intra-scan parallelism [13]). Regardless of the partitioned parallelism on
distributed nodes or multi-threading method for one scan operation, its essence is simple for
a single scan operation: dividing data and scanning them in separate.

In this study, we devise and implement a parallel strategy for multiple scan operations
on the distributed data management systems. Instead of individually scheduling these scan
operations, we consider managing them as a batch. Obviously, for a query plan, we have the
possibility to execute several scan operations in parallel. For example, when joining over
multiple tables, it is required to pull remote data to build (more than one) hash tables simul-
taneously. As we consider multiple scan operations together, the previous parallel strategy
is no longer effective. Under the bad situations, if we allocate a fixed number of threads for
each scan operation, it may exhaust resources when processing a large number of scan oper-
ations concurrently. Thus the distributed database systems need a justified parallel strategy
to execute multiple scan operations. To enhance the performance, we further consider the
optimization of our proposed parallel strategy from two aspects:

Firstly, we consider parallelism between storage nodes. On this hand, we investigate how
to utilize replicated data to increase the parallelism. As the gold-standard method to provide
the high availability of the distributed data management systems, replications are usually
used to keep the system be in service when one node crashes [31]. Clearly, the scan operation
can benefit from the usage of replications. If multiple scan operations run on a single storage
node, they will consume too many resources such as CPU cycles, disk I/O and bandwidth of
memory bus. However, the distributed data management systems can avoid overloading one
specific node by assigning several scan operations to other replication nodes. Actually, we
recognize that the usage of replications can further increase the scan parallelism. For a single
scan operation, the performance can possibly be promoted by dividing the scan operations
into parts and run them separately in different replications. Following this perspective, it

World Wide Web (2019) 22:2561–25872562

requires one effective method to divide the scan operations and balance them on different
nodes.

Secondly, we consider multi-threading parallelism on each storage node. Scan tasks can
be further benefited from multi-threading parallel process. When fetching a number of scan
tasks, we have countless ways to schedule and process them on multiple threads. How-
ever, the computation resource is so precious that varies scheduling method yield different
expenses. Therefore, providing fine-grained multi-threading task scheduling(for the scan
operations) is required. Compared with task allocation on parallel nodes, the problem of
multi-threading scheduling is more challenging. As discussed in Section 4, we should con-
sider various issues including thread switching cost, load balance and parallel scalability in
the scheduling algorithm.

Following the above two thoughts, we propose a strategy which offers two kinds of par-
allel granularity in the present work. First, we consider using data replications to support
parallel scan. We run the scan operations on all replication nodes in parallel. The challenge
is how to allocate the appropriate number of scan tasks to different replication nodes with the
knowledge of data distribution. Therefore, an effective load balancing method is proposed
on the basis of linear programming. Second, we further investigate how to implement multi-
threading scheduling for scan tasks on each node. We devise a chunk based approach and
propose a cost model to analyze scheduling expenses. Since achieving an optimal schedul-
ing strategy is NP-hard [9], we propose an effective greedy algorithm to make each thread has
similarly even cost.

In summary, we have made the following contributions in this paper:

(1) We consider the parallel strategy to schedule batched scan operations together beyond
the simple partitioned parallelism. We further utilize replications to increase the paral-
lelism and propose an effective load balancing method based on linear programming.

(2) We propose an effective chunk-based scheduling algorithm for multi-threading paral-
lelism on each node which makes each working thread have the even expense under a
qualified cost model.

(3) We implement and integrate the proposed parallel scan strategy into an open-sourced
distributed data management system Oceanbase [21]. Experimental results show it
improves the overall performance of scan operations on TPC-H by up to 78.5% and
keeps the load balance of each node when being compared with the original system
which only owns the simple partitioned parallelism.

The remainder of this paper is organized as follows: we describe the framework that
implements our parallel strategy in Section 2. In Section 3, we present how to parallelize
scan operations on multiple replication nodes. Section 4 introduces the multi-threading
scheduling strategy on each node. We provide an experimental evaluation in Section 5. The
related work is described in Section 6. The Section 7 is the conclusion of this paper.

2 Overview

In this section, we provide a brief overview of the framework that supports our parallel
strategy. The architecture is illustrated in Figure 1, and we also list the notations (Table 1)
for the ease of understanding.

Data storage The storage is row-oriented and records are organized by the primary-key in
ascending order. The data take the horizontal partition for a basic unit. For example, each

World Wide Web (2019) 22:2561–2587 2563

Physical Plans

Query Execu�on

Execu�on
engine

t11 t21

t31 ……
SN1

Receivers Connec�on and Session
Management

SQL Parser and Rewriter(SQL, SQL-like)

Metadata
Manager

Op�mizer and Plan Generator(generate ①)

Executor Scan Distributor

(n
ew

)

Parallel scan
plan(②)

(n
ew

)

Scan Scheduler

t12 t22

……
SN2

(n
ew

)

Scan Scheduler

t13 t33

……
SN3

(n
ew

)

Scan Scheduler

t24 t34

……
SN4

(n
ew

)

Scan Scheduler

Parallel Disk System

Network

Network

Queries

{ }

Inner join(a=c)[1,3]

Inner join(a=b)[1,2]

Scan1 {[t1. 1,t1. 3000,]} Scan2 {[t2. 1,t2. 1500,]}

Scan3{[t3. 1,t3. 600,]}

{ }

Inner join(a=d)[1,3]

Inner join(b=c)[1,2]

(①) ini�al physical plan (②) physical plan with parallel scan

Sub_scan11 {[t1. 1,t1. 1000,]}

Sub_scan12 {[t1.1001,t1. 2000,]}

Sub_scan13 {[t1.2001,t1. 3000,]}

Sub_scan21 {[t2. 1,t2. 500,]}

Sub_scan22 {[t2.501,t2. 1000,]}

Sub_scan23 {[t2.1001,t2. 1500,]}

Sub_scan31{[t3 1,t3. 200,]}

Sub_scan32{[t3 201,t3. 400,]}
Sub_scan33{[t3 401,t3. 600,]}

Filters

Filters

Filters

Filters

Figure 1 Framework of parallel scan

data table can consist of one or more partitions. We denote a partition of one specific table
as a tablet t . The table is divided into multiple tablets based on the primary-key of the data.
Therefore, each tablet records the table’s data in a continues range of primary-key interval.
In each tablet, indexes (e.g. B+-tree [17], block index [17]) are constructed to support fast
data access. To this end, if a request aims to scan a sub-range of the tablet, it is not necessary
to probe the all tablets, instead, it directly retrieves the target data via the index with fewer
costs.

Tablets are residents on a cluster of storage nodes (servers) which are denoted by
{S1,S2, · · · Sm}, where Sj is a storage node and m is the total number of storage nodes.
A storage node can contain several tablets. Moreover, a tablet can have multiple replica-
tions which resident on different storage nodes. We use ti,j to represent a tablet ti which is
resident on a storage node Sj . All the replications of a tablet contain exactly the same con-
tent that there is no distinction for them to provide service. In this paper, we adopt identical
deployment of replications that all tablets have the same number k of replications. Using
the varying number of replications does not affect our method. For instance, Figure 1 illus-
trates four storage nodes {S1,S2,S3,S4} and three tablets {t1, t2, t3}, where each tablet has

World Wide Web (2019) 22:2561–25872564

three replications. S1 has three replications: t1,1, t2,1 and t3,1; S2 has two replications: t1,2
and t2,2; S3 has two replications: t1,3 and t3,3; S4 has two replications: t2,4 and t3,4. Three
replications of each tablet ti are stored on S1, S2, S3 and S4 respectively.

Scan operation Tablets are the basic units to perform a scan. When a query comes,
a query planner (optimizer) will generate its query execution plan. The requests of
scan operations which are allowed to probe tablets in parallel are extracted as a
set of requesting data contents within several tablets t, which is denoted as Qs =
{[t1.s, t1.e], [t2.s, t2.e], · · · , [tn.s, tn.e]}. Where Qs is a batch of scan operations offered
by the query execution plan, n is the number of requesting tablets, [ti .s, ti .e] is the range of
primary-key required by a specific scan operation on tablet ti . For example, as described in
Figure 1, When receiving a query, the plan generator will generate an execution plan with a
group of scan operations (Qs = {[t1.1, t1.3000], [t2.1, t2.1500], [t3.1, t3.600]}).
Framework Then, we describe our framework for the parallel scan operations. As illus-
trated in Figure 1, it contains two main modules:

(1) Scan Distributor. When a scan request Qs is sent to a scan distributor for
scheduling, the scan distributor will handle the scan request in two steps:
Firstly, it divides each scan operation of Qs into multiple sub-scan operations,
where its required range of primary key is further divided into smaller dis-
joint intervals. For instance, in Figure 1, the scan distributor decomposes the
three scan operations on t1, t2 and t3 into further nine parts, which is shown as
{[t1.1, t1.1000], [t1.1001, t1.2000], [t1.2001, t1.3000], [t2.1, t2.500], [t2.501, t2.1000],
[t2.1001, t2.1500], [t3.1, t3.200], [t3.201, t2.400], [t3.401, t3.600]}. Then, it assigns
all the sub-scan operations of Qs and delivers them into target storage nodes to
process them. All replications can be used in parallel to process these sub-scan
operations. For example, in Figure 1, scan operation [t1.1, t1.3000] is divided into
{[t1.1, t1.1000], [t1.1001, t1.2000], [t1.2001, t1.3000]}, each of them becomes a sub-
scan operation and is processed on different replications of t1 (i.e. t1,1, t1,2 and
t1,3) respectively. Formally, we call such sub-scan operations generated by the scan
distributor scan tasks.

(2) Scan Scheduler. There is a scan scheduler in each storage node. After receiving the
scan tasks (sub-scan operations)from the scan distributor, it is responsible for scan
scheduler to schedule and process them with multiple threads. The scan scheduler
controls a thread pool, where each thread works continuously to execute these scan
tasks. During the process of one scan task, it actually runs several operations in phys-
ical, including accessing target data from disk, processing the predict conditions and
data serialization. The scan scheduler manages these working threads and generates
different scheduling strategies for the scan tasks.

The two keys to our parallel strategy in the framework is how to design the scan distributor
and how to schedule the scan tasks with multiple threads on each storage node. Nextly, we
introduce our solutions in Sections 3 and 4 respectively.

3 Parallel between replicated nodes

A set of scan operations that belong to a query execution plan is managed by the scan
distributor. In this section, we discuss how the scan distributor generates scan tasks and
assigns them to storage nodes. Our main goal is to shorten the latency by parallelizing the

World Wide Web (2019) 22:2561–2587 2565

Table 1 Notations

ti A tablet

{S1,S2, · · · ,Sm} set of storage nodes, where Si is a storage node

that can keep multiple tablets.

ti,j a replication of tablet ti that residents on Sj .

Ci cost of scan tasks on Si

[ti .s, ti .e] a scan operation on ti from ti .s to ti .e.

wi weight of tablet ti .

xi,j portion of request that ti is assigned to node Sj .

n′ number of assigned scan tasks on a specific node

N number of working threads on each node

scan tasks. It is easy to achieve the goal by dividing a scan operation into several sub-scan
tasks and running them on different replications in parallel. The challenge here is to take the
load of each storage node into consideration and generate a justified allocation strategy for
each storage node. We briefly introduce the motivation in Section 3.1, and then we formally
describe the method in Sections 3.2 and 3.3.

3.1 Motivation of scan distributor

Considering the storage nodes {S1,S2, · · · ,Sm} that serve massive data. Our goal is to gen-
erate an efficient parallel scan strategy for a query execution plan with the minimum scan
time. Since all the storage nodes run scan tasks in parallel, the overall scanning time mainly
depends on the slowest storage node that performs the most tasks. Take Figure 1 as an
example, there are three replications for each tablet. Just as queryQs comes, if the scan dis-
tributor does not carefully consider load balance and simply divides each scan operation into
three equal-range (sub) scan tasks. After dividing scan operations, scan distributor will dis-
patch these scan tasks to the target storage node. These scan tasks will fall into four groups:
S1 has group1 = {[t1.1, t1.1000], [t2.1, t2.500], [t3.1, t3.200]}, S2 has group group2 =
{[t1.1001, t1.2000], [t2.501, t2.1000]},S3 has group group3 = {[t1.2001, t1.3000], [t3.201,
t3.400]} and S4 has group group4 = {[t2.1001, t2.1500], [t3.401, t3.600]}. Obviously,
snode1 is assigned to most tasks and spends the most time on executing tasks. The unbal-
anced distributed strategy can cause the wooden bucket effect, where the overall scanning
time mainly depends on the storage node with the highest overhead. If one node undertakes
overmuch tasks under the parallel environment, the overall scanning performance will be
limited to the slowest node.

Therefore, the motivation of designing scan distributor is to make scan tasks well-
distributed and each storage node has the similar quantity of workload. In particular, we
seek a strategy to minimize the workload of the node which has the highest load among all
the nodes.

3.2 Formulation of load balance

We first introduce how to split scan operations into scan tasks, and then address the problem
of how to minimize the workload of the storage node which performs the most scan tasks.
Figure 2 illustrates the process that is exampled in Figure 1.

World Wide Web (2019) 22:2561–25872566

scan x11

scan x21

scan x31

[t1.start, t1.end] [t2.start, t2.end] [t3.start, t3.end]

x11 x12 x13 x22 x24x21 x34x31 x33

scan x12

scan x22

scan x13

scan x33

t1 range t2 range t3 range

Spli�ng Scan Ranges

Finding Op�mal Alloca�on

scan x24

scan x34

spli�ng dispatching

t11 t21 t31 t21 t22 t13 t33 t24 t34

Figure 2 Process of scan requests

Splitting scan ranges First of all, we take weights to denote the workloads of these scan
operations since they have varies workloads (i.e, the volume data they requested are differ-
ent). The weight of the scan operation is denoted by wi , and its value ranges from 0 to 1.
In practice, we can estimate the row number (rni) of a scan operation based on its primary-
key or the statistics (see Section 3.3) and obtain the row size (rsi) of each tablet through the
table schema. Thus, the required size for the scan operation ti is rni · rsi . Besides, wi can
be set by normalizing all these computed sizes.

Next, recall that for each tablet ti , we have k replications distributed on m storage nodes.
Let {ti,j1 , · · · , ti,jt ti,jk

} denote those replications, where ti,jt (1 ≤ jt ≤ m) represents a
replication of ti is resident on storage node Sjt . Regarding a scan operation with a range of
[t1.s, t1.e], we can split it into k continuous sub-ranges, where a sub-range corresponds to a
scan task. Therefore, each sub range represents a portion of [ti .s, ti .e], which is denoted by
xi,j . Obviously, if tablet ti has no replication on node Sj , the storage node cannot contribute
to any scan tasks of [ti .s, ti .e], that is xi,j = 0. Otherwise, if the Sj has a replication of ti ,
we have 0 ≤ xi,j ≤ 1. Formally, we have:

m∑

j=1

xi,j = 1 w.r.t.

0 ≤ xi,j ≤ 1; if ti has a replication on Sj

xi,j = 0; if ti has no replication on Sj .
For example, in Figure 2, there are three replications for each tablet. To assign a scan

task to one replication, a scan operation is split into three sub-scan tasks. Therefore, the
[t1.s, t1.e] served as a scan range, should be transferred into three continuous sub-scan
tasks with own portions, including x1,1, x1,2 and x1,3. It indicates that scan operation for t1

World Wide Web (2019) 22:2561–2587 2567

is split into three sub-scan tasks(according to x11, x12 and x13), whose ranges constitute a
complete range of [t1.s, t1.e]. These sub-scan tasks for tablet t1 are assigned to node S1, S2
and S3. The other two scan operations can also be transferred into multiple scan tasks with
the same method.

Finding optimal allocation The next step is to compute the scanning cost of each storage
node. Based on the weight Wi of the scan operation and its assigned portions Xi,j , we
can specify the expected cost Cj of scan tasks that run on the storage node Sj , which is
calculated as:

Cj =
n∑

i=1

wi × xi,j.

For instance, the cost on S1 is C1 = w1x1,1 + w2x2,1 + w3x3,1. Since the purpose of our
strategy is to make the scanning cost of the highest overhead node as small as possible, we
should figure out a group of xi,j for m storage nodes to realize the goal that can be stated as
follows:

Minimize

(
Maxj (1≤j≤m) {Cj =

n∑
i=1

wixi,j}
)

, subject to

⎧
⎨

⎩
1 =

n∑
j=1

xi,j

0 ≤ xi,j ≤ 1

In fact, from above conditions, it is a variant form of linear programming problem [29]
to generate an optimal strategy by giving a set of xi,j , which can minimize the cost of the
highest overhead node. The problem can be solved through linear programming by assum-
ing that the highest cost of the storage nodes is Z and transforming the object into following
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z ≥ C1 =
m1∑
i=1

wixi,1

Z ≥ C2 =
m2∑
i=1

wixi,2

......

Z ≥ Cn =
mn∑
i=1

wixi,n

⎧
⎨

⎩
1 =

n∑
j=1

xi,j

0 ≤ xi,j ≤ 1

By solving the above equation through linear programming, we obtain the optimal
assignment, i.e. the portions of the scan tasks that belong to one scan operation should be
provided to support the procedure of the division.

Example 1 We take the Figure 3 as an example. Firstly, a set of scan requests(Qs =
{[t1.1, t1.3000], [t2.1, t2.1500], [t3.1, t3.600]}) are sent to the scan distributor to be pro-
cessed. Then, the scan distributor acquires the metadata about the scan tasks to generate
the computational scan cost(C1, C2, C3 and C4) on different storage nodes. Next step is
to take scan costs into a linear programming problem according to the given conditions.
Finally, LPSolver module provides the splitting portions which are used to generate scan
tasks(X11 : 0.2489, X12 : 0.3475, X13 : 0.4036, · · · , X34 : 0.4175).

World Wide Web (2019) 22:2561–25872568

t2

1

t11
SN1

t31

t22t12
SN2

t33t13
SN3

t34t24
SN4

C1 = 0.8x11 + 0.6x21
+ 0.4x31

C2 = 0.8x12 + 0.6x22

C3 = 0.8x13 + 0.4x33

C4 = 0.6x24 + 0.4x34

Scan [t1.1, t1.3000]

Scan [t2.1, t2.1500]

Scan [t3.1, t3.600]

Scan Distributor

x11 + x12 + x13 = 1
x21 + x22 + x24 = 1
x31 + x33 + x34 = 1

x11 0.2489
x12 0.3475
x13 0.4036
x21 0.2417
x22 0.2867
x24 0.4716
x31 0.2647
x33 0.3177
x34 0.4175

Metadata

Minimize
Max{C1 , C2 , C3 , C4}

W1 0.8
W2 0.6
W3 0.4

LPSolver

Condi�ons goal

Cost

Spli�ng Por�ons

Acquring
metadata

Formula�on

Solving

Figure 3 Example of generating optimal distribution

3.3 Generate scan tasks

Despite the optimal portions for the division, to generate scan tasks, another facing ques-
tion is how to transform the portion xi,j into a specific scan task. In particular, given a
scan operation [ti .s, ti .e], we divide the range into sub-ranges based on the computed
portions. However, the keys between start key and end key may be not always continu-
ous. i.e, some the keys are missing within the interval. For instance, if a scan operation
[t1.1, t1.1000] is divided into two equal parts according to the portions(0.5 and 0.5), the
range [t1.1, t1.500] may have only 10 rows of data and range [t1.501, t1.1000] may have
500 rows of data under a skew distribution of primary-keys. The question is how to divide
these scan operations according to the optimal portion as even as possible. We have two
strategies:

(1) Range Based Partition. In this setting, we do not use any meta information but simply
assume the keys which are uniformly distributed. Therefore, sub-ranges are computed
directly according to the portions. Formally, for each scan operation [ti .s, ti .e], a
replication on storage node Sj will receive a scan task with the corresponding sub
range.

⎡

⎣ti .s +
j−1∑

t=0

xi,t · (ti .e − ti .s), ti .s +
j∑

t=0

xi,t · (ti .e − ti .s)

⎤

⎦

(2) Histogram Based Partition. To get more concise partitions, we can use the his-
togram from database statistics. We employ the equal-depth histogram on the
primary-key of each tablet. We assume there are m buckets({b1, b2, · · · , bm}) in scan
range([ti .s, ti .e]) of tablet ti . Each bucket bi has a range([bi .s, bi .e]). Formally, the
range that Sj will receive is presented as follows:

[
b[(∑j−1

t=0 xi,t ·m)+1].s, b
(
∑j

t=0 xi,t ·m)
.e

]

Example 2 As described in Figure 4, the actual row number with range [t1.1001, t1.3000]
is 500. If scan distributor takes the range based partition strategy, it will generate three
scan tasks which are [t1.1001, t1.1800], [t1.1801, t12.2600] and [t1.2601, t1.3000]. Their
number of rows are 300, 200 and 100, which are not a good satisfaction of the given ratio

World Wide Web (2019) 22:2561–2587 2569

Range Based Par��on

Histogram Based Par��on

x11 0.4
x12 0.4
x13 0.2

Scan [t1.1001 t1.3000]

Scan x11 [t1.1001, t1.1800]

Scan x12 [t1.1801, t1.2600]

Scan x13 [t1.2601, t1.3000]

0

40
60
80

100

Sa
m

pl
e

He
ig

ht

20

0.4 0.4 0.2
Scan x11 [t1.1001, t1.1700]

Scan x12 [t1.1750, t1.2500]

Scan x13 [t1.2601, t1.3000]

Scan [t1.1001 t1.3000]

Equal-depth histogram
Rows:

200
Rows:

200
Rows:

100

Rows: 300

Rows:
100

Rows:
100

Strategy based on primary-key

Strategy based on histogram

Figure 4 Example of generating sub-scan tasks

2 : 2 : 1. However, the histogram based partition strategy takes a group of continuous buck-
ets to build a sub-scan range. Before building first scan range, we should get needed buckets
number by the calculation: bucket number × xi,j (5 × 0.2 = 1). Then, we select first two
buckets([b1.1001, b1.1500], [b2.1501, b2.1700]) and choose two boundary values(b1.1000
,b2.1700) to form the first sub scan range([t1.1001, t1.1700]) which has 200 rows data.
Based on this method, scan distributor can also generate other two scan tasks. The row
numbers of these three sub-scan tasks are satisfied with the given ratio 2 : 2 : 1.

4 Parallel task scheduling

Apart from considering the load balance between all storage nodes, the next question is
how to schedule these (sub) scan tasks on each storage node by leveraging multi-threading
processing. Nextly, we introduce the general architecture of scan scheduler in Section 4.1
and discuss two alternative strategies in Sections 4.2 and 4.3.

4.1 Scheduling framework

We consider that each storage node has a CPUwith many cores, which allows more than one
task to be tackled by different threads at the same time. Figure 5 explains the architecture
for task scheduling on each storage node.

Dynamic job scheduling is adopted in each storage node. Each scheduler owns a thread
pool which contains a fixed number of working threads. A working thread is responsible
for executing a specific scan task. A scan task is to pull data within an arbitrary range from
disk into the memory buffer. In the meanwhile, it also needs to process them with predicate
filters, make data serialization and then send them to the destination via the network. The
scan scheduler utilizes all those working threads in a round robin manner. Firstly, all the
scan tasks are registered into a task queue. Then, if a working thread becomes available (i.e.
once it accomplishes a scan task), it will claim another undo task from the queue. Based

World Wide Web (2019) 22:2561–25872570

Scan Scheduler

Taking a task
Waiting to

take a task

Waiting to

take a task

Waiting to

take a task

Inactive workers

Finishing a taskProcessing a taskProcessing a task

Active workers

Scan task1、Scan task2、Scan task2、

Task queue

Buffer

Destination

Figure 5 Execution of sub-scan tasks

on this job scheduling framework on one SN , we will subsequently discuss two issues that
affect the performance.

(1) Unbalance Workload. To process a group of scan tasks on one storage node. A naive
scheduling strategy is to assign one available working thread for one scan task. Clearly,
one scan task corresponds to one scan job. Apparently, it is an inefficient strategy for
the multi-core CPU to execute tasks without taking the workload of each thread into
consideration. As illustrated in Figure 6a, the CPU (4 threads) is not fully utilized
since the working threads which run the small scan jobs are always idle to wait for
other jobs to be done.

(2) Job Switching Costs. A method to solve the above problem is to further partition the
scan tasks into smaller scan jobs (by further splitting the range of primary key) and
keep the workloads balanced. However, switching scan jobs on a working thread will
generate additional cost (e.g., thread context switching [32], cache missing [25] or
disk addressing [7]). Besides, as the overall number of working thread is limited, over
fine-grained partition will involve a lot of switching overhead. Figure 6b shows a quite
elaborate scheduling as the workload over all working thread are assigned to be equal.
Task t6 is divided into four scan jobs, t5 is divided into three parts and t2 generate two
scan jobs. It ignores the expense of switching different tasks for one thread. In practice,
over fine-grained scheduling cannot achieve the smooth switch of different tasks in

�me

t1

t2

t4

t5

t6

t3

4

 3

2

1 t2

t
4

t5

t3

t2

t1

4

 3

2

1

t6

t4

t6

t6

t6

�me

t2

t
4

t5

t3

t2

t1

4

 3

2

1

t6

t4

t6

t6

t6

Expense of switching tasks

�me

Figure 6 Two specific schedules

World Wide Web (2019) 22:2561–2587 2571

t

5

t

3

t2
t

1

4

 3

2

1

t6
t

4

�me

1 2 3 4 5 6 7 8

p

2p

3p

4p

5p

6p

7p

8p

00

Linear
Polynomial#1
Polynomial#2

Number of threads

deepS

p is the speed that
processes one task
with one thread

Polynomial#2: Dividing the small scan tasks

Polynomial#3

Polynomial#3: Dividing the large scan tasks

Figure 7 Scalability of parallel scan

Figure 6c. The expense may outweigh the gain of executing tasks with reaching load
balance.

4.2 The sequential scheduling algorithm

Both the balance of workloads and the thread switching cost should be considered for
scheduling scan tasks. Then, we introduce and analyze the scheduling algorithms based on
the two aspects. As the strategy on all storage nodes are the same, for ease of presentation,
we denote n′ as the number of scan tasks allocated by the scan distributor on a node, and let
N be the total number of working thread. At first, We discuss a sequential algorithm.

Algorithmic description The sequential scheduled algorithm assigns each task with all
available working threads. It first sorts tasks according to the sizes of the tasks in descending
order and then processes them in sequence. Each task is divided into N parts, which consist
of N corresponding scan jobs. And each working thread is responsible for executing one
scan task. Figure 7a demonstrates an example, all scan tasks are executed sequentially with
all available working threads. Ideally, the workloads allocated on each working thread are
even. However, it cost numerous job switching expenses. For a working thread, it switches
scan task n′ − 1 times and the total number is N · (n′ − 1).

Parallel scalability Another important observation is that parallelism is over considered for
the sequential scheduling method. This is because the algorithm uses all threads to pro-
cess a task. However, the gain in practice is restricted to a limited number threads. As
depicted in Figure 7b, we test the scalability of processing scan tasks, and find the per-
formance gain is usually penalized by parallel resource [12] (such as memory bus and
the cache) and can not satisfy the linear growth condition.1 We wish to get N times
increase of speed by using N threads to execute the task in “linear ” curves. In practice,
the scalability may satisfy the polynomial growth (“polynomial#1”). Once it reaches the
highest point of performance, it will be stable with regardless of utilizing more work-
ing threads. In the worse case, the performance may even begin a little descent after
its peak(“polynomial#2” or “polynomial#3”). We also find the size of the scan task is

1Similar results are also tested in [15]

World Wide Web (2019) 22:2561–25872572

also a critical factor to affect the parallel scalability. For a smaller scan task (“polyno-
mial#2”), it is divided into further smaller parts, thus it reaches the maximum degree
of parallelism quickly by increasing the number of threads. For a relatively larger scan
task (“polynomial#3”), the increase of parallelism is slower than the process of the small
task(“polynomial#2”).

The above result suggests that we do not have to divide the task too small or use all
working thread to maximize the parallelism. Thus, we propose the chunk based algorithm
that caters to our experimental conclusion.

4.3 The chunk based algorithm

As mentioned above, over partitioned scan tasks result in abuse of CPU
resources. Therefore, we should also consider load balance and job switching
costs for scheduling to save CPU resources. Nextly, we propose the chunk based
algorithm.

Design chunks Each scan task is firstly divided into several parts which we call chunks,
and we utilize the chunk as the basic unit for scheduling. It is worth nothing that the size
of the chunk is important and it cannot be too small. We design a lower bound for the
size of the chunk, where the partitioned number of chunks cannot affect the linear paral-
lel scalability. This means, for a scan task, we can divide it into M or M + 1 chunks. And
M is the exact boundary that if M chunks are scanned in parallel, we can get an approx-
imate linear promotion with respect to the non-parallel execution, and if M + 1 chunks
are scanned in parallel, approximate linear promotion cannot be achieved. In practice, the
size of the chunk is obtained from the experiment. We have also tested different size of the
chunk in the experiment under the restrictions of the above lower bound. In summary, the
chunk is designed that we can maximize the performance without the possibility of wasting
computing resources when they are scanned in parallel.

Cost model Then, we give a cost model to analyze a specific scheduling based on chunks.
Given a chunk size, each scan task is divided into different numbers of chunks according
to their workload. We utilize the chunk as the basic unit for scheduling. Formally, let φi be
the set of chunks which belong to the scan task i. φ1, φ2, · · ·φn′ (recall n′ is the number
of scan tasks) are scheduled on N working threads and each thread will run some chunks
picked from them. We denote Tj = {cj

1, c
j
2, · · · cj |Tj |} (cj

i ∈ φ1 ∪ φ2 ∪ · · ·φn′) be
the set of chunks scheduled on thread j , where |Tj | is the number of chunks scanned by
thread j .

At first, we consider the cost of scanning chunks. Since all the chunks have similar size
and the scan tasks are analogous (i.e. scan data from disk and filter data with predicate), we
assume they have the same cost Costc to scan a chunk. Therefore, the cost of scanning all
the chunks for a working thread j will be |Tj | · Costc.

Next, we consider the costs of job switch. Notice that for Tj = {cj
1, c

j
2, · · · cj |Tj |}, if

several chunks are generated from the same scan task, we can put them together to constitute
a scan task without switching costs. Only chunks from different scan tasks cost expense. To
this end, the switching cost is Diff (Tj) · Costs , where Diff (Tj) is the different number
of scan tasks executed on thread j (i.e. the number of consisted scan jobs on thread j) and
Costs is the constant cost unit to switch two scan jobs.

World Wide Web (2019) 22:2561–2587 2573

Combine both the above two costs, we can compute the overall cost. Let Cost[Tj] be the
cost on thread j , which can be computed as follows:

Cost[Tj] = |Tj | · Costc + Diff (Tj) · Costs w.r.t.

Tj = {cj
1, · · · , cj

i , · · · cj |Tj |}
cj

i ∈ φ1 ∪ φ2 ∪ · · ·φn′ .

Since the goal of scheduling strategy is to make the costs even on all threads, which
means to minimize the expense of the thread that has maximum cost, i.e.

Minimize Maxj (1≤j≤N) Cost[Tj].
To find the optimal answer for T1, · · · , TN , the problem can be reduced to parallel task

scheduling, which has been proven to be NP-hard [9]. Subsequently, we propose a greedy
solution.

Algorithm 1 The greedy scheduled algorithm

Input: sorted chunks for scan tasks: 1 , w.r.t.

1 2

Output: scan jobs for threads 1 ;

// Step1. Init 1

1 for 0 1 do

2 = mod ;

// assign all chunks of to Thread
3 ;

// Step2. Adjust 1

4 while true do
5 1 2 (1);

6 1 2 (1);

7 if then

8 try move a chunk from to ;

9 else

10 break ;

11 for each thread do

12 make the chunks from the same scan task into a scan job;

13 execute scan jobs;

A greedy algorithm The scheduling algorithm is to make each working thread has the
average cost. Algorithm 1 shows the pseudo-code. Each thread has a task queue and the
algorithm is to make scan jobs for all the threads. It has two main steps. It firstly sorts all
the tasks according to their number of chunks in descending order (Input of Algorithm 1).
Next, it iteratively selects the chunks from the same scan task into the task queue of a thread
(line 1 to 3). In each iteration, it selects the scan task with the maximum number of chunks
which has not been put into a task queue yet. And the queues are utilized in turns, for the
next iteration, the chunks of another scan task will be put into the next queue. The first step
completes if the chunks of all the scan tasks are pushed into the queue. To further make the
costs of all threads even, we make adjustment in a second step (line 5 to 10). The greedy
strategy is once again used. In each round of adjustment, we select a pair of task queues with

World Wide Web (2019) 22:2561–25872574

Expense of switching tasks

4

 3

2

1 t6

 greedy scheduled algorithm
Step 1

t2

t5

t4 t3

t1

4

 3

2

1

Step2
greedy scheduled algorithm

t5

t4 t3

t1Move a chunk task from thread1 to
thread4

t5

t2

t6 t6 t6

t2

t6 t6 t6

t6

t5

t2 t2 t2

t6

�me �me

Figure 8 Scheduling algorithm

largest and smallest costs (line 5 to 6), and move a chunk from the most expensive queue to
the least expensive (line 8). The adjustment ends up when no such pair can be found that the
time costs of the two queues can be further reduced through one chunk shift (line 7). After
adjusting the workload of each working thread, each working thread makes the chunks from
the same scan task of the queue into a scan job and execute the jobs sequentially(line 11 to
13).

Figure 8 illustrates the example of the greedy algorithm. Firstly, the scan tasks are taken
into the task queue of each thread according to the number of chunks in descending order.
Then, we obverse that T1 has the most number of chunks (4) and T4 has the least number
of chunks (2). By considering moving a chunk of t6 from T1 to T4, the maximum costs of
T1, T2, T3T4 can be reduced, thus the chunk of t6 is moved to T4 to make a scan job.

5 Evaluation

In this section, we evaluate the proposed load balance strategy and scheduling algorithms in
an open-sourced distributed data management system.

5.1 Experimental setup

System and hardware We have implemented our parallel scan strategy into an open-
sourced database Oceanbase[21], which is a well-known distributed relational database
developed by Alibaba. It has two layers: a query processing layer and a storage layer. In
the storage layer, tablets (partitioned by primary-key) are kept in storage severs named
chunk-servers. Queries are processed on the querying processing servers named query-
server. query-servers send scan operations to scan data from chunk-servers. The system has
implemented a parallel execution strategy which should be classified as partitioned par-
allelism [24]. It allows one scan operation to scan tablets(partitions) of the scanned table
in parallel without regard of tablets’ locations. For one scan operation, there may be some
parts of (sub)scan tasks to be executed in parallel on the same chunk-server, and other parts
may be executed in parallel on different chunk-servers at the same time. For short, we also
denote chunk-servers by SN (storage node) in this section. We have implemented the scan
distributor and scan scheduler with multi-threading parallelism on the query-servers and
chunk-servers respectively.

World Wide Web (2019) 22:2561–2587 2575

Table 2 Scan operations of TPC-H

TPC-H [1] TPC-H [3] TPC-H [5] TPC-H [6] TPC-H [10] TPC-H [14]

Scanned table Scanned table Scanned table Scanned table Scanned table Scanned table

– orders orders – orders

Lineitem lineitem lineitem lineitem lineitem lineitem

– customer customer – customer –

– – supplier – – –

– – nation – nation –

– – region – – –

– – – – – part

All the experiments are conducted on a cluster of four physical machines, where each
is equipped with an Intel(R) Xeon(R) CPU (E5-2620 0 @ 2.00GHz , with totally 24 cores,
160GB RAM and 1TB HDD while running an OS of Red Hat with version 4.4.7-4. Each
node deploys a chunk-server and a query-server and servers are connected via 1Gb Ethernet.

Workload We choose six queries from the TPC-H benchmark2 as our workload: TPC-H
[1], TPC-H [3], TPC-H [5], TPC-H [6], TPC-H [10] and TPC-H [14]. For these six queries,
all tables related with TPC-H are included. The related tables for these six queries are shown
in Table 2. Predicate conditions for the queries are involved with non-PK columns. Thus,
the scan operations require scanning all the tablets of the tables under without utilizing any
other indexes on non-primary columns. There are eight tables in TPC-H. Considering the
sizes of lineitem, orders and customer are significantly larger than the sizes of other tables
(which are very small tables), we choose the Q − 3 which involves these three tables to
precisely evaluate the effectiveness of our methods.

TPC-H allows setting the size of tables by choosing different parameters of SF and
we choose SF -1 as the default size. Table 3 shows the default data distribution which is
formed by the default load balancing mechanism in Oceanbase [21]. Considering the sizes
of other tables(except for lineitem,orders and customer) are too small(dozens or hundreds
of rows), we do not take any additional parallel strategies to scan them. The system also
takes the default storage of three replications for each tablet. The three-replications strategy
is adopted by many distributed data management system such as BigTable [5] HBase [1].
Table lineitem is large, thus it has three tablets (maximum 256MB for one tablet), and
others have only one tablet . We utilize the default SF and distribution when no otherwise
specification is introduced.

5.2 Experimental results

5.2.1 Parallel between replicated nodes

We first demonstrate the effectiveness of our parallel strategy for multi-replications with
Q-3, which scans three tables(lineitem, orders and customer). We compare three different
strategies: (1) a parallel between tablets (PT). It is the simplest parallel strategy enabled

2http://www.tpc.org/tpch/default.asp

World Wide Web (2019) 22:2561–25872576

http://www.tpc.org/tpch/default.asp

Table 3 Default distribution of data

SN1 SN2 SN3 SN4

Lineitem-1,2,3 – lineitem-1,2,3 lineitem-1,2,3

Orders orders orders –

Customer – customer customer

by Oceanbase (mentioned above) where the naive non-replication parallelism is considered
and (2) a simple parallel between replications (PR), which simply divides each tablet’s scan
range uniformly and executes these scan tasks on replications between chunk-servers (3)
our parallel strategy that is proposed for multi-replications in Section 3 (MRP). To divide the
scan tasks precisely, we leverage the statistics with the histogram based partition. When run
the three strategies, we utilize the same scheduling algorithm on each storage node, which
runs a task on one thread until all tasks are completed.

Scan time We compare PT, PR and MRP by reporting the average time cost of scanning
the three tables. Results are shown in Figure 9a. It is worth nothing that all three tables are
scanned in parallel, thus the performance of scan mainly depends on the largest spent time.
We can seeMRP achieves the best performance. To scan table lineitem, orders and customer,
PT costs 4.62, 0.81, 0.12 seconds respectively. PR overperforms PT by taking 1.15, 0.47
and 0.07 seconds. The time costs of PR on all the three tables are smaller than PT. This
is because PR takes advantages of replications on different storage nodes, therefore more
nodes (four machines) take part in data scanning while only half number of the machines
are utilized for PT.MRP further decreases the time of scanning lineitem (0.81 seconds) with
a bit of time growth on orders (0.52 seconds) and customer (0.13 seconds).This results from
the effect of load balance between parallel nodes. Clearly, decreasing the longest scan time
means the improvement of the entire scan operations. From another perspective, MRP also
runs with the minimum overall time costs (0.81 + 0.52 + 0.13), this is because balanced
parallel strategy can make the best usage of replications with the consideration of load
balance, which can also be revealed by the CPU costs shown in Figure 9b.

CPU cost and system load We show the CPU costs and the exact system load (volume
of scanned data) for PT, PR and MRP on the four storage nodes in Figure 9b and c under
SF = 1. PT makes a majority of CPU’s utilization(49%) on the storage node SN3. When
processingQ−3, it randomly selects SN3 to run the task of scanning lineitem. As the largest
table, scanning lineitem exhibits more system loads and consumes more system resources.

4.62

0.81

0.12

1.15

0.47

0.07

0.81

0.52

0.13

0

1

2

3

4

5

scan customerscan orders

)
s

d
n

o
c

e
s

(
e

mit
n

a
c

S

 PT

 PR

 MRP

scan lineitem

23

36

27

19

9

23

49

37

28

18

25

30

0

10

20

30

40

50

MRPPR

)
%

(
n

oit
a

zilit
u

s'
U

P
C

 SN_1 SN_2

 SN_3 SN_4

PT

200

302

240

163

54

191

480

302

240

80

248 240

0

100

200

300

400

500

)
B

M
(

at
a

d
d

e
n

n
a

c
s f

o
e

m
ul

o
V

 SN_1 SN_2

 SN_3 SN_4

MRPPRPT

Figure 9 Results of scan time, CPU utilization and system load under SF − 1

World Wide Web (2019) 22:2561–2587 2577

For PR, we find that the CPU utilization and system loads on different SNs are still unbal-
anced. It is because that system loads are totally dependent on the distribution of data under
PR. Since it dispatches (sub) scan tasks uniformly without load balancing strategy, PR
divides the task of scan orders into equal three parts and dispatches them to three replica-
tions under the default distribution. To this end, SN2 may only have only 1/3 of the tasks for
scanning orders and take it for the grant that it should have the least CPU’s utilization(9%)
and volume of scanned data(54MB) on SN2. When taking our load balancing strategy into
consideration, MRP can make each storage node has the similar system load. Since there is
only one task on SN2,MRPmay reject to divide the tasks of scanning orders and to dispatch
them to other SNs under default distribution. From this perspective,MRP runs more similar
volumes of scanned data(240MB,191MB,240MB and 240MB) on each chunk-server and
also has close values of CPUs’ utilizations on different SNs(27%,23%,28% and 30%).

Data size Next we vary the data size by doubling it to SF = 2 and test the scan time,
CPU cost and system load. Results are shown in Figure 10. We can get the same experi-
mental conclusion with SF = 1. Both of the time costs and system loads are doubled as the
data size has been doubled. This is because that the SF = 2 data size does not change the
distribution of data and only doubles the volume of scanned data. Under the same distribu-
tion, MRP may assign the similar number of scan tasks to each SN . To process the double
size of data, scan tasks need to scan double volume of data and have double scan time as
multi-threading is not utilized on each node.

Data distribution From the perspective of storage, we change the data(tablets) distribu-
tion to verify that our load balancing strategy can work under differenet data distributions.
Next we try to adjust the data distribution by two ways: (1) We vary the number of storage
nodes from 4 machines to 7 machines without running the storage balancing strategy. (2)
We directly generate three new data distributions(shown in Table 4). Compared with default
data distribution, each table may have 4 different distributions among the 4 machines and
the three tables can have 64 different distributions. Thus, we only change the distribution
of one table at each time and generate three new distributions. The first data distribution in
Table 4 only modifies the distribution of lineitem. The second and third data distributions
change the distribution of orders and customer separately. Results are shown in Figure 11.
We obverse that the scan time of task does not change obviously with the change of SNs’
number in Figure 11a. This is because Oceanbase does not run the storage balancing strat-
egy automatically. If we just add new SNs without adjust the number of replications or data
distribution, the execution strategy of scan tasks will not be adjusted. Under same data dis-
tribution and execution strategy, scan tasks will not be dispatched to the new machines and

9.61

1.96

0.22

2.71

0.56

0.07

1.97

0.69

0.13

0

2

4

6

8

10

)
s

d
n

o
c

e
s

(
e

mit
n

a
c

S

 PT

 PR

 MRP

scan customerscan ordersscan lineitem

41

52

42
39

14

37

76

51

41

30

44

52

0

10

20

30

40

50

60

70

80

)
%

(
n

oit
a

zilit
u

s'
U

P
C

 SN_1 SN_2

 SN_3 SN_4

MRPPRPT

420

627

512

380

109

374

810

627

512

300

528
512

0

100

200

300

400

500

600

700

800

900

)
B

M
(

at
a

d
d

e
n

n
a

c
s f

o
e

m
ul

o
V

 SN_1 SN_2

 SN_3 SN_4

MRPPRPT

Figure 10 Results with SF − 2

World Wide Web (2019) 22:2561–25872578

Table 4 Compared data distribution

SN1 SN2 SN3 SN4

Lineitem-1,2,3 lineitem-1,2,3 lineitem-1,2,3 –

Orders orders orders –

Customer – customer customer

Lineitem-1,2,3 – lineitem-1,2,3 lineitem-1,2,3

– orders orders orders

Customer – customer customer

Lineitem-1,2,3 – lineitem-1,2,3 lineitem-1,2,3

Orders orders orders –

Customer customer customer –

the scan time will not change. When choosing the first adding data distribution (shown in
Table 4), we find the CPU’s utilization of each SN is still similar in Figure 11b. The max-
imum utilization is 49% and minimum utilization is 42%. It means that the load balance
in MRP still has worked effectively with the change of related table distribution. Under the
second and third data distributions in Table 4, the description of CPU’s utilization for each
SN has a similar look when compared with the default data distribution and each node has
similar CPU’s utilization. This means that the changes of data distribution do not have an
impact on our load balancing strategy between replication nodes.

5.2.2 Parallel task scheduling

To evaluate the effectiveness of parallel task scheduling, we design the experiments from
two aspects: thread-level scalability and processing capacity under different data sizes. In
this experimental group, we take two different parallel task scheduling strategies to be
compared with the greedy scheduling strategy(mentioned in Section 4): (i) the sequential
scheduling strategy that we discussed in Section 4; (ii) a random scheduling strategy, it
divides tasks into same chunks and then randomly assigns those chunks to different working
threads. Considering the random scheduling and the greedy scheduling algorithm are both
based on chunk tasks, we first try to give a preferable chunk size to support the evaluation
of different parallel task scheduling strategies.

Chunk size We first vary the chunk size from 2MB to 8MB for the random scheduling
strategy and the greedy scheduling strategy. In order to get a more credible conclusion, we
use fifty clients to run the Q−3 to evaluate the two strategies from the perspective of CPU’s
utilization and time cost. In the Figure 12a, the CPU’s utilization is the average of each
SN ’s value. We obverse that the CPU’s utilization drops with the increase of chunk size. It’s
obvious that the bigger chunk size may cause less switching costs for the two scheduling
strategies. The CPU’s utilization of random scheduling strategy is significantly higher than
the CPU’s utilization of greedy scheduling strategy, especially for the smaller chunk size.
When the chunk size is 2MB, the CPU’s utilization of random scheduling strategy is 63%
and the CPU’s utilization of greedy scheduling strategy is 46%. However, under the 8MB
chunk size, the random scheduling strategy and greedy scheduling strategy are similar(38%

World Wide Web (2019) 22:2561–2587 2579

SN-4 SN-5 SN-6 SN-7

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
1.97

1.93
1.98

1.92

0.69 0.7
0.66 0.67

0 13 0.15 0.14 0.14

)
s

d
n

o
c

e
s

(
e

mit
n

a
c

S

 scan lineitem

 scan orders

 scan customer

42

48

44

49

37

44 43 4241

49 48 48

52

42

47

43

Default D
istrib

utio
n

New Distrib
utio

n(1)

New Distrib
utio

n(2)

New Distrib
utio

n(3)

0

10

20

30

40

50

60

)
%

(
n

oit
a

zilit
u

s'
U

P
C

 SN_1 SN_2

 SN_3 SN_4

Figure 11 Results for data distributions under SF − 2

: 37%). It is because that the greedy scheduling strategy can still make the scan jobs of
one working thread as continuous as possible and random scheduling strategy may lead to
a group of unordered scan jobs for one working thread. Therefore, the high switching cost
of random scheduling strategy consumes more CPU resources. The results in Figure 12b
explain that chunk size has an impact on scan time. We find that random scheduling strategy
has the least scan time(1.17 seconds) under the 6MB chunk size. It is because that the
smaller chunk size may cause higher switching costs(such as 2.01 seconds for 2MB) and
larger chunk size may lead to the uneven allocation for each working thread(such as 1.22
seconds for 8MB). The greedy scheduling has the least scan time(0.76) under 4MB chunk
size. The reason for why 2MB,6MB and 8MB are not superior to 4MB is similar with
the analysis of random scheduling strategy. Bigger size causes the uneven scheduling for
each working thread and fine-grained chunk size causes higher switching costs. In order to
shorten the scan time, we choose the 6MB chunk size for the random scheduling strategy
and the 4MB chunk size for the greedy scheduling strategy.

Thread-level scalability Next, we compare the three scheduling strategies by varying the
number of working threads. Results are shown in Figure 13a and b. We have following
observations: (1) increasing number of threads can improve the scan performance of ran-
dom scheduling, sequential scheduling and greedy scheduling. However, these strategies
show different thread-level scalabilities. (2) Compared with other strategies, the random
scheduling strategy costs the most scan time and consumes the most CPU resources. In
Figure 13a, when utilizing six working threads, the random scheduling strategy costs 1.61
seconds. However, the time cost of random scheduling strategy only reduces 0.04 sec-
onds(1.57 records) by allocating more threads(8 working threads). It is obvious that the
random scheduling cannot get the further promotion even more working threads are allo-
cated. It is because that the random scheduling strategy generates several unordered chunk
tasks and causes too many switching costs. (3) sequential scheduling strategy gets a bet-
ter scanning performance than random scheduling strategy. This is because the sequential
scheduling strategy has fewer costs of switching context than random scheduling strategy.
However, the speedup also decreases sharply with the increase of working threads and the
CPU’s utilization is also higher than the greedy scheduling strategy since the sequential
scheduling strategy is also restricted to the CPU’s multi-threading scalability(mentioned
in Section 4). (4) greedy scheduling definitely has the best multi-threading scalability

World Wide Web (2019) 22:2561–25872580

63

55

41

38

46

41 40

37

2M 4M 6M 8M

0

10

20

30

40

50

60

70
)

%
(

n
oit

a
zilit

U
s'

U
P

C

 random scheduling

 greedy scheduling
2.01

1.51

1.17
1.22

0.91

0.76
0.85

0.98

2MB 4MB 6MB 8MB

0.0

0.5

1.0

1.5

2.0

)
s

d
n

o
c

e
s

(
e

mit
n

a
c

S

A

 random scheduling

 greedy scheduling

Figure 12 Results for chunk size

and CPU’s utilization when being compared with other two strategies. It is because that
the greedy scheduling strategy considers reducing switching costs and making job bal-
anced at the same time. These experiments verify that the greedy scheduling strategy can
achieve the better thread-level scalability from the perspectives of time cost and CPU’s
utilization.

Data size In Figure 13c and d, we increase the data size from SF = 1 to SF = 8.
Figure 13c illustrates that the growth of scan time increases with the growth of data size.
The Figure 13d shows that CPU’s utilization on one SN is also dependent on volumes of
data. We can find that the scan time has an approximately linear relation with the value of
SF .

5.2.3 Overall performance

Based on above results, we combine the proposed strategies of MRP and greedy scheduling
strategy to build our parallel scan mechanism(PSM). Then, we run the six queries of TPC-H
to test the overall performance.

Performance improvement To demonstrate the benefit of PSM, we design three compar-
isons: (1) Method-1: a non-parallel execution which removes the original parallel strategy
from the original system, (2) Method-2: an original parallel execution which only keeps
partitioned parallelism and (3) Method-3: an enhanced parallel execution which takes the
greedy tasks scheduling strategy to optimize the execution of multiple scan tasks on the
same SN . We run the six queries with fifty clients concurrently and statistics the aver-
age time of each query’s scan operations from start to end. In Figure 14a, results show
PSM is superior to the three comparisons. For instance, Q − 3 with method-1 takes 15.4
seconds to finish scan tasks and Q − 3 with method-2 only takes 6.85 seconds to have
done with all tasks. The other queries(Q − 1,Q − 5,Q − 6,Q − 10 and Q − 14) which
take method-2 are also superior to the queries which take method-1. It proves that that
tablet parallelism can improve the scanning performance. Further, considering taking the
greedy scheduling strategy(method-3) can significantly reduce the total scan time, e.g. the
scan time of Q − 3 drops from 6.58 seconds to 2.12 seconds when taking the greedy
scheduling strategy. Due to obtain the higher parallelism from multi-core CPU, the

World Wide Web (2019) 22:2561–2587 2581

2 threads 4 threads 6 threads 8 threads

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
2.55

1.99

1.61
1.57

2.41

1.77

1.45

1.36

2.25

1.54

1.16

0.98

)
s

d
n

o
c

e
s

(
e

mit
n

a
c

s l
at

o
T

 random scheduling

 sequential scheduling

 greedy scheduling

2 threads 4 threads 6 threads 8 threads

30

40

50

60

70

80

39

55

67

74

37

48

60

67

30

41

52

60

)
%

(
n

oit
a

zilit
u

s'
U

P
C

 random scheduling

 sequential scheduling

 greedy scheduling

0.81

1.92

4.11

7.79

0.13
0.36

0.91

2.24

0.04 0.09
0.21

0.47

SF-1 SF-2 SF-4 SF-8

0

1

2

3

4

5

6

7

8

)
s

d
n

o
c

e
s

(
e

mit
n

a
c

S

 scan lineitem

 scan orders

 scan customer

41

52

64

77

SF-1 SF-2 SF-4 SF-8

0

10

20

30

40

50

60

70

80

)
%

(
n

oit
a

zilit
U

s'
U

P
C

Figure 13 Results for scheduling tasks on storage node

greedy scheduling strategy can also accelerate the scan time of other queries. Com-
bining the load balancing strategy, the PSM can help the scan time of Q − 3 ulte-
riorly drop to 1.47 seconds. Owing to allocate balancing workload for each SN ,
the bucket effect is eliminated and other queries can also improve the scanning per-
formance.The results demonstrate that the strategies that we proposed in Sections 3
and 4 have worked and the combination can have further improvement of scan
operations.

Varying data size Figure 14b runs PSM under different data sizes to seek the correlation
between scan time and volumes of scanned data. We obverse that the total scan time of
Q − 1 based on SF − 1 is 1.03 seconds. However, Q − 1 based on SF − 2, SF − 4 and
SF − 8 are 2.74 seconds, 4.49 seconds and 7.89 seconds respectively. Through analyzing
Q − 3, Q − 5 and etc, we find that the total scan time of each query has an approximately
linear relation with value of SF . It is easy to understand that more size of data lead to more
volume of scanned data for each (sub)scan tasks and need more scan time to complete each
queries’ scan tasks. It definitely verifies that data size is a critical factor for scan time.

Replication-level scalability In Figure 14c, we verify the replication-level scalability of
PSM under the different number of replications for each tablet. We take the scan time
from scan beginning to the scan end to represent the scanning performance. Results show

World Wide Web (2019) 22:2561–25872582

10.07

5.31

1.41
1.03

15.4

6.85

2.12
1.47

19.9

7.81

3.23
2.68

9.92

5.26

1.35 1.09

17.1

7.23

3.03
2.21

12.22

6.19

2.34
1.83

Method-1 Method-2 Method-3 PSM

0

5

10

15

20
)

s
d

n
o

c
e

s
(

e
mit

n
a

c
S

 TPC-H[1] TPC-H[3]

 TPC-H[5] TPC-H[6]

 TPC-H[10] TPC-H[14]

1.03

2.74

4.49

7.89

1.47

4.02

7.21

10.87

2.68

6.17

12.35

18.44

1.09

3.01

4.41

7.78

2.21

6.09

11.13

16.78

1.83

4.97

8.22

11.56

SF-1 SF-2 SF-4 SF-8

0

2

4

6

8

10

12

14

16

18

20

)
s

d
n

o
c

e
s

(
e

mit
n

a
c

S

 TPC-H[1] TPC-H[3]

 TPC-H[5] TPC-H[6]

 TPC-H[10] TPC-H[14]

1.03

0.86
0.75

0.56

1.47

1.22

1.03

0.86

2.68

2.23

1.98

1.51

1.09

0.89

0.74

0.62

2.21

1.97

1.65

1.34

1.83

1.52

1.26

0.99

Replications-3 Replications-4 Replications-5 Replications-6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

)
s

d
n

o
c

e
s

(
e

mit
n

a
c

S

 TPC-H[1] TPC-H[3]

 TPC-H[5] TPC-H[6]

 TPC-H[10] TPC-H[14]

Figure 14 Results for overall performance

that the total scan time of each query drops gradually with the increase of the number
of replications. When taking three-replications strategy, the total scan time of Q − 6 is
1.09 seconds. As more replications are taken, the scan time of Q − 6 only have 0.89
seconds (4 replications), 0.74 seconds(5 replications) and even 0.62 seconds (6 replica-
tions). Q − 1-Q − 14 also can reduce their total scan time when increasing the number
of replications. The scan time can achieve a approximately linear decrease by adding
the number of replications. The reason is that PSM needs to divide tasks according to

World Wide Web (2019) 22:2561–2587 2583

the number of replications (mentioned in Section 3). Clearly, owning more replications
means that each scan tasks can be divided into more number of parts (smaller range of
primary key) and each part of the scan task can run on more different replications inde-
pendently to reduce the scan time. It means that PSM can achieve the replication-level
scalability.

6 Related work

Scan parallelism Parallel scan has been a primary design point since the very begin-
ning of database systems [8, 28]. The primary problem is the degree of parallelism.
Based on a given threshold of parallelism, traditional database systems make it a hard-
coded configure in the systems (e.g. IBM DB2 [13], ORACLE [23] and Miscrosoft SQL
Server [20]). Over the past decades, with the development of replica technology, more
and more presently-available distributed DBMSs [30] rely on the partition mechanism to
achieve partition parallelism [24]. However, there is still a strong possibility that some
partitions of one scanned table are accessed on same node. The choice that involved in
replicating partitions brings us an opportunity to speed up parallel applications [2]. There
are several efforts [10, 11] on how to utilize replications to improve query performance,
but they only consider how to speed up concurrent queries by retrieving data from dif-
ferent replications at the same time under a uniform data distribution. In this paper, we
put forward a new replication parallel strategy to accelerate one or several scan oper-
ations from one query under arbitrary distributions. Our parallel strategy enables us to
divide a specific scan operation into multiple pieces and run them separately on different
replications.

Load balancing Load balancing is a prerequisite for effectively utilizing parallel resources
to improve system performance in parallel database systems [3]. A serious problem is
to access skewed data distributions which may lead to bucket effects of overall perfor-
mance [33], and a series of solutions have been proposed to solve this problem. However,
what we usually need to solve is that the workload of scan tasks are skewed in distributed
database system when processing queries. This is because that different scan tasks that
are involved in different volumes of scanned data. The balancing goal of task allocation
is to guarantee that each node has a similar number of tasks in distributed database sys-
tems [16]. In this paper, we find that the workload of full-table scan task is associated
with the rows and schema of the scanned table. A complex schema and large number of
rows mean that more workload for a scan task. Thus, we introduce the weight to describe
the workload of scanned table. Through linear programming, we give the optimal tasks
division and allocation strategy on the workload-level. Moreover, we employ equal-depth
histogram to analyze the workloads of scan tasks. Most of current RDMSs maintain a
set of equal-depth histograms for estimating the selectives of given queries [19], but they
ignore the benefit of using equal-depth histogram to assign accurate workloads to scan
tasks.

Parallel scheduling The authors of [6, 14, 27] study scheduling for parallel task execu-
tion. M.S. Chen et al [6] suggest that parallel working threads should be allocated to tasks
according the scalability of speed-up curve. This strategy wants to provide enough parallel
threads for helping coming tasks obtain their best speed-up ratio to achieve the best overall

World Wide Web (2019) 22:2561–25872584

performance when processing a dynamic task set. To process a given set of static tasks con-
currently, there are also several efforts [14, 27] that has been proposed on how to share par-
allel working threads with tasks in the multi-threading process framework. The main target
in [14] is to try to optimize the execution of query-level tasks in the multi-threading process
framework. Meanwhile, the finer-work, that considers how to schedule scan tasks of queries
in multi-threading process framework, is proposed in [27] and takes many factors(e.g. cache
thrashing [18] and context switching [32]) into consideration. In this paper, we also consider
how to schedule scan tasks in multi-threading process framework, but we focus on how to
improve the parallel multi-threading scalability and obverse the size of tasks is also a criti-
cal factor which has relation with cache and context. We try to find a suitable size that can
minimize the cost of the system and achieve approximate linear improvement of scan per-
formance by allocating more threads. The dynamic load balancing strategies in [3, 4] for
parallel scheduling are also taken into our paper to keep working threads having balanced
workloads.

7 Conclusion

In this paper, we have presented an efficient parallel scan strategy in the distributed data
management system. We fully exploit the parallelism between replications to improve the
performance of scan operations. Taking load balance into consideration, we form a prob-
lem about scan tasks allocation and give a linear programming solution. To implement the
parallel execution of scan task on one node, we analyze several parallel tasks schedul-
ing strategies and propose a chunk-based greedy strategy to achieve approximately linear
improvement of scanning performance with the increase of threads. To evaluate the paral-
lel scan strategy, we integrate it into an open-sourced distributed data management system.
Experimental results show the proposed strategy outperforms the original strategy and other
compared strategies in the distributed data management system.

Acknowledgments This is work is partially supported by National Science Foundation of China under
grant numbers 61702189, 61432006 and 61672232, and Youth Science and Technology - “Yang Fan”
Program of Shanghai under grant number 17YF1427800. Huiqi Hu is the corresponding author.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Apache. HBase. http://hbase.apache.org/
2. Bal, H.E., Kaashoek, M.F., Tanenbaum, A.S., Jansen, J.: Replication techniques for speeding up parallel

applications on distributed systems. Concurr. Pract. Exper. 4, 337–355 (1992)
3. Bouganim, L., Florescu, D., Valduriez, P.: Dynamic load balancing in hierarchical parallel database

systems. In: Proc. of the Int. Conf. on Very Large Data Bases (VLDB). Mumbai (1996)
4. Bouganim, L., Florescu, D., Valduriez, P.: Load balancing for parallel query execution on NUMA

multiprocessors. Distrib. Parallel Datab. 7(1), 99–121 (1999)
5. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes, A., Gruber,

R.: Bigtable: A distributed storage system for structured data. In: Proceedings of 7th Symposium on
Operating System Design and Implementation (OSDI), pp. 205218 (2006)

World Wide Web (2019) 22:2561–2587 2585

http://hbase.apache.org/

6. Chen, M.-S., Yu, P.S., Wu, K.-L.: Scheduling and processor allocation for parallel execution of multi-
join queries. In: Proceedings of the Eighth International Conference on Data Engineering, pp. 58–67.
IEEE Computer Society, Washington, DC (1992)

7. Cockshott, W.P.: Addressing mechanisms and persistent programming chapter 15 in Atkinson others
(1988)

8. DeWitt, D., Gray, J.: Parallel database systems: The future of high performance database processing.
Commun. ACM 36, 6 (1992)

9. Du, J., Leung, J.Y.T.: Complexity of scheduling parallel task systems. SIAM J. Discret Math. SIAM
(1989)

10. Ferhatosmanoglu, H., Tosun, A.S., Canahuate, G., Ramachandran, A.: Efficient parallel processing of
range queries through replicated declustering. Distrib. Parallel Datab. 20(2), 117–147 (2006)

11. Frikken, K., Atallah, M., Prabhakar, S., Safavi-Naini, R.: Optimal parallel i/o for range queries
through replication. In: Proceedings of 13th International Conference of Database and Expert Systems
Applications (DEXA), pp. 669–678 (2002)

12. Graefe, G.: Volcano-an extensible and parallel query evaluation system. IEEE Trans. Knowl. Data Eng.,
6(1) (1994)

13. IBM: DB2. intra-partition parallelism https://www.ibm.com/support/knowledgecenter/en/SSEPGG 9.7.
0/com.ibm.db2.luw.admin.perf.doc/doc/c0005323.html (2009)

14. Johnson, R., Hardavellas, N., Pandis, I., Mancheril, N., Harizopoulos, S., Sabirli, K., Ailamaki, A.,
Falsafi, B.: To share or not to share? In: VLDB (2007)

15. Krikellas, K., Cintra, M., Viglas, S.: Scheduling threads for intra-query parallelism on multicore
processors. In: EDBT (2010)

16. Krompass, S., Kuno, H., Dayal, U., Kemper, A.: Dynamic workload management for very large data
warehouses: Juggling feathers and bowling balls. In: Proc. of the 33rd Intl. Conf. on Very Large
Databases (VLDB), pp. 1105–1115 (2007)

17. Kuo, T.-W., Wei, C.-H., Lam, K.-y.: Real-time data access control on B-tree index structures. In: IEEE
15th International Conference on Data Engineering. Sydney (1999)

18. Lee, R., Ding, X., Chen, F., Lu, Q., Zhang, X.: MCC-DB: Minimizing cache conflicts in multi-core
processors for databases. PVLDB 2(1), 373–384 (2009)

19. Lim, L., Wang, M., Vitter, J.S.: SASH: A self-adaptive histogram set for dynamically changing
workloads. In: Proceedings of 29th VLDB Conference. Berlin (2003)

20. Microsoft: SQL Server parallelism enhancements http://sqlmag.com/sql-server-2008/parallelism-
enhancements-sql-server-2008 (2008)

21. OceanBase. https://github.com/alibaba/oceanbase/
22. Open Source DB. https://www.postgresql.org/
23. Oracle Database 11g. Parallel execution https://docs.oracle.com/cd/E11882 01/server.112/e25523/

parallel002.htm. (2007)
24. Pan, C.S., Zymbler, M.L.: Encapsulation of partitioned parallelism into open-source database manage-

ment systems. Program Comput. Softw. 41(6), 350–360 (2015)
25. Percival, C.: Cache missing for fun and profit. In: Proc. of BSDCan 2005 (2005)
26. Pivotal. GREENPLUM DB. http://greenplum.org/
27. Qiao, L., Raman, V., Reiss, F., Haas, P.J., Lohman, G.M.: Main-memory scan sharing for multi-core

CPUs. Proc. VLDB Endow. 1(1), 610–621 (2008)
28. Rahm, E., Stöhr, T.: Analysis of parallel scan processing in parallel shared disk database systems. In:

Proc. EURO-PAR Conf., LNCS, p. 966. Springer (1995)
29. Ristau, B., Fettweis, G.: An optimization methodology for memory allocation and task scheduling in

SoCs via linear programming SAMOS 89–98 (2006)
30. Sokolinsky, LB.: Survey of architectures of parallel database system. Program Comput. Softw. 30(6),

337–346 (2004)
31. Son, SH.: Replicated data management in distributed database systems, ACM SIGMOD, vol. 17 Issue

4, pp. 62–69. ACM, New York (1988)
32. Tsafrir, D.: The context-switch overhead inflicted by hardware interrupts (and the enigma of do-nothing

loops). In: Proceeding ecs’07 Experimental computer science on Experimental computer science, pp.
3–3. San Diego (2007)

33. Valduriez, P.: Parallel Database Systems: Open Problems and New Issues, Distributed and Parallel
Databases. Springer (1993)

World Wide Web (2019) 22:2561–25872586

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005323.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005323.html
http://sqlmag.com/sql-server-2008/parallelism-enhancements-sql-server-2008
http://sqlmag.com/sql-server-2008/parallelism-enhancements-sql-server-2008
https://github.com/alibaba/oceanbase/
https://www.postgresql.org/
https://docs.oracle.com/cd/E11882_01/server.112/e25523/parallel002.htm
https://docs.oracle.com/cd/E11882_01/server.112/e25523/parallel002.htm
http://greenplum.org/

Affiliations

XingWei1 ·Huiqi Hu1 ·Huichao Duan1 ·Weining Qian1 ·Aoying Zhou1

Xing Wei
simba wei@stu.ecnu.edu.cn

Huichao Duan
stevenduan@stu.ecnu.edu.cn

Weining Qian
wnqian@dase.ecnu.edu.cn

Aoying Zhou
ayzhou@dase.ecnu.edu.cn

1 School of Data Science and Engineering, East China Normal University, Shanghai, China

World Wide Web (2019) 22:2561–2587 2587

http://orcid.org/0000-0001-5220-3166
mailto: simba_wei@stu.ecnu.edu.cn
mailto: stevenduan@stu.ecnu.edu.cn
mailto: wnqian@dase.ecnu.edu.cn
mailto: ayzhou@dase.ecnu.edu.cn

	Parallel strategy for multiple scan operations with data replication
	Abstract
	Abstract
	Introduction
	Overview
	Data storage
	Scan operation
	Framework

	Parallel between replicated nodes
	Motivation of scan distributor
	Formulation of load balance
	Splitting scan ranges
	Finding optimal allocation

	Generate scan tasks

	Parallel task scheduling
	Scheduling framework
	The sequential scheduling algorithm
	Algorithmic description
	Parallel scalability

	The chunk based algorithm
	Design chunks
	Cost model
	A greedy algorithm

	Evaluation
	Experimental setup
	System and hardware
	Workload

	Experimental results
	Parallel between replicated nodes
	Scan time
	CPU cost and system load
	Data size
	Data distribution

	Parallel task scheduling
	Chunk size
	Thread-level scalability
	Data size

	Overall performance
	Performance improvement
	Varying data size
	Replication-level scalability

	Related work
	Scan parallelism
	Load balancing
	Parallel scheduling

	Conclusion
	References
	Affiliations

