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Abstract With the increasing popularity of location-based social networks (LBSNs), users
are able to share the Point-of-Interests (POIs) they visited by check-ins. By analyzing the
users’ historical check-in records, POI recommendation can help users get better visiting
experience by recommending POIs which users may be interested in. Although recent suc-
cessive POI recommendation methods consider geographical influence by measuring the
distances among POIs, most of them ignore the influence of the regions where the POIs are
located. Therefore, we propose in this paper two models to tackle the problem of succes-
sive POI recommendation. First, a feature-based successive POI recommendation method,
named UGSE-LR, is proposed to take the influence of regions, named regional influence,
into consideration when recommending POIs. UGSE-LR first splits an area into grids for
estimating regional influence. Then, UGSE-LR applies Edge-weighted Personalized PageR-
ank (EdgePPR) for modeling the successive transitions among POIs. Finally, UGSE-LR
fuses user preference, regional influence and successive transition influence into a unified
recommendation framework. In addition, with the aid of Recurrent Neural Network (RNN),
we propose a latent-factor based successive POI recommendation method, named PEU-
RNN, to integrate the sequential visits of POIs and user preference to recommend POIs.
First, PEU-RNN adopts the word embedding technique to transform each POI into a latent
vector. Then, RNN is used to recommend the POIs depend on the users’ historical check-in
records. Experimental results on two real LBSN datasets show that our methods are more
accurate than the state-of-the-art successive POI recommendation methods in terms of pre-
cision and recall. In addition, experimental results also show that PEU-RNN is suitable for
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the datasets with many check-in records, while UGSE-LR is suitable for the datasets with
moderate check-in records.

Keywords Successive POI recommendation · Recommendation ·
Location-based social network

1 Introduction

Location-based social networks (LBSNs) provide check-in services for users to share their
visiting experiences to their friends. As shown in Figure 1, an LBSN is a combination of
users, check-in timestamps and point-of-interests (POIs). People usually check in at a POI
with a timestamp and then share their check-in records to their friends. Therefore, we can
collect a user’s friendship, check-in timestamps, coordinates and trajectories of POIs from
their historical check-in records.

POI recommendation [2, 3, 10, 20, 26, 27, 32, 34–36] is a widely studied topic in recent
years. POI recommendation is able to improve the user experience of the users in LBSNs
by recommending some POIs which the users may be interested in through mining user’s
historical check-in records. Different from traditional POI recommendation, successive POI
recommendation [4, 8, 12, 25, 38, 39] has to recommend a POI which the user may visit in
the near future. Moreover, a user’s intention for visiting one POI may be also influenced by
the prior POI(s) that the user just visited. For example, users are usually willing to visit bars
after visiting restaurants. Thus, successive POI recommendation has to take (1) the distances
among the POIs and the user’s current location and (2) the transitions among POIs (named
successive transition influence) into consideration when performing recommendation.

Most POI recommendation methods tend to recommend the POIs that are close to the
user’s current location. In practice, the region where a POI is located usually has great
influence on whether the user will check in at the POI. For example, if a new POI is in
a region consisting of several famous POIs, it is easy for the new POI to attract check-
ins since many users will check in at some POIs nearby. In view of this, we propose in
this paper a feature-based successive POI recommendation method, named UGSE-LR, to
take the influence of the regions where POIs are located (called regional influence in this
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Figure 1 The architecture of LBSNs
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paper) into consideration. Specifically, when recommending POIs to a user u, UGSE-LR
first uses user-based collaborative filtering (User-based CF) [13] to find the users of check-
in records similar to u and calculates the score of user preference of each POI with respect
to u according to the historical check-in records of the users similar to u. Then, UGSE-
LR divides the space into several grid cells and calculates the score of regional influence
of each POI. UGSE-LR builds a reduced POI-to-POI transition graph according to user
u’s historical check-in records and applies Edge-weighted Personalized PageRank [31] to
calculate the score of the successive transition influence for each POI in the reduced POI-
to-POI transition graph. Finally, UGSE-LR integrates the scores of user preference, regional
influence and successive transition influence into the overall scores and recommends top-N
POIs to user u.

In addition, due to the recent success of deep learning techniques in some areas such as
natural language processing (NLP), we also proposed a latent factor-based successive POI
recommendation method, named PEU-RNN, to utilize the word embedding technique and
Recurrent Neural Network (RNN) for POI recommendation. It is obvious that the succes-
sive POI recommendation can be considered as a sequence prediction problem, RNN, which
is successful in handling sequential data, is adopted in this paper to predict the users’ future
POI visits. However, traditional encoding methods such as one-hot encoding, cannot con-
tain implicit relations between the prior and the next visited POIs. Therefore, PEU-RNN
first utilizes the one of the word embedding techniques proposed in [24], named Continu-
ous Bag-of-Word (CBOW), to encode the POIs and users according to historical check-in
records. CBOW is able to give a unique latent vector for each user and POI based on user
preference and the successive transitions among POIs so that these latent vectors are able
to represent these relations. Then, based on the historical check-in data, PEU-RNN takes
the latent vectors of POIs and users as the inputs of RNN to build a RNN-based model for
predicting the top-N POIs of high probabilities to be the next visited POIs.

To evaluate the performance of our methods, several experiments are conducted on two
real datasets. Experimental results show that when users’ check-in records are sufficient,
PEU-RNN outperforms the other successive POI recommendation methods in terms of
precision and recall. On the other hand, when the users’ check-in records are not suffi-
cient, UGSE-LR is of the best performance. Such result agrees with the intuition that the
RNN-based methods usually perform well in the cases with sufficient data.

The rest of this paper is organized as follows. We review some related work and formulate
the problem of successive POI recommendation in Section 2. The proposed feature-based
successive POI recommendation method, UGSE-LR, is described in Section 3 while the pro-
posed latent factor-based successive POI recommendation method, PEU-RNN, is depicted
in Section 4. Section 5 presents the performance comparisons among UGSE-LR, PEU-RNN
and other prior methods. Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Related work

2.1.1 Traditional point-of-interest recommendation

Ye et al. [32] raised two observations of geographic influence (known as spatial influence)
from users’ check-in data. First, users always check in at the places near their hometown
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or offices. Second, if some places are very interesting but are far away, users still go there
frequently. Based on these observations, they proposed a mixed recommendation system
which combines user preference and geographic influence. Cheng et al. [3] utilized a matrix
factorization method [16] to combine geographic influence and social influence. They had
the following three observations. First, unlike the observations mentioned in [32], they
found the POIs are usually distributed as Gaussian distributions around some POIs which
are considered as centers. Second, although user preference is important, the distance can
still affect the users’ decisions. Third, although not a major factor, social influence can be
observed in the datasets. About 9.6% check-in data is influenced by users’ friends. Lian
et al. [20] also considered geographic influence of neighboring regions, and then applied a
matrix factorization method [16] to recommend POIs.

However, these approaches did not consider temporal influence. Thus, Yuan et al. pro-
posed two methods in [34] and [35] to utilize temporal influence in POI recommendation.
For example, if some people check in at the same time frequently, their preferences are very
similar [34]. To recommend POIs to a target user, the method proposed in [34] first found
the users of check-in behavior similar to the target user, and then recommended the POIs
of these similar users’ interests to the target user. They also proposed two hypotheses about
time into their method proposed in [35]. First, users’ interests change with time. Second,
a user’s behavior is similar in a specific time period. There are still many factors that can
influence users’ check-in behavior, such as check-in topics and check-in sequences. Wang
et al. [27] used the topics of check-in records to find the interest distribution for a target
user according to the type (i.e., a native person or a traveler) of the user, and then proposed
a method to recommend POIs based on LDA-LCA [33]. In [36], Zhang et al. proposed to
construct a transition graph to describe sequential influence of users’ check-in records and
score its impact by Edge-weighted Personalized PageRank (EdgePPR) [31].

2.1.2 Successive point-of-interest recommendation

In [4], Cheng et al. first formulated the problem of successive POI recommendation, and
then incorporated Factoring Personalized Markov Chain (FPMC) [25] to solve the prob-
lem of successive POI recommendation. FPMC was originally used to solve the next-based
recommendation problem. Cheng et al. revised FPMC by also considering geographic influ-
ence to recommend a user the POI that the user may be interested in. Since there are many
POIs and people usually checked in at a few POIs in a time period, this phenomenon results
in the sparse data problem. He et al. [12] not only used a Markov chain to infer users’ pref-
erences on POIs but also categorized users into different groups by their sequential check-in
behavior such as the types of POIs and check-in time. Zhao et al. [39] argued that sequential
check-in behavior is influenced by time. So, they used a time factor to measure the importance
of sequential check-in behavior and proposed a successive POI recommendation method
accordingly.

Feng et al. [8] is the first research to employ a metric embedding (ME) technique to
model the relation among POIs in a potential latent space based on successive check-in
records. They assumed that the related POIs should have short Euclidean distance in the
latent space, and the latent space could be used to represent the transitions of each pair
of POIs in a short time period according to the observation in [36]. Furthermore, Liu et
al. [21] explored the POI’s context according to the order of the POI visits. First, they
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utilized the Skip-Gram model [24], which was originally designed for nature language pro-
cessing (NLP), to explore the influence of the order of the POI visits. Then, based on the
personalized recommendation model proposed in [30], they took the visiting frequency
into the model. Although the Skip-gram [24] was originally a word representation, it has
good performance in successive POI recommendation. Feng et al. [9] also utilized the word
embedding technique on the POIs to retrieve the latent representation of each POI. Based
on [24], they modified the Continuous Bag-of-Word (CBOW) model to fit the geographic
influence by replacing the original Huffman tree with their proposed geographical binary
tree. They also put user preference as the input of their model to represent each user. Finally,
the probability of the next visited POI of a user can be calculated by using an aggregate
function to fuse the latent vectors of users and POIs.

2.1.3 Neural network

Neural network (NN) has been widely used in natural language processing, such as lan-
guage model [22], summarization [1], machine translation [5], and question answering [28].
Although the early models of neural network, such as artificial neural network (ANN) and
multi-layer perceptron (MLP), were simple, [15] pointed out that even containing only one
layer, the MLP can be still used to simulate any continuous function as long as having
enough nonlinear units.

On the other hand, due to the significant advance of graphics processing unit (GPU), the
modern neural network models, such as Convolutional Neural Network (CNN) and Recur-
rent Neural Network (RNN), can utilize a large number of hidden layers to extract the
useful factors for prediction. CNN is currently widely used in image processing [17], face
recognition [18], and handwriting recognition [7]. However, CNN does not perform well
on sequential data. Instead, RNN can sequentially consider the pervious results into cur-
rent stage, thereby making RNN capable of ”memory.” Therefore, RNN is usually suitable
for the sequential data, such as sequential click prediction [37], language model [23], and
speech recognition [11]. However, RNN still has some problems such as exploding gradients
or vanishing gradients. When the sequence is too long, the prior results may not be able to be
kept to the posterior input. To tackle these issues, two variants of RNN, named Long Short-
Term Memory (LSTM) [14] and Gated Recurrent Unit (GRU) [6], were proposed. Due to
the characteristic that the POI check-in records usually contain long sequential check-in
sequences, we adopt LSTM as the prediction model in our latent factor-based successive
POI recommendation method PEU-RNN.

2.2 Problem definition

Similar to [4], the problem of successive POI recommendation can be formulated as follows.
Let U and L be the sets of users and POIs, respectively. Also let Lu be the set of POIs
that a user u has visited. Given a query, q(u, lc, tc) where u ∈ U is the target user, lc ∈
Lu is the POI where u is located, and tc is current time, the problem of successive POI
recommendation is to recommend N unvisited POIs Ru,N to user u where each POI l in
Ru,N satisfies the following conditions.

– The distance between l and lc is shorter than or equal to a distance threshold d.
– User u is likely to check in at l within time period [tc, tc + τ ].
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Table 1 Statistics of the datasets
Dataset Brightkite Gowalla

#Users 3,178 6,415

#Locations 6,792 44,938

#Check-ins 291,655 819,283

#Edges 45,308 73,410

Periods Apr. 2008 - Oct. 2010 Feb. 2009 - Oct. 2010

2.3 Dataset descriptions

Two real datasets, Gowalla and Brightkite, are used in this paper and they are collected by
Stanford Network Analysis Project1 [19]. Since some check-in sequences are of insuffi-
cient information (e.g., the users of few check-in records), the check-in sequences of these
inactive users and unpopular POIs are removed from the datasets due to the reason that
these noises may severely affect the performance of recommendation. In this paper, the data
satisfying one of the following conditions are filtered out.

– The users of less than 80 check-in records
– The POIs of less than 5 users’ check-in records
– The users of less than 5 friends

After data cleaning, the statistics of two real datasets are listed in Table 1. According
to the prior study [36], the successive check-in POIs are of high probability to be affected
by the check-in POIs in the previous time period. Figure 2 shows the cumulative distribu-
tion functions of the distributions of the time differences between two successive check-in
records in the Gowalla and Brightkite datasets. In the Gowalla dataset, about 52% succes-
sive check-ins happened within 6 hours, and over 72% data did within 24 hours. In the
Brightkite dataset, about 40% successive check-ins happened within 6 hours, and over 60%
did in a single day. Thus, we can observe that the Brightkite dataset is sparser in time domain
than the Gowalla dataset.

In addition to time difference, distance difference is also an important factor to influ-
ence users’ check-in behavior. Figure 3 shows the cumulative distribution functions of the
distributions of the distance differences between two successive check-in records within 6
hours. From the result, over 90% and 50% successive check-ins happened within 15 km in
the Gowalla and the Brightkite datasets, respectively. It’s obvious that the Brightkite dataset
is also sparser in spatial domain than the Gowalla dataset.

3 UGSE-LR: the proposed feature-based successive POI
recommendation method

3.1 Architecture

The architecture of the proposed feature-based successive POI recommendation method,
named UGSE-LR, is shown in Figure 4. UGSE-LR performs successive POI recommenda-
tion according to three properties, namely user preference, regional influence and successive

1Stanford Network Analysis Project (SNAP): http://snap.stanford.edu/data/index.html.
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Figure 2 The cumulative distribution functions of the distributions of the time differences between two
successive check-in records

transition influence. In calculating the score of user preference, UGSE-LR finds the set of
users, say U ′, whose historical check-in records are similar to the target user u’s, and calcu-
lates the user preference scores of POIs with respect to u according to the historical check-in
records of the users in U ′. In calculating the score of regional influence, UGSE-LR divides
the space into several disjoin grid cells, and calculates the score of regional influence of
each grid cell based on the check-in records in the grid cell. Edge-weighted Personalized
PageRank [31] is adopted to calculate the successive transition influence scores of POIs
based on u’s historical check-in records. Finally, UGSE-LR calculates the overall scores of
POIs and recommends top-N POIs to user u.

Figure 3 The cumulative distribution functions of the distributions of the distance differences between two
successive check-in records within 6 hours
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Figure 4 The architecture of UGSE-LR

3.2 User preference

We use user-based collaborative filtering (User-based CF) [32] to calculate the user prefer-
ence scores of POIs with respective to the target user u. Consider two users u and v. Let
cu,l = 1 indicates that user u had checked in at POI l. Otherwise, cu,l is set to zero. We use
the following equation to measure the similarity of check-in behavior of user u and user v

based on u’s and v’s historical check-in records.

wu,v =
∑

∀l∈L cu,l · cv,l
√∑

∀l∈L c2
u,l

√∑
∀l∈L c2

v,l

(1)

Current Loca�on

Distance Threshold

Neighbor Grid Cells

Figure 5 An example grid
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Let U ′ be the set of users of check-in behavior similar to u. The user preference score of a
POI l with respect to u can be calculated by the following equation.

puser
u,l =

∑
∀v∈U ′ wu,v · cv,l
∑

∀v∈U ′ wu,v

(2)

3.3 Regional influence

As mentioned in Section 1, different from traditional POI recommendation, successive
POI recommendation should consider distances among POIs and user’s current location.
According to Figures 2 and 3, the next visiting POIs are usually located close to the cur-
rent locations of users, meaning the users seldom check in at POIs which are of interest but
far away. Therefore, we only consider the POIs close a user as the candidates to be recom-
mended to the user. As shown in Figure 5, the space is divided into several grid cells. Let
lc be user u’s current location and d be the distance threshold in UGSE-LR. The grid cells
overlapping the circle with center lc and radius d are called the neighbor grid cells of u.
The idea is that if a grid cell gi is popular (i.e., of many check-in records), user u is likely
to check in at a/some POI(s) in gi . Let Checkins(gi) be the summation of the numbers of
check-in records at all POIs in a grid cell gi . We use the following equation to measure the
popularity of a grid cell gi ,

g
p
i = Checkins(gi)

∑
∀g∈Gs

Checkins(g)
, (3)

where Gs is the set of neighbor grid cells of u.
When user u had many check-ins at some POIs in a grid cell gi , it is possible that grid

cell gi is in user u’s favorite area and user u is of high likelihood to check in at other POI(s)
in grid cell gi . Let Checkins(gi, u) be the number of check-in records of user u at all POIs
in grid cell gi . Then, we use the following equation to measure such influence.

gu
i = Checkins(gi, u)

∑
∀g∈Gs

Checkins(g, u)
(4)

As mentioned in [32], a user tends to check in at the POIs close to the user’s current
location. Thus, we argue that a user tends to check in at the POIs in the grid cell where
the user is current located. Therefore, we devise the following equation to measure such
influence.

gc
i =

{
1 if the user’s current location is in gi

0 otherwise
(5)

Then, we combine the above three properties into the score of a grid cell gi by the linear
function shown in (6)

GridScoregi
= α g

p
i + β gu

i + γ gc
i , (6)

where α, β and γ are weights satisfying the following constraints.

0 ≤ α, β, γ ≤ 1
α + β + γ = 1

(7)

Finally, the score of regional influence of a POI l with respect to u can be calculated as

p
reg
u,l = GridScoregi∑

∀g∈Gs
GridScoreg

, (8)

where gi is the grid cell where POI l is located.
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3.4 Successive transition influence

In this subsection, we use a POI-to-POI transition graph to model the relationship of suc-
cessive check-ins. Let (l, t) indicate that a user had checked in at POI l at time t . Then, the
POI-to-POI transition graph is defined as follows.

Definition 1 Consider a user u’s check-in records (l1, t1), (l2, t2), . . . , (ln, tn) where t1 ≤
t2 ≤ ... ≤ tn. We say that there exists a successive transition from POI li to li+1 with respect
to user u if tn − t1 ≤ τ .

Definition 2 The POI-to-POI transition graph of all users is a directed graph G = (L, E)

where L is the set of all POIs and E is the set of all successive transitions among POIs in
L. That is, there exists a directed edge (li , lj ) in E if there is a successive transition from li
to lj in all users’ historical check-in records. The weight of an edge (li , lj ) is defined as

wli ,lj = T ransitions(li , lj )
∑

∀l∈L T ransitions(li , l)
, (9)

where T ransitions(li , lj ) is the number of successive transitions from li to lj in all users’
historical check-in records.

Since only the POIs of distances to user u’s current location shorter than or equal to
d are candidate POIs to be recommended, we then extract a subgraph of G, named the
reduced POI-to-POI transition graph G′ = (L′, E′) of u, by removing the POIs not in the
neighbor grid cells of u from G. We then utilize Edge-weighted Personalized PageRank
(EdgePPR) [31] to calculate the scores/importance of all nodes in the reduced POI-to-POI
transition graph of u since EdgePPR is able to operate efficiently in a local computation
manner by the model reduction technique. The successive transition influence of u to l

is defined as the normalized EdgePPR score of l and can be obtained by the following
equation.

psuc
u,l = EdgePPR(G′, l)

∑
∀l′∈L′ EdgePPR(G′, l′)

(10)

Then, we use min-max normalization to normalize user preference, regional influence
and successive transition influence by the following equations

Suser
u,l = puser

u,l −muser

Muser
u −muser

u
,

S
reg
u,l = p

reg
u,l −mreg

M
reg
u −m

reg
u

,

Ssuc
u,l = psuc

u,l −msuc

Msuc
u −msuc

u
,

(11)

where Muser
u /muser

u , M
reg
u /mreg

u and Msuc
u /msuc

u are the maximum/minimum scores of user
preference, regional influence and successive transition influence, respectively, of all POIs
in L′. Finally, the overall score of user u to POI l is determined by the following equation.

Su,l = δ × Suser
u,l + ε × S

reg
u,l + ζ × Ssuc

u,l , (12)

where δ, ε, ζ are weights satisfying the following constraints.

0 ≤ δ, ε, ζ ≤ 1
δ + ε + ζ = 1

(13)
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4 PEU-RNN: the proposed latent factor-based successive POI
recommendation method

4.1 Architecture

Figure 6 shows the architecture of the proposed latent factor-based successive POI recom-
mendation PEU-RNN. PEU-RNN contains two stages. First, according to [24], the latent
vectors of all users and POIs can be retrieved from the historical check-in records which
contain the users’ visiting preferences and the influence of POIs. In the first stage, two
steps are performed to find the latent vectors for all users and POIs. First, the successive
check-in records of all users within a specific time period are used to find the transition rela-
tions among POIs by distributed representation (Word2Vec is one of the popular distributed
representations). Then, with the same skill, the historical check-in records of each user is
adopted to find the user’s latent vector from his or her sequence of POI visits. After build-
ing the latent vectors to represent each user and POI, the historical check-in records and
the obtained latent vectors are utilized in the second stage to build a RNN model for POI
recommendation. The softmax function is adopted as the activation function to estimate the
next visiting probabilities of all POIs based on the current and visited POIs.

4.2 Latent vector establishment

The successive transitions among POIs are important for POI recommendation. However,
the POI-to-POI transition graph adopted in UGSE-LR (described in Section 3.4) is too com-
plicated, thereby not suitable for RNN. Based on the significant success of RNN in NLP,
each POI-to-POI transition should be transformed into a latent vector based on a vector
encoding method. The popular vector encoding methods are one-hot encoding and dis-
tributed representation. It is difficult to use one-hot encoding to model successive transitions
among POIs. When one-hot encoding is used, successive transitions among POIs will be
transformed into high dimensional vectors, thereby introducing huge computation overhead.

On the other hand, using the distributed representation, such as word2vec [24], is able
to control the computation overhead by reducing the data dimensionality to an acceptable

Distributed 
Representa�on

(Word2Vec)
Recurrent Neural 

Network+

All Historical
Check-in Records

The Target User’s 
Historical Check-in Records

Latent Vectors
of all POIs

Latent Vectors
of all Users

Distance Threshold

1st Stage 2nd Stage

Figure 6 The architecture of PEU-RNN
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range. In addition, the distributed representation also takes the relation between prior and
posterior POI visits into consideration. Thus, we argue that the distributed representation is
more suitable for POIs than one-hot encoding, and we adopt the word2vec technique [24]
to model the successive transitions among POIs. The word2vec technique consists of two
models, namely Continuous-Bag-of-Word (CBOW) and Skip-gram. Both CBOW and Skip-
gram adopt Huffman trees to model the context relation. CBOW can be used to predict the
next POIs based on the current POIs, while Skip-gram can be used to predict the previous
POIs and the next POIs based on the current POIs. Due to the characteristic of successive
POI recommendation, CBOW is adopted in PEU-RNN to model the successive transitions
among POIs.

The detailed procedures are as follows. Each user’s check-in records within the time
interval τ is gathered as one check-in sequence, Li = (l1, · · · , lm|τ ≥ (tm − t1)), {lj |1 ≤
j ≤ m, lj ∈ L}. The Li contains the visiting sequence and frequencies of POIs, which can
be used to build a Huffman tree in CBOW. As shown in Figure 7, each inner node of the
Huffman tree can be considered as a binary classifier to decide which way to go and the
leaf nodes are the POIs. The hierarchical softmax function is adopted in [24] to calculate
the probability of the next visited POI, as shown in (14).

P(l = lO |h) = ∏|Path(l)|−1
j=1 σ([[m(l, j + 1) = ch(m(l, j))]] · v′

m(l,j)
T
h),

where [[x]] =
{

1 if x is true
−1 otherwise

, h = 1
Q

∑Q
q=1 vlq .

(14)

The meaning of the notations in (14) is listed as follows.

– lO represents the actual output POI.
– Path(l) is the path from root to POI l.
– m(l, j) means the j -th inner node on the path from root to POI l.
– ch(m) indicates the left child of inner node m.
– v′

m(l,j) is the vector representation of inner node m(l, j).
– Q is the number of POIs in the check-in sequence.
– vlq is the input vector of POI lq .
– σ(·) is the sigmoid function.
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Figure 7 The illustration of Huffman Tree
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– h is the aggregation of the previous visited POIs before lO .

Based on the hierarchical softmax function, the objective function of CBOW is as (15),
where V ′

m is the coefficient set of all inner node in the Huffman tree, and Vl is the set of
latent vectors of all POIs. After the optimization, the optimized V̂ ′

m and V̂l can be derived.

V̂ ′
m, V̂l = arg max

V ′
m,Vl

∏

i

P (lO,i |hi) (15)

The users’ latent vectors, Vu = {vu1 , vu2 , · · · , vu|U | }, can also be obtained by the similar
method.

4.3 Visiting probability prediction

As mentioned, a user’s check-in behavior is usually affected by user preference (indicated
by users’ latent vectors) and successive transition influence (embedded to the latent vectors
of all POIs). To consider both factors, the latent vectors of all users and POIs, denoted as
Vu and Vl , are combined together as the willing vector, Vw according to (16). Then the Vw

is considered as the input xt of the LSTM. After the softmax layer, the visiting probabilities
of user u to all POIs are output by the LSTM.

Vw = Vl + Vu, Vw ∈ Vw (16)

4.4 POI recommendation

According to the observations in Figure 3, the users are of high probability to visit the POIs
close to them. In other words, the recommendation method should put more weights on the
nearby POIs to have more chances to match the user’s visiting intention. Therefore, after
the visiting probability of each POI has been estimated, distance threshold is applied to
prune the POIs of the distances to the user’s current location longer than d. The set of POIs
for user u, denoted as Ru, can be obtained by (17), where lc is user u’s current location,
(lq , P (lq |u, lc)) is the result of the LSTM LST M(·), and P(lq |u, lc) is the probability of
user u to visit POI lq in time period [tc, tc + τ ].

Ru = {(lq , P (lq |u, lc))|(lq , P (lq |u, lc)) ∈ LST M(Vw), ∧ distance(lq , lc) ≤ d} (17)

Finally, the top-N POIs in Ru, denoted as Ru,N , are recommended to user u.

5 Performance evaluation

5.1 Experimental setting

Two real check-in datasets, Gowalla and Brightkite [19], are used in our experiments. We
filter out the POIs checked-in by less than 80 users and the users whose check-in records
are less than five. After preprocessing, the statistics of the datasets are shown in Table 1.

Precision and recall, denoted as Precision@N and Recall@N, respectively, are adopted
as the performance metrics since they are widely used to evaluate the performance of
recommendation methods. Precision@N and Recall@N are formulated as

Precision@N = |Ru,N ∩ L′
u,lc,tc

|
N

(18)
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Table 2 Comparison among the methods

Methods User Geographical influence Successive

Preference Distance threshold Regional influence Transition

FPMC
√ √

FPMC-LR
√ √ √

POI2VEC
√ √ √

UGSE-LR
√ √ √ √

PEU-RNN
√ √ √

Recall@N = |Ru,N ∩ L′
u,lc,tc

|
|L′

u,lc,tc
| , (19)

where Ru,N is the set of recommended POIs which contains top-N POIs, lc is the POI
where user u is current located, and L′

u,lc,tc
is the set of new POIs visited by user u within

the time period [tc, tc + τ ] at POI lc.
To evaluate the performance of the proposed methods, UGSE-LR and PEU-RNN, we

also implemented the prior methods FPMC [25], FPMC-LR [4], and POI2VEC [9]. The
characteristics of these recommendation methods are shown in Table 2. To conduct experi-
ments, 70% of the datasets are used as the training data, while 10% are used as the validation
data for parameter tuning. The remaining 20% datasets are used as the test data.

5.2 Parameter determination for UGSE-LR

5.2.1 Performance tuning on weights

In UGSE-LR, two sets of parameters, {α, β, γ } in (6) and {δ, ε, ζ } in (12), should be
determined for calculating the regional influence and the overall scores of all POIs, respec-
tively. Since each parameter set has the constraint that the summation of the weights in each
parameters should equal to 1, only the values of two parameters in each parameter set are
needed to be shown in the figures. The tuning results in two datasets are shown in Figures 8,
9, 10 and 11, and the final optimal values of the parameters for both datasets are listed in
Table 3.

Figures 8 and 10, among the weights of regional influence, γ is of the highest value in
both datasets, meaning that the current location is the main factor for a user to decide the
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Figure 8 The parameter tuning of α, β and γ on the Gowalla dataset
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Figure 9 The parameter tuning δ, ε and ζ on the Gowalla dataset
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Figure 10 The parameter tuning of α, β and γ on the Brightkite dataset
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Figure 11 The parameter tuning of δ, ε and ζ on the Brightkite dataset

Table 3 Optimal values of the parameters of UGSE-LR

Dataset α β γ δ ε ζ

Gowalla 0.3 0.2 0.5 0.2 0.3 0.5

Brightkite 0.2 0.2 0.6 0.5 0.3 0.2

1165World Wide Web (2019) 22:1151–1173



Figure 12 The effect of grid size and distance threshold on the Gowalla dataset

Figure 13 The effect of grid size and distance threshold on the Brightkite dataset

Figure 14 The performance on Gowalla with different number of units in one layer

Figure 15 The performance on Gowalla with different number of layers
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Figure 16 The performance on Brightkite with different number of units in one layer

next visited POI. As shown in Figures 9 and 11, among the elements in the overall scores
(i.e., user preference, regional influence and successive transition influence), successive
transition influence is the most important factor in the Gowalla dataset, while user prefer-
ence is the key to influence the visiting intention in the Brightkite dataset. We argue that
this difference is possibly caused by user behavior. In the Gowalla system, there is a trip
recommender system,2 making users tend to follow the trip advices. Therefore, successive
transition influence takes an important role in the Gowalla dataset.

On the other hand, according to Figures 2 to 3, in the Brightkite dataset, the differences
of distance and time between two successive check-ins are longer than those in the Gowalla
dataset. Interestingly, the Brightkite system makes a user free to check in at any POI (even
it is impossible for the user to visit the POI within a short time period in reality) [29]. Such
mechanism makes user preference be the key factor in the Brightkite dataset.

5.2.2 Effect of grid size and distance threshold

In this subsection, we investigate the effect of grid size and distance threshold d on the
precision and recall of UGSE-LR. The value of τ is set to two hours and the number of
recommended POIs (i.e., N ) is set to 10. The grid size is set to 0.2 km, 0.5 km, 5 km and
20 km while the distance threshold d is set to 0.5 km, 1 km, 2 km, 5 km, 10 km, 50 km and
100 km. The experimental results are shown in Figures 12 and 13.

We can observe from Figure 12 that the best performance of UGSE-LR is the case of
setting distance threshold d to 1 km on the Gowalla dataset. When the value of distance
threshold d increases, the performance of UGSE-LR decreases. This means that if distance
threshold is set too large, UGSE-LR must consider more POIs as candidate POIs, making
POI recommendation more challenging since a user usually moves to the POI near his or
her current location. It is interesting in Figure 13 that in the Brightkite dataset, increasing
distance threshold d results in better performance of UGSE-LR. We believe that it is because
the Brightkite system enables a user to be able to check in at a POI without physically in
the POI.

Grid size is important for regional influence. If the grid size is set too large, the number of
POIs in each grid increases and may result in overestimating regional influence of each grid.
On the other hand, if the grid size is set too small, the number of POIs in each grid decrease,
thereby reducing the importance of regional influence. According to Figures 12 and 13, we
set the grid size to 0.5 km in the Gowalla dataset and 0.2 km in the Brightkite dataset for
better performance.

2https://techcrunch.com/2010/01/28/gowalla-opens-trips-to-all-a-simple-way-to-organize-pub-crawls/

1167World Wide Web (2019) 22:1151–1173

https://techcrunch.com/2010/01/28/gowalla-opens-trips-to-all-a-simple-way-to-organize-pub-crawls/


Figure 17 The performance on Brightkite with different number of layers

5.3 Parameter determination for PEU-RNN

In PEU-RNN, the LSTM is the basis model for POI recommendation. In order to achieve
better performance, the number of units per layer and the number of layers, which are the
hyper-parameters to build a neural network, should be fine-tuned in advance. The distance
thresholds are set to 1 km and 5 km in the Gowalla and Brightkite datasets, respectively. To
speed up the tuning, the number of epoch is set to a small number for tuning parameters.
Figures 14 and 15 show the effects of the unit number and the layer number in the Gowalla
dataset, while Figures 16 and 17 are the effects of the unit number and the layer number in
the Brightkite dataset. The best number of units in one layer is 300 and 100 for the Gowalla
dataset and the Brightkite dataset, respectively, while the optimal numbers of layers for the
Gowalla dataset and the Brightkite dataset are both set to 2, respectively. The final optimal
parameters for PEU-RNN are shown in Table 4.

5.4 Performance comparison

5.4.1 Effect of the number of recommended POIs

In this subsection, we investigate the effect of the number of recommended POIs (i.e., N ).
PEU-RNN adopts CBOW as the underlying word embedding technique, while PEU-RNNS
uses Skip-gram to replace CBOW in PEU-RNN. The numbers of epoch for PEU-RNN and
PEU-RNNS are set to 100 in the Gowalla dataset and 500 in the Brightkite dataset for better
performance. The time constraints t is set to 3 hours in each dataset. Distance threshold d

is set to 1 km in the Gowalla dataset and 5 km in the Brightkite dataset. For UGSE-LR, the
grid size is set to 0.5 km in the Gowalla dataset and 0.2 km in the Brightkite dataset. The
value of N is set to 5, 10, 15, 20, and 25, respectively. The experimental results are shown
in Figures 18 and 19. We can see in Figure 18 that PEU-RNN is the best in most cases in the
Gowalla dataset and PEU-RNNS is in the second place. As mentioned in Section 5.2.1, suc-
cessive transition influence plays an important role in the Gowalla dataset. We believe that it
is because RNN is able to extract successive transition influence from the Gowalla dataset.
PEU-RNN outperforms PEU-RNNS in all cases, agreeing with our intuition mentioned in

Table 4 Optimal parameters of PER-RNN

Dataset Number of units per layer Number of layers

Gowalla 300 2

Brightkite 100 2
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Figure 18 The result of Top-N recommendation in Gowalla

Section 4.2 that CBOW is more suitable for successive POI recommendation than Skip-
gram. On the other hand, UGSE-LR also outperforms FPMC, FPMC-LR, and POI2VEC.
The reason is that UGSE-LR not only considers the distances among POIs and the users but
also incorporates the regional influence of the grids where the POIs are located.

However, in the Brightkite dataset, as shown in Figure 19, PEU-RNN and PEU-RNNS
are of poor performance. In addition to the different characteristics of these two datasets
mentioned in Section 5.2.1, the quantity and the quality of the datasets are also the matter of
poor performance. Figure 20a and b show the cumulative distribution functions of the dis-
tributions of number of successive check-ins in check-in sequences when τ is set to 3 and
6 hours, respectively, on both datasets. The training data in the Brightkite dataset has 90%
check-in sequence of only one check-in within 3 hours, but the Gowalla dataset has over
30% check-in sequences with more than one check-in. As mentioned in Section 5.2.1, in
the Brightkite dataset, user preference is of the most importance and the importance of suc-
cessive influence is low. The characteristic of the Brightkite dataset makes the strength of
PEU-RNN and PEU-RNNS in extracting successive transition influence not significant in
recommending POIs in the Brightkite dataset. In addition, the number of check-in sequences
in the Brightkite dataset seems not sufficient for PEU-RNN and PEU-RNNS. The number
of training check-in sequences in the Brightkite dataset is 6189 within 3 hours and 5688
check-in sequence within 6 hours. On the other hand, there are 17160 and 16791, respec-
tively, check-in sequences in the Gowalla dataset within 3 and 6 hours, respectively. Due
to insufficient check-in sequences in the Brightkite dataset, PEU-RNN and PEU-RNNS
(deep learning based methods) does not perform well, agreeing with our intuition that deep
learning methods requires sufficient data for training. On the other hand, UGSE-LR (a

Figure 19 The result of Top-N recommendation in Brightkite
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Figure 20 The cumulative distribution function of the number of check-ins within different hours

feature-based method) still outperforms the other methods in most cases due to the consid-
eration of user preference, regional influence and successive transition influence together.
Besides, it’s worth noting that the POI2VEC is of the poorest performance in the Gowalla
dataset which conflicts with the experimental results in [9], and is of good performance
in Brightkite dataset especially when N is small. We argue that the conflict experimental
results in the Gowalla dataset is due to the scale of the Gowalla dataset used to conduct
experiments. Specially, only a portion of the Gowalla dataset (only one city) is used in [9],
while all the Gowalla dataset is used in our study. In the Brightkite dataset, when the number
of recommended POIs is small, POI2VEC outperforms others, but gets worse when N gets
larger. Since POI2VEC does not consider the distance constraint, it may recommend the
POIs far away from users, when the number of recommended POIs gets larger. On the other
hand, UGSE-LR can always perform well and stably due to the consideration of multiple
factors.

5.4.2 Effect of time constraint τ

We now investigate the effect of the time constraint of the interval between successive
check-ins (i.e., τ ). The settings of all methods are the same as those in Section 5.4.1.
The value of τ is set from 1 to 6 hour(s) and the experimental results are shown in
Figures 21 and 22. We can observe that the precision and recall decrease as the time con-
straint τ increases in both datasets. When the time constraint τ increases, an user may move
to a POI far away from the POI where the user is current located, thereby reducing the
performance of successive POI recommendation.

Figure 21 Time interval impact on accuracy in Gowalla
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Figure 22 Time interval impact on accuracy in Brightkite

6 Conclusion

In this paper, we proposed a feature-based and a latent factor-based successive POI rec-
ommendation methods, named UGSE-LR and PEU-RNN, respectively. UGSE-LR not only
considered user preference obtained by user-based collaborative filtering, but also con-
sidered the influence of the regions where POIs are located (i.e., regional influence) and
successive transition influence obtained from the user’s check-in records. On the other
hand PEU-RNN utilized the LSTM model to find the POI transition from historical check-
in records by using CBOW to encode users and POIs. Experimental results on two real
datasets showed that the precision and recall of UGSE-LR and PEU-RNN are higher than
the other existing successive POI recommendation methods. In addition, experiment results
also showed that PEU-RNN is suitable for the dataset with many check-in sequences, while
UGSE-LR is suitable for the dataset with moderate check-in sequences.
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5. Cho, K., van Merrienboer, B., Gu̇lçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase
representations using RNN encoder-decoder for statistical machine translation. CoRR, arXiv:1406.1078
(2014)
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