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Abstract One of the most crucial problem on training personalized response generation
models for conversational robots is the lack of large scale personal conversation data. To
address the problem, we propose a two-phase approach, namely initialization then adap-
tation, to first pre-train an optimized RNN encoder-decoder model (LTS model) in a large
scale conversational data for general response generation and then fine-tune the model in
a small scale personal conversation data to generate personalized responses. For evalua-
tion, we propose a novel human aided method, which can be seen as a quasi-Turing test,
to evaluate the performance of the personalized response generation models. Experimen-
tal results show that the proposed personalized response generation model outperforms
the state-of-the-art approaches to language model personalization and persona-based neu-
ral conversation generation on the automatic evaluation, offline human judgment and the
quasi-Turing test.
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1 Introduction

Conversational robot, which is also called conversational system, virtual agent or chatbot,
etc, is an interesting and challenging research of artificial intelligence. It can be applied
to a large number of scenarios of human-computer interaction, such as question answer-
ing, negotiation, e-commence, tutoring, etc. Conversational robot usually plays the role of
virtual companion or assistant of human [6]. For example, the virtual assistant on mobile
phone is one of the most popular application of conversational robot, such as, Apple Siri,1

Microsoft Cortana,2 Facebook Messenger,3 Google Assistant,4 etc. Recently, a Twitter bot,
which is called DeepDrumpf,5 can mimic to post tweets6 and reply the comments from
other users in Twitter using the Donald Trump-like language style. It is trained by using a
recurrent neural network (RNN) model on the large-scale data of speech transcripts, tweets,
and debate remarks from Donald Trump and thus can be seen as his personalized model for
posting tweets and replying comments.

For a same input message, responses with different personalities may lead to different
topic evolution and, in some cases, user experiences in conversations. Table 1 shows an
example of the responses of different personality to a same input message. From Table 1, we
can see that the Response 1 is a briefly definite response to the input message. The Response
2 is full of emotion and the Response 3 provides another suggestion on dressing. Obviously,
Response 2 and 3 are more likely to sustain the conversation, whereas response 1 may lead
to an early close. Moreover, the conversational robots which are learnt from the conversation
data like response 2 or 3 may bring a better experience to users. In addition, besides the
conversation generation, capturing human’s personality is also important in personalized
recommendation [8, 28, 29, 47, 50].

However, one of the most crucial problem for training a personalized response genera-
tion model for a conversational robot is the lack of large scale personal conversation data. To
address the problem, in this paper, we proposed a two-phase approach, namely initialization
then adaptation, to generate personalized response. Concretely, the proposed model is first
pre-trained on a large scale data of general single-turn conversations and then fine-tuned
on a small scale personal conversation data. Moreover, to address the problem of generat-
ing generic, vague or non-committal responses, such as “I don’t know”, “Me, too”, etc., of
the vanilla RNN based encoder-decoder model [1], we proposed a responding quality opti-
mization scheme, which is called Learning to Start (LTS) model, to generate relevant and
diverse responses. The contributions of this paper are three-fold:

– We proposed a two-phase approach, namely initialization then adaptation, to learn to
generate personalized responses for conversational robots.

– We proposed a quasi-Turing test method to evaluate the personalized response genera-
tion of conversational robots.

– The proposed approach outperforms the state-of-the-art approaches of language model
personalization and persona-based neural conversation generation.

1https://en.wikipedia.org/wiki/Siri
2https://en.wikipedia.org/wiki/Cortana (software)
3https://www.messenger.com/
4https://assistant.google.com/
5https://twitter.com/deepdrumpf
6Here, a tweet is a message sent using Twitter.
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Table 1 An example of the
responses of different personality
to a given input message

Input Is it a proper dress for the first date?

Response 1 Yep.

Response 2 Honey, it is very suitable!

Response 3 It is better to wearing a silk scarf.

2 Related work

In this paper, we focus on the use of neural network approach for personalized response
generation in open domain conversation systems. The related work includes three parts.

2.1 Open domain conversation generation

Open domain conversation is also called non-task-oriented dialogue or chitchat etc. [30]
proposed an unsupervised approach to modeling dialogue response by clustering the raw
utterances. They then presented an end-to-end dialogue response generator by using a
phrase-based statistical machine translation model [31]. Xing et al. [3] introduced a search-
based system, namely IRIS, to generate dialogues using vector space model and then
released the experimental corpus for research and development [2]. Recently, benefit from
the advantages of the neural sequence to sequence learning framework with neural net-
works [34, 37] and [36] had drawn inspiration from the neural machine translation [1,
10] and proposed an RNN encoder-decoder based approach to generate dialogue by con-
sidering the last one sentence and a larger range of context respectively. [33] presented
a hierarchical neural network, which is inspired by [35], to build an end-to-end dia-
logue system. Fleiss [16] focused on resolving the generating of safe, commonplace, high
frequency responses on the neural sequence to sequence model. Luan et al. [19] pro-
posed to integrate role-based information and global topic context into an RNN (LSTM
unit) based conversational model. Recently, Li et al. [18] captured the advantages of
the RNN encoder-decoder on response generation and the deep reinforcement learning
on the future rewarding to generate context-aware dialogues. Mei et al. [24] proposed a
dynamic attention mechanism based language model with topic reranking for conversation
generation.

2.2 Task-oriented dialogue generation

As concluded by [26], previous research on task-oriented dialogue generation mainly
focused on defining the generation decision space with the handcrafted features or statistical
models. However, they often failed to scale dialogue generation to new domains. To address
the domain transferring problem, the learning based approaches are proposed. Mairesse
et al. [22] proposed a statistical language generator which used a dynamic Bayesian net-
works to generate responses in dialogue. Mairesse and Young [21] learned to generate
paraphrases in dialogue through a factored language model that was training from the data
collected by crowdsourcing. Both of them are data-driven approaches and thus easy to
transfer the application domains. Neural network approaches show amazing results on dia-
logue generation, Wen et al. [42] proposed a statistical dialogue generator based on a joint
recurrent and convolutional neural network, which can directly learn from the data with-
out any semantic alignment or handcrafted rules. Further, Wen et al. [43, 44] proposed a
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semantically conditioned LSTM to generate dialogue response and then compared it with
an RNN encoder-decoder generator on multi-domain data to verify the ability of domain
adaptation of the two generators. Recently, Marjan et al. [23] proposed an end-to-end frame-
work with grounded knowledge base for generating task-oriented conversations without slot
filling.

2.3 Personalized response generation

The personalized response generation can be applied to either the task-oriented dialogue
systems or the open domain conversation systems. Kim et al. [15] utilized a personal knowl-
edge base and explored user interests to rank the responses in dialogue system. Bang et al.
[4] proposed an example based approach to extend the input message and utilized a personal
knowledge base for responses ranking in open domain conversation systems. Casanueva et
al. [9] proposed an approach to automatically gathering dialogue data from similar speakers
to improve the performance of personalized dialogue policy learning. Genevay and Laroche
[12] presented a source selection approach and a transition selection approach to overcome
the cold start problem for the new coming users of spoken dialogue systems. Mo et al. [26]
proposed a personalized POMDP [48] model using transfer learning for policy optimization
of task-oriented dialogue systems.

Recently, Li et al. [17] proposed a persona-based neural conversation model, which
is the state-of-the-art model on neural personalized conversation generation. Luan et al.
[20] took the seq2seq model and autoencoder model for response generation as two tasks
and proposed a multi-task learning framework for speaker role adaptation. Wang et al.
[40] proposed to use small scale style data and a topic embedding model to restrict the
style and topic of generated responses. Yang et al. [46] presented a similar framework
with our approach, but proposed a new adaptation mechanism by using reinforcement
learning. In this paper, we take these models as our baselines for personalized response
generation.

3 The proposed approach

The RNN based sequence to sequence (Seq2Seq) model is widely used to automatically
generate responses for conversational robots [16–18, 32–34, 36–38, 42–45]. It usually con-
sist of two parts, namely the encoder and decoder. The encoder is to convert the input
message into a vector which represents the semantic information of the input message. The
decoder then generates a response according to the encoding vector.

In the proposed approach, the RNN based Seq2Seq model with an optimized first token
decoding scheme is chosen as the basic response generation unit. We then proposed a
two-phase approach to generate personalized responses. As a general view, Figure 1 is the
framework of the proposed approach. As can be seen, the proposed approach consists of
two components, namely initialization then adaptation, the first one is used to pre-train the
response generation model on large scale general training data and the second one fine-tunes
the model on a small scale of personalized training data.

3.1 Initialization

Typically, the encoder and decoder are implemented by the GRU [10] or LSTM [14] based
RNN. The encoder reads the input sentence word by word and outputs the hidden state
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Figure 1 The framework of the proposed approach

of each word. These states are denoted as H which is also called annotations. Here, hi

represents the hidden state at time i and it is computed by its last hidden state hi−1 and the
input word at time i, Xi . Therefore, the hidden state at time t can be denoted as:

ht = f (ht−1, Xt ); H = {h1, h2, ..., hT } (1)

Here, T equals to the length (the number of words) of the input sentence and f is a non-
linear function which can be implemented as LSTM [14] or GRU [10].

The encoder then converts these hidden states to a context vector c as a summary of the
semantic information of the input sentence.

c = q({h1, h2, ..., hT }) (2)

Where, c can be implemented in many ways, for instance [37] set c = hT .
For the decoding process, si denotes the hidden state at time i. It is also computed by a

non-linear function f , of which the variables are the output yi−1 and the hidden state si−1
at last time. The hidden state of the decoder at time t is computed as:

st = f (st−1, yt−1) (3)

Note that the context vector c, which is generated from the encoder, is also used to initialize
the first hidden state [37] or all of the hidden states [1] of the decoder to make sure that the
decoder can be conditioned by the encoder. Therefore, the hidden state of the decoder at
time t is updated as:

st = f (st−1, yt−1, c) (4)

The output of the decoder at the state st is to map to a distribution over the vocabulary by
using the maxout activation function [13]

In this paper, we utilize a weighted sum scheme [1] to dynamically compute the ci for
each state in the encoding process as:

ci =
T∑

j=1

αijhj (5)

The weight αij of each hidden state hj is computed as:

αij = exp(eij )∑T
k=1 exp(eik)

(6)

Where, eij = a(si−1, hi) is a feedforward neural network, which can be called as the
alignment model or attention model [1, 7].

1431World Wide Web (2019) 22:1427–1446



3.2 Responding quality optimization (LTS model)

Through observing the responses generated by the RNN encoder-decoder model, we found
another problem that when the first token is decoded to a high frequency word in the vocabu-
lary, such as “We”, “I”, “Yes”, etc, it is tend to generate vague or non-committal responses.
This problem is caused by the intrinsic generation scheme of the RNN encoder-decoder
model, as it uses a special character “</s>” to generate the first word in decoding process.
However, “</s>” could not provide any learnable information for the decoding process.

To address the above problem, we proposed a learning scheme to generate the first
token in decoding process, namely Learning to Start (LTS) model. Unlike the classic RNN
encoder-decoder model, the LTS model is an independent feedforward neural network that
is proposed to specially predict the first token using the context vector that is generated from
the encoding process. The LTS model can be represented as follows:

y0 = σ((σ (Wic) + bi)E + be) (7)

Here, c is the context vector which is computed by (5). E represents the word embedding
matrix of the decoder, bi and be are bias items. Wi is a learnable matrix that is trained to
model the conditional dependence of the context vector c and the first word in decoding
process.

By ignoring the bias items, the (7) can be transformed as follows:

y0 = g(c,E) (8)

We thus found that the LTS is to model the relation between the context vector c and the
embedding matrix E of the decoder. According to the distribution of the generation prob-
ability over the decoding vocabulary, LTS predicts the first token for the decoder and the
decoding process goes on until the finish of generating a response.

3.3 Adaptation

Due to the lack of personal conversation data for training personalized response generation
model, we first train the neural response generation model in a large scale general conver-
sation data, which is collected from Chinese online forums and totally includes 1,154,268
one-to-one post (input message) and response pairs.7 1.15 million one-to-one post and
response pairs are used for the general training and the vocabulary contains 35 thousand
tokens. We then fine-tune the general response generation model by using a small scale of
personal conversation data to make the pre-trained model adapt to generate personalized
responses. For adaptation, we invited 5 volunteers, each of which shared 2,000 messages of
their chatting history from the use of instant messaging service without any privacy informa-
tion. Towards the size of general training data, the size of the personal conversation data is
extremely small. Therefore, in the adaptation phase, all the initial parameters of the person-
alized response generation model are shared from the “Initialization” (Section 3.1) phase.
Moreover, different vocabularies are used for encoding and decoding respectively to gener-
ate personalized responses. Here, taking the general training data as the source domain and
the personalized training data as the target domains, the personalized response generation
thus can be seen as a domain adaptation process.

7Here, one-to-one means one post is only corresponded to one response.
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4 Experiments and analysis

4.1 Data

The 1.15 million post (input messages) and response pairs is used for training the proposed
LTS model as a basic response generation unit. The rest 4,268 post and response pairs are
used for the sampling of test set. As the proposed personalized response generation approach
includes two phases, there are two separate training data sets, namely general training data
and personalized training data (See Figure 1). We collected 2,000 single-turn conversation
pairs from each volunteer. After training, we obtained 5 personalized responding models
that are corresponding to the 5 volunteers, respectively, for the test. Note that the personal
data is collected from the 5 volunteers for training the personalized responding models and
they are also the corresponding volunteers in testing the performance of the personalized
responding models. There is only one tester, who is familiar with the 5 volunteers and does
not participate in collecting the training data, is asked to judge whether the responses are
coming from the volunteers or not.

4.2 Parameter setting

The parameter settings in the response generation model are as follow: The dimension of
the hidden layer of the RNN encoder and decoder model equals to 1,024. The dimension
of the word embedding, which is obtained by using the word2vec toolkit [25], is tuned to
500. Here, the word2vec is trained on the SogouCS&CA corpus (2008 version),8 which is
widely used for Chinese text analysis [39, 49]. The size of SogouCS&CA dataset is 8.7GB.
It contains 1,520,842,220 tokens and the vocabulary size is 1,354,247. The LTP9 toolkit
is used to Chinese word segmentation for all the data. The encoder-decoder framework is
implemented by using Theano toolkit [5]. The batch size is set to 128. The iteration times
are set to 10 and 8 for the general training and personalized training respectively.

4.3 Baselines

We choose 6 baselines for the empirical comparisons. The first 4 baselines are for
personalized response generation, the last 2 baselines are for response generation.

– LMP: the state-of-the-art approach for language model personalization, which is
proposed by [41].

– PCM: the state-of-the-art approach for persona-based neural conversation model,
which is proposed by [17].

– STM: the state-of-the art approach for style and topic based response generation, which
is proposed by [40].

– NPM: a neural personalized model with domain adaptation for conversation generation,
which is the most relevant work proposed by [46].

– NRM: the first neural responding machine for short-text conversation generation,
which is proposed by [34].

– DRL: the first deep reinforcement learning based approach for open domain dialogue
generation, which is proposed by [18].

8http://www.sogou.com/labs/dl/cs.html
9http://www.ltp-cloud.com/
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4.4 Evaluation

Automatic evaluation of response generation is still an open problem [34]. The BLEU
score [27], which is widely used in machine translation, is not a suitable evaluation metric
for response generation. As the responses to the same post may share less common words,
it is impossible to construct a reference set with adequate coverage. Meanwhile, the Per-
plexity, which is an evaluation metric for language modeling, is also not reasonable for
evaluating the relevance between post and response.

To address the above issues, we design a novel human aided quasi-Turing test method
for evaluation. The diagram of the evaluation method is shown in Figure 2. The evaluation
method includes a volunteer, a tester and a chatbot. The volunteer and the tester are com-
municating through an instant messaging service. Here, the tester is told to chitchat with
a volunteer through the instant messaging service. Meanwhile, the tester do not know the
existence of the chatbot in all the chatting. In a conversation, each message from the tester
is sent to a volunteer and his/her chatbot simultaneously. The question mark “?” denotes
that the volunteer needs to randomly decide whether to respond by himself/herself or let the
chatbot sends its response. The Shelter in Figure 2 represents that the volunteer could not
see the response that is generated by the chatbot before it is sent to the tester. We aim to
reduce the preference of the volunteer to the response of the chatbot. When a conversation is
finished, the tester is asked to judge whether each response is from the volunteer or someone
else. We proposed the imitation rate, rimi to evaluate the personality of responses generated
by the chatbots. Here, we use nimi to denote the number of responses that are judged to be
from a volunteer, but are generated by his/her chatbot in testing. ngr is the total number of
responses that are generated by the chatbot in testing. The imitation rate is thus defined as:

rimi = nimi

ngr

(9)

We can obviously see from (9) that the imitation rate can reflect the ability of the chatbot
on imitating the personalized responding/language style of the volunteers. The larger the
imitation rate, the better a chatbot imitates its corresponding volunteer.

Volunteer

Chatbot

Tester

ChattingShelter
Random

Figure 2 The quasi-Turing test method for evaluating personalized response generation. Note that the
chatbot denotes to the corresponding personalized response generation model of the volunteer
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4.5 Experimental results

4.5.1 Offline human judgment result

The offline human judgment is to evaluate the ability of the response generation models
on imitating the personalized responding/language style of the volunteers. First, the tester
provides 50 input messages for testing. Second, the messages are then respectively sent to
the LMP, PCM, STM, NPM and OURS to collect personalized responses. Note that for
each approach, there are 5 personalized responding models, namely, LMP1 ∼5, PCM1 ∼5,
STM1 ∼5, NPM1 ∼5 and OURS1 ∼5. Therefore, given the 50 input messages, for each
volunteer, there are 5 groups of imitated (personalized) responses and each group contains
50 responses. For example, for volunteer #1, LMP1, PCM1, STM1, NPM1 and OURS1
respectively generate 50 responses to imitate the responding/language style of the volunteer.
Third, for each 5 groups of imitated responses, we ask the tester to judge whether a response
is from the volunteer or someone else. Table 2 shows the offline judgment results. As can be
seen, the proposed personalized responding models (OURS) outperform the four baselines.
It illustrates the generated responses by our proposed approach are more similar to the
volunteers than the baseline approaches. Meanwhile, besides the imitation rate, we also ask
3 annotators to judge the quality of the generated responses by scoring them from 0 to 2.
The average quality score of each model is shown in Table 2. We can see that although
the imitation rates are quite different among these models, the average quality score is very
close. It also reveals the average quality of neural generative conversation models based on
the sequence to sequence framework.

4.5.2 Response similarity between volunteers and models

To verify the ability of the personalized response generation models on imitating the per-
sonalized responding style of the volunteers, we calculate the cosine similarity10 of the
responses generated by LMP1 ∼5, PCM1 ∼5, STM1 ∼5, NPM1 ∼5 and OURS1 ∼5
with the responses given by volunteers(V)1∼5, respectively. For calculation, the 5 vol-
unteers are also asked to provide their responses of the 50 input messages given by the
tester. The generated responses by the LMP1 ∼5, PCM1 ∼5, STM1 ∼5, NPM1 ∼5 and
OURS1 ∼5 are then used in this section.

Formally, the response similarity can be represented as cos(vLMPi , vVi), cos(vPCMi , vVi),
cos(vSTMi , vVi), cos(vNPMi , vVi) and cos(vOURSi , vVi), where vLMPi , vPCMi , vSTMi , vNPMi

and vVi denote the vector representations of the responses generated by LMPi, PCMi,
STMi, NPMi, OURSi and Vi, respectively. Here, Vi indicates the i-th volunteer. Concretely,
the each element of vLMPi , vPCMi , vSTMi , vNPMi and vVi equals to the frequencies of uni-
gram or bigram that are counted from the corresponding responses, respectively. Figure 3
shows the results of the response similarity between volunteers and the response generation
models.

As can be seen from Figure 3, in unigram similarity, the PCM, STM, NPM and OURS

have close performance and they all outperform the LMP. While, in bigram similarity,
OURS outperforms the four baselines. It indicates that the proposed models can better cap-
ture the lexical characteristics of the volunteers than the baselines so that to generate more
volunteer-like responses in conversations.

10https://en.wikipedia.org/wiki/Cosine similarity
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Table 2 The experimental results of the baseline models (LMP, PCM, STM, NPM) and the proposed
personalized responding models (OURS) by human judgment

LMP1 PCM1 STM1 NPM1 OURS1

nimi 3 6 6 8 11

ngr 50 50 50 50 50

rimi 6%† 12%† 12%‡ 16%† 22%

avgq 0.53 0.58 0.54 0.58 0.58

LMP2 PCM2 STM2 NPM2 OURS2

nimi 5 8 10 8 10

ngr 50 50 50 50 50

rimi 10%† 16%† 20% 16%† 20%

avgq 0.56 0.57 0.57 0.54 0.56

LMP3 PCM3 STM3 NPM3 OURS3

nimi 1 8 8 9 12

ngr 50 50 50 50 50

rimi 2%† 16%† 16%‡ 18%† 24%

avgq 0.54 0.57 0.55 0.57 0.60

LMP4 PCM4 STM4 NPM4 OURS4

nimi 4 13 15 13 16

ngr 50 50 50 50 50

rimi 8%† 26%† 30%‡ 26%† 32%

avgq 0.55 0.56 0.58 0.58 0.57

LMP5 PCM5 STM5 NPM5 OURS5

nimi 4 10 16 18 18

ngr 50 50 50 50 50

rimi 8%† 20%† 32%‡ 36% 36%

avgq 0.57 0.54 0.53 0.57 0.59

avgq denotes the average quality score, which is judged by 3 annotators, of each model. † and ‡ denote
that the results of our proposed models significantly outperform the results of the baselines in statistics with
p < 0.01 and p < 0.05, respectively

Values in bold denote the best performance on each corresponding evaluation metrics

Figure 4 shows the impact of number of samples used for adaptation on the performance
of OURS1 ∼5.

We can see from Figure 4 that OURS2 and OURS5 need less adaptation samples than
other 3 models. The reason may be that the personalized data of V2 and V5 that are used for
adaptation is more major-specialized than other 3 volunteers. Therefore, the lexical features
of V2 and V5 are more distinguishable than other volunteers.

4.5.3 Quasi-turing test

We again test the imitating ability of the personalized response generation models through
an online real-time conversation. We ask the tester to use the 50 input messages to chitchat
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Figure 3 The unigram and bigram cosine similarity of the responses generated by LMP1 ∼5, PCM1 ∼5,
STM1 ∼5, NPM1 ∼5, OURS1 ∼5 and the volunteers(V1∼5), respectively

with the volunteers online. For each input message, a response is randomly chosen from
the 2 responses that are online generated by the chatbot and the volunteer. After the finish
of each conversation, the tester is asked to judge whether each response in the conversation
is from the volunteer or someone else. We also use imitation rate (See (9)) to evaluate the
performance of the chatbots on imitating the personalized responding/language style of the
volunteers. Table 3 shows the experimental results of personalized response generation by
the proposed approach.

We can see from Table 3 that our proposed models outperform the four baselines in
average imitation rate (Avgrimi

). To compare the results from Tables 2 and 3, we can see that
the average rimi scores (26.8%) of the 5 personalized responding models (OURS1-5) are
lower than those of the corresponding average imitation rate (35.46%) in the quasi-Turing
test as shown in Table 3. The reason is that in the quasi-Turing test, the responses generated
by a chatbot are randomly mixed with a volunteer’s responses in a conversation. Meanwhile,
the process of the quasi-Turing test is context-aware. Therefore, due to the “coherent model”
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Figure 4 The varying of unigram (a) and bigram (b) cosine similarity of the responses generated by
OURS1 ∼5 and the volunteers(V1∼5) on the number of samples used for adaptation. x-axis denotes the
number of samples for adaptation, y-axis denotes the cosine similarity

in mind, the volunteers may tend to coordinate the chatbots to complete a conversation. That
may increase the difficulty of the tester’s judgment.

4.5.4 Diversity result of generated response

Besides the above subjective and objective evaluations, we also compare the diversity result
of responses generated by these models. We utilized 4 objective evaluation metrics, namely
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Table 3 The online real-time conversation results obtained by the judgment of the tester

LMP1 LMP2 LMP3 LMP4 LMP5 Avgrimi

ngr 27 26 23 28 30

nvr 23 24 27 22 20

ntest 50 50 50 50 50

nimi 10 9 9 8 8

rimi 37.04% 34.62% 39.13% 28.57% 26.67% 33.21%

PCM1 PCM2 PCM3 PCM4 PCM5 Avgrimi

ngr 26 31 24 28 28

nvr 24 19 26 22 22

ntest 50 50 50 50 50

nimi 9 10 7 10 9

rimi 34.62% 32.26% 29.17% 35.71% 32.14% 32.78%

STM1 STM2 STM3 STM4 STM5 Avgrimi

ngr 25 27 23 31 29

nvr 25 23 27 19 21

ntest 50 50 50 50 50

nimi 8 9 8 10 10

rimi 32.00% 33.33% 34.78% 32.26% 34.48% 33.37%

NPM1 NPM2 NPM3 NPM4 NPM5 Avgrimi

ngr 32 27 28 24 28

nvr 18 23 22 26 22

ntest 50 50 50 50 50

nimi 12 10 9 7 10

rimi 37.50% 37.04% 32.14% 29.17% 35.71% 34.31%

OURS1 OURS2 OURS3 OURS4 OURS5 Avgrimi

ngr 29 26 21 33 33

nvr 21 24 29 17 17

ntest 50 50 50 50 50

nimi 11 9 8 13 9

rimi 37.93% 34.62% 38.10% 39.40% 27.27% 35.46%

ngr and nvr represents the number of responses that are generated by the chatbot and the volunteer respec-
tively. ntest is the total number of input messages for testing. nimi denotes the number of responses that
are generated by the chatbot but are judged as the responses of the volunteer by the tester. rimi denotes the
imitation rate, which is defined in (9)

distinct-1 4, which are calculated by the ratios of unique unigram, bigram, trigram and
four-gram. Taking the distinct-1 as an example, it equals to the number of distinct unigrams
generated by a specific model divided by the total number of distinct unigrams generated
by all the compared models. The experiment results are shown in Table 4.
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Table 4 The diversity result of the generated responses of the baseline models (LMP, PCM, STM, NPM)
and the proposed personalized responding models (OURS)

LMP1†
PCM1†

STM1†
NPM1†

OURS1

distinct-1 0.32 0.36 0.31 0.34 0.38

distinct-2 0.75 0.78 0.75 0.78 0.83

distinct-3 0.83 0.88 0.82 0.87 0.91

distinct-4 0.88 0.92 0.88 0.90 0.97

LMP2†
PCM2‡

STM2†
NPM2†

OURS2

distinct-1 0.30 0.33 0.29 0.31 0.35

distinct-2 0.68 0.70 0.67 0.69 0.78

distinct-3 0.73 0.77 0.71 0.75 0.87

distinct-4 0.78 0.81 0.77 0.79 0.88

LMP3‡
PCM3‡

STM3†
NPM3†

OURS3

distinct-1 0.17 0.20 0.16 0.16 0.20

distinct-2 0.53 0.59 0.50 0.52 0.61

distinct-3 0.65 0.73 0.62 0.65 0.75

distinct-4 0.77 0.81 0.73 0.75 0.83

LMP4†
PCM4†

STM4†
NPM4†

OURS4

distinct-1 0.17 0.19 0.17 0.19 0.21

distinct-2 0.48 0.52 0.50 0.52 0.56

distinct-3 0.57 0.61 0.55 0.60 0.65

distinct-4 0.65 0.68 0.62 0.67 0.71

LMP5†
PCM5†

STM5†
NPM5†

OURS5

distinct-1 0.31 0.35 0.31 0.34 0.38

distinct-2 0.63 0.70 0.63 0.68 0.75

distinct-3 0.78 0.82 0.79 0.82 0.86

distinct-4 0.81 0.86 0.82 0.84 0.88

† and ‡ denote that the results of our proposed models significantly outperform the results of the baselines
in statistics with p < 0.01 and p < 0.05, respectively

Table 5 The BLEU scores of the NRM, DRL and LTS for response generation

BLEU-1 BLEU-2 BLEU-3

NRM 0.5283 0.0553 0.0013

DRL 0.5195 0.0674 0.0035

LTS 0.5303 0.0816 0.0063

Here, BLEU-1, BLEU-2 and BLEU-3 denote the unigram, bigram and trigram overlaps between the
generated response and the reference, respectively

Values in bold denote the best performance on each corresponding evaluation metrics
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Table 6 The evaluation results of manually assigning the quality scores of the generated responses by NRM,
DRL and LTS

0 1 2 Mean Agreement

NRM 66% 17% 17% 0.51 0.230

DRL 67.3% 13.2% 19.5% 0.52 0.242

LTS 59.7% 21.7% 18.6% 0.59 0.206

The agreement is calculated by using the Fleiss’ kappa [11]

Values in bold denote the best performance on each corresponding evaluation metrics

From Table 4, we can see that our model significantly outperforms all the baselines in
the four evaluation metrics. It illustrates that in the generation of personalized responses,
our proposed approach is less likely generating vague or generic responses than baselines.

4.5.5 Responding quality optimization result

To verify the effect of the proposed responding quality optimization scheme, namely Learn-
ing to Start (LTS), we empirically compare the performance of LTS and two baselines. They
are neural responding machine [34], which we call it NRM for short, and deep reinforce-
ment learning based dialogue generation model [18], which we call it DRL for short. All the

Table 7 The sampled cases of
the same inputs with different
responses generated by the
vanilla RNN based
encoder-decoder model for
response generation (Vanilla) and
OURS1-5 models

Input

(What is the best programming language?)

Vanilla (I don’t know.)

OURS1 (Japanese.)

OURS2 (Generally speaking, it is Java.)

OURS3 (The computer language.)

OURS4 (I don’t need.)

OURS5 PHP ◦ (PHP.)

Input

(Which is better, Java or C?)

Vanilla (Both of them are good.)

OURS1 (That one.)

OURS2 Java ◦ (Java.)

OURS3 (It’s okay.)

OURS4 (I don’t know.)

OURS5 C ◦ (C.)

Input

(Where can I find a girl?)

Vanilla (I am.)

OURS1 (What are you doing?)

OURS 2 (I will find.)

OURS3 (I don’t know.)

OURS4 (Are you looking for?)

OURS5 (Mine.)

1441World Wide Web (2019) 22:1427–1446



Ta
bl
e
8

T
he

sa
m

pl
e

ca
se

s
th

at
ge

ne
ra

te
d

by
ou

r
pr

op
os

ed
ap

pr
oa

ch
an

d
ba

se
lin

es
on

te
st

se
t

M
od

el
1

M
od

el
2

M
od

el
3

M
od

el
4

M
od

el
5

In
pu

t

It
w

as
a

he
av

y
ra

in
la

st
ni

gh
t.

T
he

co
ur

se
is

so
di

ff
ic

ul
t!

W
he

re
ca

n
I

re
nt

a
ho

us
e?

W
ha

ti
s

th
e

be
st

tim
e

to
sl

ee
p?

T
ra

in
tic

ke
ts

fr
om

B
ei

jin
g

to
Sh

an
gh

ai
.

L
M

P

It
w

as
ok

ay
at

ni
gh

t.
It

’s
al

lr
ig

ht
.

Te
ac

he
r

sa
id

I
kn

ew
th

is
.

B
uy

fo
r

m
e?

It
’s

ab
ou

to
ne

pe
rs

on
.

PC
M

7
pm

,2
04

.
So

,d
on

’t
th

in
k

to
o

m
uc

h.
H

ow
is

it?
W

ha
td

o
yo

u
w

an
tt

o
ac

hi
ev

e?
M

ay
be

,i
t’s

ju
st

th
e

se
co

nd
.

ST
M

A
tn

ig
ht

?
It

w
ill

fo
rm

al
ly

st
ar

tt
om

or
ro

w
.

T
ha

nk
m

e.
7

pm
.

T
he

se
ar

e
20

0.

N
PM

I
do

n’
tk

no
w

.
It

’s
a

sm
al

lw
or

ld
.

W
ha

t’s
th

e
m

at
te

r?
It

w
on

’t
be

gi
ve

n
at

ni
gh

t.
G

o
to

st
ud

y.

O
U

R
S

It
w

as
ok

ay
at

ni
gh

t.
It

’s
to

o
di

ff
ic

ul
t.

G
iv

e
yo

u
m

y
ag

en
cy

.
8

pm
.

I
on

ly
kn

ow
C

tr
ip

is
fa

st
.

1442 World Wide Web (2019) 22:1427–1446



three models are trained using the 1.15 million post and response pairs. 1,000 posts (with
43,008 responses) and 1,000 posts (with 42,422 responses) are randomly sampled from the
dataset released by [34] as development set and test set, respectively. Both the development
and test set have no overlap to the training data. It means that for 1 post, there are about 42
responses in average as the reference. We use the BLEU score [27] and manual labeling for
evaluation. Tables 5 and 6 show the BLEU score and manual labeling results of response
generation, respectively.

As can be seen, the proposed LTS model outperforms the NRM and DRL model in all the
3 BLEU scores. For the evaluation of manual annotation, we recruit 3 annotator to assign
a score (0,1 or 2) for each generated response. Here, 0 means bad, which indicates that the
generated responses have some errors in grammar or fluency, or they are not relevant to the
post. 1 means neutral, which represents that the generated responses are fluent and have
no grammar errors. Meanwhile, they are suitable responses in some particular scenario. 2
means good, which denotes that the generated responses are quite appropriate to the post.
They are also fluent and have no grammar errors. Moreover, the generated responses are
independent to scenario.

We can see from Table 6 that the proposed LTS model outperforms the NRM and DRL
model in the human evaluation. It illustrates that the LTS model can generate more fluent
and relevant responses than the baselines. Meanwhile, we also find that DRL model trained
on the experimental data generates more good and bad responses than LTS model.

4.5.6 Qualitative analysis and discussion

For qualitative analysis, Table 7 shows the sampled cases of the same inputs with different
responses generated by the vanilla RNN based encoder-decoder model for response gen-
eration (Vanilla) [1] and OURS1-5 models. The Vanilla is also trained in the 1.15 million
one-to-one post and message pairs.

As we can see from Table 7, OURS2 and OURS5 are good at responding the messages
in the programming topic. It is because the background of volunteer 2 and 5 is computer
science. There are a lot of content about programming, algorithm, database, etc, in their
personal conversation data. For the third sampled conversation, OURS2 and OURS5 gen-
erate a generic response, which is quite close to the response generated by Vanilla. It reveals
that the proposed personalized responding models can effectively capture the personality
of responding/language style and generate personalized responses. However, when an input
message is out of domain (a special language style), the personalized responding model tend
to respond as a general neural response generation model (the Vanilla). It also illustrates
that the proposed model can adopt the advantages of the general neural response generation
models in personalized response generation.

Furthermore, we also randomly sample responses generated by baselines and our
proposed model for qualitative analysis as shown in Table 8.

Here, Model 1 to 5 denote the models that trained on the personalized data of the corre-
sponding volunteers. From Table 8, we can see that the responses generated by our proposed
model are more fluent and readable than those generated by the baselines.

5 Conclusion and future work

In this paper, we proposed a two-phase approach, namely initialization then adaptation,
to generate personalized responses for conversational robots. The proposed approach is
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first pre-trained on a large scale general single-turn conversation data and then fine-tuned
on a small scale personal conversation data. Taking the general conversation data as the
source domain and the personal data as the target domain, the proposed approach thus can
be seen as a domain adaptation process. The proposed personalized response generation
framework can partially overcome the shortage of the lack of personal conversation data
for training and fully adopt the advantages of general neural response generation mod-
els. Meanwhile, we also proposed a novel human aided method to evaluate the ability
of the personalized responding model for imitating the responding/language styles of the
volunteers. Experimental results show that the proposed personalized responding model
outperforms the state-of-the-art language model personalization and persona-based neural
conversation model on the automatic evaluation, offline human judgment and quasi-Turing
test.

In future, we first plan to explore the user profiling information for the personalized
response generation. Second, we plan to design an evaluation method to directly compare
the performance of different models in the online real-time conversation.

Acknowledgements This paper is supported by NSFC (No. 61502120, 61472105, 61772153) and Hei-
longjiang philosophy and social science research project (No. 16TQD03).
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