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Abstract In modern access control systems, the Policy Decision Point (PDP) needs to be
more efficient to meet the ever-growing demands of Web access authorization. Present
XACML implementations of access control systems follow the same architecture based on
ABAC, but varies in the design of PDP and other components. As a critical process in PDP,
evaluation of attributes is often implemented in a simple and inefficient way in real applica-
tions. In order to improve the PDP evaluation performance, we propose a novel distributed
PDP model, called XPDP, based on the combination of two-stage clustering and reordering to
eliminate the limitation of computational performance of a single PDP. Firstly, we cluster rules
based on subject and use spectral clustering method to perform further clustering. Secondly,
the clusters of rules are reordered before evaluation for every inbound request based on
similarity. Finally, we introduce a distributed PDP architecture for distributed deployment,
providing with a brand new perspective of designing access control systems. A comparison in
evaluation performance between the XPDP and the Sun PDP, as well as SBA-XACML, is
made. In the experiment of using 10,000 synthetic access requests with three practical policy
sets, the XPDP is 3.26 times faster than Sun PDP, and is 1.85 times faster than SBA-XACML.
Experimental results show that the PDP evaluation performance can be prominently improved.
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1 Introduction

Access control mechanism can be found everywhere in modern internet circumstances. The
most significant purpose of applying access control is that it protects private information [7].
More specifically, it limits internet users to access resources within the boundaries determined
by certain rules. The application of access control has been consistently enlarging in recent
years thanks to the fast advancing technologies such as cloud computing [23], ubiquitous
computing [29] and e-business [28], which all involve access control as an important part to
support resource sharing, privacy protecting, etc. The access control efficiency influences the
time delay of most behavior involving communicating with a traditional Web server. In the
application of cloud computing, the flexible and efficient handling of authorizations is
particularly important to exploit the full benefits of cloud computing where cross-domain
collaborations occur on-demand [27]. Therefore, it is a significantly meaningful issue to
enhance the efficiency of access control.

Nowadays, the most widely adopted model based on the evaluation of policies is XACML
(eXtensible Access Control Mark-up Language). It is an authorization policy language in
XML format based on the Attribute-Based Access Control (ABAC) model [22]. It specifies the
form of rules and policies, their hierarchy order and the details in the evaluation process. A set
of rules constitutes a policy, which is a key element in the whole access control process.
Requests are evaluated by the evaluation module, known as PDP (Policy Decision Point),
based on rules. By authenticating a user and then using their locally assigned attributes or
rights to make access decisions according to locally defined policies [14], the response to that
request is made in form of saying Permit orDeny, which means whether the request is granted.

Despite its importance, high performance policy evaluation has received little attention.
Most prior work on policies focuses on correctness issues [13] and security issues. It has been
a pressing issue to find a best solution in PDP evaluation, or at least achieve better efficiency to
meet the needs of growing demands. The efficiency of present policy evaluation suffers mainly
because (of)

& The expansion of policies [5].
& The present algorithms for evaluation are primitive. In order to find the applicable rules,

the worst case requires going through on the whole set of rules, which is extremely time
costing when there is huge number of rules. There must be a new algorithm, or even a new
structure of policies to boost this process.

& The situation of processing highly concurrent requests. Emerging applications, such as
real-time enforcement of privacy policies in a sensor network or location-aware computing
environment, require high throughput [1]. The idea of keeping the whole set of policies in
a single PDP assures the robustness of evaluation, but this is only practical for the era when
there are not too many requests. Also, relying on high performance computers to deal with
large number of requests at the same time is neither economic nor helpful. This conser-
vative solution would finally reach its limit when there is not faster computer. To scale
beyond the capacity of a single server, distributed policy evaluation algorithms are needed,
to coordinate concurrent processing of requests on multiple servers [2].

In actual applications, traditional systems fail to make use of some obvious features in a
policy set, therefore are far from efficient in terms of evaluation delay. Consider a course
selection system of universities. During the time before or at the beginning of a semester, all
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students from different grades shall pick up some courses. Some courses are designed
exclusively for students in a certain grade or major. For example, an art major freshman
requesting to select a course in advanced computer programming is usually prohibited. Other
limitations also exist. At the same time a professor is requesting to see how many students
have already selected his course, and he has the permission to access such data as a teacher.
The subject of requests decides many behaviors a student can’t have. The common problem
seen in this access control application is when a large number of requests from teachers and
students are sent to the server simultaneously, the efficiency of access control process is being
so strictly tested that many systems yields high response delay. While the evaluation engine is
dealing with a queue of requests, it doesn’t have any precedent awareness of the features in
those requests, such as the identity of the requester and what action is being requested in
general (selecting a course or checking the number of student), despite those features are rather
evident, which makes the sequent compares of attributes in requests and rules a necessity. It
could be more efficient if the evaluation engine has some precedent knowledge of the features
of policies or requests.

The clustering method to avoid inapplicable matches is now regarded by many scholars as
an effective way to improve evaluation efficiency. The difficult part of this method is that the
clustering of policy set has to be precise and effective so that the process of evaluation knows
which cluster is to be matched with requests. In fact, there are many algorithms that perform
almost perfect clustering on policy set, many algorithms from the field of machine learning
have been experimented to cluster policies, but the bottleneck is to find an approach effective
in both clustering and evaluation.

This paper makes the following contributions.

& A preprocess for policy sets, the two stages of clustering, is presented, which precisely
divides the policy set into several groups. This method overcomes the weakness of
previous clustering approaches, since specifically the second phase clustering based on
the similarity of rules, does not need to consider the intrinsic features of policy set and can
directly and effortlessly perform the clustering, while also allowing to later retrieval
according to the distinct features of access requests. This process ensures the applicable
rules to be evaluated as early as possible, thus reduces the number of rules needed to
process an access request, yet introduces little extra computation.

& A novel PDP model, called XPDP, is designed, which takes the advantage of clustered
rules, also introduces reordering for clusters, and is capable of reducing the number of
rules needed to evaluate an access request significantly. Comparing to the Sun PDP and
SBA-XACML, our XPDP only needs 13.8 times less of rules and takes 3.6 times less of
time to process a request.

& A distributed PDP architecture is presented. This eliminates the present limitation of
computational performance of a single server. This is also an efficient distributed archi-
tecture for XACML access control system, partly because by performing clustering it
enables distributed PDPs to work independently, overcoming the problem of communica-
tion between PDPs.

This paper is organized in the following order. Section 2 reviews the most perva-
sive methods to improve the efficiency of evaluation. Section 3 concludes our
proposed approach, including clustering and distributed PDPs. Section 4 describes in
detail about clustering to divide a policy set. In Section 5, we propose a framework of
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distributed PDPs based on the existing clusters of policy set. Section 6 makes a
comparison in evaluation performance between our proposed distributed PDP model
and the Sun PDP, as well as the SBA-XACML, and evaluates the actual improvement
on PDP evaluation performance. Finally, Section 7 presents some conclusions and
directions for our future work.

2 Related work

The pursuit of better efficiency is always a strong desire to computer scientists. People
achieve better performance by constantly modifying present algorithms, proposing new
framework, etc. In the field of policy evaluation efficiency, scholars are researching
from different perspectives. Keeping still the evaluation process but trying to modify
the policy set, either by reducing the redundancy or changing the order of rules, has
been researched recently. Others started from proposing brand new evaluation pro-
cesses without modifying policy set.

2.1 Reordering and clustering

The basic manipulation in evaluation process is comparing attributes between requests and
policies. To diminish the times of comparison is a simple yet effective method to improve
efficiency, given that the prevailing Sun PDP is still using brute force to match rules. Guided
by this idea, many techniques have been applied, including reordering and clustering of
policies, etc.

S. Marouf [16, 17] proposed an adaptive framework for reordering and clustering. The
reordering approach changes the priority of rules based on the frequency of successful hit of
rules according to evaluation history. The more frequently used rule has a greater possibility to
be used by subsequent requests as well, so by increasing its priority and reordering, the
expected number of evaluations decreases. However, the simple reordering method still lacks
an analysis of overall layout of policies, and the past request data in a particular period of time
may not be representative enough to reflect all situations in any time. The assumption that
requests are distributed in a consistent pattern is also dubious.

Liu et al. [11] proposed a new evaluation framework based on clustering methods
to cut down policy-scale. They mainly focus on the preprocessing on policies and
rules, which specifically contains two stage clustering, the first stage coarse-grained
clustering and the second stage fine-grained clustering. The pre-clustered and
approximate-applicable policies are assigned to evaluate a particular request, which
greatly reduces the number of comparisons.

Previous work using clustering techniques is mainly based on different subjects of
requests. It is very effective when there are several evident clusters of subjects,
therefore accurate clustering of policies could be possible. For example, in course
selection system, it is obvious that although there are many subjects, the clusters of
subjects are students and teachers. Comparing with brute force evaluation, clustering
certainly do improve the efficiency by rearranging the layout of rules and policies, yet
heavily rely on explicit classification between subjects and is also difficult to imple-
ment. That is to say, where there is not an effective classification of subjects,
clustering could be difficult and meaningless.
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2.2 Decision diagram

By constructing a decision diagram (or matching tree) to facilitate the evaluation process is
widely researched (e.g. [12, 13, 22, 24]). A matching tree is a tree structure, which has one root
node and multiple terminal nodes. It converts the process of comparing each rule to walking
through a decision path from the root to one of the terminal nodes. Specifically, for a request,
extract its attributes and compare them with nodes step by step from root to terminal nodes.
When it reaches a terminal node, the decision would be made. The critical intuition behind this
method is to avoid the evaluation of every rules in the policy, thus improving the efficiency.

Liu proposed a new scheme for evaluation called the XEngine [13]. It first performs
normalization and canonical representation on policies as preprocessing. The idea of policy
normalization is to convert a policy with a complex logical structure to an equivalent policy
with a simple logical structure [13], i.e., a numeric value produced by enumeration. Then the
normalized policies are fitted into a decision diagram (matching tree). Besides the improve-
ment of efficiency by applying matching tree, the evaluation within a PDP based on numerical
form of policies is more efficient than processing textual strings. The experimental results
show that its efficiency is orders of magnitude faster than that of Sun PDP [13]. But its
weakness is that they do not support obligations due to the conversion of all
combining algorithms to first-applicable [20]. Also, experiments by Azzam Mourad
show that the main overhead reduction is achieved when all the requests (i.e. up to
100,000 requests) are received, converted and loaded in the memory at the same time
[20], which is not practical in real-life application.

A modified XEngine is proposed by Pina Ros, which combines theMatching Tree with the
Combination Tree to accommodate the XEngine to policy sets with different combination
algorithms, and it also support obligations [24]. To be specific, they use the Matching Tree to
find all applicable rules, then use those applicable rules to consist the Combination Tree, based
on which the decision is made. The Combination Tree preserves the original hierarchy
of combining algorithms [24], therefore it supports all combining algorithms. Howev-
er, just like XEngine, storing all policies in the memory and expecting all requests
received at the same time is not practical, also the efficiency comparing to the
original XEngine is sacrificed for generality.

2.3 Others

Mourad et al. in 2015 proposed an SBA-XACML framework [20]. It transforms intermediate
representation of XACML constructs into readable mathematical syntax based on set theory,
and then converts it to SBA-XACML. Policies are compiled to the policies based on SBA-
XACML and are stored. In real-life application, a coming request is preprocessed by compiler
at the beginning, presented in SBA-XACML. Then it is evaluated by those compiled policies.
Taking advantage of the mathematical operations provided by the proposed semantics, the
performance of SBA-XACML surpasses that of XEngine. Another improvement is that it
supports all combination algorithms. Based on this framework, Azzam Mourad introduces a
novel set and semantics based scheme that allows to detect flaws, conflicts and redundancies
between rules by offering new mechanisms to analyze the meaning of policy rules through
semantics verification by inference rule structure and deductive logic [6].

Kolovski et al. [8] presented a formalization of XACML using description logic (DL),
which is a decidable fragment of First-Order logic. Mapping XACML to description logic
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allows to use off-the-shelf DL reasoners for analysis tasks and consequently make it capable of
detecting redundant rules. Removing redundant rules from XACML policies may potentially
improve the performance of XACML policy evaluation. However, this hypothesis is yet to be
validated [12]. Also as is pointed out by Azzam Mourad et al. [6], they do not support multi-
subject requests, complex attribute functions, rule conditions and Only-One-Applicable com-
bining algorithm.

The idea to optimize the police set by removing all the redundant policies is discussed by
many scholars. Wang et al. [30] proposed a framework called MLOBEE (multi-level optimi-
zation based evaluation engine). They prove that redundant policies can be deleted since doing
this would not change the result of evaluation. They implement rule refinement to lessen scale
policies and adjust the sequence of the rule. But the general method of refinement is not
elaborated. Deng et al. [4] proposed an algorithm to automatically remove all the redundant
rules. Although experiments explore that the efficiency does improve, and applying this
method to present access control system doesn’t require structural modification on PDP, the
refinement of policies does not make a significant difference comparing to other frameworks,
such as the XEngine.

3 Approach overview

Our main work includes the preprocessing of a policy set by clustering and the design of a
distributed PDP system. The clustering of a policy set has the following two phases of
manipulation on rules.

& Clustering based on the attribute subject. Rules with the same subject are put together as
the first phase clustered sets {S1,…, Sn}, where Si is a set of rules having the same subject.

& Spectral clustering on each Si. This phase has many details including the definition and
numerization of rules similarity, and using a graph to describe the relationship among
rules. The spectral clustering algorithm is applied to perform a cut for the graph and the
consequent subgraphs consist the clusters we need.

When constructing a distributed PDP system, the basic idea is to have many PDPs
connected to internet, processing requests that are only applicable to the policy set in a
particular individual PDP, therefore greatly shrink the set of rules to be evaluated. Each Si in
{S1,…, Sn} is placed in a single PDP. Within an individual PDP, a request is preprocessed for
the PDP to obtain basic features of the request, and then evaluated by a relatively small range
of rules, which are nevertheless very likely to be applicable to the request. Specifically, the
most likely applicable cluster is taken ahead of all other clusters to evaluate the request, and if
the evaluation turns out to be inapplicable, then the second most likely applicable cluster of
rules is used, and so forth. The evaluation process based on the second phase clustering are
shown in Figure 1.
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In most cases, if the clustering of rules is effective enough, so that the applicable rule is
found in the very beginning of evaluation, this process shall be much more efficient than brute-
force search.

4 Clustering

Clustering of policies and rules based on subjects makes it possible to divide policy set into
different groups, therefore those groups can be easily assigned to different PDP. It makes a
significant difference in increasing efficiency by reducing the volume of policies in a single
PDP. However, if the whole policy set is divided and distributed in many PDPs, each of which
contains the only copy of policies and rules that other PDPs don’t have, it becomes very
difficult to accurately decide which PDP is to process the incoming request. More details about
dispatching requests are discussed later. Having realized the afterward problems in distributed
PDP application, we have to come up with a method to precisely divide a policy set.

Certainly any way of clustering is precise as long as the intersection of any two clusters is
empty (Imaging cutting meat from a roasted mutton leg, to cut it precisely means there is no
meat left after it is cut by a knife). In our case of evaluation system, the most precise clustering
is to divide policy set based on a particular attribute in policies or rules. For example, if the
attribute A of a rule equals Xi, where Xi ∈ X and X is the collection of all values for attribute A,
then the rule goes to cluster i. It is not only precise in clustering, but also straightforward in
evaluation. We can just find the corresponding cluster that has its attribute. Another advantage
is that the straightforward way of finding the corresponding policies is extremely essential in
the distributed PDPs. The first phase clustering mentioned in section 3 is based on this idea.

The volume of a clustered subset of policy set might still be too large to handle. Reviewing
the specific attributes in a policy set, there are many rules applicable to a single request.
Therefore, more careful clustering is necessary to reduce the volume of the final applicable
policies. The next step of clustering needs to dig deeper to divide the subset based on its intern
features.

This two-phase clustering is expected to divide the whole policy set into two-layer subsets,
which is precise in division, straightforward in finding corresponding subset, and very swift in
evaluation because of its relatively small volume of individual subset of rules.

4.1 Clustering based on subjects

In XACML policies, a rule is the elementary unit of a policy, and the atomic element in PDP
evaluation process. That is, a collection of rules can be used to evaluate, but components
within a rule can’t be evaluated separately. When a rule is evaluated, its content is the specific
element being evaluated. Therefore, the similarity of rules is based on the similarity of the
components within rules.

The main components of a rule can be described as a tuple shown in Formula 1.

Rule ¼ target; condition; effectð Þ ð1Þ
The effect of a rule is either Permit or Deny. This attribute indicates the consequence of the

evaluation for the rule. The condition of a rule represents a Boolean expression, the value of
which is determined by checking certain attributes in a request, and it has to be True in order to
be applicable to requests. The target is defined as a tuple shown in Formula 2.
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target ¼ subjects; actions; resourcesð Þ ð2Þ
Besides condition, the target of the rule also determines whether this rule is applicable. The

three attributes denote what subjects it serves, what actions it may permit or deny, and what
resources it authorizes. Only when all three attributes are applicable to the request can we say
the rule to be applicable. The difference between target and condition is that the condition
further refines the applicability established by target. That is, target is the more fundamental
element in analyzing the applicability.

According to Formula 1 and 2, a rule is simply presented in Formula 3.

Rule ¼ subjects; actions; resources; condition; effectf g ð3Þ
The rule evaluation basically relies on comparing attributes in rules with requests. The

XACML defines the rule as a tuple, composed by target, effect and condition. As what has
been introduced, the target is composed by three attributes: subject, resource and action.
Classification based on attribute subject is ideal for performing the first phase division of
rules, because it denotes the object who issues the request, and statistically in many applica-
tions it is an efficient way to create relatively small number of categories comparing to the
number of rules. The result of this step is groups of rules which have the same subject. More
than one group should be assigned to a PDP. In view of the independency of every distributed
PDP, the group of rules are literally a policy set. For example, ten rules in a policy set are
shown in Figure 2.

In this case, Rule1 andRule3 have the same subject Tester, therefore they are clustered into
the same group.

Rule4 and Rule7 also have the same subject, so finally there are four rules clustered in this
group with subject = Tester. The first phase clustering on these ten rules based on subject has
the output as shown in Figure 3.

4.2 Clustering based on similarity

In section 4, the rules with the same subject has been grouped and assigned to different PDPs.
However, in many XACML policies, the condition that many rules share the same subject is
common. Consider the application where a subject is allowed to access many resources, even
after work in section 3.1, it is still necessary to have further clustering on a single PDP.
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Rule ={Tester,Write,D:/coder,11:00<Time<18:00,permit}
Rule ={Coder,Open,D:/coder,09:00<Time<11:00,deny}
Rule ={Tester,Write,D:/text,07:00<Time<08:00,permit}
Rule ={Tester,Read,D:/coder,13:00<Time<18:00,d

5

6

7

8

eny}
Rule ={Coder,Write,D:/document,15:00<Time<18:00,permit}
Rule ={Developer,Read,D:/text,11:00<Time<12:00,deny}
Rule ={Tester,Open,D:/coder,10:00<Time<13:00,permit}
Rule ={Administrator,Read,D:/text,11:

9

10

00<Time<15:00,deny}
Rule ={Coder,Read,D:/coder,01:00<Time<07:00,deny}
Rule ={Developer,Open,D:/document,00:00<Time<01:00,permit}

Figure 2 Example of rules



Similar rules usually are all applicable to a certain request. To be specific, two rules are
similar which have the same subject, resource or action. When the resource attribute of a
request is book, other rules whose resource is not book are not applicable at all. So, when
similar rules are clustered, requests just need to be evaluated by its corresponding cluster. So
far, we have depicted the basic features of this new concept, that is, the similarity of rules.
Previous researches in XACML policy also have this concept. Pranthima Rao et al. [9, 10]
used the notion of policy similarity measure. Specifically, if the similarity score of policies P1
and P2 is higher than that of policies P1 and P3, it means P1 and P2 may yield the same
decisions to a larger common request set than P1 and P3 will do. This is similar to our original
goal of proposing similarity of rules.

4.2.1 Definition of similarity

The value domains of attributes in a rule are generally discretely distributed. Reviewing the ten
rules listed in Figure 2, for instance, the value of subject is assigned from the set {Tester,
Coder, Developer, Administrator}. If the similarity degree is defined from 0 to 1, considering
Rule1 and Rule3, because the value of subject in these two rules is exactly identical, the
similarity degree should be the maximum, or 1. This gives an idea of measuring the similarity
of all attributes in two rules. Note that this definition of similarity is based on the rules having
the same subject, therefore the similarity of the subject is neglected. To compare the similarity
of two rules which are not included in the same subset produced in section 4.1 is meaningless.

The Attribute Similarity Degree (ASD for short) of corresponding attributes from two rules
Rule1 and Rule2 is defined in Formula 4.

ASDAtrribute ¼ 1 AtrributeRule1 ¼ AttributeRule2ð Þ
0 AtrributeRule1≠AttributeRule2ð Þ

�
ð4Þ

Based on the definition of ASD, we define Rule Similarity Degree (RSD for short) to
calculate the similarity of two rules. The first phase clustering has produced subsets of rules
which all have the same subject, thus the similarity of rules is determined by the action,
resource and condition attributes. The RSD of two rules is defined in Formula 5, where w1,
w2, w3are three weights.

RSD Rule1;Rule2ð Þ ¼ w1∗ASDaction þ w2∗ASDresource þ w3∗ASDcondition ð5Þ
Nevertheless, the similarity of rules should not simply be the sum of the three ASD.

Reviewing the process of matching a request and a rule, the component attributes are
compared in sequential order, that is, subjects in requests and rules are first compared, then
the actions, resources and conditions are compared. Consider that attributes at different
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Figure 3 First phase clustering



sequential position in rules require different cost when evaluating, for example, if actions in
requests and rules are different, then the resources and conditions will not be compared
because the rule is not applicable at all. With this regard, the weight of earlier compared
attribute should be bigger than that of the later compared attribute. Using these weights, a
numeric similarity measurement can be calculated.

In the definition above, assume that w1 = 0.6, w2 = 0.3, w3 = 0.1. Take the three rules in
Figure 4 as an example.

The RSD can be calculated in Formulas 6, 7, and 8.

RSD Rule1;Rule2ð Þ ¼ 0:6� 0þ 0:3� 1þ 0:1� 0 ¼ 0:3 ð6Þ

RSD Rule1;Rule3ð Þ ¼ 0:6� 1þ 0:3� 0þ 0:1� 0 ¼ 0:6 ð7Þ

RSD Rule2;Rule3ð Þ ¼ 0:6� 0þ 0:3� 0þ 0:1� 0 ¼ 0 ð8Þ

4.2.2 Spectral clustering

The definition of RSD provides a useful lightweight approach to pre-compile a set of policies
and returns the most similar policies for further exploration [10]. Given that the similarity of
any two rules is already available in numerical form, the second phase clustering turns to be a
mathematical problem. The optimized solution to this problem entails the detailed information
about the features of data.

To have a clear sight of this problem, take the rules in Figure 2 as an example, after
calculating the RSD of any two rules, the relationship of rules is described as a weighted
undirected graph, shown in Figure 5. Note that Rules with RSD = 0, or say edges with
weight = 0 are neglected.

The weighted graph consists of all rules and edges that link rules and shows the overall
similarity. The basis of clustering in this case is to divide the graph ensuring that the rules
within a cluster are tightly linked, or say the edge have large weights, while the rules in
different clusters are loosely linked. Therefore, the clustering problem is converted to a graph
partitioning problem based on the numeric format of similarity.

In fact, the task of finding good clusters has been the focus of considerable research in
machine learning and pattern recognition [21], and have already been researched by many
scholars. K-means and spectral clustering are among the algorithms which are most commonly
used to solve this problem, and they are largely adopted in many applications such as
computer vision. Spectral clustering has some significant advantages, it is reasonably
fast especially for sparse data sets up to several thousands, and it is empirically very
successful in graph partitioning.
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Here the spectral clustering method is adopted, which is effective to the circumstance where
the graph is sparse in edge and plentiful in number of nodes. Spectral clustering helps to
produce a cut for the graph which ensures the cut divides the policy set into many policies. A
Tutorial on Spectral Clustering [15] gives the specific steps and details about the implement of
spectral clustering. We use the weighted adjacency matrix W to describe the similarity graph.
The steps of applying spectral clustering are described in Algorithm 1, shown in Figure 6.

This algorithm is effective in performing a good cut to the similarity graph and resulting
clusters of rules. To understand what this algorithm really does besides all these matrices
computations, and why these computations are rational to perform clusters, Formula 9 explains
the reason.
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0.90.9
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Figure 5 Weighted graph of rules

Figure 6 Algorithm for Spectral clustering



RatioCut C1;…;Ckð Þ ¼ 1

2
∑
k

i¼1

W Ci; �Cið Þ
Cij j ð9Þ

For clusters of rules C1, …, Ck produced by a particular clustering algorithm, the
quality or reliability of its clustering output is measured by function RatioCut. A good
clustering plan has a relatively big value of RatioCut. This function is straightfor-
wardly defined to evaluate a clustering plan, yet there is still difficult to understand
the definition. The expression W Ci; �Cið Þ is defined as the sum of weights on edges
which across Ci (the ith cluster) and all other clusters �Ci.

For example, in Figure 7, to compute the sum of weights on edges across cluster 2 and the
other two clusters, we have the computation which is shown in Formula 10.

W C2; �C2ð Þ ¼ w A;C½ � þ w B;C½ � þ w F;G½ � þ w F;H½ � ð10Þ

This example illustrates how to calculate W Ci; �Cið Þ. Starting from Cluster 2, there are four
edges highlighted in red, linking to nodes in other clusters. W Ci; �Cið Þ equals the sum of the
weight on these edges.

As is already discussed, weight on edges linking two clusters is supposed to be as small as
possible, which means the sum of weight on such edges, as numerator in RatioCut, is expected
to be small.

To ensure every cluster has a reasonable number of rules, which is also the goal of
clustering rules, for if too many clusters are produced with few rules in each one of clusters,
the efficiency will drop to the case of no clustering at all. So the RatioCut has a denominator
defined as the number of rules in a cluster Ci.

The problem amounts to find a possible clustering plan with the smallest RatioCut.
But this is still an extremely difficult task if a method of simply traversing all
possible clustering cases to find the smallest RatioCut is used. The spectral clustering
algorithm describes that the function optimization problem is strongly connected to
the eigenvalue of Laplacian matrix. By decomposing the Laplacian matrix and com-
puting eigenvalues, the problem of finding optimizing clusters is transformed to
cluster a few eigenvectors of the Laplacian matrix.
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4.2.3 Centroid of cluster

To identify the most likely applicable cluster of rules for a coming request, we compare the
similarity of the request with all clusters to find the most similar cluster. But doing this is not
practical since the cost of comparing all clusters is as much as the cost of evaluation process in
Sun PDP. It is ideal to compare only one or few rules in every cluster to determine the
applicable cluster, which is the centroid of a cluster. The centroid of a cluster is a particular rule
which has the maximum similarity to every rule in that cluster. The centroid of a cluster shall
be as representative as possible. Given a cluster of rules produced by spectral clustering, which
all have the same subject, we can find the value of each attribute that most frequently appears
in all rules of the cluster. For example, in a cluster, the value that appears for the most times in
action is Read, so that the centroid of this cluster has value Read for action. Other attributes in
the centroid can be obtained in the same way.

5 Distributed PDPs

To further improve the evaluation efficiency, we propose a distributed PDP model to support
the new approach by using clustered policies. Requests are dispatched by the Request Dispatch
Center to the applicable PDP according to their subject. Note that for the rules whose subject
appears for only few times in the whole policy set, they are gathered as a singleton and are
assigned to a singleton PDP. The distributed PDP model is described in Figure 8.

When a sub PDP receives its request, it calculates the request and determine which policy is
most possibly applicable to the request. This is accomplished by calculating the similarity
between requests and centroids. The two-phase dispatch finally has refined the rules to a
relatively small subset for evaluation. Within a sub PDP, for most cases, the coming request is
only compared with most probably applicable set of rules, not the whole policy set until the
effect is determined. Comparing to the traditional PDP, where the most time delay is spent on
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sequentially compare of rules, the sub PDP benefits from clustering to reduce the size of rules
that are to be compared.

It is worthwhile to mention that every Sub PDP still holds a policy with complete
three-level of elements (policy set, policy and rule), therefore is compatible with
XACML standards. Specifically, when policy is assigned to a Sub PDP, the high-
level element (policy set and policy) are taken directly from the original policy, with a
portion of rules partitioned by clustering. This uniformity with standards ensures
optimizing evaluation without violating other mechanism for protecting security,
privacy, etc. Figure 9 shows an example of constructing two Sub PDP from a single
PDP in view of their policy.

We propose a new framework for request evaluation of individual sub PDPs as shown in
Figure 9.

In Figure 10, the Similarity Degree Calculator computes the similarity of the request and all
centroids. The Request Transponder then, according to these similarity degrees, sends the
request to a particular Rule Matcher, whose rules correspond to the centroid with the highest
similarity degree with the request. Some details are introduced below.

& The Similarity Degree Calculator is the component which picks up the most likely cluster
of rules for the request. The decision is made based on the features of request and the set of
centroids of clusters, which is representative enough to indicate the most obvious features
of rules within its cluster. Centroids are calculated in section 4.2.3. Actually, it is a specific
node in the graph which is the most tightly linked by the nodes around it, therefore such
nodes among all the nodes in the same cluster are the most representative of their features,
in this case, the value of attributes. The highest similarity degree denotes that this cluster of
rules is the most likely set of rules that are applicable to the present request. Reviewing the
definition of RSD, the similarity degree between the request and centroids of clusters of
rules is similarly defined, whereas the attributes to be compared come from centroids (a
rule) and a request instead of another rule.

& The Request Transponder uses the similarity degree from Similarity Degree Calculator to
determine a certain Rule Matcher to evaluate. The Rule Matcher whose set of rules most
likely applicable to the request is chosen.

& The Rule Matcher is the only component in the whole system that does the traditional
evaluation. The policy on which the Rule Matcher is based is relatively small in volume
therefore fast in comparing attributes.
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The first phase clustering based on the attribute subject greatly decreases the evaluation of
inapplicable rules. However, the efficiency of this evaluation engine suffers in the second
phase evaluation because the second phase clustering is not as precise as the formal clustering.
The slight deviation of evaluation is brought by two operations:

1) Spectral clustering. Consider that a node is linked by two clusters which are
symmetrical in layout and the weight of such a node on both sides is equal.
The partitioning may divide this node to the left or right cluster. However, in
evaluation, this will possibly intrigue an absence of rules because some rules are
too uncertain to make a precise cut.

2) Similarity Degree Calculator. Consider that a request is ambiguous in determining which
Rule Matcher is applicable, that is, the similarity degree of the request and more than one
set of rules are too close to accurately choose a Rule Matcher.

These problems are resulted by the roughness of clustering itself. In many appli-
cations, this slight deviation might be neglectable, for example the image identifica-
tion. But the PDP evaluation will suffer because the rearranged order of clusters
might make it worse than no sorting condition. For instance, the only applicable rule
might be in the last cluster to evaluate after the rearrangement. We need experiments
to find out the exact improvement of PDP evaluation performance and the chance for
such a situation to happen.

6 Experimental results and analysis

By implementing our distributed PDP model, called XPDP, and doing experiments on it as
well as other models, we manage to find out the actual improvement of evaluation efficiency,
and also the actual outcome of spectral clustering and its impact on evaluation. We design the
following three experiments.
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1) A comparison of the evaluation time of processing different number of requests ranging
from 2000 to 10,000 on the Sun PDP, SBA-XACML and XPDP, using policy sets VMS
[26], LMS [18] and ASMS [19] respectively.

2) A comparison of the average number of rules evaluated for one request using three policy
sets on the Sun PDP, XPDP (with one-stage clustering) and XPDP (with two-stage
clustering), using 10,000 synthetic requests.

3) In order to test whether the applicable rules are effectively gathered and evaluated early,
we present the statistical feature by counting the number of requests which stop at each
cluster that is sequentially evaluated, using 10,000 synthetic requests.

The experiments are carried out on a laptop computer running Ubuntu 17.04, with Intel
Core i5-4200H 2.8GHz processor and 8GB of RAM. Our proposed XPDP has been imple-
mented purely in C++. The performance of XPDP is compared and analyzed with the Sun
PDP [25] and SBA-XACML [20]. Although there is an available open source implementation
of the Sun PDP based on Java, we still constructed a C++ version of the Sun PDP, in order to
eliminate the extraneous effects of programming languages themselves as many as possible.
The reason why we think it is better to experiment in C++ lies in its controllability with respect
to the manual predictable garbage collection mechanism. Programmers have the ability of
controlling such activities by using C++.

Since we concentrate mainly on the comparison of algorithm efficiency, we do not
implement the process of XML analysis in the experiment, instead we simply use
textual policy set and file read manipulation. Every request is also presented as pure
strings in textual file.

6.1 Test policies

In order to simulate practical application scenarios, we select the following three XACML
access control policies from practical systems:

& Library Management System (LMS) [26]: The LMS provides access control policies by
which a public library can use Web services to manage books.

& Virtual Meeting System (VMS) [18]: The VMS provides access control policies by which
Web conference services can be managed. The VMS allows users to organize online
meetings in a distributed platform. When a user connects to the server, he/she can enter
or exit a meeting, make a statement and ask questions at the meeting, etc. Every meeting
has an administrator, whose responsibilities are initializing the meeting information
and setting some parameters (such as the meeting’s title and organization). The
administrator can also assign to every meeting a host, who is capable of selecting
a user to make a statement.

& Auction Sale Management System (ASMS) [19]: The ASMS provides access control
policies by which items can be bought or sold online. A seller initializes the lowest price
of and the description of an item which are allowed to be submitted when at auction. A
User can participate in the bidding process by bidding the item. The restriction to a user is
that there must be enough money in his/her account before bidding.

The policy of the LMS contains 720 rules, that of the VMS 945 rules, and that of the ASMS
1760 rules. In the light of actual requirement, the policies of the LMS, VMS, and ASMS need to
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be expanded to contain more rules. What we do is that according to the Cartesian product of
different subjects, actions, resources, and conditions in all rules of a policy [4], we construct
new rules and add them to the original policy. The number of rules in the policies of the LMS,
VMS, and ASMS is expanded separately to 3000, 6000, and 9000.

6.2 Generation of test requests

We analyze the policy set and obtained all distinct values ever appeared in all rules. These
values consist a domain for every particular attribute in a rule. Then we randomly pick one
value from each attribute domain and combine the values to form every single request.
Another detail here in experiment is to avoid the timing of reading from disk, which is very
slow comparing to the time used in evaluation and could severely interfere the results, so we
first read all these requests into main memory as a vector < request > .

6.3 Performance tests and comparisons

We define the similarity of rules in section 4.2.1. In the second phase clustering, we must
decide how many clusters of rules to be produced from spectrum clustering. Such clusters are
used to sequentially evaluate the request. If there are only a few number of them, the efficiency
of evaluation would suffer because the request may go through a great portion of rules. Say
there are three clusters, then every rule must at least go through a third of all rules regardless of
the distribution of rules within a cluster. Too many clusters are also not ideal, because every
cluster has a centroid to evaluate aiming to decide the order of clusters to later evaluation. An
extreme example would be to have the same number of clusters as rules. Obviously, the
process of computing request-centroid similarity and the clusters sorting is too time-consum-
ing, even no improvement comparing to brute force search. In our example of the definition of
similarity in section 4.2.1, any pair of rules has a similarity degree from the domain consisted
by totally eight distinct numbers. We consider this as a hint to produce eight clusters in our
experiment. Viewing the policy sets in our experiment, after the first phase clustering, we have
an average of 220 rules. These rules are put into eight clusters, with an average of 28 rules in
every cluster.

6.3.1 Comparisons of evaluation time

We make experiments on our proposed XPDP, as well as two popular PDP models, the Sun
PDP and SBA-XACML. We want to find out the exact improvement of our XPDP comparing
to other PDPs. Since the time of processing requests is a critical measure of performance, and it
has a significant impact on user experience, we choose the evaluation time as a target to
compare. The experiments are carried out on three PDP models, using different policy sets and
different number of requests. The experimental results are shown in the Figure 11. In the
implementation of the XPDP, we use eight clusters in the second phase clustering, as is already
discussed above, and we follow the approach above to obtain requests.

We learn from the Figure 11 that the XPDP has 8*N times of better time efficiency than the
Sun PDP (N for the number of all distinct subjects) regardless of computing eight similarities
between a rule and centroids. It is only achieved when always the first cluster is precise enough
for evaluation, that is to say, there is at least one applicable rule in the first cluster so that the
XPDP does not need to check the following clusters. The experiment shows less improvement
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of efficiency. The XPDP model achieves 3.26 times better time efficiency comparing to the
Sun PDP, and 1.85 times better time efficiency comparing to the SBA-XACML(see Table 1).

6.3.2 Comparisons of required rules to evaluate one request

By analyzing the internal processing, we obtain a hint to further improve the XPDP. Since the
XPDP is based on the clustering and reordering to reduce the number of matched rules, it is
straightforward to see the exact number of rules that is reduced by using the XPDP. We firstly
make an experiment on the XPDP only with the first phase clustering, then we add the second
phase clustering to it. This allows to illustrate the impact of two clustering steps respectively.
We use 10,000 synthetic requests to test the XPDP.

Table 1 Evaluation time and improvement ratio on 10,000 access requests

Policy # of Rules Processing time (ms) XPDP’s improvement ratio (%)

Sun PDP SBA-XACML XPDP Sun PDP SBA-XACML

LMS 3000 139 100 34 309 194
VMS 6000 314 202 81 288 149
ASMS 9000 536 347 111 383 213

Average Improvement Ratio: 326% (compare Sun PDP), 185% (compare SBA-XACML)
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Using clustering significantly reduces the number of rules evaluated for an access request.
The Figure 12 shows that by adopting the first phase clustering, the XPDP needs 4.6 times less
of rules and 13.8 times less of rules when using the second phase clustering. For example, In
the ASMS policy set, the Sun PDP needs to evaluate 4099 rules, but in the XPDP with two-
stage clustering, it only needs 296 rules. The improvement from the XPDP with one-stage
clustering to two stage-clustering is not as significant as from the Sun PDP to the XPDP with
one-stage clustering. Theoretically, if all requests stop at the very beginning of all eight
clusters, the improvement should be near 8 times less of rules, in contrast with only 3 times
less of rules. The experiment in 6.3.3 shows the number of requests which stop at each cluster
of the total eight clusters, and it gives explains to this discrepancy.

After experimenting on three policy sets, we drew solid lines between the data points on
Figure 12. Through the relatively smooth line, it shows that with the increasing volume of test
policies (expanded LMS, VMS and ASMS has 3000, 6000 and 9000 rules respectively), the
average number of rules evaluated for one request approximately satisfies linear growth. This
result supports our PDP model to efficiently work in other conditions with even larger volume
of policies.

6.3.3 Statistical features of evaluation process based on spectral clustering
and reordering

By reordering the groups of rules produced in the second phase clustering, the XPDP arranges
the particular group that contains the applicable rule to be evaluated ahead of other groups. We
make an experiment to find out how effective it works by arranging the groups queue. We test
the XPDP with 10,000 requests and record how many requests stop at the first cluster, the
second cluster, and so on. By saying “stop at a cluster”, it means this cluster contains the
applicable rules to the request and the evaluation decision is made at this cluster. The policy
sets and the approach to obtain requests are identical with the previous experiments
(Figure 13).

It is clear to see that most requests stop at the few front clusters of rules. The first and
second clusters are enough for half of the requests, making the following six clusters
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unnecessary to be evaluated. This experiment proves that the second phase clustering indeed
improves the efficiency by gathering the most likely applicable rules and let these rules to be
evaluated ahead of other rules.

7 Conclusions and future work

We introduce the present situation of XACML policy evaluation, which is heavily used in
many access control applications, and we come to realize that the present solution faces serious
challenge in terms of processing speed and efficiency. In order to alleviate present bottleneck,
we propose a new PDP framework, which consists of two stages of rule clustering and a
distributed PDP architecture. It is intuitive to think that by clustering rules, the number of
comparison between rules and requests is reduced, hence improves the evaluation perfor-
mance. The two-phase clustering aims to effectively divide the policy set into small groups.
The second phase clustering is based on similarity of rules, and after clustering it also
supports ordering of such groups of rules for evaluation. It combines the advantages
of both ordering and clustering, while in the same time it requires no cost of time on
clustering (it is preprocessed and the clustering results are fixed) and little cost of
time on ordering. Experiments show that our framework obtains significant improve-
ment over the widely used Sun PDP.

In the future, we are going to find a better measurement of similarity degree, establishing a
more accurate relationship-graph for rules. The present definition of similarity degree is mainly
based on string comparison, which is too simple to handle complicated situations,
such as multi-value attributes and conditions of a numeric range. For example, assume
that a rule which has condition as 18 < age < 30, and the other two rules which has
condition as 10 < age < 20 and 18 < age < 40 respectively, the current definition of
similarity degree would regard these two rules with the first rule as equally dissimilar.
The definition of similarity degree influences the ultimate improvement of efficiency,
so it shall be more carefully defined to satisfy more complicated situations with
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different features of policy set. From another perspective, we could preprocess the
policy set and eliminate both redundant and conflict rules from the policy set, which
could further improve the PDP evaluation performance [3].
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