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Abstract The pervasive use of cameras at indoor and outdoor premises on account of
recording the activities has resulted into deluge of long video data. Such surveillance
videos are characterized by single or multiple entities (persons, objects) performing
sequential/concurrent activities. It is often interesting to detect suspicious behavior of
such entities in an automated manner without any intervention of human personnel,
and to this end, anomalous activity detection from surveillance videos is an important
research domain in Computer Vision. Detecting the anomalous activities from videos
is very challenging due to equivocal nature of anomalies, context at which events
took place, lack of ample size of anomalous ground truth training data and also other
factors associated with variation in environment conditions, illumination conditions
and working status of capturing cameras. Though automated visual surveillance is one
of the highly sought-after research domains, use of deep learning techniques for
anomalous activity detection is still in nascent stage. Deep learning models like
convolution neural networks, auto-encoders, Long Short Term Memory network
models have achieved remarkable performance on different domains like image clas-
sification, object detection, speech processing, and expediting towards achieving
excellence in anomaly detection tasks. This paper aims at studying and analyzing
deep learning techniques for video-based anomalous activity detection. As outcome of
the study, the graphical taxonomy has been put forth based on kinds of anomalies,
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level of anomaly detection, and anomaly measurement for anomalous activity detec-
tion. The focus has been given on various anomaly detection frameworks having deep
learning techniques as their core methodology. Deep learning approaches from both
the perspectives of accuracy oriented anomaly detection and real-time processing
oriented anomaly detection are compared. This paper also sheds light upon research
issues and challenges, application domains, benchmarked datasets and future directions
in the domain of deep learning based anomaly detection.

Keywords anomalous activity detection . anomalymodeling . computer vision . deep learning .

real time detection . video surveillance

1 Introduction

Imagine the smart scenario in which the robot is proactively detecting all suspicious
activities performed by human, avoiding the crowd turbulences and violence before
they get worse, acting as a surveillance agent at public and private places, avoiding
the robberies/theft at sensitive areas by informing concerned authorities, and many
more. Though we may not have reached that stage yet, current technology is expe-
diting towards such amazing era with self-operated and autonomous robots working
continuously without human intervention. This survey talks about progress made by
newly emerged deep learning technology and other non-deep learning approaches in
the area of video based anomalous activity detection.

Automated visual surveillance as an active area in computer vision has been one of
the most sought-after research domains in academia and business firms due to its wide
applicability for monitoring of public and private places, crowd management, elderly
health care systems, defense systems, transportation systems. So, installing Closed
Circuit Television (CCTV) cameras has been popular option for monitoring the
ongoing activities and achieving global security. Due to less cost, ease of use and
customized design of cameras, global surveillance camera market is anticipated to
increase at compound annual growth rate of 16.6% from 2017 to 2025 [102].

This proliferation of cameras for effective monitoring has resulted into deluge of
video data. In 2015, around 566 petabytes of data were produced by video surveil-
lance cameras installed worldwide, and would generate 2500 petabytes of data daily
by the end of 2019 [19]. As continuous monitoring of such videos is beyond the
capacity of video operator personnel, there is a need of automated, online visual
surveillance system to operate continuously and detect suspicious/anomalous behavior
of objects and human from video in near-real time manner.

Due to its wide scope for providing global security, the past 2 decades witnessed
great improvements in video based anomaly detection approaches. Many review
papers have been put forth in the domain of human activity recognition, behavior
understanding, and crowded scene analysis which are directly or indirectly relevant to
video based anomaly detection [8, 40, 44, 46, 52, 72, 89, 90, 94, 104, 117, 124]. It
can be observed from the existing literature that no review paper has assessed deep
learning approaches for video based anomalous activity detection. The work by Chong
and Tay discussed the use of deep architectures for anomaly detection [14]. But it
covers a very short review of deep learning methods for anomaly detection. Therefore,
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the aim of this survey paper is to thoroughly analyze the progress made by deep
learning techniques in the field of video based anomaly detection.

The work is contributed as follows:

& The graphical taxonomy of video-based anomalous activity detection has been put forth.
& Thorough survey of state-of-the-art deep learning approaches for video based anomaly

detection is done.
& The trade-offs in anomaly detection from video are mentioned from both the view-point of

accuracy-oriented approaches and real-time processing oriented approaches using deep
learning techniques.

& Newly introduced datasets in the past lustrum, need and issues of anomaly detection are
explored.

& The current challenges, application domains and possible future directions in the domain
of deep learning applicable to anomaly detection are thoroughly put forth.

The roadmap of the paper is depicted in Figure 1. Section 2 deals with taxonomy of
anomalous activity detection from videos. Section 3 and 4 deal with traditional and deep
learning approaches for anomaly detection respectively. Application domains and
benchmarked datasets are briefly overviewed in section 5. Research challenges and future
directions in anomaly detection are enunciated section 6. Section 7 concludes the paper.
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2 Taxonomy of video based anomalous activity detection

“Anomalies are patterns in data that do not conform to a well-defined notion of normal
behavior” [10]. Anomalous activity is also known as irregular behavior, suspicious activity,
surprising event [36], unusual activity and so on. Anomalous events are context and subject
dependent, new, unknown, rare and therefore, challenging to detect from videos. Figure 2
depicts the taxonomy of video based anomaly detection. The taxonomy is depicted based on
various factors to be considered for performing anomalous activity detection.

2.1 Tasks

Anomalous activity detection focuses on finding whether the given video frame exhibits an
anomaly or not. It addresses the question, “Does the given frame contain an anomaly or not?”
Anomalous activity localization performs the localization of anomalies by determining actual
location of anomaly in the given video frame by bounding box. It addresses the question,
“Where is anomaly occurring in the given frame?” Localizing the groups performing activities
has been well handled by Lei et al. [92] using latent graph model. The tasks of detection and
localization have been jointly performed in [12, 16, 66, 79, 81, 114, 115].

2.2 Kinds of anomaly detection

& Referring to the literature [12, 15, 16], anomalous events can be classified into 2 classes’
viz. local anomaly and global anomaly. Local anomalous event differs from spatio-
temporal neighboring events and deals with finding how the activity of an individual
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varies from its neighbors (For example, driving a vehicle in wrong direction). Local
anomalous activity detection has been well investigated in [2, 45, 57, 84]. On the contrary,
global anomalous events globally interact with each other in an unusual way, even if any
local events are normal or anomalous individually i.e. multiple events though seem
normal, interact with each other in a suspicious/unusual manner (For example, car
accidents; crowd dispersion due to explosion). It also involves entities behaving in
suspicious manner and their collective activity is harmful, for example, violence and
robbery. Joint modeling of local and global anomalous events is done in [12, 78]. Both
[78] and [12] used spatio-temporal video descriptors for joint modeling of local and global
events. Cong et al. [15] used spatio-temporal features extracted using Histogram of Optical
Flow for detecting anomaly at multiple locations and scales. Their approach is based on
sparse coding technique.

& On the similar lines, Yu et al. [118] defined single point anomaly and interaction based
anomaly. Point anomaly can be mapped to anomalous activity of individual entity, termed
as single entity based anomaly. The interaction of group in unconventional manner maps to
interaction based anomaly. The variants of interaction based anomalies can be person
interacting with object i.e. human-object interaction (For example, person keeping the bag
unattended at public place), human-human interaction (For example, fighting People) or
object-object interaction (For example, vehicles colliding with each other). Complexity
and time required for anomaly detection and localization increases from anomaly due to
single entity to interaction based entities and finally crowd anomaly detection and local-
ization. This is well depicted in Figure 3.

& The definition of anomaly varies as the context varies. For example, car running on
highway is normal activity whereas running of the same car on pedestrian walkway is
anomalous one. This is known as contextual anomaly in which activity in specific scenario
is said to be anomalous according to some context, whereas the same activity is normal in
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other context. Therefore, activities related to each other by space and time forms the
context [123], and it is necessary to model the appearance features obtained from spatial
domain and motion features obtained from temporal domain in a joint manner. Contextual
anomalies are divided into spatial and temporal anomalies [48, 64]. By and large, spatial
anomalies are detected from single frame, whereas minimum two-frames (observations
collected over consecutive time stamps) are required for temporal anomaly detection.

2.3 Cameras deployed for surveillance

One of the important factors for accurately detecting the anomaly is the number of cameras
deployed for capturing the video and the view/angle at which the cameras are fixed. It’s
important to capture the videos from multiple views/cameras since there are chances that all
activities (normal/anomalous) may not be captured by single camera and framework may miss
detecting the anomalous activity if any. Sometimes, suspicious individual may also deliber-
ately avoid camera and hide the activities. These issues can be addressed by capturing the
multiple views of ongoing activities.

Multiple views can be captured from multiple cameras, sensors, or thermal cameras
[20, 87]. Once all the videos are obtained, video summarization can be performed by
removing redundant views and decision of anomaly detection is taken. Most research
work has focused on detecting the anomaly from single view camera [51]. Though the
use of multi-camera (multi-view) for anomaly detection is complex and challenging
task compared to the anomaly detection using single view, multi-camera anomaly
detection has potential to provide accurate detection capability since it helps to
capture the spatio-temporal features (context) of the video efficiently.

2.4 Target of interest for anomalous activities

Anomaly detection is applied to both indoor and outdoor environment, and therefore the
challenges associated with surveillance videos of such environments need to be handled
carefully. Indoor surveillance videos are characterized by change in illumination levels of
room, light perturbation, reflections in architectural components like windows or doors.
This kind of surveillance mainly covers offices, shops, ATMs, home-based healthcare
systems. On the other hand, outdoor surveillance videos involve change in illumination
levels based on time of day, weather conditions based on rain, snow and fog. This
surveillance covers both controlled environments and uncontrolled environments like
sports arena, crowd scenario, pedestrian walkways, transportation systems and many
more. In summary, target of anomaly detection can be individuals/groups, crowd scenar-
ios, transport domain, naturally or artificially occurring calamities like flood detection,
fire detection, etc.

2.5 Anomaly measurement and performance metrics

Different performance metrics are used for anomaly detection. This includes True positive
rate, False-positive rate, precision, recall. Confusion matrix depicting performance measures
used for anomaly detection is shown in Figure 4. For this, ground-truth is delineated as
follows. Presence of anomalous activity is understood as “positive” whereas, its absence as
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“negative” in the confusion matrix. Receiver Operating Characteristic (ROC) curves are
preferably used for visualizing and comparing the performance of classification
methods used in anomaly detection. It is a two-dimensional graphical representation
of true positive rate plotted on Y-axis and false positive rate plotted on X-axis. In
case of anomaly detection, it is used for checking the performance trade-off between
benefits of true positive (accurately predicted events) versus false positive (inaccu-
rately predicted events). Three more performance metrics are evaluated based on ROC
curves viz. Area under the ROC Curve (AUC), Equal Error rate (EER), and Equal
Detection Rate (EDR). EER is determined by the ratio of uncategorized frames when
FP rate = 1 – TP rate. The Detection Rate (DR) calculated at equal error rate is termed
as EDR. In case of real time processing oriented anomaly detection approaches,
frames per second (FPS), or time required for processing each frame in the video is
also considered. For evaluating the performance of the anomaly detection models,
various levels of detection are considered viz. frame-level, pixel level, duel pixel level
and object level.

– Frame-level anomaly detection: The whole frame is said to be anomalous if at least one
pixel for a test frame is predicted to be anomalous.

– Pixel-level anomaly localization: It measures the accuracy of spatially located anomalous
region as predicted by system. As mentioned by Li, Mahadevan, & Vasconcelos [51],
comparison of predicted anomalous pixels is done with the pixel-level ground truth; if
there is 40% overlap of predicted anomalous pixels with that of ground-truth region, then
given test frame is assigned true positive metric, on the other hand, frame is considered as
a false positive.

– Duel Pixel level (DPL): If some region detected by algorithm possesses some anomaly
and suppose this region (either obtained by frame-level or pixel-level) overlaps with
ground truth anomalous region, then that region is termed as “lucky guess”. Frame-
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level and pixel-level measures do not take into account this false region (“lucky guess”).
In order to detect such “lucky guess” region, duel pixel measure is introduced [79]. A
frame is said to contain anomalous activity, if following conditions are satisfied. (1) Frame
contains anomaly at frame-level. (2) There should be at least β% overlap of predicted
anomalous pixels with that of ground-truth region (3) In addition to anomalous region, if
unimportant regions are also considered as anomaly, then duel-pixel measure identify it as
true positive.

– Object level: Since pixel-level anomaly check for 40% overlap of predicted anomalous
pixels with that of ground-truth region, setting higher true positive rate may result into
large false positive rate. Therefore, object level anomaly localization [26] define true
positive rate by setting threshold Θ shown in Eq. 1.

Detected anomaly ∩ True anomaly
Detected anomaly ∪ True anomaly

≥Θ ð1Þ

3 Traditional approaches for anomaly detection

Anomaly detection from video is the widely investigated research topic since decade. Various
frameworks for tracking, surveillance, and anomaly detection in different domains have been
put forth till date for commercial use. IBM Smart Surveillance System (S3) [95] is the world’s
first, event based, distributed middleware to be used in surveillance system for video based
behavioral analysis, automatic scene monitoring, event based retrieval and real time event alert
system. PFinder [111] and W4 [33] are two systems applicable to be used for human behavior
tracking. PFinder tracks and interprets human behavior activities and it is applicable to be used
in video databases, wireless interfaces. W4 [33] system is operated by monocular video
imagery and works in an outdoor environment for detection and tracking of multiple
interacting people with other objects. Mobileye [116] is commercially available system for
vehicle tracking in the domain of transportation. It is used for detection of large objects lying
over small distances using monocular camera, however, its detection is limited to certain
classes of objects (vehicles and pedestrians). Fujitsu’s Intelligent Transportation System [27]
works at 30 FPS running on Intel Xeon 3.2 GHz with 4 GBmemory for detecting and tracking
vehicles and other entities at real time. Knight [86], automated surveillance system developed
at University of Central Florida works with multiple cameras for detecting and tracking the
objects. Apart from monitoring the sterile and dangerous zones, this system also summarizes
the key frames in video and delineates the textual information of the trajectories for the ease of
monitoring personnel.

Monitoring and tracking the human behavior and finding out the anomalies from surveil-
lance video are well investigated topics since decade. But, this topic has been investigated
more from the point of view of detecting anomalies without regard of how much length of
videos are buffered before processing starts, support for online learning, and time it takes to
detect and classify the anomalies. Very few papers serve as candidate for real-time processing
oriented models [55, 78]. As video based anomalous activity detection is the promising area in
Computer Vision, it has great applicability to be deployed in public places. Deploying such
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systems at public places requires the practical constraints like how much amount of video the
system buffers before processing, time required for detecting and classifying anomalies so that
detection would be performed in a timely manner to avoid mishaps proactively. It also requires
how much frames are processed per second, speed of streaming video and running
time of anomaly detection algorithms. Considering this factors into account, this paper
classifies the anomaly detection approaches into accuracy-oriented and real-time pro-
cessing oriented approaches. This would facilitate how to modify the traditional
approaches to real-time one or develop new models focused on real-time processing
so that these models are readily deployable in real life scenarios for anomaly
detection. So, state-of-the-art approaches of video based anomalous activity are mainly
divided into 2 categories as accuracy-oriented approaches and real-time processing
oriented approaches. The aim of accuracy-oriented approaches is to detect and localize
anomalies with a focus on accurately detecting the anomalies, whereas, real-time
processing oriented approaches focus on online processing of video frames in order
to detect anomalies in real time manner. The classification of video based anomaly
detection approaches is depicted in Figure 5. As majority of the traditional approaches
have focused on accuracy-oriented methods for anomaly detection, this paper covers
real-time processing oriented anomaly detection approaches both using traditional and
deep learning methods. But for comparing trade-off among accuracy and real-time,
significant accuracy-oriented approaches are also mentioned.

3.1 Real-time processing oriented approaches

The state-of-the-art traditional anomaly detection approaches are divided into 2 categories viz.
Local feature modeling methods and Holistic feature modeling methods. Local feature model-
ing methods learn the model based on local visual features to represent the events and apply
statistical, computer vision based techniques for detection of anomalies. This method assumes
video as a collection of entities. Holistic feature modeling methods assumes the entities in the
video as a whole and performs anomaly detection based on modeling the holistic features like
motion and density.
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3.1.1 Local feature modeling methods

Statistical approach The statistical method for describing anomalous activity is given as
follows [85]. In this, ℓ features are distributed with a probability density function
(pdf),g0(.), if they come from a nominal distribution. Anomalous instances are dis-
tributed with pdf, g1(ℓ). So, problem of anomalous activity detection amounts to
predicting whether an instance ℓ is distributed according to nominal or anomalous
pdf. This is given in an Eq. 2.

H0 : ℓ∼g0 :ð Þ versus the alternative anomalyð Þ H1 : ℓ∼g1 :ð Þ ð2Þ

If both pdfs are either known or can be estimated from training data, this task reduces to the
well-known Likelihood Ratio Test (LRT).

Non-parametric methods are not dependent on parametric model for learning motion and
appearance based features from video, and directly learns scene normality based on descriptor
instances. This approach uses normal data to train itself and follows unsupervised method of
training. Bertini et al. [6] put forth spatio-temporal volumes (STV)-based non parametric
method for detecting anomalies using unsupervised learning. To support multi-scale analysis,
descriptors are computed independently at different scales even if they are overlapped. For
detecting contextual anomalies, likelihood of descriptor based on neighboring cells is calcu-
lated. To detect whether video stream contains anomalous event, range query is applied on the
training data to check the neighboring cells. This is done using fast approximate nearest-
neighbor search built over k-means trees.

Apart from videos, anomaly detection is performed on hyperspectral imagery. Most
approaches working on hyperspectral imagery follow the statistical approach in which the
statistical model is built for background image and anomaly rate is calculated based on
deviation of the mean from the model [77]. Though this approach is unsupervised,
hyperspectral data merely satisfies the requirements of this approach. Therefore, Olson and
Doster [68] came up with approach to model the background. They have combined the kernel
Principal Component Analysis (PCA) with sub-sampled image and calculated reconstruction
error as a measure of anomaly detection. This method can be improved by jointly modeling the
spectral and spatial information of the hyperspectral imagery.

Sparse representation approach Lu et al. [55] put forth framework based on sparse
combination learning for speedily detecting the anomalies from surveillance video. The use
of small-scale least square optimization shortens running time for detecting the anomalies.

Bag of words (BOW) approach Roshtkhari et al. [78] handled the problem of detecting
contextual anomalies from video using probabilistic framework by measuring the likelihood of
STVs. New normal events are learned incrementally using online and unsupervised learning.
For faster detection of anomalies redundancy of spatio-temporal volumes is curbed by
grouping STVs using codebook construction and in turn, reducing the search time for
comparison of newly observed data with previously stored STVs.

Contextual information obtained from spatio-temporal volumes of video cubes is used for
detection of global and local anomalies in [53]. Activity pattern codebook is constructed to
infer global information from video whereas composition pattern dictionary is used to infer
salient patterns in STVs. Sparse reconstruction model built over learned dictionary is used for
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anomaly detection. In this paper, multi-scale analysis method is used for accurate localization
of anomalies in the video.

Cheng et al. [13] applied one class Support Vector Machine (SVM) with Bays
probability to detect anomalies from video and maximum subsequence search method
for anomaly localization. In this, events in video are represented using ‘subsequence’ -
subsequence of time series based spatial windows present in the proximity of each
other. Though the approach achieves comparable performance in terms of faster
processing, anomaly of small-scale and having short duration of occurrence is not
detected.

Feature learning approach For real time detection of anomalies from video, Wang et al.
[105] used low-level statistical features instead of relying on complex machine learning and
computer vision algorithms. This approach is not suitable for low density crowd scenes in
which behavior of individual entity is anomalous.

Leyva et al. [49] used optical flow features and foreground occupancy features for
extracting descriptive features from cell structure. After extracting compact set of
features, models like Gaussian Mixture Model (GMM), Markov chains and BOW
are used for anomalous video volumes. Finally, inference mechanism is used for
detection of anomalous activity using neighborhood cells described by local spatio-
temporal features.

3.1.2 Holistic feature modeling methods

Holistic & density based approach Marsden et al. [59] used holistic and density based
approach for crowd anomaly detection. In this, they have put forth scene-level holistic features
in terms of 4 dimensions as crowd conflict, collectiveness, motion speed and density. They
have used 2 classifiers based on availability of anomalous data. GMM is used for anomaly
detection only when normal training data are available. SVM – discriminative model is used
when both normal and anomalous behavior data are available. In this paper, authors used cross
scene training, i.e. for detecting anomalies in UMN datasets, training frames of other datasets
are used to generate Gaussian Mixture Model (GMM).

Trajectory based approach Motion instability defined in terms of direction randomness
and motion intensity has been used for discriminating anomalous behavior from
normal one using unsupervised approach [113]. This framework is useful for under-
standing how previously occurred observed patterns are deviating, but fails to detect
appearance-based anomalies. In order to perform faster processing, feature tracking
scheme is employed in this approach.

The majority of algorithms for anomaly detection work on decompressed videos
containing pixel-level information. In pixel domain, complex feature extraction pro-
cess requires huge amount of data and lowers the speed of execution. This problem of
decompressed videos worsens when thousands of long duration decompressed video
data are generated. Biswas and Babu [7] came up with new approach of utilizing
motion vector cues from H.264/AVC compressed videos. Hierarchical processing of
video frames is carried out using pyramid structure, namely motion pyramids. In this,
initial processing is done at coarse level and if anomaly is occurred, then processing
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moves to finer level i.e. actual frame level. This method of hierarchical processing
reduces computational overhead, and thus detects anomalies at real time. This ap-
proach works well only when motion is encountered in video and therefore can’t
detect appearance anomaly since it is purely based on motion vector.

3.2 Accuracy oriented approaches

The substantial amount of work has been put forth in accuracy oriented approaches for
anomalous activity detection. Some of significant works are based on Mixture of Dynamic
Textures (MDT) [51, 57], sparse representation technique [63], Gaussian process regression
[12], cascaded Hidden Markov Models [106], context-dependent approaches [123].

Most of the mentioned papers [12, 51, 57] train the model with normal videos and
build normalcy model. During testing phase, anomalous videos are introduced to
check the effectiveness of the model. This is known as unsupervised learning. Out
of these, [63] uses both supervised and unsupervised learning method for detection of
anomaly. In case of supervised learning, anomalous videos are also used during
training phase for improving the accuracy of detection. Similar to [63], weakly
supervised learning strategy is followed in [35]. In this paper, anomalous videos are
used in training phase. Both multi-instance learning model and dictionary learning
approach are used for anomaly detection.

3.3 Comparison of real-time processing oriented approaches and accuracy-oriented
approaches

Real-time processing oriented approaches rely on online learning i.e. time required for
frame processing is shorter than the time for processing the next frame in the
sequence. Such approaches continuously update themselves for identifying whether a
newly observed event is anomalous or not. In this, model parameters are updated
incrementally based on new training data.

On the other hand, accuracy oriented approaches use offline algorithms which assume that
all the training data are available in the outset. These methods use fixed parameters, predefined
anomaly thresholds or fine-tuned thresholds obtained from training of batch data. And
therefore, can’t be used for real time detection of anomalies.

The traditional approaches of anomaly detection rely on hand-crafted features for
extracting features from video frames, and require expertise to design the methods for
feature engineering. Such hand-crafted features being suboptimal are very specific to
the given scenario. Manually hand-crafted features are incapable to be used in cross
domain datasets and exhibit poor support for inferring semantic information. Such
approaches can’t be generalized to work with scenes having unknown anomalies,
adverse lighting conditions and drastic variation in motion and appearance of entities
in video. On the contrary, deep learning architectures like Convolutional Neural
Networks (CNNs), automatically learns and selects the features. Deep learning ap-
proach has ability to be generalized across multiple datasets i.e. once learning is done
on one dataset, the pre-trained deep neural network can be applied to other dataset,
called as Knowledge Transfer. Figure 6 the shows the difference between traditional
machine approach and deep learning approach.
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4 Deep learning approaches for anomalous activity detection

The availability of large datasets and high availability of GPUs at lower costs has resulted into
proliferation of deep learning techniques. State-of-the-art results have been achieved for image
classification [47], object detection [69, 70, 76], activity recognition [88, 108] egocentric
activity recognition [109], video hashing [91] and video captioning [29] using deep learning.
The reason behind success of deep learning approaches is that non-linear transformations
allow extracting useful and complex features from high dimensional data like video. This
triggered use of deep learning techniques for anomaly detection from videos.

As the use of deep learning approaches for anomaly detection approaches is still in nascent
stage, deep learning approaches from the viewpoint of both accuracy and real time are
described in this paper. Various deep architectures have been used for anomaly detection
viz. CNNs [47], Long Short Term Memory Networks [38], Auto-encoders (AE), and Gener-
ative Adversarial networks (GANs) [31].

Recently, vanilla deep models have been modified to solve the specific problem in hand. For
example, 2D CNNs or 3D CNNs are used for automatically describing the videos. Moreover, to
capture the temporal and spatial dynamics of long duration videos, different variants of LSTMs
have also been put forth [32, 54]. Temporal and Spatial LSTM (TS-LSTM) put forth byGuo et al.
[32] is a good candidate solution for detecting anomalies from video having long duration. It can
be noted that CNNs (ability to extract features automatically) and generative models (ability to
reconstruct the input pattern) have been widely used for anomaly detection.

The overview of variants of auto-encoders used in generative models is given here since
most of anomaly detection approaches are based on AEs.

The beauty of generative models is that they learn the distribution of data and
accordingly predict the future sequence of frame. Based on this principle, reconstruc-
tion error is generally used for calculating anomaly score. Each data instance xi is
reconstructed with help of learned network. The reconstructed output is given by oij.
Then reconstruction error is calculated as follows.

δi ¼ 1

n
∑
n

j¼1
xij−oij
� �2 ð3Þ

In the above equation, reconstruction error is denoted by δi, n denotes number of features
for defining data. The reconstruction error δi, gives an anomaly score. The learned auto-
encoder reconstructs the motion signatures from normal videos with low error but can’t
accurately reconstruct motions from anomalous videos. In other words, the auto-encoder is
used for modeling the distribution of the regular dynamics of appearance changes. Generative
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Figure 6 Traditional Machine learning versus deep learning methodology



models generally assume that the features come from a predetermined type of distribution and
therefore are likely to fail if the feature distribution changes.

& Sparse AE (SAE): Sparse auto-encoder is used for handling the transfer learning problem.
& Denoising auto-encoders (DAE): The Denoising auto-encoder is the extended stochastic

version of auto encoder. Auto-encoder can be converted to denoising auto-encoder by
adding stochastic corruption layer at the input of auto-encoder. For discovering robust
features and refrain hidden layer from learning the identity of the input, this auto-encoder
is trained to reconstruct the input while preserving the information of input and undoing
the effect of corrupted version of input. Denoising auto-encoder predicts the missing
(corrupted) values from the non-missing values (uncorrupted) for the given pattern. This
model requires manually devised noise model for training. In case of training with
unsupervised setting, it is very difficult to choose effective noise model for training.

& Stacked denoising auto-encoders (SDAE): Denoising Auto-encoders stacked together
forms the initialization of deep architectures. They have been extensively used for new
representation from videos. In order to denoise the corrupted (missing) values of the
inputs, denoising auto-encoders are trained locally.

& Marginalized Denoising auto-encoder (MDA): SDAE require heavy computational pro-
cessing and due to this, they are not efficient for large scale video analytics. Marginalized
SDAE (mSDAE) handles this issue of computational processing and scalability to support
high dimensional data. mSDAEs does feature learning in a faster way by using single layer
structure of auto-encoder and achieves balanced trade-off among performance and speed.

& Cascaded stacked auto-encoder: Stacked auto-encoder with more than one layer is known as
cascaded stacked auto-encoder. Stacked auto-encoders are useful for unsupervised feature
learning.

& Generative Adversarial Networks (GANs): GANs are used for generating data and follow
unsupervised learning. GAN can be considered as zero-sum two-player game. It consists
of 2 different networks namely generator G and discriminator D. During training phase,
generator’s task is to generate data (images) whereas discriminator’s task is to discriminate
the generated data i.e. identify whether data are real or generated from G. In this way,
discriminator is trained to output correct results.

& Conditional GANs: GANs can be modified to get conditional GAN by adding condition c
as input to both generator G and discriminator D.

& Convolutional Winner-take-all encoder (CONV-WTA): The CONV-WTA [58] uses unsu-
pervised approach for learning the sparse representations in a hierarchical manner. It is
non-symmetric in nature. Encoder part is built by stacking multiple CNN based Rectified
Linear Unit (ReLU) layers whereas decoder is built using linear deconvolutional layer.

4.1 Deep learning based Real-time processing oriented approaches

Initially, being the base of deep learning architectures, neural network models have been
employed for real time anomalous activity detection [79, 80]. Sabokrou et al. [79] used
independent feature learning method to model video using local and global descriptors using
sparse auto-encoder model in unsupervised way. They have used Gaussian distribution to model
normal video patches and Mahalanobis distance to denote anomaly measurement. On the similar
lines of previous work, Sabokrou et al. [80] put forth two anomaly detectors based on auto-
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encoder and sparse representation of video. As AE gives more reconstruction error for anomalous
patch and sparse representation of video implies chances of anomalies, the cascaded effect of both
detectors is used to detect anomaly at real time and achieves 120 FPS performance on UCSD ped
2 dataset using MATLAB 2015 running on 3.5 GHz CPU and 16 GB of memory.

4.1.1 Deep generative model

Fully convolutional neural networks have been used for anomaly detection for the first time by
Sabokrou et al. [83]. This method uses transfer learning approach for extracting features using
patch-operations from video frames with the help of CNN pre-trained on AlexNet [47]. The
extracted features are represented using sparse auto-encoders whereas Gaussian model is used to
evaluate anomalies. For automatically representing video frames and inferring appearance and
motion cues, 3D gradients obtained from PCANet are used and normal event is modeled using
deep GMM [26]. Deep GMM being scalable and generative in nature is constructed by stacking
multiple layers of GMM. For time efficient and accurate anomaly localization, deep cascade
approach based on competitive cascade of deep neural networks has been put forth by Sabokrou
et al. [81]. This approach works for real time anomaly detection in surveillance systems. It
combines two stages of deep stack auto-encoder and CNN. Intermediate layers of CNN or stack
auto-encoders act as sub-stages of a cascaded classifier. For achieving time-efficient anomaly
detection, shallow layers of cascaded DNN are used to detect background normal patches
whereas complex patches in the neighborhood of simple patches are detected by deep layers.
CNN is merely fine-tuned in this method and trained from scratch. Following the cubic patch
based approach based on cascaded classifies, Sabokrou et al. [82] used local and global video
descriptors for representation of video. Structural Similarity Metric (SSIM) is employed to check
the similarity among the patches. Two one-class classifiers for each descriptor are used for
anomaly detection based on weakly anomalous patches and strongly anomalous patches.

Wu et al. [112] used two stream network and Variational Autoencoder/Generative Adver-
sarial network for detection and localization of anomalies. The beauty of this system is that it is
based on client-server architecture and provides users with input channel for uploading the
local videos and also accepts input stream of video using online mode.

4.1.2 Spatio-temporal model

The lack of large set of anomaly representations for training, most anomaly detection approaches
follow unsupervised learning [113, 114]. The frameworks put forth by Giorno et al. [21] and
Ionescu et al. [99] work on unsupervised learning method when no training data are available.
Online anomaly detection based on unmasking technique is done in [99]. It works on the principle
of change detection. The unmasking technique involves binary classifier which iteratively
distinguishes between consecutive video frames while removing the discriminating features from
frames iteratively. The higher degree of training accuracy shows the presence of anomaly.

4.2 Deep learning based accuracy oriented approaches

4.2.1 Temporal regularity model

This model focuses on evaluation of CNN features across time to capture local anomalous
events from videos [74]. Ravanbakhsh et al. used CNN model pre-trained on object
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recognition to detect anomalies and employed two-channel approach for representing video in
terms of appearance and motion (optical flow) similar to [43, 57]. They put forth TCP
(Temporal CNN pattern) network in which Binary Quantization layer is placed as the last
layer of CNN to represent temporal motion patterns for anomaly segmentation. But, TCP
network is not end-to-end trainable and suffers from heavy post-processing and require
previously computed codebook of convolution feature maps.

Anomaly detection based on sparse coding approach [55, 120] involves building a dictio-
nary over normal events associated with small reconstruction error, whereas anomalous events
would result into large reconstruction error. Optimizing the sparse coefficients is time con-
suming and leads to bottleneck for dictionary learning. In addition, the neighboring frames
(temporally related) are assigned different sparse coefficients which leads to loss of temporal
coherence between those frames [55, 57].

In order to retain the locality information between the neighboring frames, tempo-
rally coherent sparse coding based method (TSC) has been put forth in [56] in which
similar neighboring frames are encoded with same sparse coefficients. This TSC is
mapped to its equivalent representation using stacked RNN (sRNN). Optimization in
the parameters of Stacked RNN alleviated the need to select the hyperparameters in
TSC and expedites the anomaly prediction due to use of shallow architecture.

4.2.2 Spatio-temporal model

Zhou et al. [122] pioneered the use of spatio-temporal CNN for anomaly detection and
localization for the first time. Fang et al.’s spatio-temporal anomaly detection model is inspired
from saliency information obtained from videos [24]. This model represents spatial informa-
tion (SI) obtained from salient regions of frame. Temporal motion aspect is represented by
multi-scale histogram optical flow (MHOF). Deep learning network – PCANet is used to
obtain features from SI and MHOF for anomaly detection.

Once the anomalous events are detected, then it is also necessary to explain why
the event is judged as anomalous. This is called as event recounting of anomalous
activities. The approach put forth by Hinami et al. [37] performs joint detection and
recounting of anomalous events by amalgamating the multi-task Fast-RCNN (MT-
FRCN) and environment-specific anomalous event detector. Currently, semantic
knowledge used for explaining the anomalies is restricted to actions. This deep
knowledge of visual concepts can be extended to explain more complex object
interactions occurring in the anomalous events. Sun et al. [93] fused one-class SVM
(OC-SVM) with CNN for designing end-to-end trainable model for anomaly detection.
For modeling the velocity and direction of entities in video, optical flow features are
fed as input to CNN. Their Deep One Class (DOC) model equipped with Radial Basis
Function (RBF) yields robust anomaly detection.

4.2.3 Representation learning model

Hu et al. [41] used deep incremental slow feature analysis network (D-IncSFA) to learn high
level abstraction from video and detect anomalies in one step. Global anomaly detection is
done using temporal modeling and local anomaly detection using multi-scale analysis based on
summed squared derivative (SSD) value. This approach does not reply on any classifier model
and does not use hand-crafted feature representation.
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Though deep learning models are good at extracting high level abstraction from the given
video, it is difficult to model regression tasks since labels do not hold enough capability to
fine-tune learning parameters. This problem has been addressed by deep metric learning
(DML) based on regression applicable to density based approaches [107]. DML not only
extracts density based features but also learns better distance measurement. Currently, this
method is shown to be applicable in congestion detection and crowd counting. But, it is still
difficult to train deep networks even if guided DLM is used.

4.2.4 Deep generative model

To learn the temporal dynamics in long-hours of video, end-to-end-trainable framework is
developed using convolutional auto-encoder having ability to learn local features and classifiers
[34]. Its working is based on following principle. Auto-encoder learns complex distribution of
normal patterns in video and reconstructs motion in normal patterns with low error and does not
reconstruct motion patterns in anomalous frame of video. The reconstruction error between real
frame and reconstructed frame gives the anomaly score. Similar to this approach, Medel and
Savakis [60] replaced the weights in fully connected LSTM with convolutional filters to yield
Conv-LSTM architectures and used it for predicting near future terms by encoding and
reconstructing video sequence. The predictive capability of network used in regulatory evaluation
algorithm detects the anomalies. Xu et al. [114] used three stacked denoising auto-encoders
(SDAE) to learn the joint representation of appearance and motion and three one-class SVMs for
calculating the anomaly scores. Use of optical flow maps makes this method to capture only the
short termmotion and can’t handle long-term temporal motion to infer useful regular pattern from
video. Apart from this, contextual information required for finding relation between consecutive
video shots is missing in their approach. Therefore, Feng et al. [25] came up with another
approach based on SDAE to handle the problem of short term clues and contextual anomalies.
They used LSTM for capturing long-term motion cues from video and Graph-based manifold
ranking scheme to reduce false alarms from spatial contextual information.

In order to automatically learn the feature representations from video in unsupervised
manner, Xu et al. extended their previous work [114] and put forth Appearance and Motion
DeepNet (AMDN) approach based on Stacked Denoising Auto-Encoders (SDAE) [115]. The
crux of the approach is double fusion scheme which performs joint representation of appear-
ance and motion characteristics of video and this scheme does not rely on object level analysis.
AMDN is not suitable for real time applications due to its heavy computational processing. In
addition, this scheme uses shallow networks and small image patches as network input, so
there are chances of overfitting on small scale data. As multiple one-class SVMs built over
learned features are not jointly optimized with anomalous activity discrimination task, the
learned features may be suboptimal.

Dearth of anomalous ground truth data and ambiguous nature of anomalies hinders the
development of end-to-end trainable deep learning model. This issue has been addressed using
conditional Generative Adversarial Networks [75]. As claimed by authors, it is a pioneer work
using GAN for anomaly detection for the first time. The main feature of this end-to-end
trainable deep learning model is that it uses cross-channel approach to refrain generator from
learning identity function and uses multi-channel representation for fusing appearance and
motion information.

Tran and Hogg [96] used Convolutional Winner-Take-All (WTA) [58] and one-class SVM
for anomaly detection. In this, convolutional auto-encoder is used for extracting the motion
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features and OC-SVM is used for building the normalcy model. This framework is based on
motion feature representation. It can be extended by introducing mechanism for appearance
feature modeling and also methods for modeling motion patterns of longer length.

4.2.5 Hybrid model

Inspired by the success of 3 dimensional CNNs [97], Zhao et al. [121] put forth hybrid
approach for anomaly detection. They used 3D for modeling the spatio-temporal features for
surveillance video and jointly utilized the reconstruction loss (for reconstructing the input
frame) and weight decreasing prediction loss (for predicting the future frame) of auto-encoder
for detection of anomalies. As the approach works on predicting frames, sudden appearance of
objects in the field of view may hinder the performance of this model.

4.3 Comparative study

Tables 1 and 2 shows the comparison of selected traditional and deep learning approaches. The
comparison of real time anomaly detection approaches using both traditional and deep learning
techniques is done in Table 3. Please note that values mentioned in the Table 3 are taken from
results mentioned in the corresponding research papers. It can be observed that deep learning
technique has achieved highest performance for frame per second on the datasets. Though it is
not verified from single research article, there is a great scope for deep learning to excel in
anomaly detection tasks.

5 Application domains and benchmarked datasets

5.1 Discussion of application domains

Though there are enormous domains where anomaly detection can be applied, Figure 7 shows
some of widely investigated scenarios in which research related to anomaly detection can be
carried out. These domains include traffic, transportation, sports, crowd scenarios, health care
domains, naturally occurring/manmade calamity detection, industrial domains, wildlife sce-
narios, etc. Some of the working use cases of anomaly detection are explained here. Periodical
railway inspection in order to avoid railway mishaps is a part and parcel of safer railway
transportation. Detection of obstacles, missing fastening bolts (by which rail is fixed to the
sleepers), status of switches and other railway defects can be detected in real time manner [22].
This eliminates the need of human expertise to walk along the track to identify visual
anomalies. Autonomous driving on urban highways or mountain regions is very challenging.
Timely detection of anomalous objects guarantees to curb the chances of accidents and ensures
the safety of people on highways [17]. Detecting unattended objects in timely manner is
essential for maintaining enhanced security at public places to curb the chances of terrorism
[67]. Anomaly detection is indirectly related to crowded scene analysis. This includes con-
gestion detection, crowd counting [107]. Crowd counting and timely detection of congestion
due to traffic, processions, or at pilgrims helps to avoid mishaps by applying proactive
measures to control the crowd. This would ultimately help to avoid crowd disasters [117].
One of the applications of anomaly detection for immediately taking an action in elderly fall
incidents [23].
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5.2 Public datasets for indoor and outdoor surveillance

Considering the requirements of real-life scenarios, various datasets for anomaly detection have
been put forth till date obtained from indoor and outdoor surveillance. Table 4 shows the widely
used datasets for anomaly detection. The datasets are compared based on the features, scenarios
covered for anomaly detection, availability of ground truth (GT) and the resolution of videos.

6 Research challenges and future directions

Automated video surveillance for detecting anomalous activity has been a topic of great
interest in computer vision and cognitive science for enhancing the security of indoor and
outdoor places. Following identified research issues are still open in this domain and needs to
be addressed for efficient detection of anomalous activities from videos. The list of issues and
challenges is by no means exhaustive and continues.

& Challenges related to indoor and outdoor environment: Handling noise in video data due
to the sensor, camera jitter and various video decoding artifacts, occlusion of independent-
ly moving objects, illumination changes, intra-class and inter-class variation of objects.
Camouflage detection is also a major challenge.

& Challenges related to scale at which normalcy model is defined: It relates to multi-scale
(resolution) of normalcy model, handling variation of normalcy model according to the
anomaly to be detected

& Challenges related to dearth of labeled anomalous behavior training dataset: Due to
dearth of labeled anomalous behavior training data, use of unsupervised learning is trivial
option. There is a need of detection of anomalous activity based on lesser contextual
information, and miniaturized size of training dataset.

& Challenges related to trade-offs among performance metric: Achieving balanced trade-off
among real time processing and desired level of accuracy is very critical.

& Challenges related to multi-view anomaly detection: Target of interest seems to be normal
from one view but exhibits abnormality if checked from another view. Substantial amount
of work has been done in single-view anomaly detection. However, lesser work has been

World Wide Web (2019) 22:571–601 593

Traffic
Wrong U-turn
High speed detec�on
Accidents
Parking in restricted area
Hit and run scene

Sports
Game Chea�ng
Violence among players
Insurgent groups at 
sports stadiums

Objects
Abandoned baggage 
Violent weapons at 
sensi�ve places 
Obstacle detec�on on 
highways

Crowds
Stampedes 
Panicked crowd
Crowd conges�on
Riots

Individuals/ Groups
Loitering
Crawling, jaywalking
Payment evasion
Trespassing
Kidnapping
Homicide
Insurgent groups 

Natural and man-made 
disasters

Fire disasters
Landslide detec�on
Flood detec�on 

Wildlife scenarios
Animal poaching

Transporta�on
Vehicle monitoring
Visual inspec�on of 
vehicles

-care domain
Elderly fall detec�on

Industrial scenarios
Danger zone monitoring
Powerline damage 
detec�on
Detec�on of wild animals 
in the territory of 
industry plans

Application domains of anomalous activity detection

Figure 7 Application domains of anomaly detection



T
ab

le
4

B
en
ch
m
ar
ke
d
da
ta
se
ts
of

an
om

al
y
de
te
ct
io
n

D
at
as
et

Fe
at
ur
es

Sc
en
ar
io
s

G
T

R
es
ol
ut
io
n

U
C
SD

Pe
de
st
ri
an

1
(P
ed

1)
an
d
Pe
de
st
ri
an

2
(P
ed

2)
[1
00
]

U
se

of
st
at
io
na
ry

ca
m
er
a
to

ca
pt
ur
e
th
e
vi
de
os

of
pe
de
st
ri
an

w
al
kw

ay
s
w
he
re

cr
ow

d
de
ns
ity

va
ri
es

as
sp
ar
se

to
cr
ow

de
d

T
ra
ve
rs
in
g
of

en
tit
ie
s
ot
he
r
th
an

pe
de
st
ri
an
s

ac
ro
ss

th
e
pa
th
w
ay

lik
e
sk
at
er
s
an
d
ve
hi
cl
es

on
pe
de
st
ri
an

w
al
kw

ay

Y
es

15
8
×
23
8

24
0
×
36
0

U
M
N

[1
01
]

Se
qu
en
ce

of
no
rm

al
be
ha
vi
or

fo
llo

w
ed

by
an
om

al
ou
s
on
e,

C
ov
er
s
in
do
or

an
d
ou
td
oo
r
pr
em

is
es

ad
dr
es
si
ng

oc
cl
us
io
n

U
na
tte
nd
ed

ob
je
ct
s,
U
nu
su
al
be
ha
vi
or

of
cr
ow

d
at
in
do
or

an
d
ou
td
oo
r
pr
em

is
es
,c
am

er
a
sa
bo
ta
ge
,

m
ov
em

en
t
in

re
st
ri
ct
ed

ar
ea
,l
oi
te
ri
ng

N
o

32
0
×
24
0

L
iv
e
V
id
eo

(L
V
)
[5
0]

C
ov
er
s
m
an
y
do
m
ai
ns

fr
om

in
do
or
/

ou
td
oo
r
pr
em

is
es
,

tr
af
fi
c,
ro
ad
w
ay
s

R
ob
be
ri
es
,w

ro
ng

U
-t
ur
ns
,c
ro
w
d
pa
ni
c,
lo
ite
ri
ng
,

fi
gh
tin

g,
tr
es
pa
ss
in
g,

ki
dn
ap
pi
ng
,f
ir
e,
dr
iv
in
g
in

w
ro
ng

di
re
ct
io
n,

fa
lli
ng

of
pe
op
le

Y
es

17
6
×
14
4

12
80

×
72
0

A
ve
nu
e
[1
8]

C
ov
er
s
tr
af
fi
c
da
ta
se
t
an
d
pe
de
st
ri
an

da
ta
se
t

U
nu
su
al
be
ha
vi
or
,w

al
ki
ng

in
w
ro
ng

di
re
ct
io
n,

un
at
te
nd
ed

ob
je
ct

Y
es

64
0
×
36
0

A
no
m
al
ou
s
B
eh
av
io
r
D
at
as
et
[3
]

Sc
en
ar
io
s
w
ith

ill
um

in
at
io
n,

cl
ut
te
r,
jit
te
r,

va
ri
ed

m
ot
io
n

an
d
ap
pe
ar
an
ce

an
om

al
ou
s
sc
en
ar
io
s
in
vo
lv
in
g
bo
ar
di
ng

on
an
d
of
f
th
e
tr
ai
n,

w
ro
ng

di
re
ct
io
n

Y
es

32
0
×
24
0

PE
T
S’

09
[7
1]

M
ul
ti-
se
ns
or

se
qu
en
ce

of
va
ri
ou
s
cr
ow

d
ac
tiv
iti
es

po
ss
es
si
ng

ca
lib

ra
tio

n
da
ta

C
ro
w
d
w
ith

va
ri
ab
le
de
ns
ity

:
w
al
ki
ng
,r
un
ni
ng
,

m
ul
tip
le
fl
ow

s
of

cr
ow

d,
su
dd
en

di
sp
er
si
on
,

sp
lit
tin

g

Y
es

76
8
×
57
6

72
0
×
57
6

V
IO

L
E
N
T-
FL

O
W
S
[1
03
]

C
ov
er
s
da
ta
se
ts
of

bo
th

vi
ol
en
t
an
d
no
n-
vi
ol
en
t

ac
tiv

iti
es

of
cr
ow

d
co
lle
ct
ed

fr
om

Y
ou
T
ub
e

V
io
le
nc
e
ca
us
ed

by
pe
op
le
at
pu
bl
ic
pl
ac
es

lik
e
st
ad
iu
m

N
o

32
0
×
24
0

W
ei
zm

an
n
[1
10
]

C
ov
er
s
an
om

al
ou
s
pa
tte
rn
s
in

im
ag
es

an
d
vi
de
os

Su
sp
ic
io
us

w
al
ki
ng

pa
tte
rn
,p

er
so
n
w
al
ki
ng

w
ith

a
gu
n,

sa
lie
nt

be
ha
vi
or

N
o

–

Sh
an
gh
ai
Te
ch

C
am

pu
s
[5
6]

C
ov
er
s
di
ve
rs
e
an
om

al
ou
s
sc
en
es

(a
pp
ro
x.

13
)

ca
pt
ur
ed

fr
om

m
ul
tip

le
ca
m
er
as

w
ith

di
ff
er
en
t

vi
ew

an
gl
es

un
de
r
va
ry
in
g
ill
um

in
at
io
n
co
nd
iti
on
s

Su
sp
ic
io
us

ac
tiv
iti
es

ch
ar
ac
te
ri
ze
d
by

vi
ol
en
t

m
ot
io
ns

lik
e
br
aw

lin
g,

ch
as
in
g,

sk
at
er
s,
bi
ke
rs

an
d
tr
ol
le
y
on

th
e
pe
de
st
ri
an

w
al
kw

ay
s

Y
es

84
6
×
48
0

C
A
V
IA

R
[9
]

In
do
or

pr
em

is
e
co
ve
ri
ng

en
tr
an
ce

lo
bb
y
an
d
sh
op
pi
ng

ce
nt
er

ad
dr
es
si
ng

ap
pe
ar
an
ce

de
te
ct
io
n,

oc
cl
us
io
ns

Si
ng
le
en
tit
ie
s
in
vo
lv
in
g
w
al
ki
ng
,f
al
lin
g,

re
st
in
g,

ro
am

in
g,

ab
an
do
ni
ng

th
e
lu
gg
ag
e
an
d
in
te
ra
ct
io
n

an
om

al
ie
s
in
vo
lv
in
g
fi
gh
tin
g,

pe
op
le

w
al
ki
ng

to
ge
th
er

an
d
sp
lit
tin

g

Y
es

38
4
×
28
8

B
E
H
A
V
E
[5
]

V
id
eo

w
ith

un
de
rs
ta
nd
in
g
th
e
be
ha
vi
or

an
d
in
te
ra
ct
io
n
of

th
e
pe
op
le

In
te
ra
ct
io
n
of

pe
op
le
:
ap
pr
oa
ch

ea
ch

ot
he
r,
w
al
k

to
ge
th
er
,f
ig
ht
,r
un

to
ge
th
er
,m

ee
t,
sp
lit

Y
es

64
0
×
48
0

Q
M
U
L
Ju
nc
tio
n
[7
3]

C
ov
er
s
th
e
tr
af
fi
c
In
te
rs
ec
tio

n
at
th
e
ju
nc
tio

n
W
ro
ng

di
re
ct
io
n
of

ve
hi
cl
es

N
o

36
0
×
28
8

594 World Wide Web (2019) 22:571–601



T
ab

le
4

(c
on
tin

ue
d)

D
at
as
et

Fe
at
ur
es

Sc
en
ar
io
s

G
T

R
es
ol
ut
io
n

M
IT

T
ra
ff
ic
[6
2]

C
ov
er
s
tr
af
fi
c
vi
de
o
ca
pt
ur
ed

by
st
at
io
na
ry

ca
m
er
a

D
et
ec
tio

n
of

pe
de
st
ri
an

as
an
om

al
y

on
th
e
pu
bl
ic
ro
ad

Y
es

72
0
×
48
0

Su
bw

ay
E
nt
ra
nc
e
&

E
xi
t
[2
]

C
ov
er

th
e
vi
ew

of
un
de
rg
ro
un
d
tr
ai
n

st
at
io
n
bo
th

at
en
tr
an
ce

an
d
ex
it
ga
te

A
vo
id
in
g
tu
rn
st
ile
s,
w
ro
ng

di
re
ct
io
n,

lo
ite
ri
ng
,s
us
pi
ci
ou
s
in
te
ra
ct
io
ns

Y
es

51
2
×
38
4

i-
L
id
s
ba
g
an
d
ve
hi
cl
e
de
te
ct
io
n

ch
al
le
ng
e
[4
2]

Su
bs
et
of

i-
L
id
s
da
ta
se
t
co
ve
ri
ng

2
sc
en
ar
io
s

of
ab
an
do
ne
d
ob
je
ct
an
d
pa
rk
in
g

U
na
tte
nd
ed

ob
je
ct
s,
pa
rk
in
g
of

ve
hi
cl
e

in
fo
rb
id
de
n
ar
ea

Y
es

72
0
×
57
6

World Wide Web (2019) 22:571–601 595



done in multi-view anomaly detection. It is very challenging to incorporate different levels
of anomaly detection using multiple views in a single framework

& Challenges related to camera anomaly detection: Cameras used for surveillance are the
basic sensors used for capturing the surveillance videos. Detecting the tampering,
malfunctioning of surveillance camera in a real time i.e. camera anomaly detection has
become the topic of research in recent years. The techniques for sabotage detection of
cameras and self-improvement of camera’s status needs further research investigation.

& Anomaly detection from videos obtained from 360-Degree camera: Till date, most ap-
proaches for anomaly detection used the video data obtained from statically positioned
cameras [51], multiple cameras [56], and moving cameras [65]. With the advent of technol-
ogy, the market of 360-Degree camera is anticipated to grow with CAGR of 34.4% from
2017 to 2024 [1]. This leads to need of detecting anomalies in the videos obtained from 360-
Degree cameras. There is great scope for detecting anomalies from such videos since existing
research is focused on videos from stationary and moving cameras only.

& Convergence of frameworks aimed to detect anomalies from multiple domains: Though
biometric spoof detection (Detection of spoofed face, iris, and finger) is widely researched
topic on its whole [4, 61], it can be integrated with video-based anomaly detection
frameworks to improve the accuracy of detection especially in indoor environments. Apart
from this, frameworks for camera anomaly detection used for detecting damages caused to
the cameras can be incorporated with anomaly detection frameworks. This can be achieved
by implementing interoperability measures among multiple detection frameworks to
converge them into generalized anomaly detection platform.

& Event recounting of anomalous activities: The objective of Multimedia Event Recounting
(MER) is to generate the summary of the events occurring in the given video clip [98].
Motivating from the success of MER on TRECVID datasets [28, 39], event recounting has
been applied for anomaly detection in [37]. Justifying why the event is anomalous apart
from detecting the anomalous event from video is still untouched research area except the
work by [37]. Developing anomaly detection framework along with the visual concept
representation for description of anomalous events is truly challenging due to ambiguous
nature of anomalies and availability of semantic domain knowledge of anomalies, and
deserves high scope for further research.

& Use of deep learning technique to develop real time systems for anomaly detection:
Current literature still lags behind when it comes to process the videos at real time. The
possible solution can be to follow the online learning methods to understand the anomalies
at real time and incorporate online learning with deep models.

7 Conclusion

A proliferation of deep learning is changing the way of solving the real-world problems and
anomaly detection is no exception. It is just the recent lustrum in which deep learning has been
employed for anomalous activity detection, and this paper is an attempt to analyze and
summarize deep learning techniques for video based anomaly detection in a nutshell and
would act as profound research contribution for further investigation of deep learning for
automated visual surveillance domain.

It can be understood that use of deep learning for anomaly detection has achieved
remarkable results on both the accuracy oriented and real time processing oriented objectives
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of anomaly detection. This research domain is very promising area since it will act as
foundation stone in many future computer vision based projects like elderly fall detection
(health care) systems, self-driving cars, robotics, and many more domains alleviating the need
of human personnel for continuously monitoring the sensitive places.

Considering the deep learning aspect, there is much scope improved anomaly detection
approaches by implementing parallel and distributed architectures models of deep learning.
Motivated by the recent success of AlphaGo using deep reinforcement learning, use of deep
reinforcement learning for online learning of anomalous activities and real time processing of
anomaly detection would still be untouched research to be explored.
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