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Co-regularized kernel ensemble regression
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Abstract In this paper, co-regularized kernel ensemble regression scheme is brought for-
ward. In the scheme, multiple kernel regressors are absorbed into a unified ensemble
regression framework simultaneously and co-regularized by minimizing total loss of ensem-
bles in Reproducing Kernel Hilbert Space. In this way, one kernel regressor with more
accurate fitting precession on data can automatically obtain bigger weight, which leads to
a better overall ensemble performance. Compared with several single and ensemble regres-
sion methods such as Gradient Boosting, Tree Regression, Support Vector Regression,
Ridge Regression and Random Forest, our proposed method can achieve best performances
of regression and classification tasks on several UCI datasets.

Keywords Ensemble regression · Multi-kernel learning · Kernel regression

1 Introduction

Regression is one of the most widely popular statistical tools for analyzing multifactor data.
It provides a conceptual process for estimating the relationship amongst continuous entities
and also suitable for analyzing functional dependencies [59]. Regression analysis is well
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known theoretically due to its elegant underlying mathematics [29]. Regression is primarily
used as a tool for prediction, forecasting and casual inference [31] and has been applied
in many fields including software engineering, physical and chemical sciences, biology for
nutrient and sediment, weather forecasting, credit scoring among others[31].

Currently, there are two categories of regression schemes: single regression model and
ensemble regression model [16]. The former can further be split into two main subcate-
gories, namely, non-kernel and kernel techniques. Some typical methods in this subcategory
are Linear Regression (LR), Ridge Regression (RR), Lasso Regression, ElasticNet Regres-
sion, etc. For example, Shah et al. [42] proposed a novel image set classification technique
based on the linear regression model. Fan et al. [8] also presented a ridge regression to esti-
mate the variations in the quantity and distribution of land surface temperature in response
to various land cover patterns. Stransky et al. [44] proposed a novel elastic net regression
model for pharmacogenomics agreement between two cancer cell line datasets.

Compared with the non-kernel regression technique, the kernel regression methods have
a higher performance since the Reproducing Kernel Hilbert Space (RKHS) is introduced,
thus the non-linear relationship among data samples can be characterized better. Typical
instances of such kernel-based methods are the Kernel Ridge Regression (KRR)[32] and
Support Vector Regression (SVR) [1]. Unfortunately, regression performance varied dra-
matically with the selection of both kernel functions and their parameters. Additionally, it
is also hard to get suitable Kernel functions and parameters which are selected manually in
practice.

Ensemble regression (ER) models combine individual regressors together to improve
the accuracy and stability of an individual model. Random Forest (RF) [45, 54], Gradient
Boosting [53, 57] and Tree Regression [37, 40] amongst other techniques fall under such
category.All of them are based on tree structure technique that combines several decision
trees to produce better predictive performance than utilizing a single decision tree. The main
principle behind the ensemble model is that, a group of weak learners can work together to
form a strong learner [5].

Based on the aforementioned challenges, a novel Co-Regularized Kernel Ensemble
Regression (CoKER) is proposed, whereby we combine kernel regression and ensemble
models together. Different from the previously proposed methods of multiple kernel learn-
ing (MKL) in the field of dimension reduction [23, 56], classification [12, 33] and label
propagation [13, 34]. The proposed CoKER optimizes each base kernel regressor in a sep-
arate RKHS and then co-regularizes them into one regression model in multiple RKHS.
Therefore, overcomes the difficulty in selection of kernel function and parameters which
resides in single kernel methods whiles existing multiple kernel learning methods combine
several kernel RKHS spaces into one unified space.

The main contributions of this paper are as follows:

1. We propose a novel kernel ensemble regression method that takes advantage of both sin-
gle kernel regression method and ensemble regression method, which can accomplish
multi-kernel selection and parameter-decision automatically in an ensemble way.

2. The proposed method can combine multiple kernel regressors into a unified ensemble
regression framework and the weight of each kernel regressor in this ensemble method
is co-regularized by minimizing total loss of ensembles in Reproducing Kernel Hilbert
Spaces. This gives an advantage of one kernel regressor having more accurate fitting
precession on data and can, therefore, obtain bigger weight which leads to a better
overall ensemble performance.
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3. The experimental results on several UCI datasets for regression and classification,
compared with several single models and other ensemble models such as Gradient
Boosting(GB), Tree Regression(TR), Support Vector Regression(SVR), Ridge Regres-
sion(RR) and Random Forest(RF), illustrate that the proposed method achieves best
performances among the comparative methods.

The rest of the paper is organized as follows: Section 2 introduces some related works
with respect to the topic under discussion. Section 3 presents the proposed method.
Experimental results are presented in section 4. Finally, Section 5 concludes the paper.

2 Related work

In this Section, we present an overview of some empirical studies on regression methods.
Regression methods could be classified into two categories, the single regression model and
ensemble regression model. Besides, some multiple kernel learning methods are introduced
as well.

2.1 Single regression model

Ridge Regression (RR) is a technique that can fit data well when they have near-linear
relationships among the independent data variables. Li et al. [22] proposed an RR-ELM
algorithm to improve the stability and generalization of the extreme learning machine
(ELM). The experimental results showed that the RR-ELM can reduce the adverse effects
that are caused by the perturbation or multicollinearity in linear models. Lasso regression,
similar to ridge regression has also become a widely used alternative method to ordinary
least squares method for parameter estimation in regression problems. Its popularity is in
part due to a key feature that it can make shrinkage of the vector of regression coeffi-
cients towards zero to obtain a sparse solution. Some applications of this method can be
found in the literature [17, 27]. Lu et al. [27] proposed a lasso regression model to identify
miRNA-mRNA targeting relationships. Homrighausen et al. [17] used Lasso regression for
high-dimensional risk estimation problem.

Meanwhile, ElasticNet regression is the combination of Lasso and ridge regression tech-
niques. This implies that elastic net also enjoys the computational advantages of lasso
regression. Lenters et al. [21] used the penalized elastic net to assess a mixture of environ-
mental contaminants and this model proves useful for similar environmental epidemiology
analyses of multiple exposures. Chen et al. [4] proposed a model to analyze the uncertainty
level of voltage with the elastic net. Experiments showed that the proposed linear analysis
model with the elastic net can precisely describe the mapping relations among deviations of
random numbers.

Furthermore, the kernel-based regression (KR) methods [31] are extensively studied due
to their capacity of characterizing the data in Reproducing Kernel Hilbert Space (RKHS)
[41, 43]. By using RKHS, many techniques can be extended into such kernel methods,
for example, kernel ridge regression (KRR) [32] is an instance of a natural extension of
ridge regression. Exterkate et at. [7] proposed a kernel ridge regression as a framework for
estimating non-linear predictive relations in a data-rich environment. Liu et al. [25], applied
regularized kernel regression (KLR) for Web image annotation. Their experimental results
showed that regularized kernel regression (KLR) provides a smooth loss function.

World Wide Web (2019) 22:717–734 719



Similarly, the kernel technique can be applied to other classical methods such as Sup-
port Vector Machines (SVM). Support Vector Regression methods [38, 50] are the natural
extension of SVM. Drucker et al. [6] proposed an SVR method to pursue the best trade-off
between empirical errors of models and their complexities. Qiu et al. [35] also investigated
multiple learning SVR methods. The experimental results revealed that it can reduce a much
complex dataset into a simpler one and increase the adaptability of SVR, especially for a
complex dataset.

2.2 Ensemble regression model

Ensemble regression (ER) can combine individual regressors together and keep their per-
formance better as compared to the single regression model. Tree regression method is used
to predict the numerical outcomes of the dependent variables. It is also known as an m5p
algorithm, which is an implementation of Quin-lan’s M5 algorithm [36]. Rathore et al. [37]
presented a decision tree regression-based approach for the number of faults prediction in a
given software module.

Furthermore, Gradient Boosting Decision Trees (GBDT) [58] is an addictive ensemble
regression model in decision trees. Wang et al. [53] proposed a new fusion method based on
the LR algorithm and GBDT algorithm for mobile recommendation system. Their method
is observed to achieve a good F1 score in a mobile recommendation scenario.

Among ensemble regression methods, random forest (RF) method is a useful machine
learning technique which can be applied in both regression and classification problems [3].
Hasan et al. [14] applied random forest for intrusion detection problems. The research indi-
cated that random forest takes less time to train its classifier than SVM and also achieves
more accurate results than SVM classifier. Wu et al. [54] used random forest regression
approach to analyze the weekly analysis of influenza-like illness rate using one year period
of factors. Experimental results showed that regression errors decreased from 5.04% to
4.35% in mean absolute percentage error (MAPE) and 2.85E-04 to 1.97E-04 in mean square
error (MSE) for prediction of weekly ILI rate.

2.3 Multiple kernel learning

Multiple Kernel Learning (MKL) plays an important role in tackling many learning tasks
in non-linear cases [18, 26]. The choice of kernels is a crucial issue for kernel-based algo-
rithms. Many efforts have been devoted to yield an optimal kernel for specific applications.
Szafranski et al. [46] developed the composite kernel learning (CKL) approach with group
Lasso. Tang et al. [47] proposed a new multi-kernel for the classification task. It provides
an alternative optimization algorithm as the efficient solution for multiple kernel learning.

Besides the above discussions, some new classification, regression and multiple feature
techniques appear in the latest advancement in deep learning [20, 39]. Many deep models
have been proposed for large-scale image and video annotation [24, 51]. Johnson et al. [19]
found a neighborhood of images which are non-parametrical according to the image meta-
data and combined the visual features of each image and its neighborhoods. Gao et al. [11]
proposed an optimal graph from multiple cues (i.e., partial labels and multiple features) to
embed the relationships among data points more precisely. Wang et al. [52] proposed an end-
to-end pipeline named Two-Stream3DconvNetFusion, which can recognize human actions
in videos of arbitrary size and length using multiple features. Gao et al. [10] on the other
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hand, designed some effective learning schemes for high-dimensional data. Where they cov-
ered feature transformation, feature selection and feature encoding to curb the consequences
of the curse of dimensionality.

3 The proposed method

In this section, co-regularized kernel ensemble regression (Coker) scheme is presented. In the
scheme, multiple kernel regressors are absorbed into a unified ensemble regression framework
simultaneously and co-regularized by minimizing total loss of ensembles in reproducing
kernel Hilbert space. In this way, one kernel regressor with more accurate fitting precession
on data can obtain bigger weight, which leads to a better overall ensemble performance.

3.1 RKHS and representer theorem

The use of geometric intuitions to extend an established framework for functional learning has
been on the rise. A number of popular algorithms such as SVM, ridge regression, splines and
radial basis functions, may be broadly interpreted as regularized algorithms with different
empirical cost functions and complexity measures in an appropriately chosen Reproducing
Kernel Hilbert Space (RKHS) [15, 48, 49] to address the poor generalization properties of exist-
ing nonlinear regression techniques. Some suitable functions can be regarded as kernels:

– The Polynomial kernel

k(xi, xj ) = (axT
i xj + b)c (1)

– The RBF kernel(Radial Basis Function)

k(xi, xj ) = exp(−‖xi − xj‖
μ

) (2)

– The Gaussian kernel

k(xi, xj ) = exp(−‖xi − xj‖2

2σ 2
) (3)

where a, b, c, μ, σ ∈ R. For a Mercer Kernel K : x × x ∈ R, there is an associated RKHS
Hk of the function x → R with the corresponding norm ‖‖ k . Meanwhile, K denotes a
Gram matrix which is obtained according to samples. It is a symmetric and semi-positive
definite matrix, which can be shown as follows:

K =

⎛
⎜⎜⎜⎝

k(x1, x1) k(x1, x2) · · · k(x1, xN)

k(x2, x1) k(x2, x2) · · · k(x2, xN)
...

...
. . .

...

k(xN , x1) k(xN , x2) · · · k(xN , xN)

⎞
⎟⎟⎟⎠ (4)

Given a set of labeled examples (xi, yi), i = 1, 2, 3, ..., N the standard framework estimates
an unknown function by minimizing

f ∗ = arg min
1

1

N∑
i=1

v(xi, yi, f ) + γ ‖f ‖2
k (5)
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Where v is some loss function, such as squared loss (yi − f (xi))
2 for RLS or hinge loss

function max [0, 1 − yif (xi)] for SVM. Penalizing the RKHS norm imposes smoothness
conditions on possible solutions. γ ‖f ‖2

k is regarded as smoothness conditions on possible
solutions in the RKHS and the gamma is a parameter to trade off the balance. The classical
representation theorem states that the solution to minimization problems exists in Hk and
can be written as

f ∗(x) =
N∑

i=1

αik(xi, x) (6)

Therefore, the problem is reduced to optimizing over the finite dimensional space or coef-
ficients α1, which is the algorithmic basis for SVM, regularized least squares and other
regression methods.

3.2 Co-regularized kernel ensemble regression

The proposed method can combine multiple kernel regressors into a unified ensemble
regression framework and the weight of each kernel regressor in this ensemble method is
co-regularized by minimizing total loss of ensembles in Reproducing Kernel Hilbert Spaces.
This gives an advantage of one kernel regressor having more accurate fitting precession
on data and can, therefore, obtain bigger weight which leads to a better overall ensemble
performance.

Firstly, different kernels are obtained according to samples. Suppose a regression prob-
lem has a training set X with regression result (X = {(x1, y1), ...,

(xN , yN)}) and a testing set Xt without regression result (Xt= {(x1, ..., xNt )}) where
xn(xn ∈ Rd, n = 1, ..., N) expresses a training sample, yn is the true regression result of
xn, and xm(xm ∈ Rd,m = 1, ..., Nt ) expresses a testing sample. N is the number of training
samples and Nt is the number of testing samples. The base kernel regression model is

‖Kα + b − y‖2 + λαT Kα (7)

where K denotes a kernel matrix which can be obtained according to samples, α is a column
vector related to the weight of every sample, b expresses bias term for the specific K .Our
approach aims to obtain the optimal co-regularized weight vector of base regressors. The
term ‖Kα + b − y‖2 is the square loss for determining the performance of the base kernel
regression model.

Unfortunately, since regression performance varies dramatically with the selection of
both kernel functions and their parameters, it is also hard to obtain suitable Kernel functions
and parameters which are commonly selected manually in practice. To overcome this prob-
lem, our proposed method can combine multiple kernel regressors into a unified ensemble
regression framework without considering the selection of both kernel functions and their
parameters in individual kernel regressors. L different kernels are used in our framework
and a new co-regularized kernel ensemble regression model is proposed:

arg min
w,αi

1

2

L∑
i=1

Wi(‖Kiαi + bi − y‖2 + λαi
T Kiαi) (8)

s.t. 1T W = 1 (9)

Where L is the number of kernels. Assuming that the number of training samples is N , and
the number of testing samples is Nt and W = [W1, ..., WL]T denotes a weight vector of
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individual kernel regression model. Ki represents the different kernel matrix. Ki is the i-th
base Gram matrix and the dimension of Ki is N × N for training dataset, Nt × N for testing
dataset. αi denotes a column vector related to the weight of every sample for each Ki . The
dimension of αi is N × 1 for training dataset, Nt × 1 for testing dataset. bi is the bias item
for a specific Ki . bi is a column vector that has the same dimension as samples, and each
value in the vector is equal to a specific Ki . y denotes the true output and its dimension is
the same as samples. λ is the constriction parameter that smoothens the model.

We take the derivative of formula (7) with respect to αi and obtain the following formula.

αi = (Ki + λI)−1y (10)

where I is an identity matrix which has the same dimension as training Ki .
According to Formula (10), we can get

bi = 1

N
(

N∑
t=1

yt −
N∑

j=1

Ki(xj , xt )αi,j ) (11)

We considered Wi to be Wi
T (r represents the control parameter for the weights of multiple

features) because linear programming attains its optimum solution at the extreme ends, i.e
either Wi = 0 or Wi = 1. That means there will only be one kernel selected contrary to our
objective of exploring the rich complementation of multiple kernels. When r = 1, it is only
one kernel that will be selected in the optimal result, which is undesirable, but if r > 1 the
outcome is based on multi-kernel balancing. r is a man-made value to obtain appropriate w.
We can further derive that

Wi = ( 1
ζi

)
r−1

L∑
i=1

( 1
ζi

)
r−1

(12)

Where ζi = ‖Kiαi + bi − y‖2 + λαi
T Kiαi denotes the loss of each kernel. From this equa-

tion, we can see that the more the loss of a kernel, the lesser the weight of that kernel. In
this way, we obtain an ensemble regression model by combining the various base kernels
linearly. This becomes our final model and can be determined by using Formula (13)

f (xt ) =
L∑

i=1

Wi(

N∑
j=1

Ki(xj , xt )αi,j + bi) (13)

4 Experimental results

In this section, all the experimental results under different settings are presented. For a fair
comparison, each dataset is randomly split into 2/3 (training data) and 1/3 (testing data) and
the regularization parameter is obtained by cross-validation method. In our experiments,
five comparative methods (Gradient boosting, Tree Regression, Support Vector Regression,
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Ridge Regression and Random Forest) are selected as base models. Mean Square Error
(MSE) and Mean Absolute Error (MAE) are selected as the criteria [2].

MAE = 1

Nt

Nt∑
i=1

|f (xi) − yi | (14)

MSE = 1

Nt

Nt∑
i=1

(f (xi) − yi)
2 (15)

In the proposed method, we demonstrate how to combine the base kernel model of the
ensemble. A single polynomial kernel model in (1) is applied as the basic model of the
ensemble for different datasets.

There are three parameters (a, b and c) in this type of model and the different values
of the parameters show different effects on the experimental results. Generally, we set a ∈
{1∗1e−6, 1∗1e−5, · · · , 1000}, b ∈ {1∗1e−6, 1∗1e−5, · · · , 1000} and c ∈ {1, 2, 3, 4, 5}.
For each dataset, we select the optimal parameters (a, b and c) and base kernels are obtained
by 10-fold cross validation in experiments. The parameter L in (8) denotes the number of
base polynomial kernel models. The generalization ability of an ensemble regressor will
be good if there are enough base models. However, excessive base models may consist
of many worse base models and result in low classification accuracy. Therefore, we take
L ∈ {10, 20, 50, 100, 150}. In our experiments, we select 20 combinations among three
parameters (a, b and c).

And the parameter in (8) is the parameter that smoothens the base regressor. The param-
eter r in (12) is the control parameter for the weights of multiple base models. In our
experiments, we select values for λ and r as 0.1 and 2, respectively.

4.1 Dataset description

We selected nine benchmark publicly available datasets for the evaluation of the perfor-
mance of our algorithm. These datasets are from the UCI database repository, a detailed
summary is presented in Table 1 [55].

Table 1 Descriptions of UCI
dataset Datasets Samples Attributes

Abalone 4177 8

RedWine 1599 11

WhiteWine 4898 11

Housing 506 13

Concrete 1030 8

Mg 1385 6

Mpg 392 7

Space 3107 6
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4.2 Experimental settings

We compared the effectiveness and robustness of the proposed novel Kernel Ensemble
Regression with the conventional multi-kernel features. We as well showed the perfor-
mance of some single and ensemble regression preserving methods: Ridge Regression,
Random Forest and Support Vector Regression among others but with careful tuning of the
parameters we applied them to all our datasets.

4.3 Performance evaluations and comparisons

Here, we discuss the general performance of the proposed co-regularized kernel ensemble
regression algorithm and all the comparative methods.

Table 2 presents the mean MSE comparisons among our method, single models and
ensemble models. From the results, CoKER produces a smaller Mean Square Error (MSE)
of 3.599 on Abalone dataset as compared with the other comparative methods while tree
regression performing poorly with values of 4.491. On RedWine dataset, all the methods
perform very well with CokER still giving us the best MSE of about 0.15% over the other
methods. SVR performs quite poorly as compared to the other methods with regards to
WhiteWine dataset and our proposed CoKER still maintaining its best results of 0.491. Fur-
thermore, we observed that the proposed CoKER performed better than the other methods
with a result of 38.552 for Housing dataset, with a 3.51% result better than the other meth-
ods. Ridge regression has the worst performance for this dataset. For the Concrete dataset a
wide margin exists between our method result and the others. CoKER leads with a value of
56.0335 which is 3.42% better. It is then followed by ridge regression, while tree regression
comes in with the least performance. The Bodyfat dataset result changed the trend. Here, the
proposed method slightly lags behind gradient boosting method which comes on top with
a value of 2.904. CoKER yielded a value of 3.765. Tree regression method has the worst
performance of 6.4709 for this dataset. With the exception of the Bodyfat dataset, CoKER
continues to perform better than other methods when applied to the remaining datasets. With
Mg dataset, we get the best performance with a value of 0.013. Compared with the sec-
ond best performing method, Random forest provides a result of 0.014, giving a difference
of 0.0093. Tree regression has the worst performance for this dataset. CoKER obtains the
best result of 24.404 for the Mpg dataset. 1.06% better than the next best result of 26.004

Table 2 The average of MSE comparison of ours, single models and ensemble models

Datasets CoKER GB TR SVR RR RF

Abalone 3.59 3.91 4.49 4.31 4.18 4.00

RedWine 0.41 0.42 0.50 0.61 0.44 0.43

WhiteWine 0.49 0.51 0.53 0.68 0.51 0.49

Housing 38.55 54.59 43.16 97.02 433.47 49.16

Concrete 56.03 188.15 249.35 225.46 74.69 223.18

Mg 0.013 0.016 0.022 0.0175 0.020 0.014

Mpg 24.40 43.47 59.25 148.28 26.00 43.81

Space 0.022 0.024 0.032 0.039 0.024 0.023
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from ridge regression. Finally, with a value of 0.022,CoKER leads the others on the Space
dataset. It is followed by the random forest method by a margin of 0.0005. The SVR method
generates a result of 0.0392 which makes it the worst performer for the Space dataset.

From the experiments of Table 2, it demonstrates that for MSE values, the propose
CoKER method outperforms the comparative single and ensemble models.

Figure 1 gives a different view of MSE comparisons among the propose CoKER, single
models and ensemble methods on UCI regression datasets and Figure 1a illustrates MSE
comparison when applied to the abalone dataset, our method shows the lowest median of
3.599. The model with the next best median is the random forest. In Figure 1b, the box plot
indicates that for the RedWine dataset, CoKER again performs better than the other methods
with a value of 0.410. Gradient boosting is the second best performer while SVR has the
worst lower bound performance. The trend continues in all the box plots displayed, with
CoKER performing better with lower median values the other single and ensemble methods.
It can be seen in Figure 1a and c that, most of the plots have flat shape, which means the
smaller the regression variance, the more stable the method and the lower the median of the
method in the figure, the better the regression result of the method. This because most of
the variance is very small,i.e., 10−4 and we did not show them in our tables. Here, CoKER
again performed better than the rest of the methods.

From the above discussion, we can conclude that the propose CoKER outperforms the
comparative methods.

Table 3 presents the mean MAE comparisons among the propose CoKER, single mod-
els and ensemble models. From the results, it can be seen that, when applied to the Abalone
dataset, the CoKER attains the optimal result of 0.1245. Gradient boosting lags slightly
behind by 0.01% with a value of 0.134. Random forest yields the worst result with a value
of 4.002. Applied to RedWine dataset, CoKER leads with a value of 0.051 closely followed
by gradient boosting with a margin of 0.009. Random forest, ridge regression, tree regres-
sion, and SVR follow in that order with SVR having a value of 0.517. When applied to
WhiteWine, CoKER performs better than other methods by 1.17%. Random forest yields
the next best result with a value of 0.107, with ridge regression being the worst performer.
With the housing dataset, CoKER again yields the best result. The margin between our
method (1.627) and the worst ridge regression (10.273) is 8.6 while the second best per-
former is 1.940. Concrete dataset results also indicate a wide margin between the results.
CoKER provides the best result with a value of 0.134 which is 35% better than the oth-
ers. With the Bodyfat dataset, Random forestpr provides the best performance with a value
of -3.649 followed by gradient boosting. CoKER, when applied to Mg turns out to be the
best performer with a value of 7.0000e-04 and gradient boosting being the worst performer
with a value of 0.001. With the Mpg dataset, CoKER leads with a value of 1.792 and is fol-
lowed by ridge regression which has a value of 2.572. SVR has the worst performance for
this dataset. The Space dataset had our method performing better than the others by 1.3%.
Gradient boosting lags behind CoKER with a value of 0.0284 and is followed by ridge
regression. SVR has the worst performance with a result of 0.0542.

It could be seen from the results in Table 3 that the propose CoKER has better MAE
values compared with the prior studies on the various datasets. From the experimental
results, it could be realized that, the propose CoKER outperforms the prior approaches in
all experiments.

Figure 2 also gives a different view of MAE comparisons among the propose CoKER,
single models and ensemble methods. From Figure 2a we can see that, has a better MAE
value for the Abalone dataset, with the upper bound value of 0.1245. In 2b, CoKER again
outperforms the other methods. It is closely followed by gradient boosting with an upper
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Figure 1 Box Plot of the
respective datasets for MSE: a
Abalone b Redwine c Mg d space
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Table 3 The average of the MAE comparison of ours, single model and ensemble models

Datasets CoKER GB TR SVR RR RF

Abalone 0.124 0.134 1.026 1.170 0.174 4.002

RedWine 0.051 0.061 0.397 0.517 0.100 0.070

WhiteWine 0.101 0.104 0.108 0.121 0.152 0.107

Housing 1.627 2.044 1.940 8.783 10.273 2.554

Concrete 0.134 2.153 7.900 6.225 0.163 7.403

Mg 0.0007 0.001 0.011 0.035 0.002 0.001

Mpg 1.792 4.081 6.752 10.652 2.572 4.184

Space 0.021 0.028 0.038 0.054 0.035 0.046

bound value of 0.1345. In Figure 2c, for the RedWine dataset we find a wide margin between
tree regression and SVR. Both had the worst lower bound performances. Again CoKER
yields better results and is followed by gradient boosting. For the WhiteWine dataset, Fig-
ure 2d shows that CoKER retains the best result with an upper bound value of 0.102.
Gradient boosting follows closely behind with a value of 0.1042. A difference of 0.003.
From Figure 2, most of the plots have flat shape, which means the smaller the regression
variance, the more stable the method. And the lower the median of the method in the fig-
ure, the better the regression result of the method. This because most of the variance is very
small, i.e., 10−4 and we did not show them in our tables.

From the above discussion, we can conclude that, the proposed CoKER demonstrates
more effectiveness and superiority than the prior studies in regression accuracy.

4.4 Classification

Although all the models discussed in the previous section are intended for regression tasks,
we will also use them for classification to further verify the stability of our model.

4.5 Data description

We selected five benchmark publicly available datasets for the evaluation of the performance
of our algorithm, which are Diabetes, German, Liver-disorders (LD), Abalone, and Dexter.
A summary is presented in Table 4.

Table 5 did not present the variance of the experiment because they were very small, of
about 10−4. which means the smaller the variance, the more stable the method and the lower
the median of the method in the table, the better the classification result of the method.

Figure 3 presents a comparison of the mean classification accuracies of all the methods
across the five datasets. From the figure we can see that, the propose CoKER obtains the
highest accuracy of 81.86% on the diabetes dataset, followed closely by Ridge Classifica-
tion method with an accuracy of 81.66%. Random Forest, Tree Classification and Gradient
boosting methods followed suit in that order with the LibSvm method being the worst in
classification performance of about 67.58%.

On the German dataset, all the methods show similar performance maintaining their posi-
tions as in the Diabetes dataset. But while all the methods saw a reduction in classification
performance moving from Diabetes dataset to German dataset, LibSvm rather experience
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Table 4 Descriptions of UCI
classification dataset Dataset Samples Attribute

Diabetes 768 8

German 1000 20

LD 345 7

Abalone 4177 8

Dexter 2600 20000

an increase. Also CoKER and Ridge classification method obtain a slight reduction in clas-
sification performance of less than 2%. Whilst Random Forest, Gradient boosting and Tree
Classification methods all experience a great reduction of at least 5%.

Moving on to Abalone Dataset from Diabetes dataset, similar situations transpire
amongst all the methods just as in German dataset. Only LibSvm method saw an increase
in classification accuracy of more than 12%. On the other hand, CoKER, Random For-
est, Ridge Classification and Tree Classification experience a slight decrease with Gradient
boosting being the worst of more than 3% reduction.

Dexter dataset got all the methods performing below 70% accuracy, with CoKER leading
with an accuracy of 68.83% which is a reduction of about 13% from the diabetes dataset.
Random Forest, Ridge Classification and Tree Classification all experience a reduction of
close to 13%. Gradient boosting obtains the greatest reduction of about 14% with LibSvm
being the least reduced of about 2%.

Finally, on the LD dataset, CoKER obtains the highest accuracy together with two other
methods: Ridge Classification and LibSvm. Interestingly, LibSvm which has been the worst
performing in all the datasets became one of the best in LD dataset. Also Random Forest
which has been performing well in classification in other datasets got the worst classifi-
cation performance of 31.30%. Tree Classification on the other hand obtains 61.35% of
classification accuracy being the second followed by Gradient Boosting with an accuracy
of 60.78%.

Generally, CoKER obtains the highest classification accuracy across all the datasets, with
the best coming from Diabetes, Abalone and German datasets in that order, followed by
Dexter and lastly LD dataset which did not perform so well. It demonstrates a clear distinc-
tion between CoKER and the comparative methods on classification datasets as shown in
Figure 3. Hence, we can conclude that our propose CoKER obtains a better classification
performance according to all the experimental results of classification performance.

Table 5 The comparison of classification mean accuracies of CoKer comparative methods

Dataset CoKER RF Ridge classification LibSvm GB Tree classification

Diabetes 81.85 80.46 81.64 67.57 78.56 80.34

German 80.18 75.67 79.81 71.17 69.89 73.98

LD 61.73 31.30 61.73 61.73 60.78 61.34

Abalone 80.78 79.94 80.56 79.89 75.86 79.98

Dexter 68.83 67.98 68.56 65.78 63.89 68.67
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Figure 3 Comparison of the mean classification accuracies of the various datasets across the five
comparative methods

4.5.1 Digits recognition

In this section we discuss the classification performance of the propose CoKER in recogni-
tion of handwritten digits using MNIST dataset. It contains 10,000 handwritten digit images
for classifier testing. We compared CokER with five different methods namely Weighted
Classier Ensemble method based on Quadratic Forms (QFWEC) [28], Ridge regression
(RR), Random Forest (RF), Simple Vote Rule (SVRule) [30] and Adaboost (AB) [9].

Figure 4 shows the classification accuracy of the propose CoKER and the compara-
tive methods on the MNIST dataset. The proposed method outperforms the rest of the
comparative methods. More significantly, AB achieves the lowest classification accuracy
performance than the rest of the comparative methods which also perform a poorly as
compared to the propose CoKER.

Figure 4 Box plot of the mean classification accuracies of MNIST dataset across the five comparative methods
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5 Conclusion

In this paper, we investigated the problem of how to combine a set of kernel regressors into
a unified ensemble regression framework. The framework can simultaneously co-regularize
multiple kernel regressors by minimizing total loss of ensembles in Reproducing Kernel
Hilbert Space. In this way, one kernel regressor with more accurate fitting precession on
data, can obtain bigger weight, which leads to a better overall ensemble performance.
Experimental results on several UCI datasets for regression and classification, compared
with several single models and ensemble models such as Gradient Boosting (GB), Tree
Regression (TR), Support Vector Regression (SVR), Ridge Regression (RR) and Random
Forest (RF), illustrate that, the proposed method achieves best performances among the
comparative methods.
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