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Abstract User identity linkage has important implications in many cross-network appli-
cations, such as user profile modeling, recommendation and link prediction across social
networks. To discover accurate cross-network user correspondences, it is a critical pre-
requisite to find effective user representations. While structural and content information
describe users from different perspectives, there is a correlation between the two aspects of
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information. For example, a user who follows a celebrity tends to post content about the
celebrity as well. Therefore, the projections of structural and content information of a user
should be as close to each other as possible, which inspires us to fuse the two aspects of
information in a unified space. However, owing to the information heterogeneity, most exist-
ing methods extract features from content and structural information respectively, instead
of describing them in a unified way. In this paper, we propose a Linked Heterogeneous
Network Embedding model (LHNE) to learn the comprehensive representations of users
by collectively leveraging structural and content information in a unified framework. We
first model the topics of user interests from content information to filter out noise. Next,
cross-network structural and content information are embedded into a unified space by
jointly capturing the friend-based and interest-based user co-occurrence in intra-network
and inter-network, respectively. Meanwhile, LHNE learns user transfer and topic transfer
for enhancing information exchange across networks. Empirical results show LHNE out-
performs the state-of-the-art methods on both real social network and synthetic datasets and
can work well even with little or no structural information.

Keywords User identity linkage · Network embedding · Transfer learning ·
Heterogeneous social network

1 Introduction

In recent years, due to the popular and diverse functionalities of social networks, more and
more users simultaneously own accounts on multiple social networks such as Twitter, Flickr,
or Instagram [21]. Linking user accounts in different social networks has very important
influence in many cross-network applications. For user profile modeling [4, 11], a com-
prehensive understanding of a user’s interests can be obtained by aggregating the user’s
historical behaviors in different networks. For cross-network recommendation [12, 27, 28]
and link prediction [6, 32–34], anchor users (i.e., identity linked users) mitigate the cold
start and data sparsity problems by enabling information transferring between aligned net-
works. However, because of the unrevealing nature of the Web and the fact that most social
network platforms preserve the anonymity of users, the correspondences among users’ dif-
ferent accounts are also unrevealed. Therefore, an interesting question arises - how can we
find user correspondences in different social networks?

Most of the existing research on user identity linkage [3, 7, 9, 31] focuses on extracting
user characteristics from user contributed content information (e.g., blogs or tweets posted
by users) and structural information (e.g., connections and interactions between users), by
assuming the independence between the two types of information. Hence, existing studies
usually handle the content information and the structural information separately. However,
while the two types of information describe users from different perspectives, we note that
there exist correlations between structural and content information. For example, it is very
likely for a Twitter user to post tweets about a celebrity if s/he follows (likes) the celebrity.
Therefore, it is expected that the structural information and content information may share
a common spacewhere the structure-based and content-based representations of users are close
to each other. We are thus motivated to model user characteristics by fusing structural and
content information in a unified way in linking user identities in different social networks.

It is, however, a challenging task to fuse structural and content information to learn the
effective representations of users, because of the following two main issues. Firstly, content
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and structural information come from heterogeneous feature spaces (such as different gran-
ularities and data structures), which makes it hard to fuse them in a joint space. Secondly, the
information are diverse and noisy across different networks. For example, users may upload
images as content in one social network (e.g., Flickr) and post textual content in another
(e.g., Twitter). The diversity problem makes it extremely difficult to leverage the diverse
types of information simultaneously to accurately link user identities. Also, user content
is noisy with information irrelevant to characterize user identities, such as advertisements.
Similarly, the network structure may be noisy as well, because not all edges represent true
“friend” relations [21].

Recently, as representing a network as low-dimensional vectors is an efficient way to
solve high computation and space cost problem [2], methods that embed multiple types of
information of a network into a low-dimensional space have attracted a great deal of atten-
tion in a variety of fields, such as text mining and recommendation. For instance, Tang et
al. [23] proposed a text embedding method based on modeled heterogeneous text networks,
which is proved to be useful for document classification. Xie et al. [25] proposed a generic
graph-based embedding model, which jointly captures the sequential effect, geographical
influence, temporal cyclic effect and semantic effect in a unified way for the recommenda-
tion task. However, these methods are either applied to individual networks or not designed
for user identity linkage. There are also some studies [10, 13] focusing on aligning users
across social networks by network embedding. Nevertheless, these methods consider only
structural information represented as homogeneous networks. Hence, to achieve user link-
age with higher performance, we design an effective method that jointly embeds structural
and content information in multiple heterogeneous networks.

In this paper, we propose a Linked Heterogeneous Network Embedding model (LHNE)
to learn the comprehensive descriptions of users in different social networks through jointly
leveraging structural and content information in a unified framework. First, we model the
topics of user interests to represent the content information in different social networks at
a same granularity and filter out the noise. Second, we capture friend-based (i.e., structure)
and interest-based (i.e., content) user co-occurrence in linked heterogeneous network using
four types of sub-networks (i.e., user-user intra/inter-network and user-topic intra/inter-
network). Third, we learn the effective user representations by embedding the sub-networks
into a unified low-dimensional space. In the meantime, to bridge different social networks,
we learn user transfer and topic transfer using a set of seed users. Finally, users are mapped
by computing the similarity between the representations of users in different networks.

The main contributions are summarized as follows.

1. We focus on learning the comprehensive representations of users by jointly leveraging
structural and content information in a unified way, and integrating network structures
and content into linked heterogeneous network, which incorporates the friend-based
and interest-based user co-occurrence in different social networks.

2. We propose a novel network embedding model “LHNE”, which embeds the linked het-
erogeneous network into a unified low-dimensional space in terms of intra-network and
inter-network. In the meantime, we learn user and topic transfer across social networks
to solve the diversity problem utilizing a set of seed users as prior information.

3. We demonstrate the performance of LHNE on both real social network and synthetic
datasets. A series of experimental results validate that LHNE achieves better per-
formance than the state-of-the-art methods in terms of effectiveness, reliability and
sensibility and can work well even with little or no structural information.
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The remainder of the paper is organized as follows. Section 2 reviews existing work
related to our research. Section 3 defines concepts and terms used in this paper and formally
defines the user identity linkage problem. Section 4 details the technology of our proposed
LHNE model. Experimental results on both real social network and synthetic datasets are
presented in Section 5. We conclude our work in Section 6.

2 Related work

There are many studies addressing the user identity linkage problem by exploring a vari-
ety types of user information in multiple social networks, including profile information,
structural information and content information. We group existing methods for user identity
linkage into the following two main categories.

The first category of methods exploits one type of user information for user identity link-
age. The most intuitive way is to use profile information [15, 30], such as username, avatar
and gender. However, profile information contains many null and inconsistent values, which
makes it very hard to achieve satisfactory linkage accuracy. For the purpose of performance
enhancing, many studies leverage structural information [8, 10, 13, 16, 22] or content infor-
mation [18, 20] to discover user correspondences in different social networks. The common
idea shared by structure-based methods is to extract neighborhood-based features as the
inputs of models. For example, Narayanan et al. [16] proposed a graph theoretic model
based on the number of common neighbors to perform user identity linkage task. Korula
et al. [8] designed a parallelizable mapping algorithm based on neighborhood-based features
such as the degrees of unmapped users and the number of common neighbors. Moreover,
to solve the high-dimensional problem of networks, techniques are employed to embed net-
works into a low-dimensional space, which is followed by effective representation learning
for users to link user identities [10, 13]. For instance, Liu et al. [10] proposed a network
representation learning method to simultaneously learn the follower-ship/followee-ship of
individual users, and used seed users as constraints for user representation learning across
networks. Man et al. [13] presented a supervised framework that learns embedding-based
representations of nodes and links user’s accounts by a projection method. Meanwhile,
many studies have shown that content information is also conducible for user identity link-
age. Phan et al. [18] regarded the user identity linkage task as a pairwise classification
problem based on the content browsed by users on different devices, and then used the gradi-
ent boosting method to detect same users. Riederer et al. [20] utilized an aligning algorithm
to compute affinity scores based on time-stamped location data and then adopted a maxi-
mum weighted matching scheme to find the most likely candidate pair. Overall, exploiting
only one specific type of information leads to incomplete and biased user features, which
impairs the performance of user identity linkage.

The second category of methods aims to harness multiple types of user information to
improve the accuracy of user identity linkage [3, 7, 9, 31]. Kong et al. [7] developed a SVM
classifier with one-to-one constraint to predict anchor links by integrating neighborhood-
based network features and content features. Zhang et al. [31] proposed a unified link
prediction framework for collective link identification (inter-links and intra-links), which
also extracts features from both structural and content information [7]. Cao et al. [3] adopted
a bootstrapping method, which respectively extracts features from usernames, social ties
and content, and then learns model parameters by the EM algorithm. Liu et al. [9] proposed
a multi-objective framework by modeling heterogeneous behaviors (e.g., profile features
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and content features) and structure consistency, respectively. However,most of existingmethods
extract user features from different types of information separately, and then combine
them together as model inputs. Since features extracted from different information sources
have different feature spaces and underlying interpretations, it may not be ideal to directly
concatenating them as input features.

Our work in this paper distinguishes itself from other research in the following three
aspects.

1. Unlike most prior works on anchor link prediction [3, 7, 31] and user identity linkage [9]
that assume the independence between content and structural information, our model
aims to jointly leverage structural and content information in a unified framework.

2. Although several studies [10, 13] have exploited network embedding methods for user
identity linkage, they are all based on structural information that are represented as
homogeneous networks. In contrast, we propose a novel network embedding method
to improve linkage performance based on heterogeneous networks including both
structural and content information.

3. For the purpose of enhancing information exchange across networks, we solve the
cross-network diversity problem by learning user transfer and topic transfer across
social networks using a set of seed users.

3 Problem definition

In this section, we define preliminary concepts used in this paper and the user identity link-
age problem. Without loss of generality, we focus on user identity linkage in two social
networks, while the settings of two social networks can be easily extended to multiple
networks.

LetG = {U, E} be a social network, whereU is the set of users andE = U×U is the set
of edges in G representing the social connections between users. Each user u ∈ U is associ-
ated with a vector of words Vu = {v1, v2, ..., vn} representing the content contributed by the
user u in G. Each edge eij ∈ E, connecting users ui and uj , is associated with a weight wij ,
denoting the correlations between ui and uj . For example, if G is a co-authorship network,
wij is the number of times ui and uj have co-authored.

Then, the problem of user identity linkage in two social networks can be formally defined
as follows.

Problem 1. (User Identity Linkage) Given two social networks Gx = {Ux, Ex} and
Gy = {Uy,Ey}, the task of user identity linkage is to predict whether a pair of users
ux

i ∈ Ux and u
y
j ∈ Uy belong to a same real natural person.

4 Linked heterogeneous network embedding model

In this section, we first model the topics of user interests with content information, and
present the LHNE method mathematically based on friend-based and interest-based prox-
imity of users in terms of intra-network embedding (intra-NE) and inter-network embedding
(inter-NE). Then, we present the joint learning of user embedding and topic embedding of
different networks in a unified low-dimensional space. Next, we map users across social
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Figure 1 Illustration of the LHNE framework

networks based on the representations of users. The illustration of LHNE is depicted in
Figure 1. Finally, we present the pseudo codes to summarize the overall algorithm.

4.1 The topics of user interests modeling

As discussed in Section 2, user content information is not only diverse but also noisy. In
order to exploit effectively user content information, we capture content-wise user proximity
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by modeling the topics of user interests from the content contributed by users in a social
network.

In particular, given a social network G, we adopt Latent Dirichlet Allocation (LDA) [1]
to model topics from the set of word vectors associated with users V = {Vu|u ∈ U}. After
obtaining the topic distribution from V via LDA, we can capture user proximities through
the topics of user interests.

The detailed distributions for LDA model are as below:

θi ∼ Dir(α), φk ∼ Dir(β), zij ∼ Multi(θ i), wij ∼ Multi(φzij
) (1)

where α, β are hyper-parameters. Dir(·) is the Dirichlet distribution and Multi(·) is the
Multinomial distribution. For each user i, we draw his topic distribution θi from the Dirich-
let distribution with the parameter α (θi ∼ Dir(α)). For each word, we first draw the topic
zij from user’s topic distribution (zij ∼ Multi(θ i)), and then select the word wij accord-
ing to topic-word dictionary φzij

. The topic-word dictionary φk also follows the Dirichlet
distribution with the parameter β (φk ∼ Dir(β)).

We train LDA model by estimating the model parameters with the Gibbs sampling
method. We can derive the Gibbs updating rule as follows:

P(zij = k|z¬ij , w, φ, ·) ∝ n
¬ij
i,k + αk

P∑

p=1
(n

¬ij
i,p + αp)

+ n
¬ij
k,j + βj

Q∑

q=1
(n

¬ij
k,q + βq)

(2)

where ni,k is the number of times topic k being assigned to user i (number of times zi· = k)
and nk,j is the number of times word j being assigned to topic k. After sufficient sampling
iterations, the topic distribution θi can be estimated by:

θ̂ i,k = ni,k + αk

P∑

p=1
(ni,p + αp)

(3)

In our experiments, we notice that some topics are not important to capture user proximi-
ties in terms of interests . Therefore, instead of taking into account the complete set of topics,
we select the set Ti = {k|θi,k > h}, where h is the topic threshold. By setting a suitable
threshold h, we can improve not only the computation efficiency with a reduced number of
topics but also the robustness by filtering noises represented by insignificant topics.

Note that, we model topics of user interests from individual social networks, instead of
collectively extracting topics from the two social networks. The reason is that, the content
information of social networks is noisy and diverse. It is expected that topics modeled from
individual social networks will be of high quality than those extracted from combined social
networks. It will also allow more flexibility in parameter setting. For example, we may
set different topic numbers for different social networks to make the topics semantically
meaningful.

4.2 Intra-network embedding

Given a social network G, we first apply intra-network embedding to embed it into a low-
dimensional space by preserving friend-based proximities and interest-based proximities
within a network. In particular, we perform the following two tasks.
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Task 1. (User-User Intra-NE) The target is to preserve the friend-based proximities of
users within a network. The intuitive idea is to make the representations of users sharing
common neighbors to be as similar as possible.

Task 2. (User-Topic Intra-NE) The target is to preserve the interest-based proximities of
users within a network. That is, the representations of users who are interested in same
topics are expected to be similar.

The first task can be performed directly on the a given social network, e.g., G = (U,E).
For the second task, we construct a user-topic bipartite network, defined as Gut = {U ∪
T , Eut }, where U is the set of users, T is the set of topics extracted by LDA from the con-
tent contributed by users, and Eut is the set of edges connecting users and topics. Each edge
connecting user ui with topic tj is associated with a weight wij representing the probabil-
ities ui is interested in topic tj , which can be obtained from the output of the LDA model
(i.e., (3)).

Then, for both tasks 1 and 2, similar to existing representation learning methods [23], we
first define the conditional probability between two nodes vi and vj as follows,

p(vj |vi) = exp(zj · zi )
∑

vk∈VB
exp(zk · zi )

(4)

where vi, vj ∈ U for Task 1, while vi ∈ U and vj ∈ T for Task 2, VB = {vk ∈ U, vk �= vi}
for Task 1 and VB = T for Task 2. zi and zj are the embedding vectors of node vi and node
vj respectively. For preserving the weight wij on edge (vi, vj ), we make the conditional
distribution p(·|vi) and its empirical distribution p̂(·|vi) coincide, and define empirical
distribution as p̂(vj |vi) = wij

di
. Then, we minimize the following objective function:

O ′ =
∑

vi∈VA

λiD(p̂(·|vi)||p(·|vi)) (5)

where D(·||·) is the KL-divergence between two distributions, λi is the importance of node
vi in the network, which can be denote as the degree di = ∑

i wij , VA = U for both tasks
1 and 2. By omitting some constants, the objective function (5) can be calculated as:

O ′ = −
∑

(vi ,vj )∈Ev

wij logp(vj |vi) (6)

where Ev is the set of edges between VA and VB .
Finally, based on the objective function (6), we can complete the task 1 in the network G

and task 2 in the bipartite network Gut by minimizing the following objective functions:

O1 = −
∑

(ux
i ,ux

j )∈Ex

wx
ij logp(ux

j |ux
i ) −

∑

(u
y
i ,u

y
j )∈Ey

w
y
ij logp(u

y
j |uy

i ) (7)

O2 = −
∑

(ux
i ,txj )∈Ex

ut

wx
ij logp(txj |ux

i ) −
∑

(u
y
i ,t

y
j )∈E

y
ut

w
y
ij logp(t

y
j |uy

i ) (8)

4.3 Inter-network embedding

In this section, we perform the inter-network embedding on two networks Gx and Gy .
Assuming that a set of anchor users bridging the two networks are available, we can learn
inter-NE by the following tasks:
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Task 3. (User-User Inter-NE) The target is to make the anchor and potential anchor users
have coincident representations in a unified space utilizing the user transfer.

Task 4. (User-Topic Inter-NE) The target is to make the representations of the anchor
and potential anchor users sharing common interests to be as similar as possible in a
unified space with the assistance of topic transfer.

We first introduce the user transfer and topic transfer as follows.
User transfer will be learned across two networks Gx and Gy . To do this, a classifier

(SVM) is trained for anchor link prediction [7] based on features1 of a set of anchor users
Uo, and then the results of the classifier are considered as the transfer probabilities between
users. It is proved that the restrictions of probabilities are equivalent to making the repre-
sentations of anchor users coincide [10]. Therefore, we define the transfer probability as
pu(u

x
i |uy

k ), which represents the probability that two users ux
i and u

y
k in different networks

are the same person. Then, we get a set of seed users (anchor and potential anchor users)
Us = {uk, pu(u

x
k |uy

k ) > q}, where q is a transfer threshold.
Topic transfer is learned between two bipartite networks Gx

ut and G
y
ut . We follow the

intuition that if many seed users who are simultaneously interested in topic txi and topic t
y
j

in different networks, the two topics tend to be relevant or similar [27]. Therefore, we define
the topic transfer probability between topic txi and topic t

y
j based on the set of seed users

Us as:

pt (t
y
j |txi ) =

∑

uk∈Us

p(t
y
j |uk)p(uk|txi )

=
∑

uk∈Us

p(t
y
j |uk)

p(txi |uk)p(uk)

p(txi )

=
∑

uk∈Us

θ
y
j,k ∗ θx

i,k ∗ p(uk)

p(txi )
(9)

Where θ
y
j,k and θx

i,k are topic probabilities of LDA model, p(uk) is the user prior and is

denoted as p(uk) = pu(u
x
k |uy

k ), and p(txi ) is the topic prior and is denoted as p(txi ) =∑

uk∈Us

p(txi |uk)p(uk) = ∑

uk∈Us

θx
i,k · p(uk).

With the assistance of user transfer, we can construct a user-user inter-network from Gx

and Gy , defined as GH
uu = {Ux ∪ Uy, EH

uu}, where EH
uu is the set of social links Ex ∪ Ey

and anchor links Eo
uu between anchor users. GH

uu can propagate users’ structural contexts
across networks.

Similarly, through topic transfer we build a user-topic inter-network GH
ut as the two user-

topic bipartite networks Gx
ut and G

y
ut connected through the learned topic transfer in (9).

Then, we can embed two inter-networks GH
uu and GH

ut
2 into a unified latent space. In

particular, for the task 3, although there are no real anchor links between the potential anchor

1The features include extended common neighbors, extended Jaccard’s coefficient, extended Adamic/Adar
Measure and users’ topic distribution.
2Actually, the anchor links between users and topic links between topics are regarded as virtual links by
user and topic transfer. The cross-network bridge nodes can be regarded as the same nodes with the help of
virtual links. Therefore, the user-topic inter-network is a bipartite network, because there are only real edges
between source and target nodes like user-topic intra-network.
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user pairs, the information of Gx and Gy can interact with each other by the user transfer
probabilities pt

u. Therefore, we define the empirical probabilities based on pt
u as:

p̂(u
y
j |ux

i ) =
∑

uk∈Ux

p̂(uk|ux
i ) · pu(u

y
j |uk)

=
∑

uk∈Ux

wx
ik

dx
i

∗ pu(u
y
j |uk) (10)

We minimize the KL-divergence of p(u
y
j |ux

i ) and p̂(u
y
j |ux

i ), and get the corresponding
objective function:

O ′
3 = −

∑

(ux
i ,uk)∈Ex

∑

u
y
j ∈Uy

wx
ikp

t
u(u

x
i |uk) logp(u

y
j |ux

i ) (11)

For the task 4, although there are not real links between user ux
i in Gx and topic t

y
j in

Gy , through the topic transfer pt (t
y
j |txk ), user ux

i and topic t
y
j can exchange information

across networks. Therefore, we define the empirical probabilities and get the corresponding
objective function as follows:

p̂(t
y
j |ux

i ) =
∑

(ux
i ,txk )∈Ex

ut

p̂(txk |ux
i )pt (t

y
j |txk )

=
∑

(ux
i ,txk )∈Ex

ut

wx
ik

dx
i

∗ pt (t
y
j |txk ) (12)

O ′
4 = −

∑

(ux
i ,txk )∈Ex

ut

∑

t
y
j ∈T y

wx
ikpt (t

y
j |txk ) logp(t

y
j |ux

i ) (13)

Furthermore, with (9–13), we can calculate inter-NE by swapping the superscripts x and
y, when Gy is the source network and Gx is the target network.

Finally, the task 3 and task 4 can be realized based on the objective function (11) and
(13) by minimize the following two objective functions:

O3 = −
∑

(ux
i ,uk)∈Ex

∑

u
y
j ∈Uy

wx
ikpu(u

x
i |uk) logp(u

y
j |ux

i )

−
∑

(u
y
i ,uk)∈Ey

∑

ux
j ∈Ux

w
y
ikpu(u

y
i |uk) logp(ux

j |uy
i ) (14)

O4 = −
∑

(ux
i ,txk )∈Ex

ut

∑

t
y
j ∈T y

wx
ikpt (t

y
j |txk ) logp(t

y
j |ux

i )

−
∑

(u
y
i ,t

y
k )∈E

y
ut

∑

txj ∈T x

w
y
ikpt (t

x
j |tyk ) logp(txj |uy

i ) (15)
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4.4 Joint embedding learning

The linked heterogeneous network is composed of four parts: user-user/user-topic intra-
network and user-user/user-topic inter-network, where the users are shared across the four
parts. To learn the representations of the networks, an intuitive idea is to collectively embed
the four parts, which can be achieved by minimizing the following objective function:

O = O1 + O2 + O3 + O4 (16)

We use the asynchronous stochastic gradient algorithm [19] to optimize objective (16).
Optimizing objective (16) is computationally expensive, which needs to sum over the entire
set of nodes, as calculating the conditional probability p(·|ui). To address this problem, we
adopt the negative sampling approach [14]. Take the edges whose the source node is ux

i as
a example, the equivalent counterparts can be derived, given as:

logp(ux
j |ux

i ) ∝ log σ(γ ′xT

j · γ x
i ) +

K∑

m=1

Eun∼pn(u) log σ(−γ ′xT

n · γ x
i ) (17)

logp(txj |ux
i ) ∝ log σ(ϕ′x

j
T · γ x

i ) +
K∑

m=1

Eun∼pn(u) log σ(−ϕ′x
n

T · γ x
i ) (18)

logp(u
y
j |ux

i ) ∝ log σ(γ
′y
j

T · γ x
i ) +

K∑

m=1

Eun∼pn(u) log σ(−γ
′y
n

T · γ x
i ) (19)

logp(t
y
j |ux

i ) ∝ log σ(ϕ
′y
j

T · γ x
i ) +

K∑

m=1

Eun∼pn(u) log σ(−ϕ
′y
n

T · γ x
i ) (20)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, K is the number of negative
samples, and du is the output degree. We set K = 5 and pn(u) = d

3/4
v as in [14].

To minimize the (16), it is a straightforward solution to merge all kinds of edges in
four sets Ex , Ey , Ex

ut , and E
y
ut together. However, because networks are heterogeneous,

the weights of different types of edges cannot be comparable to each other. Therefore, it is
more reasonable to alternatively sample from the four sets of edges [25], which is called
joint training. Moreover, the objective function (16) can be divided into Ouu and Out due
to respective sampling, where Ouu = O1 + O3 and Out = O2 + O4 are the objective
function when sampling edges fromE andEut , respectively. By learning the representations
{(γ x

i , γ
′x
i )}i=1...|Ux |, {ϕx

j }j=1...|T x |, {(γ y
i , γ

′y
i )}i=1...|Uy | and {ϕy

j }j=1...|T y |, we are able to

represent different types of nodes with a d dimensional embedding γ x
i , ϕx

j , γ
y
i and ϕ

y
j in

metric 	d . γ ′x
i and γ

′y
i are the context representations of users as the neighbors [24].
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To update the vector of nodes in network Gx , i.e., γ x
i , we can calculate the gradient by

sampling from E and Eut , respectively. The gradient is computed as:

∂Ouu

∂γ x
i

= wx
ij ∗ {[1 − σ(γ ′x

j
T · γ x

i )]γ ′x
j − σ(γ ′x

n
T · γ x

i )γ
′x
n }

+
∑

uj ∈Uy

wx
ik ∗ pu(u

y
j |ux

k ){[1 − σ(γ
′y
j

T · γ x
i )]γ ′y

j

−σ(γ
′y
n

T · γ x
i )γ

′y
n } (21)

∂Out

∂γ x
i

= wx
ij ∗ {[1 − σ(ϕxT

j · γ x
i )]ϕx

j − σ(ϕxT

n · γ x
i )ϕ

x
n}

+
∑

tj ∈T y

wx
ik ∗ pt (t

y
j |ux

k )
{
[1 − σ(ϕ

yT

j · γ x
i )]ϕy

j

−σ(ϕ
yT

n · γ x
i )ϕ

y
n

}
(22)

Similarly, we can obtain the partial derivatives w.r.t. the other vectors of the concerned
nodes given as:

∂Ouu

∂γ ′x
j

= wx
ij ∗ [1 − σ(γ ′xT

j · γ x
i )]γ x

i

+
∑

uj ∈Ux

w
y
ik ∗ pu(u

x
j |uy

k )[1 − σ(γ ′xT

j · γ
y
i )]γ y

i (23)

∂Out

∂ϕx
j

= wx
ij ∗ [1 − σ(ϕxT

j · γ x
i )]γ x

j

+
∑

tj ∈T x

w
y
ik ∗ pt (t

x
j |uy

k )[1 − σ(ϕxT

j · γ
y
i )]γ y

j (24)

∂Ouu

∂γ ′x
n

= wx
ij ∗ [−σ(γ ′xT

n · γ x
i )]γ x

i

+
∑

uj ∈Ux

w
y
ik ∗ pu(u

x
j |uy

k ) ∗ [−σ(γ ′xT

n · γ
y
i )]γ y

i (25)

∂Out

∂ϕx
n

= wx
ij ∗ [−σ(ϕxT

n · γ x
i )]ϕx

i

+
∑

tj ∈T x

w
y
ik ∗ pt (t

x
j |uy

k ) ∗ [−σ(ϕxT

n · γ
y
i )]γ y

i (26)

With reference to (21–26), the updating rules for network Gy can be obtained by swap-
ping the superscripts x with y. They are not listed due to the page limit. The joint training
algorithm is shown in Algorithm 1:
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4.5 Mapping users across social networks

After learning the representations of users, we can discover user correspondence across
social networks based on the cosine similarity, calculated using user embeddings, as follows.

rel(ux
i , u

y
j ) =

∑d
p=1 γ x

ip × γ x
jp

√∑d
p=1 γ x2

ip ×
√∑d

p=1 γ x2

jp

(27)

Given two sets of test users U ′x = {ux
1, u

x
2, . . . , u

x
n} and U ′y = {uy

1, u
y

2, . . . , u
y
n} from

two social networks Gx and Gy , we compute the cosine similarity for each pair of test
users from the two lists. Then, given some similarity threshold w, we return the list of user
pairs3 R = {< ux

i , u
y
j > |rel(ux

i , u
y
j ) > w, ux

i ∈ U ′x, uy
j ∈ U ′y} as the set of discovered

corresponding users.

4.6 Overall algorithm

Our overall algorithm is presented in Algorithm 2, which contains four components. First,
we model the topics of user interests in Gx and Gy respectively and filter out insignificant
topics from steps 1 to 4. Then, we learn the user transfer and topic transfer based on anchor
users (steps 5 and 6). The details are discussed in Section 4.3. Next, in step 7, the joint

3Note that, if it is known that the two social networks are fully aligned, then for any user ux
i with no cor-

responding user u
y
j such that rel(ux

i , u
y
j ) > w, we simply return the user u

y
j with the maximum similarity

value.
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training algorithm is used to learn the user and topic node representations of two networks
by collectively utilizing intra-network and intra-network embedding − the detailed process
is introduced in Algorithm 1. Finally, we can return a result list of predicted matching user
pairs from steps 8 to 13.

5 Experiments

In this section, we compare our LHNE with the state-of-the-art methods on two types of
cross-network datasets. The first dataset is composed of a Twitter network and a Flickr
network. The second dataset is a synthetic dataset including two co-author networks in Data
Mining area and Wide World Web area.

5.1 Comparative methods

In this subsection, to evaluate the performance of LHNE for user identity linkage, we choose
the following state-of-the-art methods as competitors, including

1. LHNE: the model proposed in this paper. LHNE is based on heterogeneous networks
in terms of network structures and content. It contains User-User/User-Topic intra-NE
and User-User/User-Topic inter-NE.

2. LHNE-U: a variation of our model that ignores the User-Topic inter-NE.
3. LHNE-S: a variation of LHNE based on network structures. It contains User-User intra-

NE and User-User inter-NE.
4. LHNE-C: a variation of LHNE based on content. It contains User-Topic intra-NE and

User-Topic inter-NE.
5. IONES: a homogeneous network embedding model for user identity linkage with “soft”

constraint [10], which can simultaneously learn the follower-ship/followee-ship of each
user. IONES considers only the network structures.
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6. IONES-C: a variation of IONES that was extended with content information through a
simple and effective manner. That is, we concatenate the user topic distribution vector
and the embedding vector of a user into a long vector as the user representation for user
identity linkage. IONES-C considers structural information and content information
separately.

7. KNN: a popular competitive method based on k nearest neighbors search [17, 22]. In
the experiments, we jointly utilize topic distribution and common neighbors as user
features to compute the k nearest neighbors.

5.2 Evaluation metrics

To perform the user identity linkage, we utilize the recall, precision and F1 [5] as the metrics
to evaluate the methods’ performances. The recall is the fraction of the number of real
corresponding user pairs that have been found over the total amount of real anchor user
pairs, while the precision is the fraction of real corresponding user pairs among the result
lists.

Recall = |CorrPairs|
|RealAnchorUserPairs| (28)

Precision = |CorrPairs|
|ResultP airs| (29)

F1 = 2 ∗ Recall ∗ Precision

Recall + Precision
(30)

Where |RealAnchorUserPairs| is the number of all real anchor user pairs. |CorrPairs|
is the number of real corresponding user pairs that the method can find in the result list R.
|ResultP airs| is the number of pairs in R.

5.3 Structural characteristic metrics

We adopt two metrics (Interop and sparsity level) to evaluate the reliability of LHNE under
the different social network structures.

Interoperability (abbreviated as Interop) [22] can measure the influence of overlap-
ping of the two networks and is defined as follows:

Interop(x, y) = |Correlations| ∗ 2

|Relationsx | + |Relationsy | (31)

where Relationsx/y is the set of direct edges in Gx/y . Correlations is the intersection of
the two sets, and 0 ≤ Interop(x, y) ≤ 1. When the two network are completely overlapped
(or non-overlapped), Interop(x, y) is equal to 1 (or 0).

Meanwhile, we develop a sample ratio of edges es to study the influence of different
sparsity levels of networks. In order to reduce the impact of other factors, we conduct vari-
ants of datasets for experiments at different sparsity levels (es = [0.1, 0.2, . . . , 0.9]) by
removing overlapped edges and non-overlapped edges of two networks simultaneously, and
keep the Interop value constant.

Besides, we also evaluate the effectiveness of methods under different w and training
ratios and the sensitivities under different number of samples and dimensions.
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Table 1 Statistics of social
network dataset Networks Users Edges Anchors

Twitter 7118 83391 7118

Flickr 7118 23997

5.4 Datasets

For evaluating the effectiveness, reliability and sensitivity of LHNE, We applied methods
above to two types of cross-network datasets, including both social network and synthetic
datasets.

Social network dataset [26] The first dataset is composed of two real social networks:
Twitter and Flickr. There are 7118 anchor users with their follower/friend relationships (i.e.,
structural information). We collected tweets (2361.07 per user) in Twitter via Twitter API
and crawled the tags (559.80 per user) in Flickr via Flickr API as user content information.
The ground truth of anchor users are provided in the dataset. The basic statistics of them are
shown in Table 1.

Synthetic dataset The synthetic dataset consists of two co-author networks including the
co-author relationships (i.e., structural information) and paper titles from the fields of Data
Mining (DM) and Wide World Web (WWW), which is constructed from Extracted DBLP
Dataset [29]. We used paper titles as content information. On average, each author has 2.07
titles in DM and 1.81 titles in WWW. Because the network is directed in this paper, the co-
author relationships are regarded as two directed edges with opposite directions and equal
weights. There are 5353 anchor authors in synthetic dataset, forming the ground truth. The
statistics of the dataset are shown in Table 2.

Analyzing two datasets above, we find the social network dataset only contains anchor
user information, while the synthetic dataset includes anchor user and their non-anchor
friend information simultaneously. For making our experiments more reliable, we evaluate
the effectiveness of our proposed method on two datasets and the reliability and sensitivity
on the synthetic dataset, because the latter contains more comprehensive user information.

5.5 Experiment results on social network dataset

In this section, we present the performance of all methods on social network dataset. LDA
model is adopted to help generate the topics of user interests. The number of topics K

is set to 60 and all hyperparameters are set to 1/K . For the purpose of achieving better
embeddings, we set imbalance ratio of classifier #negtive

#positive
= 1, since the classifier achieves

better performance when the training sets are more balanced [7, 32].

Table 2 Statistics of synthetic
dataset Networks Users Edges Anchors

DM 30795 168558 5353

WWW 28273 147932
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Table 3 Performance w.r.t topic threshold on social network dataset

Metrics Methods Topic threshold

0.1 0.3 0.5 0.7

Recall LHNE-U 0.545 0.596 0.548 0.495

LHNE 0.619 0.687 0.629 0.563

Precision LHNE-U 0.422 0.498 0.434 0.353

LHNE 0.474 0.566 0.488 0.397

F1 LHNE-U 0.476 0.538 0.484 0.412

LHNE 0.537 0.621 0.549 0.466

Performance w.r.t topic threshold. It is critical to find the appropriate the topics of user
interests that can represent users’ real interests for solving the noise problem in social net-
works. Therefore, we first conduct experiments to study the impact of h, which can help
filter out noise of contents. Table 3 presents the performance of our proposed LHNE and
LHNE-U in terms of recall, precision and F1 with different threshold h. From the results,
we observe that the performance is sensitive to h. First, the performance of the two methods
improves with the increase of h and achieves the best performance when h = 0.3. This is
because the contents contain a lot of noise and the noise can be filtered with a lower thresh-
old h. Then, the increase of h leads to the decrease of performance, as useful information is
also filtered with a higher threshold. To achieve the best performance, we set h = 0.3.

Performance w.r.t similarity threshold and training ratio. We show the performance
under different similarity threshold and training ratio settings in Figures 2 and 3, as results
are very sensitive to them. As discussed in Section 4.5, the recall declines with the increase
of w, since many user pairs are filtered with a higher w. Meanwhile, the user pairs with
high similarities are more likely to be real corresponding user pairs. It is well known that the
real corresponding user pairs usually have larger similarities than the others [5]. Therefore,
the precision increases with the increase of w. To balance the recall and precision, we set
w = 0.9.

According to Figure 2, our proposed LHNE outperforms other competitors significantly.
Specifically, there is a 47.93% relative increase (0.682 vs. 0.461 recall score) comparing to
IONES-C, 64.34% relative increase (0.682 vs. 0.415 recall score) comparing to IONES and
182.99% relative increase (0.682 vs. 0.241 recall score) comparing to KNN when w = 0.9.
By taking a closer look at the dataset, we notice that there are 40.94% users without any

Figure 2 Performance w.r.t similarity threshold on social network dataset
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Figure 3 Performance w.r.t training ratio on social network dataset

links to other users in Flickr network and 18.45% users in Twitter network. The loss of struc-
tural information degenerates the performance of methods. LHNE can solve this problem by
linking the topics and users because of the correlation of information, therefore, the miss-
ing information between users can be supplemented via topic nodes serving as the context
of user nodes. In contrast, IONES-C and KNN consider content and structural information
separately and IONES only considers structural information, so that they fail to correlate
users without social links. Meanwhile, LHNE exploits the transfer across networks in terms
of users and topics. With the help of user transfer and topic transfer, the representations of
users are more comprehensive and effective. Consequently, LHNE has better performance
than LHNE-U, since LHNE-U only considers user transfer across networks. Besides, it can
be concluded that the structural information is more discriminative than the content infor-
mation, as LHNE-S outperforms LHNE-C. In the meantime, LHNE performs better than
LHNE-S (with only structural information) and LHNE-C (with only content information),
showing the benefits brought by jointly leveraging structural and content information.

Additionally, Figure 3 presents LHNE outperforms other methods with different train-
ing ratios. It can be observed that LHNE achieves much higher recall, precision and F1
even when the given ratio is as low as 10% to 20%, indicating that LHNE can capture
most common knowledge for user identity linkage by jointly leveraging structural and con-
tent information. It is significant for real social networks without a lot of training data.
Considering the performance of the competitors, we set training ratio as 0.9.

Figure 4 Performance w.r.t similarity threshold on synthetic dataset
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Figure 5 Performance w.r.t training ratio on synthetic dataset

5.6 Experiment results on synthetic dataset

In this experiment, we focus on the reliability of LHNE on different network structures (e.g.,
Interop and sparsity) and parameter sensitivity (e.g., the number of samples and dimen-
sion) besides effectiveness. The parameter settings of K , hyperparameters and imbalance
ratio are as same as social network dataset.

Performance w.r.t similarity threshold and training ratio. Figures 4 and 5 reports
the performance of all methods on synthetic dataset. We can see that the comparison result
is similar to that presented in Figures 2 and 3. LHNE performs better than the other meth-
ods under different w and training ratio. However, there are two different issues between
Figures 4 and 5 and Figures 2 and 3. Firstly, all methods on synthetic dataset perform bet-
ter than on social network dataset. This is because synthetic dataset has a better network
structure. Specifically, synthetic dataset includes anchor users and non-anchor users simul-
taneously and the ratio of edges of the DM and WWW networks is more balanced than
those of the social network dataset, as shown in Table 1. Secondly, we also observe that
LHNE outperforms IONES-C and IONES more greatly on social network dataset than on
the synthetic dataset. Because of the nature of social networks, the social network datasets
has more noise than the synthetic dataset. LHNE is robust by filtering noise of content with
a suitable topic threshold h. Moreover, Joint Embedding of structural and content informa-
tion is more stable for LHNE. Similar to the considerations on the social network dataset,
we set w as 0.95 and the training ratio as 0.9.

Figure 6 Reliability w.r.t Interop on synthetic dataset
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Figure 7 Reliability w.r.t sparsity on synthetic dataset

Reliability w.r.t Interop and sparsity. Because all methods are based on network struc-
tures, they often suffer from problems such as non-overlap and sparsity. Therefore, we
explore the performance for different Interop and sparsity level. Figures 6 and 7 show
the results. The Interop of the original synthetic dataset is 0.0889. In this experiment, we
vary the Interop value from 10% to 60% by removing edges of anchor users. According
to Figure 6, all methods depend on the Interop, and they achieve better performance as
the Interop value increases. Moreover, LHNE outperforms all competitors, even when the
Interop value is low. Figure 7 shows LHNE performs better than other embedding-based
methods, even in the cases where the sparsity level is lower than 30%. In other words,
LHNE can achieve good performance with relatively less structural information. It can be
concluded that linking topics and users can make LHNE more reliable. To maintain the
original network structures, we set the Interop as 0.0889 and the sparsity level as 1.

Sensitivity w.r.t number of samples and dimension. For embedding-based methods,
the number of samples and the dimension have a significant impact on the computational
speed and storage. Therefore, we analyze the converging performance by varying the num-
ber of samples and the performance by varying d. Figure 8 shows LHNE converges much
faster than IONES-C and IONES. We believe the gain comes from the contribution of joint
embedding of structural and content information. It is beneficial for real-time applications
based on user identity linkage. Therefore, considering the real-time requirement and the
convergence of the competitors, we set the number of samples as 10 million when all meth-
ods converge. Besides, Figure 9 presents that LHNE achieves much higher performance
than other methods even when d is low. Therefore, more efficient computation in term of

Figure 8 Sensitivity w.r.t number of samples on synthetic dataset
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Figure 9 Sensitivity w.r.t dimension on synthetic dataset

time and space can be realized through lower dimensional embedding. We set d = 100
when all the methods are stable and can obtain best performance.

6 Conclusion

In this paper, we aim to learning the comprehensive representations of users considering
the fact that structural and content information are correlative, and propose a linked het-
erogeneous network embedding method for user identity linkage to address the challenging
issues, including heterogeneity of information, diversity of social networks and noise. We
conducted extensive experiments to evaluate the performance of LHNE on both real social
network and synthetic datasets. The results showed LHNE is significantly better than the
state-of-the-art methods (up to 47.93% enhancement comparing to IONES-C), when there
are 40.94% and 18.45% users without any links to others in Twitter and Flickr network,
respectively. Therefore, our model can work well even with little or no structural informa-
tion, when data acquisition is difficult in social networks because of privacy protection.
The performance of LHNE can be reinforced by fully exploring the correlation between
heterogeneous information, which can provide complementary information to each other.
For future works, we may consider integrating more types of information into LHNE for
improving the performance of embedding and extending the model to multiple networks.
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