
World Wide Web (2019) 22:375–416
https://doi.org/10.1007/s11280-018-0570-5

Protecting privacy for distance and rank based group
nearest neighbor queries

Tanzima Hashem1 ·Lars Kulik2 ·
Kotagiri Ramamohanarao2 ·Rui Zhang2 ·
Subarna Chowdhury Soma1

Received: 27 March 2017 / Revised: 24 January 2018 / Accepted: 9 April 2018 /
Published online: 15 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract This paper proposes a novel approach to safeguarding location privacy for GNN
(group nearest neighbor) queries. Given the locations of a group of dispersed users, the
GNN query returns the location that minimizes the total or the maximal distance for all
group users. The returned location is typically a meeting place such as a cinema or cof-
fee shop where the group would like to meet. In our work, we highlight the challenges for
private GNN queries and propose a general framework that have two key features: (i) it
ensures privacy in a decentralized manner and (ii) can compute an optimal location for GNN
query that maximizes the group’s overall preference for the meeting place. To mask their
precise locations, we assume that user locations are given as regions to a location-based
service provider (LSP). The LSP computes then a set of candidate answers (i.e., meeting

� Tanzima Hashem
tanzimahashem@cse.buet.ac.bd

Lars Kulik
lkulik@unimelb.edu.au

Kotagiri Ramamohanarao
kotagiri@unimelb.edu.au

Rui Zhang
rui.zhang@unimelb.edu.au

Subarna Chowdhury Soma
subarna089@gmail.com

1 Department of Computer Science and Engineering, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh

2 Department of Computing and Information System, University of Melbourne, Melbourne,
VIC 3010, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0570-5&domain=pdf
mailto:tanzimahashem@cse.buet.ac.bd
mailto:lkulik@unimelb.edu.au
mailto:kotagiri@unimelb.edu.au
mailto:rui.zhang@unimelb.edu.au
mailto:subarna089@gmail.com

376 World Wide Web (2019) 22:375–416

places) for the GNN query. We identify two privacy attacks on the user locations, the dis-
tance intersection attack and the rank disclosure attack. These attacks are possible when
the answer of a GNN query is determined from the candidate answers in a straightforward
manner. We develop private filters that prevent these attacks and compute the GNN from
the retrieved candidate answers. Our decentralized approach ensures that neither the users
nor the LSP can learn the location of any group member. Our algorithms compute from
the candidate set an optimal meeting place given the group members’ imprecise locations.
Our key insight to an efficient computation is to prune the meeting places that cannot be
GNNs given the locations of the group members within the search region. A comprehensive
experimental evaluation shows the effectiveness of our approach to answering private GNN
queries.

Keywords Group nearest neighbor queries · Location based services · Privacy

1 Introduction

The advent of social networking sites such as Facebook [9], Google+ [17], Loopt [39],
Friend Finder [49] has enabled location-based services (LBSs) for a group instead of a single
user. Consider a scenario, where a group of friends decide to have their dinner together
while participating in a chat using Facebook. The group may want to meet at a restaurant
that minimizes their total travel distance to the restaurant. Facebook allows users to share
their locations with others. Thus, it is not hard to imagine that Facebook or a third party
application in Facebook can offer an LBS to find the suitable nearest restaurant for the
group based on user locations. A group nearest neighbor (GNN) query allows friends to
meet at their nearest place such as restaurant, shopping center, pizza place or movie theater.
In military applications, a GNN query can be used if a group of soldiers wants to meet in
the shortest possible time.

Along with the benefits, location-based applications also bring privacy concerns among
the users [7, 11]. For example, if a group of students wants to meet at the nearest library and
one of them is located at a student counseling center at that time then this student might not
want to reveal that location to others. The fact that a student is stressed or seeks professional
help is personal information that the student might not want to disclose. Recently, Microsoft
has conducted a survey [41] to assess the state of LBSs. The study showed that though 92%
of the users consider LBSs as valuable services, 52% of the users are worried about privacy
risks that could arise from accessing LBSs. The main concerns of the users come from
sharing location data with unspecified organizations or people. Nowadays, not only large
corporations like Google or Microsoft offer LBSs but also small developers, companies or
employers can run their location-based applications via Apple’s iPhone OS and Google’s
Android operating systems. The privacy threat is exacerbated if the available information
from the access of LBS is linked with other data sources; in the example, if the location-
based service provider (LSP) corroborates with the counseling center, then more specific
information about the user could be revealed. Due to an increasing awareness of privacy
risks, users might refrain from using LBSs, which would hinder the use of these valuable
services [36, 51].

Existing research mainly focuses on developing techniques (e.g., [5, 20, 42, 48, 54]) that
preserve user privacy during the request of nearest neighbor (NN) queries. These researchers
address the problem of answering GNN queries while preserving privacy for all group mem-
bers, which we call the private GNN query. Our approach for private GNN queries does

World Wide Web (2019) 22:375–416 377

not disclose a user’s location to others including the LSP and other group members thus
ensuring privacy all the participants of LBS.

Formally, in a GNN query [44, 45], a group of users provide their current locations, and
the LSP returns the location (e.g., a meeting place) that minimizes an aggregate distance
for the group. Depending upon the application scenarios, the aggregate functions could be
SUM and MAX, which return the total distance and the maximum distance from the users to
the meeting location. Minimizing the total distance allows users to optimize their combined
travel costs and minimizing the maximum distance enables users to meet at the shortest
possible time.

In this paper, we introduce a new type of GNN query, a GNN query based on a weighted-
rank (W-RANK), that maximizes the overall preference of the group. In a GNN query based
on W-RANK, the meeting places are independently ranked by the users of the group and a
set of weights are set by the group, where a weight is associated with each rank to express
a group’s level of cost for a meeting place with that rank. The meeting place that has the
minimum total weighted-rank is considered as the GNN for the group. A weight represent-
ing the group’s cost increases for a lower rank meeting place and is inverse to the group’s
preference. We formally define the GNN query based on W-RANK in Section 2.

The ranking of meeting places can be done using a single or multiple criteria, for exam-
ple, the travel distance or food choice could be the factors affecting the ranking of the
restaurants. A user’s cost for traveling to a meeting place such as a restaurant is minimal if
the other group members come at her nearest restaurant; the cost might be the time or the
transportation cost to reach the meeting place. Thus, every user has the highest preference
for the closest meeting place. A location is less preferred if the group decides to meet at
the user’s second nearest restaurant instead of the first one. In this paper, we focus on rank-
ings that are based on the proximity of meeting places, an important factor for users for
selecting any type of meeting place, since protecting user privacy for GNN queries based
on proximity ranking is the most challenging among different criteria.

Figure 1a shows an example scenario, where {u1, u2, . . . , u11} are user locations, and
p1 and p2 are two meeting places. Figure 1b shows the distances of u1, u2, . . . , u11 to
the meeting places. A GNN query that is based on traditional aggregate functions SUM or
MAX and minimizes the total and maximum distance of the group to the meeting place,
respectively, returns p2 as the answer. On the other hand, p1 is the closest to the majority

(a) (b)

Figure 1 An example scenario, where (a) {u1, u2, . . . , u11} are user locations, and p1 and p2 are two
meeting places, and (b) the distances of u1, u2, . . . , u11 to the meeting places

378 World Wide Web (2019) 22:375–416

(i.e., 9 users u1 to u9) of the users. Thus, a GNN query based on W-RANK returns p1 as the
answer. A group may select p1 over p2 since p1 maximizes the preferences of the group,
and as a result the total and the maximum travel distance of the group increases slightly. The
query answer varies depending on the users involved in a group. For example, if a group
consists of users {u1, u2, . . . , u9} then the returned answer is same for a GNN query based
on SUM, MAX and W-RANK. There are also scenarios, where the answer of a GNN query
based on W-RANK and SUM is the same but different from the answer based on MAX, e.g.,
for the group {u2, u2, . . . , u10}, and vice versa, the answer based on W-RANK and MAX

is different to SUM, e.g., for the group {u1, u3, u6, u7, u9, u11}. In summary, depending
on the user locations in a group, a GNN query based on W-RANK can return the same or
different answer from a GNN query based on aggregate functions SUM and MAX but always
maximizes the overall preference of the group. Thus, a group can request a GNN query
based on W-RANK, SUM or MAX to find the appropriate meeting place according to their
requirements. In this paper, we develop privacy preserving approaches for GNN queries
based on SUM and MAX, and W-RANK.

1.1 Research problem

Recent research (e.g., [12, 18, 20]) has shown that sending a user’s imprecise instead of
exact location to the LSP while accessing LBSs is an effective model of protecting a user’s
location privacy from the LSP. Usually, the LSP returns a candidate answer set to the user
that includes the answer for a LBS (e.g., a nearest neighbor (NN) query) for every location
of the imprecise location. The user finds the query answer for her actual location from the
candidate answer set. However, this straightforward technique does not work if the answer
of a location-based query like a GNN query depends on the actual locations of a group
of users instead of a single user. More specifically, if the LSP returns a candidate answer
set to the group that includes the answer for a GNN query based on the group’s required
aggregate function (SUM, MAX or W-RANK) considering that a group member’s location
can be anywhere within her imprecise location, none of the group members can identify the
actual GNNs without knowing the locations of other members.

Not only the LSP, but also a group member may invade the privacy of other members.
There are occasions where group members may wish to hide their current locations from
other members for personal reasons. For example, a user who is at a job interview may wish
to hide this location from a group of co-workers. To ensure a user’s privacy, no involved
party should have access to the locations of others. Thus the key research challenge in
a private GNN query is to determine the actual GNN without allowing the LSP or other
members to determine locations of users in the group.

1.2 Contribution

We identify two new privacy attacks: distance intersection attack and rank disclosure attack
on a user’s location while processing a private GNN query. In particular, we will show in
Section 5.1 that a straightforward technique to determine the actual GNN based on SUM

and MAX that does not share the actual user locations with other users, is prone to a privacy
attack, which we call the distance intersection attack. In this technique, each user updates
the distances for the retrieved candidate answers with respect to the user’s actual location.
However, from these updates it is possible to identify the distance of users to the candidate
answers. The distance intersection attack uses the identified distances to the locations of
the candidate answers to triangulate the user’s location. A user is located at the intersection

World Wide Web (2019) 22:375–416 379

point of three circles having centers at the locations of any three candidate answers and radii
equal to the user’s distances from the locations of the corresponding candidate answers. We
propose a private filter technique to address this attack. Our private filter technique passes
the retrieved candidate GNN answers in an aggregated form to each user in the group. Based
on each user’s location, the answers are modified in such a way that no group member can
derive other member locations but the actual GNN can still be computed.

For a GNN query based on W-RANK, the actual GNNs are determined from the candidate
answer set based on group members’ ranks instead of distances for the candidate answers.
We will show in Section 7.1 that if group members straightforwardly reveal their ranks
for the candidate answers, where the ranks are computed based on user distances to the
meeting places, then the group members’ locations can be approximated using the concept
of Voronoi diagram [10]. We call such an attack on the user’s location the rank disclosure
attack. If the nearest meeting place of a user is known then the user’s location can be refined
in the area represented by the Voronoi cell of the meeting place within the Voronoi diagram.
If the meeting places with the next ranks (e.g., the second nearest, the third nearest) are also
known than the user’s location can be further refined using a higher order Voronoi diagram.

Similar to GNN queries based on SUM and MAX, we propose a private filter technique for
a GNN query based on W-RANK that prevents the rank disclosure attack by updating group
members’ ranks for the candidate answers in an aggregate form. From the aggregate form,
no party can identify a user’s ranks for the candidate answers and thereby approximate the
user’s location. To date, there exists no algorithm for an LSP to evaluate a GNN query based
on W-RANK even for a set of point locations. Thus, an additional challenge for a GNN query
based on W-RANK is to develop an algorithm for the LSP to evaluate a GNN query based
on W-RANK with respect to a set of regions.

In summary, in this paper, we identify how the privacy of group members can be invaded
participating in GNN queries and develop a novel approach to preserve their privacy. Our
contributions are:

– Proposal of a framework to preserve each group member’s privacy during the access
of LBSs as a group. The unique advantage of our framework is its decentralized
architecture, which does not require any trusted intermediary server.

– Provision of novel techniques that find the actual GNN based on aggregate functions
SUM and MAX from a set of candidate GNNs without disclosing a member’s location to
others. Our techniques prevent the distance intersection attack. We extend the existing
GNN algorithm [45] for point locations to regions, which is a necessary component to
provide the candidate GNNs efficiently while preserving the privacy of group members.

– Introduction of GNN queries based on W-RANK and a privacy preserving solution to
access the query. We develop a private filter technique that overcomes the rank dis-
closure attack while finding the GNNs from the candidate answer set. We propose an
algorithm for the LSP to evaluate GNN queries based on W-RANK with respect to a set
of regions.

– Evaluation of our techniques in extensive experiments and showing its efficacy.

This paper extends our previous paper [21], where we proposed the first privacy pre-
serving approach to access GNN queries using the aggregate functions SUM and MAX. In
this paper, we extend our work by introducing GNN queries based on W-RANK that maxi-
mize the level of preference for the group. We present an approach to protect user privacy
while accessing GNN queries based on W-RANK. More specifically, (i) we identify the rank
disclosure attack on a user locations that arise if the users disclose their ranks for meeting
locations to others, (ii) we develop algorithms to prevent the attack and to process GNN

380 World Wide Web (2019) 22:375–416

queries based on W-RANK with respect to a set of regions, and (iii) we present a new set of
experimental analysis to verify the efficiency of our algorithms.

2 Problem setup

We formally define GNN queries in Section 2.1 and give an overview of privacy preserving
GNN queries in Section 2.2. In Section 2.3, we discuss the privacy model including possible
adversaries and privacy attacks for GNN queries.

2.1 GNN queries

We assume a system architecture where the users and the LSP are connected through a
network (e.g., the cellular network or the Internet). Given a group of n users u1, u2, . . . , un

located at points l1, l2, . . . , ln, respectively, issue a query for the group nearest data point (GNN)
such as a cinema or coffee shop. The formal definition of the GNN query is given below:

Definition 1 (GNN Query) Let D be a set of data points in a 2-dimensional space, Q be a
set of n query points {l1, l2, . . . , ln} and f be an aggregate function. The GNN query finds
a data point p from D, such that for any p′ ∈ D − {p}, f (Q, p) ≤ f (Q, p′).

A GNN query can be extended to a k group nearest neighbor (kGNN) query that returns
k data points having the k smallest aggregate distances. For example, a group may want to
know the locations of k group nearest restaurants and then select one from k options based
on other parameters like budget or food preference. We develop privacy preserving solutions
for kGNN queries.

In this paper, we first focus on two aggregate functions SUM and MAX, which return the
total distance and the maximum distance from the users to a data point, respectively. Then
we consider a GNN query based on weighted-rank (W-RANK), which is described below.

The aggregate function W-RANK returns the total weight of a group for a data point,
where the total weight represents the cost associated with a group for a data point. The total
weight of a data point is computed by adding the weights for all group members based on
their ranks for the data point, where the ranks are computed based on user distances to the
data points. A weight wi is added to the total weight of a data point ph if a user’s rank
for ph is i. Since a user has the highest preference for her nearest data point, and a weight
represents the cost associated with a rank of the data point, the weight increases with the
decrease of the rank, i.e., wi+1 > wi (e.g., a user’s nearest data point has the smallest rank
1 and the lowest cost w1).

The group sets the rules to compute the set of weights according to their requirements.
For example, the ratio between two consecutive weights wi+1 and wi can be predefined;
if it is set to 2 then wi+1 = 2 × wi . The ratio can be also predefined with respect to the
weight w1; if the ratio between w1 and wi is set to i, then wi is computed as i × w1. The
GNN query based on W-RANK returns the data point that minimizes the total weight (i.e.,
maximizes the preferences) for the group. For simplicity, in this paper, we assume that all
group members use a same rule to compute the weights. In general, in a GNN query based
on W-RANK, users can predefine their rules to compute weights independently according to
their preferences.

Although distance is the most widely used metric to represent travel cost, in practice
there are also cases where the cost is not directly proportional to the distance. For example,

World Wide Web (2019) 22:375–416 381

many big cities (e.g., Melbourne) are divided into zones for the public transport system; if a
user travels within a zone using a public transport then the transport cost is same irrespective
of the actually traveled distance. Similarly, in a postal service, usually the local postage cost
is same for any distance. There are scenarios where the cost for a train ticket increases with
increasing number of crossed stations to reach the destination though the distances between
two consecutive stations may not be the same. In this paper, we focus on weighted user
ranks for the data points in addition to distance based aggregate functions SUM and MAX to
provide the group with an option of maximizing their preferences for the data points.

Note that if the weight given by a user for a data point is equal to the distance of the user to
the data point then W-RANK maps to SUM. Thus, the aggregate function W-RANK is a more
generalized function; the weights can be used to represent costs for different metrics such as
distance, rank, or the number of train stations a user needs to cross to reach at a data point.

2.2 Privacy preserving GNN queries

When a user requests a location-based query the user reveals her location, identity and the
requested query to the LSP. From the revealed information the LSP can derive sensitive and
private information about the user. A popular privacy model to hide a user’s location from
the LSP is to send a cloaked area [16, 52], which is typically a rectangle containing the
user’s location, instead of the user’s location. The higher the spatial imprecision is, the more
private is the user’s location; the probability is higher that a larger rectangle area contains
a diverse range of locations. On the other hand, if a user wants to hide her identity then
the rectangle is computed based on K-anonymity [12, 18], which ensures that the rectangle
includes the locations of at least K − 1 other users in addition to the user’s location so that
the user becomes K-anonymous.

In our proposed privacy preserving (private) kGNN queries, the users in the group do
not reveal their exact locations and identities to the LSP; instead they provide rectangles
R1, R2, . . . , Rn that contain user actual locations l1, l2, . . . , ln, respectively in addition to
the K −1 other user locations. Thus the LSP needs to return a set of candidate data points A

with respect to the provided rectangles that include the k GNNs for the actual user locations.
Afterwards the actual k GNNs has to be computed from A without revealing the location of
any user to any group member.

As we have seen in Section 1, providing an answer for privacy preserving kGNN queries
has two parts: (i) The group of users use a technique, called a private filter (privacy preserv-
ing filter), to find the actual k GNNs from the retrieved set of candidate answers without
compromising their privacy, and (ii) the LSP evaluates the kGNN query with respect to a
set of rectangles to provide the candidate answers for the private filter while preserving user
privacy. We formally define the private filter and the kGNN query with respect to rectangles
as follows.

Definition 2 (Private Filter) Let {u1, u2, . . . , un} be a group of n users, A be a set of
candidate data points, f be an aggregate function, and k be a positive integer. The precise
location li of a user ui is only known to ui . A private filter is a mechanism that computes the
k GNNs from A and provides k smallest values for f with respect to the set {l1, l2, . . . , ln}
without revealing a user ui’s location li to others.

Definition 3 (kGNN Query with respect to Rectangles) Let D be a set of data points in a
2-dimensional space, {R1, R2, . . . , Rn} be a set of n query rectangles, ri be any point in Ri

for 1 ≤ i ≤ n, and f be an aggregate function. The kGNN query with respect to rectangles

382 World Wide Web (2019) 22:375–416

returns the set of candidate data points A that includes all data points having the j th smallest
(1 ≤ j ≤ k) value for f with respect to every point set {r1, r2, . . . , rn}.

The symbols used in this paper are summarized in Table 1.

2.3 Privacy model: adversaries and privacy attacks

We consider the LSP and the users involved in processing kGNN queries as potential adversaries.
In our approach, the group reveals users’ imprecise locations (i.e., rectangles) to the LSP
anonymously. On the other hand, since kGNN queries are used by the users to meet at a
place, we assume that a user is not concerned to hide her identity from other group members.
Instead the user does not disclose her location in any form to other group members to protect
her privacy. We make the following assumptions for the privacy model in our approach:

– The LSP and the group members do not collude with each other to violate a user’s pri-
vacy. We assume a semi-honest model, where an involved entity in the kGNN query
processing follows the rules of our proposed approach and tries to infer private infor-
mation of other members only from the obtained information during the execution of
our proposed approach.

– The adversaries do not have any background information about user locations and do
not know any probabilistic distribution of users locations.

A privacy attack, in general, refers to an intrusive inference through which an adversary is
able to derive a user’s sensitive and private information that the user does not want to reveal.
For example, if a user reveals a rectangle as her location and an adversary can refine the
user’s location within the rectangle then an inference attack can be successful. The privacy
attacks that the LSP can apply to violate user privacy are already identified and addressed
in the literature. We use the approach proposed in [20] to hide user identities and locations
from the LSP. In [20], each user computes a rectangle that includes K − 1 other users’
rectangles in addition to the user’s exact location, and anonymously sends to the LSP. In
Section 3.1, we elaborate the superiority of [20] over other existing approaches for hiding
user identities and locations from the LSP. In addition, we propose efficient algorithms for
the LSP to evaluate the candidate k GNNs with respect to a set of rectangles.

In this paper, we focus on how to protect a user’s location privacy from others while find-
ing the actual k GNNs from the returned candidate answer set by the LSP. In Sections 5.1
and 7.1, we show that if a user straightforwardly reveals her distance or rank for the can-
didate data points then other group members can apply the distance intersection attack or
the rank disclosure attack, respectively, to identify the user’s location. We have developed

Table 1 Notations
Symbol Meaning

{u1, u2, . . . , un} A group of n users

li The location of a user ui

Ri The rectangle of a user ui

k The number of required GNNs k

ph The location of a data point

A A set of candidate data points that include k GNNs

f An aggregate function SUM, MAX or W-RANK

World Wide Web (2019) 22:375–416 383

private filter techniques that prevent these attacks and protect user privacy while processing
kGNN queries.

3 Related work

In Section 3.1, we present the solutions for protecting location privacy of users accessing
LBSs, and in Section 3.2, we discuss the existing work related to GNN queries.

3.1 User privacy in LBSs

Most research (e.g., [12, 18, 42, 53]) to preserve user privacy in LBSs is based on a cen-
tralized architecture, where an intermediary trusted server performs all tasks for the privacy
protection of users. The limitations of a centralized architecture is a single point of failure,
bottlenecks due to communication overheads, and privacy threats as the intermediary server
stores all information in a single place. Therefore, a few decentralized approaches (e.g., [8,
13, 20, 22]) preserve a user’s privacy in cooperation with her peers and do not involve an
intermediary trusted server. However, all approaches, centralized or decentralized, focused
on LBSs involving a single user.

A centralized architecture for LBSs involving a group like private GNN queries can
be implemented in a similar way, where an intermediary trusted server transforms exact
locations of users to regions (e.g., a rectangle or a circle) and forwards the GNN query
with regions instead of the exact user locations to the LSP. The LSP evaluates the candidate
answers that include GNNs for any position of the users within their regions and returns the
candidate answers to the intermediary server. The intermediary server computes the actual
GNN for the exact locations of the users from the candidate answers and forwards the actual
answer to the group. To overcome the limitations of a centralized architecture, we propose
a framework based on a decentralized architecture for a private GNN query.

Most of the decentralized techniques (e.g., [8, 13, 14, 20, 29]) hide a user’s location from
the LSP by exploiting P2P network (e.g., Bluetooth, WiFi). In these techniques, an impre-
cise location of the user (i.e., a rectangle or a circle) includes K −1 other users’ locations in
addition to the location of the user requesting the query so that the user’s location becomes
K-anonymous. In [8, 13, 14], the users need to trust their peers with their locations for
computing their imprecise locations.

In [29], K users in the proximity form a group and then using the proximity informa-
tion, the group progressively finds a bounding box as their rectangle that covers all users’
locations. In this technique, all users in a group use the same rectangle for accessing LBSs.
Though the users do not share their actual locations with anyone, not even their peers, a
user’s rectangle is revealed to others in the group. Since our proposed private filter requires
that the user’s rectangle sent to the LSP is not revealed to anyone, and therefore we do not
use the technique proposed in [29] to compute the user’s rectangle for a private kGNN query.

The solution proposed in [20] is a two step process. In the first step, a local impre-
cise location (i.e., a rectangle) is randomly computed by each user such that the rectangle
includes the user’s location and the area of the rectangle is set according to the user’s
privacy requirement. In the second step, when a user requires to access a LBS, the user’s
global imprecise location for the LSP is computed as a minimum bounding rectangle that
includes K − 1 others’ local imprecise locations (i.e., rectangles) in addition to the user’s
exact location. Since neither the user’s actual location nor the rectangle sent to the LSP is
revealed to others, we use this technique to request a private GNN query.

384 World Wide Web (2019) 22:375–416

Besides K-anonymity [50] and imprecision [25], space transformation [33] and private
information retrieval techniques [15] are also used to preserve the privacy of the users.
Although the architecture of both of these approaches eliminates an intermediary trusted
server, these approaches incur cryptographic overheads and cannot use existing spatial
indexing techniques to store data on the server. In this paper, we assume that the users in
a group disclose their imprecise locations to the LSP, which evaluates the query based on
these imprecise locations on a database, where the data points are indexed using a spatial
indexing technique such as R-tree [19].

In [23], the authors have proposed a privacy preserving approach that eliminates the role
of the LSP, and evaluates GNN queries with crowd sourced data points. However, the limi-
tation of this approach is that the considered POI set is small and can be incomplete. Thus,
the group nearest data points identified with this approach may not be the actual GNNs.
Recently three cryptographic approaches, [2, 3, 30], have been developed to address user
privacy for GNN queries. In [2, 3], the authors have developed a cryptographic technique
to find the centroid of all group members’ locations and the LSP evaluates the GNN query
with respect to the centroid. Thus, the LSP cannot return the actual group nearest data point
with respect to the group, instead the LSP has to approximate the query answer, which is
the main limitation of their approach. On the other hand, in [30], the authors have not pro-
vided any algorithm to evaluate the candidate answer set for a GNN query from which the
group can find the actual query answer. Cryptographic approaches, in general, incur high
processing overheads. We develop a lightweight approach to evaluate GNN queries in a pri-
vacy preserving manner. We note that our system assumes that each user collaborates with
others. If users are malicious, our approach can be complemented with secure multi-party
protocols (e.g., [6]).

3.2 Group nearest neighbor queries

In [44], Papadias et al. first proposed kGNN queries for the aggregate function SUM.
In [45], the authors have extended the proposed solution [44] for GNN queries for minimiz-
ing the minimum and maximum distance of group members in addition to minimizing the
total distance of group members, and called the GNN query as the aggregate nearest neigh-
bor query. Both depth first search (DFS) [47] and best first search (BFS) [27] algorithms
can be used to implement the proposed solutions [44, 45], where R-tree [19] is used to index
the data points.

Among the three methods, MQM (multiple query method), SPM (single point method)
and MBM (minimum bounding method), shown in [44, 45], MBM outperforms both MQM
and SPM in terms of the query processing overhead. The key idea of MBM is to traverse
the R-tree in order of the minimum aggregate distances of R-tree nodes with respect to the
set of query points. The search terminates when k data points with k smallest aggregate dis-
tances have been identified. To increase the efficiency of MBM, the authors have proposed
strategies to prune the R-tree nodes/data points using the minimum bounding box of the set
of query points.

In [34], Li et al. have approximated the query distribution area using an ellipse and used a
distance or a minimum bounding box derived from the ellipse to prune the R-tree nodes/data
points for processing kGNN queries. In [40], Luo et al. have only considered non-indexed
data points and developed a GNN algorithm based on projection-based pruning strategies,
and in [43], Namnandorj et al. have estimated the search space using a vector property and
proposed GNN algorithms for both indexed and non-indexed data points. In [35], Li et al.
have developed exact and approximation algorithms for GNN queries that minimize the

World Wide Web (2019) 22:375–416 385

maximum distance of the data points from a set of points. The authors have used convex hull,
minimum enclosing ball and furthest Voronoi diagram in their algorithms to prune R-tree
nodes/data points. However, their work does not consider an important and popular aggre-
gate function SUM that minimizes the total travel distance of the group. We do not extend
the point-based GNN query evaluation algorithm [35] for the set of rectangles because it is
not straightforward to extend the concept of furthest Voronoi diagram for rectangles.

Our paper is the first study to propose an algorithm for processing a kGNN query with respect
to a set of regions instead of a set of points in order to preserve user privacy. In our algorithm for
GNN queries with respect to a set of rectangles for aggregate functions SUM and MAX, we
extend the concept of the minimum bounding box proposed in [34, 44, 45] to prune R-tree
nodes/data points. To the best of our knowledge, there exists no algorithm in the literature
for processing GNN queries based on W-RANK with respect to a set of points or rectangles.

The work proposed in [37] considers a new type of GNN query that minimizes the total travel
distance and the maximum distance for a fixed size of a subgroup. For example, a group
may request for a data point that have the minimum total distance from any 60% users in the
group. Formally, a group provides their locations and the subgroup size and the LSP returns
the subgroup and the data point that result in an optimal answer for aggregate functions
SUM and MAX. In this paper, we focus on GNN queries that involve all group members to
determine the answer. In [38], the authors have proposed an efficient solution to evaluate
GNN queries for moving groups, whereas in our work, we assume that the groups are static.

Besides GNN queries, researchers have also focused on other applications that involve data
from more than one user or entity like group trip planning queries [24, 26], group trip scheduling
queries [32], flexible group spatial keyword queries [1], personalized app recommendation [46],
distributed outlier detection [55], and emerging topic tracking in microblog stream [31].

4 Framework based on a decentralized architecture

In this section, we first present a framework for processing a private GNN query based on a
decentralized architecture, which eliminates the need for any intermediary trusted server.

In our proposed framework a coordinator for the group is selected randomly before a
query request. The coordinator assists in processing the private GNN query and can be a
group member or anyone outside the group who does not participate in the query. Note that
the coordinator differs from an intermediary server in a centralized architecture because the
coordinator can be different for every GNN query. Moreover, the coordinator only knows
the user identities in the group and the type of query requested but has no knowledge about
their locations. The total process of accessing a private kGNN query is performed in three
steps: (i) sending the query, (ii) evaluating the query, and (iii) finding the answer. We detail
these components in the following subsections.

4.1 Sending the query

Each user in the group first registers to the coordinator with their identities (e.g., IP address,
phone number) and receives a query identity (QID) from the coordinator. Each group
member sends her imprecise location and the QID anonymously to the LSP using either
a pseudonym service [14] in the Internet or through a randomly selected peer [8, 20]
connected in a wireless personal area network (e.g., Bluetooth or 802.11). These techniques
hide the users’ identities from the LSP as well as from the cellular infrastructure provider.
The coordinator only sends the kGNN query for the required service, which includes the

386 World Wide Web (2019) 22:375–416

QID, the description of the required service, the value for k and the number of users in the
group to the LSP.

4.2 Evaluating the query

After receiving the request, the LSP evaluates the kGNN query with respect to the set of
rectangles. Since the LSP does not know the exact user locations, it cannot determine the
actual k GNNs. Therefore, it returns a set of candidate answers that include the actual GNNs
to the coordinator.

4.3 Finding the answer

The final step is to determine the actual k GNNs without revealing the user locations
to anyone. The retrieved answer set has to go through all users of the group. Each user
updates the distance to the candidate GNN answers with respect to her actual location. The
communication between the users in the group can be done with or without the coordinator.

In the first case (with the coordinator), the coordinator randomly selects one of the user
identities in the group and sends the answer set to that user. After receiving the modified
answer set, the coordinator marks that user’s identity as visited. The coordinator repeats this
procedure with the remaining unmarked user identities.

In the second case (without the coordinator), the coordinator forwards the retrieved
answer set together with the list of identities of all participants to a randomly selected user
in the group. The selected user modifies the candidate answers and marks her identity as vis-
ited. Then she randomly selects a user with an unmarked identity and forwards the updated
answer set and the list of identities to the next selected user.

After the answer set has been modified by all users, the coordinator (in the first case) or
the last selected user (in the second case) sends the actual GNNs to all users in the group.

5 Private filters

5.1 Minimizing the total distance

Without loss of generality, consider an example scenario for a private kGNN query with a
group of five users and k = 2. The users {u1, u2, . . . , u5} provide their query rectangles
{R1, R2, . . . , R5}, respectively, to an LSP. The LSP returns the locations of a set of data
points A: {p1, p2, . . . , p8} that includes the 2 GNNs that minimize the total travel distance
with respect to the actual locations {l1, l2, . . . , l5} of the users (Please see Section 6 for the
algorithm to compute A). The locations of the data points in A, the actual and imprecise
locations of the users are shown in Figure 2, and the actual distances of the users to all data
points in A are presented in Table 2.

First, we show a straightforward technique to determine the actual GNNs and the
privacy attack associated with this technique. As mentioned in Section 4, A has to be
updated by all users in the group with respect to their exact locations for finding the
actual GNNs from A. Suppose user u1 first receives A from the coordinator c. Then
u1 updates A: {p1, p2, . . . , p8} by inserting a new distance field for each data point
in A and initializing the fields with her actual distances from those data points as
A:{(p1, 3), (p2, 8.5) . . . , (p8, 14)}. Then, A is forwarded to a randomly selected user u2,
either directly or via c. The user u2 adds her actual distances for all data points in A with

World Wide Web (2019) 22:375–416 387

Figure 2 An example scenario

those of u1 and forwards them to another user. This process continues until all users have
added their actual distances for all data points in A. After all updates, the final value of the
distance field for each data point in A represents the total distance of that data point to all
group members (see Table 3). Thus, the last user (u5 in this example) or the coordinator c

can determine the 1st and 2nd group nearest data points p3 and p1, and sends them to all
participant users in the group.

However, the privacy of users can be violated in this technique using the distance inter-
section attack. The distance intersection attack is based on 2D trilateration. If a user’s
distance from a known location is revealed, then the user’s location has to be on the circle
centered at the known location with the radius of the revealed distance. If a user’s distances
from two known locations are revealed, the user’s location is one of the two intersection
points of the circles. If a user’s distances from three or more known locations are revealed,
the user’s exact location is the intersection point of all circles.

In our example, if u2 receives a message from u1 directly, the message includes A, the
identities of {u1, u2, u3, u4, u5}, and the identity of u1 marked as visited. Inspecting the vis-
ited field, u2 knows that she is the second randomly selected user who receives A. Since
u2 also knows that the distances in A are the actual distances of u1 to {p1, p2, . . . , p8},
the unknown location l1 of u1 can be computed from any of the three revealed distances
using the distance intersection attack (Figure 3). In the case that the communication among
the group members is done via a coordinator, u2 can again determine a location from the
intersection point of the circles. However, u2 does not know which user is located at that
intersection point, because u2 has no access to the list of identities showing that only the

Table 2 Actual distance from the users to the data points in A

p1 p2 p3 p4 p5 p6 p7 p8

u1 3 8.5 9 3.5 4.5 11.5 13.5 14

u2 2 7.5 8.5 3.5 8.5 7.5 14.5 12

u3 11 5 5.5 15 15.5 9 9 2

u4 6 3.5 2 10 8.5 11 6.5 9

u5 12.5 10.5 8.5 15.5 10 18.5 5 15.5

388 World Wide Web (2019) 22:375–416

Table 3 Updated distances after adding each user’s actual distance to the data points in A

p1 p2 p3 p4 p5 p6 p7 p8

u1 3 8.5 9 3.5 4.5 11.5 13.5 14

u2 5 16 17.5 7 13 19 28 26

u3 16 21 23 22 28.5 28 37 28

u4 22 24.5 25 32 37 39 43.5 37

u5 34.5 35 33.5 47.5 47 57.5 48.5 52.5

identity u1 is marked as visited. In this case, the coordinator c can compute the exact loca-
tions of all users using the distance intersection attack. The coordinator c monitors A before
sending it to ui and after receiving it from ui and then computes the actual distances of ui

for all data points in A. For example, the actual distance of u4 to p4 is found by deducting 22
(observed before sending A to u4) from 32 (observed after receiving A from u4) in Table 3.

We present now our private filter technique that counters the distance intersection attack
on the users’ privacy. Let n be the number of users in the group, where n > 2, and
MaxDist (Ri, ph) be a function that returns the maximum Euclidean distance between a
user’s rectangle Ri and a data point ph for a positive integer h. In our private filter tech-
nique, the LSP returns for each data point ph ∈ A the sum of the maximum distances of ph

to the query rectangles dmax(ph), expressed as:

dmax(ph) =
∑n

i=1
MaxDist (Ri, ph) (1)

On receiving A, a user ui in the group updates dmax for all data points with respect to
her actual position li . Let the function Dist (li , ph) return the Euclidean distance between
a user’s actual location li and ph. The user ui computes d ′

max(ph) for a data point ph using
the following equation:

d ′
max(ph) = dmax(ph) − MaxDist (Ri, ph) + Dist (li , ph) (2)

Then ui updates dmax(ph) by assigning d ′
max(ph) to dmax(ph) for a data point ph. After

completing the updates for all data points, ui forwards A to another user, either directly or
via the coordinator. Each user updates dmax for all data points in A using this procedure.

Let X represent a subset of users in the group who have already updated dmax for all
data points in A and Y represent the remaining users in the group who have not yet received

Figure 3 An example of
distance intersection attack

World Wide Web (2019) 22:375–416 389

and updated A. In every step of the private filter technique, dmax(ph) can be in general
expressed by the following equation:

dmax(ph) =
∑

ux∈X

Dist (lx, ph) +
∑

uy∈Y

MaxDist (Ry, ph) (3)

As a result, when dmax(ph) of a data point ph has been updated with respect to all
users’ exact locations, it represents the aggregate distance (

∑n
i=1Dist (li , ph)) from ph to

the group. Table 4 shows the steps for updating dmax by every user for the given example.
After the updates of u5, dmax(p1), dmax(p2), . . . , dmax(p8) represent the actual aggregate
distance of {p1, p2, . . . , p8} from the group of users {u1, u2, . . . , u5} (see the last row of
Table 4). Depending on the communication method used, u5 or the coordinator c forwards
2 GNNs, p3 and p1, to all users in the group.

In this technique, the privacy of all users is preserved in both scenarios: communication
without or with the coordinator c. In the first scenario, the second randomly selected user
u2 cannot compute the actual distances of the first randomly selected user u1 for the data
points in A as the actual distance of ui from the data points are hidden in the revealed dmaxs
as shown in (3). In the second scenario, although c can monitor the change in dmaxs for the
data points in A before sending it to ui and after receiving it from ui , c cannot determine
the actual distance of ui from any data point in A because the coordinator does not know
the locations of the users’ rectangles. For example, c monitors the change of dmax(p4) from
54 to 52 before sending A to u4 and after receiving A from u4, respectively (see Table 4).
However, as the location of R4 is unknown to c, c cannot determine MaxDist (R4, p4)

to compute Dist (l4, p4). To remind the readers, as we already mentioned in Section 2.3,
we assume that the LSP and the group members do not corroborate among themselves to
retrieve any extra information about a user; our approach is based on a semi-honest model,
where an involved entity in the kGNN query processing follows the rules of our proposed
approach and tries to infer private information of other members only from the obtained
information during the execution of our proposed approach.

The private filter technique discussed so far cannot perform any pruning of the data points
from A until all users in the group update A with respect to their actual locations. We call
this private filter for SUM a final pruning private filter (SUM FPPF). In the next step, we
propose an incremental pruning private filter for SUM (SUM IPPF) that allows each user to
perform a local pruning of those data points from the answer set that cannot be the actual GNNs.

In SUM IPPF, the LSP provides the sum of the minimum distances from the query rect-
angles dmin in addition to the sum of the maximum distances from the query rectangles
dmax for all data points in A. The addition of dmin allows a user to perform a local pruning
of the data points from A after the update and to send a smaller answer set to the next user.

Table 4 Updated dmax(ph) with respect to each user’s actual distance from the data points in A

p1 p2 p3 p4 p5 p6 p7 p8

LSP 46.5 46 44 60.5 56.5 68.5 62 63

u1 44 43.5 41 60 54.5 66 60 60

u2 42 43.5 41 55 51.5 65 60 60

u3 41 42 40 54 51 64.5 55.5 58.5

u4 39.5 40 38.5 52 50.5 62.5 51.5 57

u5 34.5 35 33.5 47.5 47 57.5 48.5 52.5

390 World Wide Web (2019) 22:375–416

Table 5 Updated dmin(ph) and dmax(ph) with respect to each user’s actual distance from the data points in
A

p1 p2 p3 p4 p5 p6 p7 p8

LSP 21, 46.5 23, 46 23.5, 44 35, 60.5 35, 56.5 40, 68.5 40.5, 62 41.5, 63

u1 22.5, 44 24.5, 43.5 25, 41 36.5, 60 37.5, 54.5 43, 66 41.5, 60 43, 60

u2 24, 42 29, 43.5 28.5, 41 36.5, 55 39, 51.5 46.5, 65 45, 60 48, 60

u3 28, 41 31.5, 42 30.5, 40 41, 54 41.5, 51 X X X

u4 32, 39.5 33.5, 40 32, 38.5 45, 52 X X X X

u5 34.5, 34.5 35, 35 33.5, 33.5 X X X X X

Let MinDist (Ri, ph) be a function that returns the minimum Euclidean distance between
Ri and ph. The LSP computes dmin(ph) as follows:

dmin(ph) =
n∑

i=1

MinDist (Ri, ph) (4)

On receiving A, each user updates both dmin and dmax for all data points in A. Similar to
d ′
max(ph), a user computes d ′

min(ph) for a data point ph using the following equation:

d ′
min(ph) = dmin(ph) − MinDist (Ri, ph) + Dist (li , ph) (5)

Afterwards the user updates dmin(ph) by assigning d ′
min(ph) to dmin(ph).

Algorithm 1 summarizes the steps performed by a user on receiving A for the aggregate
function SUM. After updating dmin and dmax for all data points in A, the user finds the kth

smallest of all dmax as maxdistk using the function kMin. Then dmin of every data point in
A is compared with maxdistk . If dmin(ph) of a data point ph is greater than maxdistk , then
ph is removed from A as ph can never be one of the k nearest data point from the group.
Table 5 shows the steps for updating dmin and dmax , and the pruning of data points by every
user in our example. From Table 5, we see that the user u2 determines maxdistk as 42 for
k = 2 and removes p6 (dmin(p6) = 46.5), p7 (dmin(p7) = 45), and p8 (dmin(p8) = 48)
from A. Hence, the next user u3 can process a smaller answer set, and more importantly,
the local pruning reduces the communication overhead among the users.

World Wide Web (2019) 22:375–416 391

For SUM IPPF, a special case may arise if a data point ph overlaps with all rectangles
{R1, R2, . . . , Rn}. In this case, the retrieved dmin(ph) (i.e.,

∑n
i=1 MinDist (Ri, ph)) from

the LSP is 0 and if the users communicate via the coordinator, the coordinator learns each
user’s distances to ph. Therefore if any dmin(ph) is 0, users communicate directly to avoid
the distance intersection attack.

In summary, for any group size n > 2, the discussed private filter techniques find the
actual GNNs without revealing users’ locations to others. However for a group of two users
(i.e., n = 2), an extra attention is required: if users communicate directly for n = 2, a user u2
determines herself as the second user by observing the list of identities with one identity
marked as visited. Then for every data point ph in the answer set, u2 can determine Dist

(l1, ph) by subtracting MaxDist (R2, ph) from dmax(ph) as shown in (3). Therefore, u2
can apply the distance intersection attack to find u1’s precise location l1. On the other hand, if
the second user u2 receives the candidate data points from the coordinator then she does
not know that she is the second user as she does not have the list of identities with one
identity marked as visited. Thus, (MaxDist (R1, ph) + MaxDist (R2, ph)) or
(Dist (l1, ph) + MaxDist (R2, ph)) could be dmax(ph), and user u2 cannot discover
Dist (l1, ph). Hence for n = 2, users need to communicate via the coordinator to find the
actual GNNs.

The proof of correctness of our private filter is elaborated in [21].

5.2 Minimizing the maximum distance

In this section, we consider private kGNN queries that minimize themaximum distance of a group
of users from the data points. Similar to the case of minimizing the total distance, we cannot
use the straightforward technique due to its vulnerability of the distance intersection attack.

We can use both techniques, FPPF and IPPF proposed in Section 5.1, with some modifi-
cations for finding the data point that has the minimum maximum distance from the group
of users. In this case, the LSP uses the aggregate function MAX instead of SUM to compute
dmin(ph) and dmax(ph) for a data point ph as shown in the following two equations:

dmin(ph) = maxn
i=1MinDist (Ri, ph) (6)

dmax(ph) = maxn
i=1MaxDist (Ri, ph) (7)

Algorithm 2 shows the steps of MAX IPPF. In case of the aggregate function MAX, a
user ui only updates dmin(ph) as Dist (li , ph) when Dist (li , ph) is larger than the current
dmin(ph) for a data point ph (Lines 2.2-2.3). By construction, there is always at least a user
in the group whose distance from ph is equal to or greater than dmin(ph).

392 World Wide Web (2019) 22:375–416

On the other hand, a user cannot modify dmax(ph) even if Dist (li , ph) is smaller than
the current dmax(ph) as the other users in the group can also have distances from ph equal
to dmax(ph). Thus, in contrast to Algorithm 1, maxdistk never needs to be updated and
remains constant. Therefore, the LSP computes maxdistk from dmax of the data points in
A and directly sends maxdistk instead of sending dmax for each data point.

If a user updates dmin(ph) in Algorithm 2, it represents the user’s actual distance from
ph (Line 2.3). If the communication among the users is done via a coordinator c for filtering
the retrieved answer set from the LSP, c can observe dmin for each data point in A before
sending A to a user ui and after receiving it back from ui , and determine which dmins have
been updated by ui . The changed dmin(ph) denotes the actual distance of ui from ph. Thus
c can compute the location of ui with the distance intersection attack using dmins changed
by ui . Thus in our proposed private filter for the aggregate function MAX, users avoid the
coordinator and communicate directly.

In the direct communication, after performing the update a user sends A directly to another
user in the group whose identity has not been yet marked as visited. In order to apply
the distance intersection attack for revealing a user’s unknown location, we need to know
the user’s distances from known locations. A user who receives A knows the location of
the data points in A and the distances in the form of dmin for each data point in A. The
user also knows that a dmin(ph) represents either the distance of ph from a user’s actual
location or the distance of ph returned by the LSP. However, the user does not know which
dmin(ph) corresponds to which user’s actual distance from ph as she has no knowledge
about the previous states of A and the order in which the identities are marked as visited.
Thus, the user who receives A cannot discover others’ locations in the group using the
distance intersection attack.

We know that the second user who receives A can easily identify the user who has
received A before her by inspecting the visited field. We also know that if a subset of dmins
are the actual distances from the same user, then the circles with radii equal to those dmins
and centers at the corresponding locations of the data points must intersect at a single point.
Using these observations, one may argue that if the second user finds from the received
dmins that a number of circles intersect at a single point, then she would be able to iden-
tify the intersection point as the location of the first user. However, it is not guaranteed that
the intersection point is the location of the first user, because the values of dmins that are
assigned by the LSP may have caused the intersection point and they might not have been
changed by the first user at all.

Figure 4 shows some examples, where dmins computed by the LSP are shown with
dashed lines and the intersection point of all circles are shown with a black dot. In Figure 4a,
the intersection point of all circles does not refer to any user’s location, and in Figure 4b and c,
the intersection point is the location of a user’s provided rectangle which is not ensured to
be the actual location of any user in the group as a user’s actual location can be anywhere
within the rectangle. In contrast to SUM FPPF, for MAX FPPF, the LSP returns dmin instead
of dmax for each data point in A. This is because if the LSP returns dmax for the data points
in A and a user ui updates dmax(ph) as Dist (li , ph) if Dist (li , ph) < dmax(ph), then after
the update of A by the first user u1, each dmax represents Dist (l1, ph). As a result, the user
who receives A as a second user can determine u1’s precise location l1 using the distance
intersection attack. In MAX FPPF, the users update dmin for each data point in A as shown
in Lines 2.2-2.3 of Algorithm 2 and determine the actual GNN after A has been updated by
all users in the group.

There is a limitation of our proposed private filter techniques for the aggregate function
MAX. It does not work for n = 2, which we leave for further investigation in our future

World Wide Web (2019) 22:375–416 393

(c)(b)(a)

Figure 4 Examples scenarios of circles with radii equal to dmins retrieved from the LSP

research. For n = 2, after the update by the first user u1 each dmin(ph) represents either
Dist (l1, ph) or MinDist (R2, ph), where R2 is the rectangle of the second user u2. When
u2 receives A she can determine that she is the second user by observing the visited field in
the list of identities and determine whether dmin(ph) represents Dist (l1, ph) as she knows
MinDist (R2, ph). This allows u2 to apply the distance intersection attack if dmin(ph) has
been modified by u1.

From the above discussion, we summarize that FPPF and IPPF enable users to request
kGNN queries without revealing their locations to anyone with any group size for SUM and
with a group size greater than two for MAX.

6 kGNN queries with respect to regions

In this section, we propose an algorithm for the LSP to process kGNN queries with respect
to a set of rectangles (i.e, regions). Our algorithm uses a modified best first search (BFS)
to find the candidate answers that include the k GNNs for any position of the users in their
provided rectangles. We assume that the data points are indexed using an R∗-tree [4] in
the database. Since the query is based on a set of rectangles instead of a set of points, the
distance between a data point or an R∗-tree node and a query rectangle is defined with a
range bounded by the minimum and maximum values.

We summarize the notation used in this section as follows:

– M: the minimum bounding box that encloses the given set of n query rectangles
{R1, R2, . . . , Rn}.

– MinDist (q, p) (MaxDist (q, p)): the minimum (maximum) Euclidean distance
between q and p, where q represents Ri or M and p represents a data point or a
minimum bounding rectangle of an R∗-tree node.

– dmin(p) (dmax(p)): the aggregate distance (i.e., the total or maximum distance) of p

computed from the minimum (maximum) distances between p and all query rectangles,
where p again represents a data point or a minimum bounding rectangle of an R∗-tree
node.

– maxdist[k]: the kth smallest distance of already computed dmax(p)s.

The algorithm starts the search from the root of the R∗-tree and inserts the root together
with its dmin(root) and dmax(root) into a priority queue Qp , where dmin(root) = 0 and

394 World Wide Web (2019) 22:375–416

dmax(root) = f n
i=1(MaxDist (Ri, root)), f being SUM or MAX. The elements of Qp are

stored in order of their minimum dmin. Then the algorithm removes an element p from Qp

and checks whether p is an R∗-tree node or a data point. If p represents an R∗-tree node,
then it retrieves its child nodes and enqueues them into Qp as they might contain one of
the candidate answers with respect to the set of rectangles. On the other hand, if p is a data
point it is added to A until all data points have been found that are candidates for one of the
k GNNs with respect to the set of rectangles.

In the case of kGNN queries for a set of points, the algorithm terminates as soon as k

data points have been dequeued from Qp. However, for a set of rectangles the termination
is not as simple, because the total or maximum distance of a data point from the query
rectangles is a range [dmin, dmax] instead of a fixed value. The following lemma describes
the termination condition of the algorithm as no other data point can further qualify as a
candidate answer once the condition is true.

Lemma 1 Let p be a data point or an R∗-tree node dequeued from Qp. The algorithm
terminates if dmin(p) > maxdist[k].

Note that not all visited data points or R∗-tree nodes are inserted to Qp . Before inserting
p into Qp, the algorithm checks if p can be pruned with respect to the current maxdist[k].
As dmin and dmax involve a large number of distance computations, similar to [44, 45], the
algorithm checks if p can be pruned according to the following lemma.

Lemma 2 A data point or an R∗-tree node p can be pruned if n × MinDist (M, p) >

maxdist[k] for f = SUM and if MinDist (M, p) > maxdist[k] for f = MAX.

If p is not pruned using Lemma 2, then the algorithm uses the tighter condition
dmin(p) > maxdist[k] of Lemma 1 to check if p can be discarded before inserting it into
Qp . Since n × MinDist (M, p) ≤ dmin(p) for f = SUM and MinDist (M, p) ≤ dmin(p)

for f = MAX, it may happen that p is not pruned using the condition of Lemma 2 but
satisfies the condition of Lemma 1 and is pruned.

Note that for SUM the LSP directly returns A, a set of candidate answers with their dmins
and dmaxs, to the coordinator. On the other hand, for MAX the LSP removes dmax of each
data point from A, and returns maxdist[k] and A that includes a set of candidate answers
with their dmins to the coordinator.

Although we present our algorithm for a set of the query rectangles, our algorithm can
evaluate kGNN queries for a set of query regions with any geometric shape.

The detail pseudocode and the proof of correctness of the algorithm is shown in [21].

7 Private kGNN queries based on weighted-rank

In a private kGNN queries based on weighted-rank, a group of users provide their query
rectangles and specify the number of required group nearest data points k, and a rule R to
compute weights representing the costs associated with the ranks of the data points to the
LSP. Let a weight wi represent the cost associated with rank i for i > 0 and wi+1 > wi .
The weight wi can be defined according to the preference of the group; for example, the
rule R to compute the weights can be with respect to w1 as i × w1 or with respect to wi−1
as rt ×wi−1 for any positive integer rt > 0. The LSP evaluates the query and returns the set
of data points A as candidate answers. To determine the actual GNN from the returned set

World Wide Web (2019) 22:375–416 395

of data points by the LSP, each user in the group needs to reveal her ranks for the data points
in the candidate answers. Since a user does not need to update her actual distance for each
data point in the candidate answers for private kGNN queries based on W-RANK, there is
no possibility of violating the user’s privacy with the distance intersection attack. However,
we will show that the user’s privacy could be still violated with the rank disclosure attack,
if the user straightforwardly provides her rank information.

In Section 7.1, we discuss the rank disclosure attack and in Section 7.2, we present a final
pruning private filter technique to overcome the rank disclosure attack. In Section 7.3, we
propose an algorithm to evaluate kGNN queries based on W-RANK with respect to a set of
rectangles. In Section 7.4, we show why it is not possible to design an incremental pruning
private filter technique for kGNN queries based on W-RANK.

7.1 Rank discloser attacks

Users need to disclose their ranks for data points in A to determine the actual k GNNs. Let
the first user u1 that receive A from the coordinator c, insert and initialize a weight with 0,
denoted as w(ph), for each data point ph ∈ A. Then the user finds her ranks for the data
points in A and updates w(ph) according to the following equation.

w(ph) = wrank(l1,ph) (8)

Note that, l1 is the first user u1’s actual location and rank(l1, ph) is the u1’s rank for
ph computed with respect to l1; for example if ph is the user’s 3rd nearest data point then
rank(l1, ph) is 3 and the cost associated with rank(l1, ph), w3, is assigned to w(ph). The
answer set A is forwarded to the next user randomly either directly or via c. The process
continues until all users have updated the w field for all data points in A. On receiving A,
each user ui computes w′(ph) for the data points with respect to her actual location li as
follows:

w′(ph) = w(ph) + wrank(li ,ph) (9)

Then the user updates w(ph) for those data points by assigning w′(ph) to w(ph). After all
users’s updates, the value of w(ph) of a data point ph represents the cost of the group for
that data point, and the data point with the minimum weight (cost) is selected as the GNN.
Similarly, the k data points in A with k smallest weights are selected as k GNNs.

Thus, if the users communicate directly, then the second user can know the first user’s
ranks for the data points by observing visited field of user identities. On the other hand,
when the users communicate via c then c can monitor the change of w(ph) before sending
and after receiving back from a user and thereby know each user’s ranks for the data points.
Learning the ranks for the data points of a user in the group enables the coordinator c or a
group member to approximate the user’s location by applying the rank disclosure attack.

The underlying idea of the rank disclosure attack on a user’s location is based on the
well known concept of ordered Voronoi diagram [10]. The first order Voronoi diagram for
the data points is the division of the total space into subspaces, called Voronoi cells, where
each Voronoi cell corresponds to a data point ph such that ph is the nearest data point for
every location on that cell. Figure 5a shows an example of 1-order Voronoi Diagram of
candidate answers A : {p1, p2, . . . , p8}. Since the location of candidate answers are known
to the group member and c, if they also know the nearest data point of a user then they can
easily identify the user’s location as the Voronoi cell corresponding to that data point. For
example, if p2 is a user’s nearest data point then the user must be located in the Voronoi cell
shown with ash color in Figure 5a.

396 World Wide Web (2019) 22:375–416

(c)(b)(a)

Figure 5 The data points {p1, p2, ..., p8} with (a) 1-order Voronoi diagram, (b) the 2-order Voronoi
diagram, (c) 3-order Voronoi diagram

For an m-order Voronoi diagram, each Voronoi cell corresponds to a fixed rank for m

data points. Figure 5b and c show 2-order Voronoi diagram and 3-order Voronoi diagram,
respectively, for the same candidate answers used in Figure 5a. If p2 and p3 are a user’s 1st

and 2nd nearest data points, respectively, then the user must be located in the ash Voronoi
cell shown in Figure 5b. Similarly, if p2, p3, and p7 are a user’s 1st , 2nd , and 3rd nearest
data points, respectively, then the user must be located in the ash Voronoi cell shown in
Figure 5c. From the construction of order Voronoi diagram, we know that the Voronoi cells
of higher order diagram are originated from the recursive division of Voronoi cells of lower
order diagram. Thus, the more information about a user’s rank is known (i.e., the larger the
value for m), the more precise location of the user could be determined by constructing a
higher order Voronoi diagram.

7.2 Private filter

w(ph) =
∑n

i=1
MaxDist (Ri, ph) (10)

To avoid the rank disclosure attack, similar to the kGNN queries for the aggregate function
SUM, we propose a final pruning private filter (FPPF) technique for private kGNN queries
based on W-RANK. We call the private filter as W-RANK FPPF. For kGNN queries based on
W-RANK, it is not possible to apply an incremental pruning private filter (IPPF) technique as
IPPF cannot overcome the rank disclosure attack, which is discussed in Section 7.4. In W-
RANK FPPF, each user’s update of rank information remains hidden in an aggregate form
from others but at the end w(ph) represents the actual cost of ph for the group.

For W-RANK FPPF, in addition to returning the location of the set of data points as
candidate answers, the LSP returns w(ph) for each data point ph ∈ A. The LSP initializes
w(ph) as the sum of the maximum distances of ph to the query rectangles:

World Wide Web (2019) 22:375–416 397

Note that, Ri is a user ui’s query rectangle and n is the group size. On receiving A, each
user computes w′(ph) as follows:

w′(ph) = w(ph) − MaxDist (Ri, ph) + wrank(li ,ph) (11)

Then the user updates w(ph) for those data points by assigning w′(ph) to w(ph).
Algorithm 3 summarizes the steps for W-RANK FPPF.

Table 6 shows the ranks of the users for the data points in A shown in Figure 2.
Table 7 shows the steps for updating w(ph) by every user for the given example, where
without loss of generality, the rule wi = i × w1 is used for w1 = 1. After the
updates of u5, w(p1), w(p2), . . . , w(p8) represent the actual aggregate weight (i.e., cost)
of {p1, p2, . . . , p8} of the group of users {u1, u2, . . . , u5} (see the last row of Table 7).
Depending on the communication method used, u5 or the coordinator c forwards 2 GNNs,
p2 and p1 (or p3), to all users in the group.

In this private filter technique, similar to FPPF for the aggregate function SUM, an indi-
vidual user’s costs for the ranks of the data points remain hidden in aggregate form in both
scenarios: communication without or with the coordinator. Since a group member or the
coordinator cannot identify a user’s added weights (i.e., cost) for the data points, the group
member or the coordinator cannot also infer the ranks of the user for the data points. Thus,
W-RANK FPPF finds the GNNs without revealing the ranks of the users for the data points
to others and prevents the rank discloser attack.

Let X represent a subset of users in the group who have already updated w for all data
points in A and Y represent the remaining users in the group who have not yet received and
updated A. In every step of the private filter technique, w(ph) can be in general expressed
by the following equation:

w(ph) =
∑

ux∈X

wrank(lx ,ph) +
∑

uy∈Y

MaxDist (Ry, ph) (12)

For a group size of n = 2, the user uy who receives directly from the user ux can
know the identity of ux by observing the list of entities and determine wrank(lx ,ph) (thus,
rank(lx, ph)), since uy knows her own MaxDist (Ry, ph) in (12). Therefore, similar to the
private filter for SUM, for n = 2, the users communicate via the coordinator to avoid the
rank disclosure attack.

We omit the proof of correctness for W-RANK FPPF due to its similarity with SUM FPPF.
Note that for W-RANK FPPF, the LSP does not provide the minimum and maximum

weights with respect to the set of rectangles for each data point in the candidate answer set.
As a result, users cannot perform any local pruning of the data points from the candidate
answer set after updating the weight of each data point, which is a property of incremental

Table 6 Actual ranks of the users for the data points in A

p1 p2 p3 p4 p5 p6 p7 p8

u1 1 4 5 2 3 6 7 8

u2 1 3 5 2 5 3 8 7

u3 6 2 3 7 8 4 4 1

u4 3 2 1 7 5 8 4 6

u5 5 4 2 6 3 8 1 6

398 World Wide Web (2019) 22:375–416

Table 7 Updated w(ph) with respect to each user’s actual rank for the data points in A

p1 p2 p3 p4 p5 p6 p7 p8

LSP 46.5 46 44 60.5 56.5 68.5 62 63

u1 42 39 37 58.5 53 60.5 53.5 54

u2 39 34.5 33.5 52 46.5 55 47 49

u3 33 30 30 43 38.5 49.5 37.5 46.5

u4 28.5 26.5 27.5 38 34.5 44.5 31 42

u5 16 15 16 24 24 29 24 28

private pruning filter (IPPF) technique. In Section 7.4, we will show the possible privacy
attacks on a user’s location that can arise from the IPPF technique for kGNN queries based
on weighted-rank.

7.3 kGNN queries based on weighted-rank with respect to regions

In contrast to the algorithm for evaluating kGNN queries with respect to a set of rect-
angles for the aggregate function SUM and MAX in Section 6, the first part of Algorithm 4
cannot compute the candidate answer set directly, instead it computes a superset of the can-
didate answer set. In the algorithm for evaluating kGNN queries with respect to a set of
rectangles for the aggregate function SUM and MAX in Section 6, at the same time of search-
ing the data points on the database, the aggregate function SUM or MAX is used to prune
the data points that cannot be candidate answers. In Algorithm 4, however, the weight of a
data point cannot be computed before knowing the ranks of the data points for every rect-
angle. Thus, pruning the data points based on the weight is performed in the second part of
Algorithm 4 (Line 4.37) using the function Ref ine Answers.

In the first part, the algorithm finds a set of data points that includes k nearest data
points with respect to every point of each rectangle since a user can be located anywhere
within her rectangle. Then the algorithm extends the search until a certain distance, i.e.,
enddist (defined later in this section), that ensures that the set of data points include k

GNNs based on W-RANK with respect to the set of rectangles. To evaluate k nearest data
points with respect to every point of a rectangle, any existing algorithm [28, 42] can be
used. However, executing those algorithms separately for each rectangle requires multiple
searches on the database and incurs high IOs and query processing overhead. Our algorithm
finds k nearest data points for all rectangles with a single search on the database. The first

In this section, we present an algorithm, REGION kGNN rank, to evaluate kGNN queries
based on W-RANK with respect to a set of rectangles. The algorithm performs the evaluation
in two parts. In the first part, the algorithm finds a set of data points that includes k GNNs
based on W-RANK with respect to a set of rectangles. Then, in the second part, the algorithm
computes the minimum and maximum weight of those data points with respect to the set
of rectangles and prunes the data points based on the computed weights that cannot be
the part of candidate answers. Algorithm 4, REGION kGNN rank, shows the evaluation
process of kGNN queries based on W-RANK with respect to a set of rectangles. The input
to Algorithm 4 are a set of rectangles {R1, R2, . . . , Rn}, the number of required data points
k, and the weights associated with ranks {w1, w2, . . . }. The output is the candidate answers
A with their weights, where a weight of a data point is the sum of the maximum distances
of the data point to the rectangles.

World Wide Web (2019) 22:375–416 399

part of Algorithm 4 (Lines 4.1-4.36) is based on a concept similar to the algorithm that
evaluates GNN queries with respect to a set of rectangles for the aggregate function SUM

and MAX.

400 World Wide Web (2019) 22:375–416

We use the notations M , MinDist (q, p), MaxDist (q, p), maxdist[k] as defined in
Section 6. We define enddist and redefine dmin(p) and dmax(p) for kGNN queries based
on W-RANK as follows.

– enddist : the maximum of the maximum distances between query rectan-
gles {R1, R2, . . . , Rn} and the data points in A, i.e., the maximum of∨

i

∨
ph∈A{MaxDist (Ri, ph)}.

– dmin(p) (dmax(p)): the minimum (maximum) distance of p computed from the mini-
mum (maximum) distances between p and all query rectangles, where p represents a
data point or a minimum bounding rectangle of an R∗-tree node.

The algorithm starts the search from the root of the R∗-tree and inserts the root together
with its dmin(root) and dmax(root) into a priority queue Qp , where dmin(root) = 0 and
dmax(root) = maxn

i=1(MaxDist (Ri, root)). The elements of Qp are stored in order of
their minimum dmins. The search continues until k nearest data points with respect to
every point of each rectangle have been dequeued from Qp . To preserve a user’s privacy
while finding the actual GNNs from A through the group of users (the private filter tech-
nique discussed in Section 7.2), the weight of each data point p in A is initialized as
the sum of the maximum distances of p to the rectangles (Line 4.11). Note that similar
to the algorithm for evaluating kGNN queries with respect to a set of rectangles for the
aggregate function SUM and MAX, Lemma 1 is used in the algorithm to check the termina-
tion condition of the search for k nearest data points with respect to the set of rectangles.
After k NNs with respect to every point of each rectangle have been found, the algo-
rithm computes enddist (Line 4.20) and finds all data points whose dmins are less than
or equal to enddist (Lines 4.21-4.36). The extension of search for the data points until
enddist ensures that A includes k GNNs based on W-RANK with respect to the set of
rectangles.

Without loss of generality, we can provide an example that shows why it is required to
extend the search until enddist in order to ensure that k GNNs based on W-RANK with
respect to every point set within the rectangles are included in A. Let R1 and R2 be two
rectangles and r1 and r2 be two points in R1 and R2, respectively. Assume that for k = 1,
the data points p1 and p2 are in A, where p1 is the 1st and 5th NN for r1 and r2, respectively
and p2 is the 4th and 1st NN for r1 and r2, respectively. Let p3 be another data point that is
not in A and is the 3rd NN for both r1 and r2. For the ratio between two consecutive weights
rt = 2, i.e., wi+1 = 2 × wi , p3 has a smaller weight than the weights of p1 and p2, i.e.,
p3 is the GNN based on W-RANK with respect to points r1 and r2. Thus, we observe that
simply finding k NNs for r1 and r2 cannot ensure that the actual GNN based on W-RANK,
i.e., p3, is included in A. To address the above mentioned scenario, the algorithm extends
the search until enddist and includes all data points that have higher ranks (e.g., rank 1 is
higher than rank 2) with respect to a point in the rectangles than the ranks of the data points
already included in A.

The second part of Algorithm 4 is to prune the data points from A that cannot be part of
the candidate answer based on the weight with respect to the set of rectangles. The function
Ref ine Answers (Line 4.37) prunes the data set. To compute the weight of a data point
with respect to a set of rectangles, we need to know the rank of that data point with respect
to each individual rectangle, which is not straightforward to compute. Since a user can be
located anywhere within her rectangle, the rank of a data point with respect to a rectangle is
a range instead of a fixed rank, which is defined with the minimum and maximum values.
Therefore, the weight of a data point with respect to a set of rectangles is also computed as
a range with the minimum and maximum bounds.

World Wide Web (2019) 22:375–416 401

Algorithm 5 shows the steps of the function Ref ine Answers. The first step is to com-
pute the minimum and maximum ranks of the data points for each individual rectangle,
which is done with the function Compute Ranks (Lines 5.1-5.2). Algorithm 6 shows the
steps for the function Compute Ranks and we discuss the details of Compute Ranks

in Section 7.3.1. The main notations in Ref ine Answers and Compute Ranks are
summarized as follows:

– rankmin(Ri, ph) (rankmax(Ri, ph)): the minimum (maximum) rank of a data point ph

with respect to a rectangle Ri .
– wmin(ph) (wmax(ph)): the minimum (maximum) weight of a data point ph with respect

to a set of rectangles {R1, R2, . . . , Rn}.
– maxwk : the kth smallest maximum weight of computed wmax(ph)s.

After having the minimum and maximum ranks of the data points for all rectangles, the
algorithm computes the minimum and maximum weights of each data point in A (Lines
5.3-5.8). Then the algorithm finds the kth smallest maximum weight, maxwk , using the
function kMax. The next step is to prune the data points from A: the data points whose
minimum weight is greater than maxwk are removed from A since they can never be one of
the candidate answers for k GNNs based on W-RANK.

Next, we show how the function Compute Ranks (Algorithm 6) finds the minimum and
maximum ranks of the data points with respect to a rectangle.

7.3.1 Computing minimum and maximum ranks

We first give the basic idea of computing the minimum and maximum ranks of the data
points with respect to a rectangle and then we will discuss the details of the algorithm with
an example. To assign the minimum rank, the function Compute Ranks divides the data
points into groups, where each group of data points have the same minimum rank with
respect to a rectangle. The group with the minimum rank, say r , consists of those data

402 World Wide Web (2019) 22:375–416

points whose minimum distances from the rectangle are less than or equal to maxdist[r]
(i.e., the rth smallest maximum distance of the data points from the rectangle) and greater
than maxdist[r − 1]. Since maxdist[r − 1] is less than the minimum distance of any data
point in the group with the minimum rank r , none of the data point in the group with the
minimum rank r can have a rank lower than r .

On the other hand, to compute the maximum rank of a data point ph with respect to
a rectangle, the function Compute Ranks counts the number of other data points whose
minimum distances from the rectangle are less than or equal to the maximum distance of
ph from the rectangle. This is because those data points may have higher rank than the rank
of ph. Since ph also has a rank, the maximum rank of ph with respect to the rectangle is
determined as one more than the counted number.

The details of the working procedure of the function Compute Ranks is as follows. To
make the computation faster, the algorithm first computes two arrays Lmini

and Lmaxi
of

size |A| for computing the minimum and maximum ranks of the data points with respect
to a rectangle Ri , respectively (Line 6.1). Each entry Lmini

[t] (Lmaxi
[t]) corresponds to

the value of the index h of a data point ph that has the t th smallest minimum (maximum)
distance from Ri . Tables 8 and 9 (Columns 1-4) show examples of Lmin1 and Lmax1 for a
rectangle R1 and answer set A : {p1, p2, . . . , p9}. Then the algorithm initializes variables
minrank, dist , count1, and count2 (Lines 6.2-6.5), where the first two variables are used
to compute the minimum rank of a data point and the latter ones are used for the maximum
rank of the data point.

World Wide Web (2019) 22:375–416 403

Table 8 The minimum ranks of the data points in A with respect to R1

t Lmin1 [t] pLmin1 [t] MinDist MaxDist rankmin

1 3 p3 7 16 1

2 4 p4 9 20 1

3 1 p1 10 15 1

4 7 p7 12 21 1

5 5 p5 17 27 2

6 6 p6 18 40 2

7 2 p2 22 36 2

8 9 p9 35 50 3

9 8 p8 37 48 3

The algorithm scans through the data points in A in order of their minimum distances
from the rectangle Ri and computes the minimum ranks for them (Lines 6.7-6.13). As
mentioned earlier, the data points that are in the same group are assigned the same mini-
mum rank. The variable minrank is used to keep track of the rank that should be assigned
as the minimum rank to the scanned data point. The variable dist represents the smallest
maximum distance of already scanned data points from Ri for the current group. For each
data point pLmini

[t], dist is checked to determine whether the group has been changed. If
MinDist (Ri, pLmini

[t]) is less than or equal to dist then the group of pLmini
[t] remains

the same with that of the previous data point pLmini
[t−1]. Otherwise the group is changed,

minrank is incremented by 1, and dist is updated to MaxDist (Ri, pLmini
[t]). Table 8

shows the minimum rank of {p1, p2, . . . , p9} with respect to the rectangle R1. For exam-
ple, in Table 8, we observe that the group of data points {p3, p4, p1, p7} have the minimum
rank 1 and the value of dist is 15 for this group. The new group starts from the data point
p5 as MinDist (R1, p5) > 15.

The algorithm scans through the data points in A in order of their maximum distances
from the rectangle Ri and computes the maximum ranks for them (Lines 6.14-6.17). The
maximum rank of a scanned data point is computed as the summation of count1 and count2

Table 9 The maximum ranks of the data points in A with respect to R1

t Lmax1 [t] pLmax1 [t] MaxDist MinDist rankmax

1 1 p1 15 10 4

2 3 p3 16 7 4

3 4 p4 20 9 6

4 7 p7 21 12 6

5 5 p5 27 17 7

6 2 p2 36 22 8

7 6 p6 40 18 9

8 8 p8 48 37 9

9 9 p9 50 35 9

404 World Wide Web (2019) 22:375–416

(Line 6.18). The variables count1 and count2 are used to track the number of data points that
have minimum distances from the rectangle less than or equal to MaxDist (Ri, pLmaxi

[t]).
The variable count1 represents the number of the data points whose maximum ranks have
been assigned and the data point pLmaxi

[t] whose maximum rank is currently considered to
be computed. Note that the data points whose maximum ranks have been assigned have less
or equal maximum distances from the rectangle than MaxDist (Ri, pLmaxi

[t]). On the other
hand, count2 counts the number of the data points whose maximum rank has not yet been
assigned and the minimum distances of these data points from the rectangle is less than
or equal to MaxDist (Ri, pLmaxi

[t]). Table 9 shows the maximum rank of {p1, p2, . . . , p9}
with respect to the rectangle R1. As an example, from the 3rd row of Table 9 we observe
that the maximum rank of p4 is 3. In this case count1 is 3 considering {p1, p3, p4} and
count2 is 3 considering {p7, p5, p6}. The minimum distances of {p1, p3, p4, p7, p5, p6}
are {10, 7, 9, 12, 17, 18}, respectively, which are less than MaxDist (R1, p4) (i.e., 20).

7.3.2 Proof of correctness

The following theorem proves the correctness of algorithm REGION kGNN W-RANK.

Theorem 1 If k is the number of required GNNs for a kGNN query with respect to a set of
n query rectangles {R1, R2, . . . , Rn} with ri ∈ Ri for 1 ≤ i ≤ n, then A includes all data
points that have the j th smallest (1 ≤ j ≤ k) value for W-RANK with respect to every point
set {r1, r2, . . . , rn}.

Proof (By contradiction) Assume that p′ is a data point that is not in A but has the j th min-
imum value (1 ≤ j ≤ k) for W-RANK with respect to a group of n points {r1

′, r2
′, . . . , rn′},

where each point ri
′ can be located at any position in Ri . There can be two cases for p′ /∈ A:

(i) p′ is not included in A in the first part of the algorithm (Lines 4.1-4.36), or (ii) p′ has
been pruned in the second part of the algorithm (Line 4.37).

If p′ is not included in A in the first part of the algorithm then the minimum distance of p′
from the set of rectangles is greater than enddist , which means that there are at least k data
points whose maximum distances with respect to any rectangle are lower than the minimum
distance of p′ for that rectangle. Thus, p′ cannot have the j th minimum (1 ≤ j ≤ k) value
for W-RANK, which contradicts the assumption.

If p′ has been pruned in the second part of the algorithm then the minimum weight of
p′ is greater than the kth smallest maximum weight of the data points in A, which again
means p′ cannot have the j th minimum (1 ≤ j ≤ k) value for W-RANK and contradicts the
assumption.

7.4 Incremental pruning private filter and privacy attacks

Incremental private pruning filter for kGNN queries based on W-RANK, W-RANK IPPF,
requires that users have the minimum and maximum weights with respect to the set of rect-
angles (wmin and wmax) for each candidate data point. If the users have wmin and wmax

then each user can perform local pruning of the data points from the answer set after updat-
ing wmin and wmax of every data point with respect to her actual location. However, in this
section, we will show how the update of both wmin and wmax for the candidate data points
in W-RANK IPPF can put the user’s privacy at risk and enable the coordinator or other users
in the group to approximate the user’s location.

World Wide Web (2019) 22:375–416 405

To update wmin(ph) and wmax(ph) for a data point ph a user ui computes w′
min(ph) and

w′
max(ph) using the following equations:

w′
min(ph) = wmin(ph) − wrankmin(Ri ,ph) + wrank(li ,ph) (13)

w′
max(ph) = wmax(ph) − wrankmax(Ri ,ph) + wrank(li ,ph) (14)

Then the user assigns w′
min(ph) and w′

max(ph) to wmin(ph) and wmax(ph), respectively.
Note that the user can compute rankmin(ph) and rankmax(ph) used in (13) and (14) with
Algorithm 6. After the update for all data points, the local pruning steps for each user are
same as the pruning steps done by the LSP (Lines 5.10-5.12 in Algorithm 5). From (13)
and (14), we observe that the specific pattern of weights can cause privacy threats when
users update wmin and wmax for the data points in W-RANK IPPF. Without loss of generality
consider an example, where the ratio between two consecutive weights is 2, i.e., wi+1 =
2 × wi and the candidate answer set size is 8; the weights are {1, 2, 4, 8, . . . 256}. Suppose,
a user increments wmin(ph) of a data point ph by 6 and decrements wmax(ph) by 8. Then
from knowing it, the coordinator or other user can infer that ph is the 4th nearest data point
of the user.

Thus, to protect user privacy our approach does not support W-RANK IPPF and though
the LSP computes wmin and wmax for each candidate data point, the LSP does not provide
both of them to the group.

8 Experiments

In this section, we evaluate the performance of our proposed algorithms through extensive
experiments. We vary the group size, the area of the minimum bounding box M that encloses
the set of the query rectangles, the area of a query rectangle, the number of required data
points k, and the data set size in different sets of experiments. We use both real and synthetic
data sets in our experiments. The data space is normalized into a span of 10, 000 × 10, 000
square units. The real data set C contains 62,556 postal addresses from California. We
generate synthetic data sets U and Z using a uniform and a Zipfian distribution, respectively,
and we vary the size of U and Z as 5000, 10,000, 15,000, and 20,000 point locations.
Table 10 summarizes the values used for each parameter in our experiments and their default
values. We set the range for the area of the query rectangles as 0.001% to 0.01% of the total
data space as this is a reasonable range of area to preserve a user’s privacy (e.g., the range
represents about 4 to 40 km2 with respect to the total area of California).

We run the experiments on a desktop with a Pentium 2.40 GHz CPU and 2 GByte RAM.
We consider 1000 private kGNN queries for each set of experiments, and determine the
average experimental results. We randomly generate 1000 point locations that are uniformly

Table 10 Experiment Setup

Parameter Range Default

Group size 4, 16, 64, 256, 1024 64

Area of M 2%, 4%, 8%, 16%, 32% 8%

Query rectangle area 0.001% to 0.01% 0.005%

k 2, 4, 8, 16, 32 8

Synthetic data set size 5K, 10K, 15K, 20K 20K

406 World Wide Web (2019) 22:375–416

distributed in the total space. Each point pq in the generated point set corresponds to a
private kGNN query, where M is a rectangle centered at pq . In each experiment the length
and width of M are randomly generated for the given area of M .

For each private kGNN query, we randomly generate a point location within M for each
user in the group. Then the query rectangle for each user is also randomly generated in such
a way that each query rectangle resides in M and includes the user’s point location. While
generating the query rectangles for a private kGNN query, we ensure that at least there is
one query rectangle that touches each edge of M .

There exists no approach, neither centralized nor decentralized, in the literature that can
protect location privacy of users while finding the optimal answer for a GNN query from a
large dataset (please see Section 3.1 for details). Though our approach is originally based
on a decentralized architecture, it can be also applied for a centralized setting, where the
group members disclose their locations to an intermediary entity. The intermediary entity
computes the query rectangles for the group members and sends them to the LSP. The LSP
evaluates the candidate answers with respect to the rectangles using our proposed algorithms
and sends them back to the intermediary entity. The intermediary entity finds the GNNs
for the actual locations of the group members and informs them to the group members.
Since the decentralized architecture does not reveal a user’s location to anyone, even not to
other group members, we compare the performance of our algorithms for processing privacy
preserving GNN queries by varying different parameters in a decentralized setting.

We present our experimental results of the private filter algorithms and kGNN algorithms
with respect to a set of the query rectangles in Section 8.1 and Section 8.2, respectively. In
Section 8.3, we show the experimental results for kGNN queries based on weighted-rank.

8.1 Comparison of private filter algorithms

We perform a comparative analysis between our private filter techniques, FPPF and IPPF in
terms of computational and communication costs. We measure the time spent by each user
in the group for the private filter technique and add them to determine the computational cost
for a group to filter the answers of a private kGNN query. We compare the communication
cost in terms of answer set size; then the total communication cost by adding the size of the
answer set that a coordinator and each user in the group have to send. In our experiments,
since we consider n > 2, we use the direct communication method, i.e., each user directly
sends the modified answer set to another randomly selected user in the group.

We present the experimental results in Sections 8.1.1 to 8.1.4 and then analyze these
results in Section 8.1.5.

8.1.1 Effect of group size

Figure 6a shows the time required by FPPF and IPPF for different group sizes. For SUM,
the time required by IPPF is always higher than that of FPPF and the ratio of the required
time between IPPF and FPPF decreases from 5 to 2 for the increase of group size from 4
to 16 and then remains constant at 2. For MAX, the time required by IPPF is significantly
higher than that of FPPF for a small group size (e.g., 9 times higher for the group size of 4),
but with an increase of the group size the time required by FPPF becomes higher than that
of IPPF.

We observe in Figure 6b that the communication cost of IPPF is always lower than that
of FPPF for both SUM and MAX. The communication cost of IPPF is on average 1.9 and 2
times lower than that of FPPF for SUM and MAX, respectively.

World Wide Web (2019) 22:375–416 407

10-4

10-3

10-2

10-1

100

 1024 256 64 16 4

T
im

e
(s

ec
)

Group Size

SUM-FPPF

SUM-IPPF

MAX-FPPF

MAX-IPPF

103

104

105

106

 1024 256 64 16 4

C
om

m
. C

os
t

Group Size

SUM-FPPF

SUM-IPPF

MAX-FPPF

MAX-IPPF

)b()a(

Figure 6 Effect of group size (data set C)

8.1.2 Effect of the area of M

We vary the area of M and see in Figure 7a that the time required by IPPF is always 2 times
higher than that of FPPF for every size of M in case of SUM. In case of MAX, the time for
IPPF is nearly constant for any area of M , whereas the time required by FPPF first increases
and then decreases with the increase of the area of M . We observe that IPPF requires more
time than that of FPPF only for larger M .

Figure 7b shows that for SUM the communication cost of IPPF is approximately 2 times
lower than that of FPPF for any area of M and for MAX the ratio of communication cost
between FPPF and IPPF slightly decreases from 2.3 to 1.9 with the increase of the area of
M .

8.1.3 Effect of query rectangle area

Figure 8a shows that for SUM the time required by FPPF and IPPF for varying the query
rectangle area follows a similar trend to that of varying the area of M , and for MAX the times

10-4

10-3

10-2

10-1

 32 16 8 4 2

T
im

e
(s

ec
)

Area of M (%)

SUM-FPPF

SUM-IPPF

MAX-FPPF

MAX-IPPF

103

104

105

106

 32 16 8 4 2

C
om

m
. C

os
t

Area of M (%)

SUM-FPPF

SUM-IPPF

MAX-FPPF

MAX-IPPF

)b()a(

Figure 7 Effect of the area of M (data set C)

408 World Wide Web (2019) 22:375–416

10-4

10-3

10-2

10-1

 0.01 0.008 0.006 0.004 0.002

T
im

e
(s

ec
)

Area of R (%)

SUM-FPPF

SUM-IPPF

MAX-FPPF

MAX-IPPF

103

104

105

106

 0.01 0.008 0.006 0.004 0.002

C
om

m
. C

os
t

Area of R (%)

SUM-FPPF

SUM-IPPF

MAX-FPPF

MAX-IPPF

)b()a(

Figure 8 Effect of query rectangle area (data set C)

of both IPPF and FPPF vary in a random manner with the increase of the query rectangle
area and the time required by IPPF is never higher than that of FPPF.

Figure 8b shows that the communication cost of FPPF is on average 2 and 2.2 times
higher than those of IPPF for SUM and MAX, respectively.

8.1.4 Effect of k

The effect of varying k is not significant for SUM as we see in Figure 9a: the times for IPPF
and FPPF remain nearly the same for different k and the required time of IPPF is on average
2 times higher than that of FPPF. For MAX the time required by FPPF is nearly constant
and the time for IPPF slightly increases with the increase of the query rectangle area and is
equal to that of FPPF for k = 32.

We observe in Figure 9b that the ratio of the communication cost between FPPF and IPPF
is approximately 2 for any k in case of SUM, whereas for MAX the ratio slightly decreases
from 2.2 to 2 for increasing k from 2 to 32.

10-4

10-3

10-2

10-1

 32 16 8 4 2

T
im

e
(s

ec
)

k

SUM-FPPF

SUM-IPPF

MAX-FPPF

MAX-IPPF

103

104

105

106

 32 16 8 4 2

C
om

m
. C

os
t

k

SUM-FPPF

SUM-IPPF

MAX-FPPF

MAX-IPPF

)b()a(

Figure 9 Effect of k (data set C)

World Wide Web (2019) 22:375–416 409

8.1.5 Comparative analysis

The experimental results for data sets U and Z also show a similar trend as data set C. In
all experiments, the communication cost of IPPF is always lower (at least 1.9 times) than
that of FPPF for both SUM and MAX. For the computational cost, we observe that in case of
SUM, the computational cost of IPPF is always higher than that of FPPF, whereas for MAX

the computational cost of IPPF is lower than that of FPPF in most of the cases.
The reason behind the higher communication cost of FPPF is that the answer set size

remains constant in FPPF, whereas in IPPF the answer set size continuously reduces
due to local pruning capability of each user. On the other hand, although in IPPF users
process smaller answer sets and thereby reduce the computational cost, the local prun-
ing adds extra computational overheads for each user. Moreover, the computational cost
involved in local pruning is higher for SUM than that of MAX because in MAX, the
users do not need to compute maxdistk (the kth smallest maximum aggregate distance).
From the experimental results we conclude that for SUM the required time for local prun-
ing is higher than the reduction in time for processing smaller answer sets. For MAX

the required time for local pruning is lower than the reduction of time for processing
smaller answer sets in most of the cases and the opposite applies for the remaining
cases.

Note that we have designed our experiments independent of communication links used
among the users, and shown the communication cost in terms of communication amount
(i.e., answer set size). This allows us to approximate the communication delay from the
known latency of the used communication link (e.g., wireless LANs, cellular link). Our
proposed technique requires multiple rounds of communication, which may cause a delay
in the response time. Nowadays this should not be a problem as the latency of wireless
links has been significantly reduced, for example HSPA+ offers as low as 10ms latency.
More importantly, a user might be happy to tolerate a reasonable delay to preserve her
privacy.

8.2 Performance of kGNN algorithms with respect to rectangles

We evaluate the performance of our proposed algorithm REGION kGNN in terms of the
computational cost given by the processing time, the number of page accesses, i.e., IOs,
and the candidate answer set size. In our experiments, the data points are indexed using an
R∗-tree and the page size is set to 1 KB with a node capacity of 50 entries.

8.2.1 Effect of group size

In this set of experiments, we vary the group size as 4, 16, 64, 256, and 1024. The pro-
cessing time increases, and both IOs and the answer set size decrease with the increase
of the group size for both SUM and MAX (Figure 10a–f). The reason behind the increase
of the processing time with the group size is the increase of the number of distance
computations involved to determine an aggregate distance. On the other hand, the reason
for the decrease of IOs and the answer set size is as follows. We know that both min-
imum and maximum aggregate distances of a data point, i.e., dmin and dmax , increase
or remain the same with the increase of the group size. For computing maxdistk , only
k data points or R∗-tree nodes with the minimum dmax are considered, whereas dmin

of each data point or R∗-tree node is considered to check if the data point or R∗-
tree node can be pruned. Hence, the probability is high that more dmins become larger

410 World Wide Web (2019) 22:375–416

 0.001

 0.01

 0.1

 1

 1024 256 64 16 4

T
im
e
 (
S
e
c
)

Group Size

C

U

Z

 0.001

 0.01

 0.1

 1

 1024 256 64 16 4

T
im
e
 (
S
e
c
)

Group Size

C

U

Z

(a) SUM (b) MAX

 150

 100

 50

 0
 1024 256 64 16 4

IO
s

Group Size

C

U

Z

 40

 30

 20

 10

 0
 1024 256 64 16 4

IO
s

Group Size

C

U

Z

(c) SUM (d) MAX

 2500

 2000

 1500

 1000

 500

 0
 1024 256 64 16 4

A
n
s
w
e
r
 S
e
t
S
iz
e

Group Size

C

U

Z

 600

 500

 400

 300

 200

 100

 0
 1024 256 64 16 4

A
n
s
w
e
r
 S
e
t
S
iz
e

Group Size

C

U

Z

(e) SUM (f) MAX

Figure 10 Effect of group size

than maxdistk with an increased group size and more data points or R∗-tree nodes are
pruned.

8.2.2 Effect of the area of M

In this experiment we find that with an increasing area of M , the processing time, IOs, and
the answer set size increase for SUM, and all of them first increase and then decrease for
MAX. We show the results for the required time in Figure 11.

World Wide Web (2019) 22:375–416 411

 0.001

 0.01

 0.1

 1

 32 16 8 4 2

T
im

e
(s

ec
)

Area of M (%)

C
U
Z

 0.001

 0.01

 0.1

 1

 32 16 8 4 2

T
im

e
(s

ec
)

Area of M (%)

C
U
Z

(a) SUM (b) MAX

Figure 11 Effect of the area of M

There are two factors that influence the outcome of these experiments. Both dmin and
dmax of the data points or R∗-tree nodes that are outside a smaller M decrease or remain
same with a larger area of M , and thus these data points or R∗-tree nodes might not be
pruned for a larger M . On the other hand, both dmin and dmax of the data points or R∗-tree
nodes that are inside of a smaller M decrease or remain same with a larger M and hence
these data points or R∗-tree nodes might be pruned for a larger M . In summary, if the former
factor dominates, it results in an increase of the processing time, IOs, and the answer set
size, and if the latter one dominates, it results in a decrease.

8.2.3 Effect of query rectangle area

In this set of experiments, we vary the query rectangle area and observe that the processing
time, IOs, and the answer set size increase with the increase of the query rectangle area.
With the increase of query rectangle area, for each data point, dmin decreases or remains
same, whereas dmax does not decrease, i.e., less data points or R∗-tree nodes are pruned for
larger query rectangle areas. Again, less pruning results in more distance computations and
increases the processing time (Figure 12).

 0.001

 0.01

 0.1

 1

 0.01 0.008 0.006 0.004 0.002

T
im

e
(s

ec
)

Area of R (%)

C
U
Z

 0.001

 0.01

 0.1

 1

 0.01 0.008 0.006 0.004 0.002

T
im

e
(s

ec
)

Area of R (%)

C
U
Z

(a) SUM (b) MAX

Figure 12 Effect of query rectangle area

412 World Wide Web (2019) 22:375–416

 0.001

 0.01

 0.1

 1

 32 16 8 4 2

T
im

e
(s

ec
)

k

C
U
Z

 0.001

 0.01

 0.1

 1

 32 16 8 4 2

T
im

e
(s

ec
)

k

C
U
Z

(a) SUM (b) MAX

Figure 13 Effect of k

8.2.4 Effect of k

In this set of experiments we vary k and observe that the processing time (Figure 13), IOs,
and the answer set size slightly increase with the increase of k, which is expected because a
larger value of k increases maxdistk and less R∗-tree nodes or data points are pruned.

8.2.5 Effect of data set size

In this set of experiments we investigate the effect of the data set size and find that the
processing time, IOs, and the answer set size increase for increasing data set sizes and the
rate of increase decreases for a larger data set. For example, when we increase the data
set size from 5k to 10k the increase ratio of the processing time are 1.5 (SUM) and 1.1
(MAX), whereas when we increase the data set size from 15k to 20k the increase ratio of the
processing time are 1.2 (SUM) and 1.1 (MAX) (Figure 14).

For each set of experiments, except the experiments in Sections 8.1.3 and 8.2.3, we also
consider the case, where the users of a group have variable privacy levels, i.e., the area of

 0.05

 0.025

 0.01
 20 15 10 5

T
im

e
(s

ec
)

Data Set Size (K)

U
Z

 0.02

 0.015

 0.01
 20 15 10 5

T
im

e
(s

ec
)

Data Set Size (K)

U
Z

(a) SUM (b) MAX

Figure 14 Effect of data set size

World Wide Web (2019) 22:375–416 413

Figure 15 Effect of W-RANK rules: LSP side

the query rectangles are different for a group. We find that the experimental results show
similar trends to those for equally-sized query rectangles.

8.2.6 Summary

Our algorithm for private kGNN queries is scalable as it can handle a large group size (up
to 1024). Furthermore, the processing cost required by our algorithm slightly increases with
the increase of user privacy level, i.e., the area of a query rectangle.

8.3 Private kGNN Queries based on W-RANK

For private kGNN queries based on W-RANK, the group can set the rules to compute the set
of weights. We use two rules in our experiments. Rule 1 is wi = i × w1, where the ratio
between w1 and wi is set to i, and wi is computed as i×w1. Another rule is wi+1 = rt×wi ,
where the ratio between two consecutive weights wi+1 and wi is set to rt . In our experiment,
we set w1 as 1 and vary rt as 2, 4, 6 and 8. We set other parameters to default values as
shown in Table 10. We run the experiments on a desktop with a Pentium(R) Dual Core 2.30
GHz CPU and 3 GByte RAM. We consider 100 private kGNN queries based on W-RANK

and compute the average performance for the following sets of experiments.
Figure 15a–15c show the processing time, IOs, and the answer set size, respectively, for

the LSP side algorithm to evaluate kGNN queries based on W-RANK with respect to a set

Figure 16 Effect of W-RANK rules: user side

414 World Wide Web (2019) 22:375–416

of rectangles. Figure 16a–b show the processing time and communication cost required by
final pruning private filter (FPPF) for private kGNN queries based on W-RANK. We observe
that both rules show similar performance when the value of r is 2. On the other hand, the
performance for Rule 2 improves with the increase of rt , which is expected.

9 Conclusion

The paper presents an efficient solution to process privacy preserving group nearest neigh-
bor (GNN) queries in a decentralized manner. The solution is composed of two components:
(i) actual GNN identification from the candidate answers using private filters, and (ii) can-
didate answer computation with respect to a set of regions with efficient algorithms. Our
solution can evaluate GNN queries for three aggregate functions, SUM, MAX and W-RANK,
where SUM and MAX minimizes the total and the maximum distance of the group members
to the data points, respectively, and W-RANK maximizes the overall preference of the group
members for the data points. Extensive experiments for different parameter settings show
that our solution is scalable and can ensure high level of user privacy in real-time.

In the future, we intend to investigate the possibility of a privacy preserving solution for
GNN queries based on the assumption that all involved entities in processing the queries
may corroborate to extract extra information about a user’s location. We will explore to what
extent secure multi-party computations (e.g., [6]) can be used to enhance our approach.

References

1. Ahmad, S., Kamal, R., Ali, M.E., Qi, J., Scheuermann, P., Tanin, E.: The flexible group spatial keyword
query. In: ADC, pp. 3–16 (2017)

2. Ashouri-Talouki, M., Baraani-Dastjerdi, A., Selçuk, A.A.: Glp A cryptographic approach for group
location privacy. Comput. Commun. 35(12), 1527–1533 (2012)

3. Ashouri-Talouki, M., Baraani-Dastjerdi, A., Selċuk, A.A.: The cloaked-centroid protocol: location privacy
protection for a group of users of location-based services. Knowl. Inf. Syst. 45(3), 589–615 (2015)

4. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust access
method for points and rectangles. SIGMOD Rec. 19(2), 322–331 (1990)

5. Bettini, C., Mascetti, S., Wang, X.S., Jajodia, S.: Anonymity in location-based services: Towards a
general framework. In: MDM, pp. 69–76 (2007)

6. Bickson, D., Dolev, D., Bezman, G., Pinkas, B.: Peer-to-peer secure multi-party numerical computation.
In: P2P, pp. 257–266 (2008)

7. Bilogrevic, I., Jadliwala, M., Kalkan, K., Hubaux, J.-P., Aad, I.: Privacy in mobile computing for
location-sharing-based services. In: PETS, pp. 77–96 (2011)

8. Chow, C.-Y., Mokbel, M.F., Liu, X.: A peer-to-peer spatial cloaking algorithm for anonymous location-
based services. In: GIS, pp. 171–178 (2006)

9. Facebook. http://www.facebook.com
10. Fischer, I., Gotsman, C.: Fast approximation of high-order voronoi diagrams and distance transforms on

the gpu. J. Graph. Tools 11(4), 39–60 (2006)
11. Freudiger, J., Shokri, R., Hubaux, J.: Evaluating the privacy risk of location-based services. In: Financial

cryptography and data security, pp. 31–46 (2011)
12. Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: Architecture and

algorithms. TMC 7(1), 1–18 (2008)
13. Ghinita, G., Kalnis, P., Skiadopoulos, S.: Mobihide: A mobile peer-to-peer system for anonymous

location-based queries. In: SSTD, pp. 221–238 (2007)
14. Ghinita, G., Kalnis, P., Skiadopoulos, S.: PRIVÉ Anonymous location-based queries in distributed mobile

systems. In: WWW, pp. 371–389 (2007)
15. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.-L.: Private queries in location based

services: anonymizers are not necessary. In: SIGMOD, pp. 121–132 (2008)

http://www.facebook.com

World Wide Web (2019) 22:375–416 415

16. Ghinita, G., Damiani, M.L., Silvestri, C., Bertino, E.: Preventing velocity-based linkage attacks in
location-aware applications. In: GIS, pp. 246–255 (2009)

17. Google+. http://plus.google.com
18. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal

cloaking. In: MobiSys, pp. 31–42 (2003)
19. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)
20. Hashem, T., Kulik, L.: Safeguarding location privacy in wireless ad-hoc networks. In: Ubicomp, pp.

372–390 (2007)
21. Hashem, T., Kulik, L., Zhang, R.: Privacy preserving group nearest neighbor queries. In: EDBT, pp.

489–500 (2010)
22. Hashem, T., Kulik, L.: “Don’t trust anyone”: Privacy protection for location-based services. Perv. Mob.

Comput. 7, 44–59 (2011)
23. Hashem, T., Ali, M.E., Kulik, L., Tanin, E., Quattrone, A.: Protecting privacy for group nearest neighbor

queries with crowdsourced data and computing. In: UbiComp, pp. 559–562 (2013)
24. Hashem, T., Hashem, T., Ali, M.E., Kulik, L.: Group trip planning queries in spatial databases. In: SSTD,

pp. 259–276 (2013)
25. Hashem, T., Kulik, L., Zhang, R.: Countering overlapping rectangle privacy attack for moving knn

queries. Inf. Syst. 38(3), 430–453 (2013)
26. Hashem, T., Barua, S., Ali, M.E., Kulik, L., Tanin, E.: Efficient computation of trips with friends and

families. In: CIKM, pp. 931–940 (2015)
27. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: SSD, pp. 83–95 (1995)
28. Hu, H., Lee, D.L.: Range nearest-neighbor query. TKDE 18(1), 78–91 (2006)
29. Hu, H., Xu, J.: Non-exposure location anonymity. In: ICDE, pp. 1120–1131 (2009)
30. Huang, Y., Vishwanathan, R.: Privacy preserving group nearest neighbour queries in location-based

services using cryptographic techniques. In: GLOBECOM, pp. 1–5 (2010)
31. Huang, J., Peng, M., Wang, H., Cao, J., Gao, W., Zhang, X.: A probabilistic method for emerging topic

tracking in microblog stream. World Wide Web 20(2), 325–350 (2017)
32. Jahan, R., Hashem, T., Barua, S.: Group trip scheduling (GTS) queries in spatial databases. In: EDBT,

pp. 390–401 (2017)
33. Khoshgozaran, A., Shahabi, C.: Blind evaluation of nearest neighbor queries using space transformation

to preserve location privacy. In: SSTD, pp. 239–257 (2007)
34. Li, H., Lu, H., Huang, B., Huang, Z.: Two ellipse-based pruning methods for group nearest neighbor

queries. In: GIS, pp. 192–199 (2005)
35. Li, F., Yao, B., Kumar, P.: Group enclosing queries. TKDE 23(10), 1526–1540 (2011)
36. Li, M., Sun, X., Wang, H., Zhang, Y., Zhang, J.: Privacy-aware access control with trust management in

Web service. World Wide Web 14(4), 407–430 (2011)
37. Li, Y., Li, F., Yi, K., Yao, B., Wang, M.: Flexible aggregate similarity search. In: SIGMOD, pp. 1009–

1020 (2011)
38. Li, J., Thomsen, J.R., Yiu, M.L., Mamoulis, N.: Efficient notification of meeting points for moving

groups via independent safe regions. TKDE 27(7), 1767–1781 (2015)
39. Loopt. http://www.loopt.com
40. Luo, Y., Chen, H., Furuse, K., Ohbo, N.: Efficient methods in finding aggregate nearest neighbor by

projection-based filtering. In: ICCSA, pp. 821–833 (2007)
41. Microsoft. Location & privacy: Where are we headed?, 2011 (accessed September 30, 2017). https://

news.microsoft.com/location and privacy where are we headed web
42. Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The new casper: Query processing for location services without

compromising privacy. In: VLDB, pp. 763–774 (2006)
43. Namnandorj, S., Chen, H., Furuse, K., Ohbo, N.: Efficient bounds in finding aggregate nearest neighbors.

In: DEXA, pp. 693–700 (2008)
44. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, p. 301

(2004)
45. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases.

TODS 30(2), 529–576 (2005)
46. Peng, M., Zeng, G., Sun, Z., Huang, J., Wang, H., Tian, G.: Personalized app recommendation based on

app permissions. World Wide Web (2017)
47. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD, pp. 71–79 (1995)
48. Schlegel, R., Chow, C., Huang, Q., Wong, D.S.: User-defined privacy grid system for continuous

location-based services. TMC 14(10), 2158–2172 (2015)
49. Strassman, M., Collier, C.: Case study: The development of the find friends application. In: Location-

Based Services, pp. 27–40 (2004)

http://plus.google.com
http://www.loopt.com
https://news.microsoft.com/location_and_privacy_where_are_we_headed__web
https://news.microsoft.com/location_and_privacy_where_are_we_headed__web

416 World Wide Web (2019) 22:375–416

50. Sun, X., Wang, H., Li, J., Truta, T.M.: Enhanced p-sensitive k-anonymity models for privacy preserving
data publishing. Trans. Data Privacy 1(2), 53–66 (2008)

51. Wang, H., Zhang, Z., Taleb, T.: Special issue on security and privacy of iot. World Wide Web, 1–6 (2017)
52. Xue, M., Kalnis, P., Pung, H.K.: Location diversity: Enhanced privacy protection in location based

services. In: International Symposium on Location and Context Awareness, pp. 70–87 (2009)
53. Yi, X., Paulet, R., Bertino, E., Varadharajan, V.: Practical approximate k nearest neighbor queries with

location and query privacy. TKDE 28(6), 1546–1559 (2016)
54. Yiu, M.L., Jensen, C.S., Huang, X., Lu, H.: Spacetwist: Managing the trade-offs among location privacy,

query performance, and query accuracy in mobile services. In: ICDE, pp. 366–375 (2008)
55. Zhang, J., Tao, X., Wang, H.: Outlier detection from large distributed databases. World Wide Web 17(4),

539–568 (2014)

	Protecting privacy for distance and rank based group nearest neighbor queries
	Abstract
	Introduction
	Research problem
	Contribution

	Problem setup
	GNN queries
	Privacy preserving GNN queries
	Privacy model: adversaries and privacy attacks

	Related work
	User privacy in LBSs
	Group nearest neighbor queries

	Framework based on a decentralized architecture
	Sending the query
	Evaluating the query
	Finding the answer

	Private filters
	Minimizing the total distance
	Minimizing the maximum distance

	kGNN queries with respect to regions
	Private kGNN queries based on weighted-rank
	Rank discloser attacks
	Private filter
	kGNN queries based on weighted-rank with respect to regions
	Computing minimum and maximum ranks
	Proof of correctness

	Incremental pruning private filter and privacy attacks

	Experiments
	Comparison of private filter algorithms
	Effect of group size
	Effect of the area of M
	Effect of query rectangle area
	Effect of k
	Comparative analysis

	Performance of kGNN algorithms with respect to rectangles
	Effect of group size
	Effect of the area of M
	Effect of query rectangle area
	Effect of k
	Effect of data set size
	Summary

	Private kGNN Queries based on w-rank

	Conclusion
	References

