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Abstract Under healthcare research, eating activity detection and recognition have been
studied for many years. Most of the previous approaches rely on body worn sensors for
eating behavior detection. However, measurement errors from these sensors will largely
reduce the tracking accuracy in estimating velocity and acceleration. To avoid this problem,
we utilize Microsoft Kinect to capture skeleton motions of eating and drinking behaviors.
In this paper we introduce a moving average method to remove the noise in relative dis-
tances of the captured joint positions so that eating activity can be segmented into feeding
and non-feeding frames. In order to identify different eating patterns, eating and drinking
behavior recognition is performed based on the features extracted from the resulting feeding
periods. The experiments are evaluated on our collected eating and drinking action dataset,
and we also change the distance between Kinect and subject to test the robustness of our
approach. The results achieve better detection and recognition performance compared with
other approaches. This pioneer work of our eating action behavior analysis can lead to many
potential applications such as the development of a Web system to facilitate people to share
and search their eating and drinking actions as well as carrying out intelligent analysis to
provide suggestions.
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1 Introduction

Overweight has become a world-wide growing problem for people. One major cause of
such problem is due to a person’s fast eating pace which is considered as an unhealthy eat-
ing behavior [24], and this poor habit forms unconsciously most of the time. Eating too
fast will likely lead to digestive problems such as obesity and malnutrition. It is essential
to generate a monitoring system to evaluate eating behavior and detect abnormal eating
patterns. In this paper, upper-body skeleton motions of eating and drinking behaviors are
captured using Kinect. With the development of Kinect, human action detection and recog-
nition technologies have been utilized in many life aspects such as gaming and healthcare
applications. For example, Kinect-based physical therapy system can instruct patients to
accurately perform rehabilitative actions [1, 4, 22]. Kinect technology is also applied in
fall detection and prevention of healthcare monitoring [3, 17, 18, 32]. Online monitoring
of people’s eating and drinking behaviors can be made possible as Kinect can provide real-
time streams of RGB, depth and skeleton information, which can be transmitted through the
Web.

Previous studies in action recognition mostly focus on the classification among actions
with large inter-class variations such as “kicking”, “pitching” and “sitting” [7, 8, 14, 27].
These discriminative actions are carried out by different body parts. However, eating and
drinking actions are all performed by the feeding arm(s) of the upper body, therefore
the classification among these similar actions may require more representative features.
Besides, the current public motion datasets do not contain many variations of eating and
drinking actions. As a result, we start to collect our own eating and drinking motion dataset
and present here a preliminary work in classifying eating related behaviors by tracking
skeleton motion. The skeleton data can provide a clue about the subject’s action without the
need to analyze the texture information from videos.

In this work, we assume that eating and drinking actions can be generally divided into
two consecutive processes: self-feeding (active) periods and resting (inactive) periods. The
hand(s) that perform(s) self-feeding is(are) feeding hand(s). During self-feeding periods,
people bring food to their mouth to consume, and during resting periods, the feeding hand(s)
is(are) down with almost no movements. Pace of intake is reflected by self-feeding fre-
quency estimation. We then give insight into the recognition of eating and drinking patterns
by tracking skeleton motion of the upper body. It is nontrivial to recognize people’s eat-
ing patterns because of the diversity in utensils and food types. For example, people always
consume food with knife and fork in western-style eating patterns. While in Chinese eating
style, people prefer to use chopsticks to eat. In order to present an unbiased motion recog-
nition, we categorize different eating and drinking patterns including eating with single
hand, both hands, knife and fork, chopsticks and drinking with spoon. We capture subjects
eating different types of food including fries, burgers, steaks, noodles and soup. In addition
to drinking with spoon, we also recognize common drinking patterns including drinking
with straw and drinking bottled water. After this pioneer work, we will extend our dataset
to include more variations in food diversity for eating and drinking actions. There are
many potential applications by tracking and recognizing the eating and drinking behaviors
during food and beverage consumption. For example, a Web system can be developed to
allow people to upload and share their eating and drinking actions and our recognition result
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provides an easy way for searching and gathering useful information for carrying out big
data analysis in the future.

We extract the main contributions of this paper as follows.

– An eating and drinking motion dataset is collected for research.
– Skeletal measurements are introduced to represent eating and drinking actions during

food and beverage consumption.
– We use a moving average K-means clustering method on the proposed skeletal action

representation to estimate self-feeding frequencies.
– We perform eating and drinking action recognition based on the proposed skeletal

representation and show better performance compared with other methods.

The rest of this paper is structured as follows. Section 2 reviews some previous work
related to our research. Section 3 gives an introduction of our collected eating and drinking
motion dataset. Section 4 describes the skeletal representation and provides a visualization
of the joint pair distances during eating and drinking. The details of our proposed method
in eating action segmentation and recognition are described in Sections 5, and 6 presents
our experiments and results. In Section 7, we make a conclusion of our paper and illustrate
potential future work.

2 Related work

Monitoring ingestive behavior has gained great interest as more and more people are getting
overweight, and obesity is always one inducement for some diseases like cardiovascular
disorders and diabetes [16]. Eating and drinking behaviors can be detected and monitored
through many aspects including food and calorie intake, motions and gestures of arms, or
self-feeding frequencies, chews and swallows.

Food recognition faces great difficulties because of variations in food shapes and diver-
sity in food types. Yang et al. [29] identified food images in Pittsburgh fast-food image
dataset [5] via multi-dimensional histograms generated by pairwise local features. Wu
and Yang [28] used scale-invariant feature transform (SIFT) to describe keypoints of food
images in training set and image frames in video before matching. Combined with SIFT,
Zong et al. [33] proposed the Local Binary Pattern (LBP) to represent the global structure
of the food image and obtained higher classification accuracy than [29] within the same
dataset. After food identification, calorie and nutrition estimations are always expected to
form a relatively clear blueprint of energy consumption. Yang et al. [29] also estimated
calorie intake in a meal according to the fast food appearance, but the error estimation
occurred partially due to the exclusion of the food portion. Kawano and Yanai [13] designed
a smartphone system to recognize food and estimate calories. They segmented single
food item in the ground truth bounding box and extracted bag-of-SURF features before
recognition.

Wrist-worn devices and approaches have been widely studied to detect and recognize
motions or gestures of arms in eating and drinking activities. With accelerometers attached
to testers’ both wrists, Zhang et al. [31] extracted features of Euler angles and classified
repeated eating or drinking patterns through a proposed hierarchical temporal memory net-
work. Amft et al. [2] attempted to recognize different drinking postures in nine types of
containers and achieved a recognition rate above 70% on average, and the signal traces
of three-dimensional acceleration and gyroscope help them to discriminate fetch and sip
drinking motions. Based on a wrist-fastened inertial sensor, Thomaz et al. [26] compared
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gestures of food intake, i.e., eating with knife and fork, spoon or fork, and eating with hand,
with other activities of daily living (ADL) (e.g., walking, chatting, waiting), and their results
were evaluated on a random forest classification algorithm.

Wrist-worn and other body-worn devices like microphone and smart necklace can also
be designed to detect and monitor upper-body motion during the ingestion of bites, chews
and swallows. In the study of Dong et al. [6], they counted biting times by detecting the
motion pattern of wrist rotation using a watch-resembled sensor. They further expanded the
number of participants in order to analyze the relationship between bite patterns with age,
gender and race variations [23]. Moreover, Zhang and Amft [30] utilized a smart eyeglass
to reveal the hardness of food in the process of chewing banana, cucumber and carrot.
Kalantarian et al. [11, 12] detected and categorized swallows into different food classes
using a piezoelectric sensor placed between neck and chest. Nguyen et al. [19] proposed
SwallowNet which was formed by recurrent neural network (RNN) with long short-term
memory (LSTM) units, and their swallow evaluation results (average 76.07%) outperformed
the random forest classifier (average 66.58%). The problem of inertial sensors is that drift
will be accumulated in the integration of orientation and velocity measurements, which
has become a major drawback for the state-of-the-art acceleration sensor tracking systems
[31]. As a result, in this paper we propose to use Kinect to track skeleton motions in eating
or drinking actions to avoid this problem since the Kinect sensor is fixed during motion
capture. In food intake monitoring, Kinect was used to track the arm gestures [10] which
was considered to be more convenient than wearable sensors. A major contribution in their
work was to detect food intake using raw skeleton positions and main angles of upper body.
In our work, we focus on joint distance features to segment and recognize different eating
or drinking actions.

3 Data collection

Existing public motion datasets contain very few eating and drinking motions. As a result,
we collect our own eating and drinking motion dataset using Kinect. The dataset includes
five subjects with variations in upper-body sizes performing seven eating and drinking
actions: eating fries, eating burger, eating steak, eating noodles, drinking soup, drinking
soft drink with straw and drinking bottled water. Each eating or drinking process is per-
formed four times and captured as four sequences. Food or drink and its corresponding
eating or drinking utensils are well prepared on the desk in front of the fixed Kinect sen-
sor before recording. In each sequence, the subject is told to eat one type of food or drink
at his or her own pace. All the sequences are recorded within 50 seconds at 30 frames per
second (FPS).

The dataset contains skeleton positions of 10 joints in human upper body as shown in
Figure 1. The visualization of our dataset with screenshot instances of seven actions is
illustrated in Figure 2.

4 Skeletal representation

4.1 Joint relative distance: JRD

Let M = {M1, M2, ..., MT } be an eating or drinking action in T frames. For each joint i
(1 ≤ i ≤ 10) in human upper body, we consider Ji(t) = (xi(t), yi(t), zi(t)) as the joint
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head

shoulder center
left shoulder right shoulder

left elbow right elbow

left wrist right wrist

left hand right hand

Figure 1 Skeleton joints of human upper body captured by Kinect

position at frame t (1 ≤ t ≤ T ). Let p denote the joint pair index at each frame. Because
there are 10 joints in our upper-body model, the total number of joint pairs is

(10
2

) = 45. For
the pth (1 ≤ p ≤ 45) joint pair at the tth frame, the Joint Relative Distance (JRD) [25] is
computed by the L2-norm:

JRD(t, p) = dL2(Ji(t), Jj (t)). (1)

(a) eating fries (b) eating burger

(c) eating steak (d) eating noodles

(e) drinking soup (f) drinking soft drink with straw (g) drinking bottled water

Figure 2 Example frames of our eating and drinking action dataset
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4.2 Visualized representation

Eating or drinking actions can be regarded as using hand(s) to put food into mouth, and
shoulder center is the joint which is believed to be the closest to mouth. We present several
JRDs between shoulder center joint and joints of double hands over the whole sequences in
Figure 3, and this will give out an intuitive representation of self-feeding periods during a
consumption process. There are seven subfigures in Figure 3 corresponding to seven differ-
ent types of eating and drinking sequences in our dataset. We can draw clearly that in each
subfigure, frames with smaller distances reflect that the subject is raising hand(s) up and
performing self-feeding. On the other hand, frames with larger distances reflect that the sub-
ject has already put down the feeding hand(s) and resting. The persistent length of frames in
the same self-feeding action can be seen as the duration time of single feeding. Compared
with other types of consumption, it is clear that left hand performs feeding in having steak
since the variation of left hand is more significant than right hand, and both hands are acting
as feeding hands in eating burger since the variations are almost synchronous.

5 Proposed method

In this section, we present our proposed approach for analyzing eating and drinking motions
captured by the Kinect sensor. The flow chart illustrated in Figure 4 provides an overview of
our proposed method. The positions of 10 joints from the upper body are obtained from the
Kinect sensor while capturing a person’s eating or drinking motion. Based on the distance
between shoulder center and each hand, the feeding hand is identified. The distance between
shoulder center and the feeding hand is further analyzed to perform segmentation to divide
the motion into feeding and non-feeding frames. Based on the feeding frames, on one hand
we estimate the self-feeding frequency and on the other hand we perform recognition to
identify the eating or drinking behavior.

5.1 Moving average joint relative distance: MAJRD

Since noise may exist in the tracked body motions from a depth camera, in order to prevent
outliers, we compute the moving average of JRD, which we denote as MAJRD. MAJRD
can be considered as a smoothed version of JRD over a sliding window with size a. The
formal definition of MAJRD for the joint pair p at frame t is provided as follows:

MAJRD(t, p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2t−1

∑2t−1
l=1 JRD(l, p) if 1 ≤ t ≤ a−1

2 ,

1
2T −(2t−1)

∑T
l=2t−T JRD(l, p) if (T + 1) − (a−1)

2 ≤ t ≤ T ,

1
a

∑t+ a−1
2

l=t− a−1
2

JRD(l, p) otherwise.

(2)

Note that the window size a is a positive integer and it should also be an odd number so that
we can weigh over the same number of frames on each side with respect to a given frame.

5.2 Segmentation into feeding and non-feeding frames

We first detect which arm or hand performs self-feeding. The feeding hand is determined by
the one with smaller MAJRD of the two joint pairs (shoulder center to left hand, shoulder
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(a) eating fries (b) eating burger

(c) eating steak (d) eating noodles

(e) drinking soup (f) drinking soft drink with straw

(g) drinking bottled water

Figure 3 Example JRDs of seven categories between shoulder center and double hands. SC-LH denotes the
joint pair between shoulder center and left hand. SC-RH denotes the joint pair between shoulder center and
right hand
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Figure 4 Flow chart of our proposed method. SC denotes shoulder center

center to right hand) averaged over whole sequence. The mean of MAJRD for a joint pair p
in action M can be computed by the following equation:

MAJRDM(p) = meant (MAJRDM(t, p)). (3)

As mentioned in Section 1, eating or drinking process consists of two main partitions:
self-feeding periods and resting (non-feeding) periods. These two partitions can be discrim-
inated by examining the MAJRDs between shoulder center and the feeding hand at different
frames. In a feeding period, the MAJRDs between shoulder center and the feeding hand are
similar to the MAJRDs between these two same joints in other feeding periods within one
sequence, which tend to be small as the feeding hand is moving toward the mouth. On the
other hand, the MAJRDs during the resting periods are relatively large compared with the
self-feeding periods. As a result, we apply K-means clustering on the MAJRDs between
the shoulder center and the feeding hand in order to classify the frames into feeding and
non-feeding.

The K-means clustering algorithm [9] is applied to segment an eating or drinking motion
sequence into feeding and non-feeding frames. In order to give out a relatively stable clus-
tering, we initialize the centroids of the k clusters with the first k peaks in the probability
density function (PDF) ofMAJRDs estimated over the entire sequence with T frames. In this
algorithm, the MAJRD at each frame is assigned to its nearest cluster center. Each cluster
center will be revised to take the average of its electorate. The clustering algorithm con-
verges when the assignment of all the MAJRDs over T frames is unchanged. The number
of clusters in this problem is set with k = 2. Frames in the cluster with lower mean MAJRD
are considered as self-feeding periods, and frames in the other cluster are considered as
non-feeding or resting periods.

5.3 Self-feeding frequency estimation

During each feeding period, the frames are classified by the method in Section 5.2 as feeding
frames and they form a block. It is then followed by a block of frames classified as non-
feeding frames as the subject moves the feeding hand away from the mouth. These blocks
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of feeding and non-feeding periods interleave with each other with similar patterns, so we
can estimate the self-feeding frequency by counting the number of blocks with feeding
frames. Figure 5 shows two example sequences of eating fries with different self-feeding
frequencies in a clip of 500 frames, and in both streams the subjects use their left hands as
feeding hands. From Figure 5 we can observe that the subject in sequence 1 feeds himself
or herself 3 times, while the subject in sequence 2 self-feeds 5 times within the same time
duration.

5.4 Eating and drinking behavior recognition

One objective of our work is to determine the eating and drinking behaviors of subjects by
recognizing them eating or drinking with different utensils or consuming different types of
food. If the entire motion sequence is used for recognition, then the recognition accuracy
would be affected by the non-feeding frames as they may represent resting which provides
little information about the actual eating or drinking actions. Since the motion sequence
has already been segmented into feeding and non-feeding frames, the recognition can be
applied by focusing on the feeding frames to increase the accuracy. We compute MAJRD
for each of the 45 joint pairs from the feeding frames and form the feature vector. The
feature vectors obtained from training samples in each class are used to train a support
vector machine (SVM) as classifier. During recognition, given an input motion sequence
that has been segmented into feeding and non-feeding frames using the method described
in Section 5.2, the feature vector is obtained by computing MAJRD of the 45 joint pairs and
passed to the SVM classifier to recognize the eating or drinking patterns.

6 Experiment

We perform some experiments to evaluate the performance of our proposed approach in
self-feeding frequency estimation and eating/drinking action recognition.
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Figure 5 Two MAJRDs of eating fries in different feeding frequencies
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Figure 6 The detection accuracy of “MAJRD+K-means” with different a values

6.1 Experiment on self-feeding frequency estimation

As described in Section 5.3, we detect the feeding frames using K-means clustering on
MAJRD between shoulder center and the feeding hand and then count the number of blocks
with feeding frames to estimate the self-feeding frequency. In order to verify the effec-
tiveness of our model, we compare our method (denoted as “MAJRD+K-means”) with the
method applying K-means clustering on JRD without utilizing moving average (denoted
as “JRD+K-means”), and two other joint smoothing methods called jitter removal filter
[21] and Savitzky-Golay filter [20] also applying K-means clustering on JRD (denoted as
“JRJRD+K-means” and “SGJRD+K-means” respectively). The ground truth of self-feeding
frequencies of all the seven class sequences are given by manual annotation, and it is used
to determine the accuracy of each method to evaluate the performance. The variation of
“MAJRD+K-means” detection accuracy is performed with respect to different window size
a as shown in Figure 6, and we can conclude that “MAJRD+K-means” gets the optimal
performance when parameter a is set to be 21.

Table 1 illustrates the accuracies of self-feeding frequency detection for our dataset
(described in Section 3) using the above four approaches. As indicated in Table 1, the
estimated self-feeding frequency achieves the highest accuracy for our proposed approach
“MAJRD+K-means”. Jitter removal filter is effective in dampening the spikes such that a

Table 1 Performance
comparison for self-feeding
frequency detection

Method Accuracy (%)

JRD+K-means (baseline) 30.0

JRJRD+K-means [21] 75.7

SGJRD+K-means [20] 77.9

MAJRD+K-means (proposed) 82.1
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spike will be replaced by the average of previous frames if a large disparity exists between
the JRD of shoulder center and feeding hand in current frame and the average JRD of these
two joints in previous frames. The JRDs of these two joints may vary significantly during
eating, and applying jitter removal filter will make it less discriminative against feeding and
non-feeding frames. Savitzky-Golay filter smooths skeleton data via minimizing the least-
squares error, which is sensitive to outliers. This may reduce accuracy when estimating
self-feeding frequencies. We further provide an example of MAJRD illustrating the clus-
tering obtained from “JRD+K-means” and “MAJRD+K-means” under the same sequence
of eating fries in Figure 7. The shaded areas represent the detected feeding frames. There
are four feeding periods in this sequence from the ground truth annotation. We can see
that “JRD+K-means” wrongly classifies the third feeding period into two feeding actions.
This implies that “JRD+K-means” is unable to identify outliers, and “MAJRD+K-means”
outperforms “JRD+K-means” to rapid fluctuations in captured data.

6.2 Experiment on eating/drinking action recognition

In this experiment, we execute classification of seven different eating or drinking actions in
our dataset based on the features obtained in Section 5.4. The SVM classifiers are trained
for action classification in a one-vs-all setting. In order to perform a subject-invariant exper-
iment, each time the actions of three subjects are used for training, and the remaining two
subjects are used for testing. The total number of combinations of training-testing settings
is

(5
2

) = 10, and we take average of the recognition accuracies as the performance indicator.
To show the robustness of our proposed features, i.e., the MAJRD of the 45 joint pairs,

we compare it with two other state-of-the-art skeletal representations, called the relative
variance of JRD (RVJRD) [14], and the relative range of JRD (RRJRD) [15], which are
defined for joint pair p in action M as follows:

RV JRDM(p) = 1

T

T∑

t=1

(
JRDM(t, p) − meant (JRDM(t, p))

meant (JRDM(t, p))

)2

, (4)

RRJRDM(p) = maxt (JRDM(t, p)) − mint (JRDM(t, p))

meant (JRDM(t, p))
. (5)

(a) JRD+K-means (b) MAJRD+K-means

Figure 7 The detected feeding frames of “JRD+K-means” and “MAJRD+K-means” between shoulder
center and the feeding hand under the same sequence of eating fries
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As JRD is not robust enough to segment an eating or drinking action into feed-
ing and non-feeding periods, the RVJRD and RRJRD are computed over the whole
sequence. On the other hand, we make use of MAJRD to segment the sequence into
feeding and non-feeding periods, and focus on the MAJRD from the feeding peri-
ods since it retains more representative characteristics of the eating or drinking action.
The feeding frames we used are obtained from “MAJRD+K-means” with the best
segmentation performance (i.e., a = 21). Thus we compare the RVJRD and RRJRD
computed over the whole sequence with the relative variance of MAJRD (RVMAJRD)
and the relative range of MAJRD (RRMAJRD) computed over the feeding frames.
The RVMAJRD and RRMAJRD for joint pair p in action M are formally defined as
follows:

RV MAJRDM(p) = 1

T

T∑

t=1

(
MAJRDM(t, p) − meant (MAJRDM(t, p))

meant (MAJRDM(t, p))

)2

, (6)

RRMAJRDM(p) = maxt (MAJRDM(t, p)) − mint (MAJRDM(t, p))

meant (MAJRDM(t, p))
. (7)

We also compare the performance using the relative variance, the relative range as well
as the mean of JRD (RVJRD, RRJRD vs JRD) computed over whole sequence. In addi-
tion, we evaluate the recognition accuracies using RVMAJRD, RRMAJRD and MAJRD
over feeding frames. The recognition accuracy results are shown in Table 2. It can be
observed that all these three approaches computed from the feeding periods show higher
recognition accuracies compared with the ones computed from the whole sequence. Since
RRJRD is proposed under clear version data and RVJRD works better on noisy data,
this may explain why RRJRD outperforms RVJRD after moving average step in eat-
ing and drinking behavior recognition. The performance of JRD is slightly lower than
RRJRD, but after taking the moving average of its counterpart, MAJRD computed from
feeding periods works better than RRMAJRD. The lower performance when the fea-
ture is extracted from the whole sequence (RVJRD, RRJRD or JRD) is due to the fact
that inter-class variations are small among various eating or drinking actions especially
for JRD. This is because resting and chewing occupy most of the time in an eating or
drinking sequence, and the JRDs over these inactive periods are similar among all the
seven classes. On the other hand, when the feature is focused on the feeding periods
(RVMAJRD, RRMAJRD or MAJRD), it is more discriminative in representing self-feeding
actions.

Figure 8 shows the confusion matrices for RVJRD, RRJRD, JRD on whole sequence as
well as RVMAJRD, RRMAJRD, MAJRD on feeding periods. While our proposed method

Table 2 Performance
comparison for eating/drinking
action recognition

Method Accuracy (%)

RVJRD on whole sequence 57.3

RVMAJRD on feeding periods 61.4

RRJRD on whole sequence 69.1

RRMAJRD on feeding periods 76.6

JRD on whole sequence 66.8

MAJRD on feeding periods 78.4
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(a) RVJRD on whole sequence (b) RVMAJRD on feeding periods

(c) RRJRD on whole sequence (d) RRMAJRD on feeding periods

(e) JRD on whole sequence (f) MAJRD on feeding periods

Figure 8 Confusion matrices

can better recognize different classes of eating and drinking actions compared with other
methods. The performance is lower when the eating or drinking actions have similar dis-
tances between shoulder center and the feeding hand during self-feeding actions, such
as “eating fries” and “drinking soft drink with straw”, “eating noodles” and “drinking
soup”.

Although our proposed MAJRD outperforms other features, it is still challenging to dis-
tinguish among some actions when they have similar MAJRD over feeding frames causing
inconspicuous inter-class variations. Besides, different eating habits of people may cause
large intra-class variations which provide another reason for causing poor performance.
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Figure 9 Experiment
configuration

6.3 Experiment on different distances between Kinect and subject

In order to test the influence of different distances between Kinect and subject as well
as the robustness of our proposed MAJRD against RVMAJRD and RRMAJRD, we ana-
lyze skeletal representation of eating and drinking behaviors captured by two Kinects
simultaneously. The experiment setting is demonstrated in Figure 9. The distances between
subjects and two sensors are within the depth range of Kinect under seated mode (0.4m ∼
3m). Two optical axes form a small angle θ to reduce interference between two sensors.
In this experiment we have three subjects performing four actions: drinking soup, drink-
ing soft drink with straw, eating fries and eating noodles. These actions are the most likely
to cause confusions (described in Section 6.2) among all the seven eating and drinking
behaviors, which makes the experiment more challenging. Analogous to our captured eat-
ing and drinking dataset (described in Section 3), each action is performed four times by
each subject.

Table 3 gives out the recognition accuracies of the three mentioned methods RVMAJRD,
RRMAJRD, and MAJRD under two Kinect-subject distances. For both near and remote
modes, MAJRD shows the best performance among these three approaches, which shows
the robustness of our method under different distances. In general, the performance of recog-
nition under remote mode is lower than the one under near mode. This is because when
the distance increases, the positions of joints are likely to be inferred which may cause
inaccurate joint distances.

Table 3 Recognition accuracies
(%) of eating/drinking action
recognition under different
Kinect-subject distances

Method Near (1.0m) Remote (2.5m)

RVMAJRD 58.3 56.3

RRMAJRD 77.1 66.7

MAJRD 89.6 77.1
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7 Conclusions

In this paper, we analyze eating and drinking motions through self-feeding frequency esti-
mation and eating behavior recognition based on the skeleton data from our collected
dataset. We introduce MAJRD by computing the moving average on the JRD between joint
pairs as features. K-means clustering is applied to the MAJRD between shoulder center and
the feeding hand to segment the motion into self-feeding and resting periods. The MAJRDs
of all joint pairs from the upper body during the feeding periods are used as features for
recognizing different eating and drinking actions. The experiment results show that our
proposed method in self-feeding frequency estimation and eating and drinking action recog-
nition performs better than other methods. In the future, we will extend this pioneer work
by considering the trajectories of MAJRD in addition to the mean as features to improve
the recognition accuracy. We also tend to combine skeleton motions with depth images to
examine bits and swallows so that it will conduct a more precise self-feeding action detec-
tion and recognition. In the long run, a Web system could be developed to allow people
to share and upload their eating and drinking behaviors such that big data analysis can be
carried out to facilitate searching and getting feedback.

Acknowledgements The work described in this paper is supported by grants from City University of
Hong Kong (Project No. 7004548 and 7004681), National Natural Science Foundation of China (Grant
No. 61402205), China Postdoctoral Science Foundation (Grant No. 2015M571688), and Jiangsu University
(Grant No. 13JDG085).

References

1. Abdur Rahman, M., Qamar, A.M., Ahmed, M.A., Ataur Rahman, M., Basalamah, S.: Multimedia inter-
active therapy environment for children having physical disabilities. In: Proceedings of the 3rd ACM
Conference on International Conference on Multimedia Retrieval, pp. 313–314 (2013)

2. Amft, O., Bannach, D., Pirkl, G., Kreil, M., Lukowicz, P.: Towards wearable sensing-based assessment of
fluid intake. In: The 8Th IEEE International Conference on Pervasive Computing and Communications
Workshops, pp. 298–303 (2010)

3. Bian, Z.P., Chau, L.P., Magnenat-Thalmann, N.: Fall detection based on skeleton extraction. In: Pro-
ceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its
Applications in Industry, pp. 91–94 (2012)

4. Chang, C.Y., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchuk, A.A., Rizzo,
A.A.: Towards pervasive physical rehabilitation using microsoft Kinect. In: The 6Th IEEE International
Conference on Pervasive Computing Technologies for Healthcare, pp. 159–162 (2012)

5. Chen, M., Dhingra, K., Wu, W., Yang, L., Sukthankar, R., Yang, J.: Pfid: Pittsburgh fast-food image
dataset. In: The 16Th IEEE International Conference on Image Processing, pp. 289–292 (2009)

6. Dong, Y., Hoover, A., Scisco, J., Muth, E.: A new method for measuring meal intake in humans via
automated wrist motion tracking. Appl. Psychophysiol. Biofeedback 37(3), 205–215 (2012)

7. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110–1118
(2015)

8. Gao, C., Yang, L., Du, Y., Feng, Z., Liu, J.: From constrained to unconstrained datasets: an evaluation
of local action descriptors and fusion strategies for interaction recognition. World Wide Web 19(2),
265–276 (2016)

9. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc.: Ser. A:
Appl. Stat. 28(1), 100–108 (1979)

10. Hondori, H.M., Khademi, M., Lopes, C.V.: Monitoring intake gestures using sensor fusion (microsoft
Kinect and inertial sensors) for smart home tele-rehab setting. In: The 1St Annual IEEE Healthcare
Innovation Conference (2012)

1357World Wide Web (2019) 22:1343–1358



11. Kalantarian, H., Alshurafa, N., Sarrafzadeh, M.: A Wearable Nutrition Monitoring System The 11Th
IEEE International Conference on Wearable and Implantable Body Sensor Networks, pp. 75–80 (2014)

12. Kalantarian, H., Alshurafa, N., Le, T., Sarrafzadeh, M.: Monitoring eating habits using a piezoelectric
sensor-based necklace. Comput. Biol. Med. 58, 46–55 (2015)

13. Kawano, Y., Yanai, K.: Real-time mobile food recognition system. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–7 (2013)

14. Li, M., Leung, H.: Graph-based approach for 3d human skeletal action recognition. Pattern Recogn. Lett.
87, 195–202 (2017)

15. Li, M., Leung, H., Liu, Z., Zhou, L.: 3d human motion retrieval using graph kernels based on adaptive
graph construction. Comput. Graph. 54, 104–112 (2016)

16. Malnick, S.D., Knobler, H.: The medical complications of obesity. J. Assoc. Physicians 99(9), 565–579
(2006)

17. Mastorakis, G., Makris, D.: Fall detection system using kinect’s infrared sensor. J. Real-Time Image
Proc. 9(4), 635–646 (2014)
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